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Abstract

We model how excess demand or excess supply can be generated in
the presence of a social network of interactions, where agents are sub-
ject to external information and individual incentives. In this context
we study price fluctuations in financial markets under equilibrium. In
particular, we isolate the role of these different factors in the deter-
mination of price fluctuations and describe non trivial sensitivities to
changes in equilibrium due to the existence of social interactions. We
characterize equilibrium and distinguish between stable and unstable
equilibrium. Crashes or bubbles are seen as out-of-equilibrium situa-
tions, preceeded by unstable equilibrium. Fluctuations under unstable
equilibrium are shown to be abnormal and particulary large. Also, we
show how fluctuations of the external information flows affect the fluc-
tuations of the return process. In all cases we explain the well-known
phenomena that prices do not fluctuate upwards in the same way as
they fluctuate downwards. This asymmetry of price fluctuations is due
to asymmetries in the price elasticity of demand and supply curves at
the level defining equilibrium.
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1 Introduction

This paper builds a model of individual decision making in the context of

equilibrium financial markets with social interaction. The notion of social

interaction takes into account the fact that individual choices are affected

by the others’ decisions and characteristics. In any model in Economics this

happens somehow. Typically, agents interact indirectly through the prices,

these prices reflecting the participation of each individual in the market place.

In contrast, the type of interdependencies that we model directly link the in-

dividuals. With this type of models we can see how the behavior of one agent

may affect the preferences of the others without being mediated through the

equilibrium price.

Among the economists there has been an increasing recognition of the

importance of social interactions in economic behavior. A very early study

of the role of social interactions in binary choice is Schelling (1973). The in-

tuition that individuals seek to conform to the behavior of reference groups

has found many applications. An important case is to consider the interac-

tions within a close neighborhood as in Loury (1977), Bénabou (1993) and

Durlauf (1996a,b).

This concept of behavior driven by social interactions, although recent in

economics, has been theorized by sociologists. Early examples can be found

on the literature about ghetto poverty, such as Lewis (1966) and Liebow

(1967), for example. More recent treatments such as Wilson (1987) empha-

size the social multiplier that converts changes in private utility to changes

into community-wide behavior. This tradeoff between private behavior and

pression to conform will drive our theoretical work.
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The potential role of social interactions has been demonstrated in con-

texts that are not restricted to neighborhoods. Brock (1993) shows how these

effects may help explaining asset market volatility and Brock and Hommes

(1997) show further how they can produce complex aggregate price dynam-

ics. This paper is very close in spirit to this line of research. More recent

papers in this line linking directly these models to their Statistical Mechanics

counterpart are the works of Durlauf (1999) and Brock and Durlauf (2001).

We apply this model specifically to the financial markets, assuming a

population that either buy or sell a given financial asset. The buying/selling

behavior of the others affects one’s utility and, therefore, one’s decision. The

utility function is also considered as depending on external information and

on individual incentives. Individuals being different from each other have

different private incentives. In a very large population it is not feasible to

describe the different incentives one by one. Rather, the distribution of such

private incentives is modeled by a probability density. Thus, private incen-

tives are described as a random variable with different realizations for each of

the market participants. We refer to such random variable as a random field.

The recent papers of Durlauf (1999) and Brock and Durlauf (2001) develop

a particular treatment of individual preferences that incorporate individual

incentives in an explicit way that maps the problem into the Ising Model

with random fields. The randomness of such individual incentives generate

fluctuations in equilibrium prices. The presence of social interactions are

shown to affect the nature of prices even in the absence of external informa-

tion flow. Such fluctuations are shown to be particularly sensitive to change

in individual incentives for some critical values of the model’s parameters.

Moreover, we show how the presence of fluctuations of external information
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is propagated to the market price fluctuations.

This paper is organized as follows. In Section 2 we introduce the model.

Section 3 characterizes the equilibrium values of the average trading attitude

(buying or selling) and distinguishes between stable and unstable equilibria.

Under the latter, deviations from equilibrium are much more likely to occur.

Section 4 describes to type of price fluctuations: the first due to the random-

ness of individual incentives, characterizing the finite population equilibrium

convergence to an infinite population equilibrium, and the second due to

changes in the external information. Section 5 concludes.

2 The Model

Consider a system of N investors in a given stock. At each point in time

some of these investors are willing to buy, and the others are willing to sell.

This willingness is defined as a trading attitude. For simplicity, we assume

that each investor buys or sells the same amount of shares, normalized to 1.

Let the trading attitude of individual i at time t be modelled as a binary

variable si(t) = ±1, i = 1, . . . , N. These variables are interpreted to have

the following meaning. If si = +1, individual i is willing to buy, if si = −1,
individual i is willing to sell. We say that a configuration of attitudes at time

t is stable if no investor feels pressure to change his/her attitude. As usual,

we also say that markets are in equilibrium at time t if we have
P
si(t) = 0, in

which case attitudes may be transformed into buying and selling actions. An

equilibrium configuration is a stable configuration satisfying the equilibrium

condition above.

We assume that the configuration of attitudes may evolve from an equi-
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librium configuration due not only to the arrival of information flows from

the market place but also also due to the influence that investors exert over

each other. In that case, the arrival of new information takes the system from

equilibrium, generating a new stable configuration of attitudes. Within this

new configuration there will be either an excess demand or an excess supply

for the stock, generating price pressure. Prices change in such a way that this

stable configuration becomes unstable and evolves until a new equilibrium

is reached. In what follows we characterize the different elements that may

affect the investors’ trading attitudes.

2.1 The Effect of Social Norms

Under no interaction between individuals, we assume that an isolated indi-

vidual will not discriminate between a buying and a selling attitude, and will

decide with equal probability in favor of si = +1 or si = −1. Given no social
interaction these choices are independent of other individuals’ choices. Let

the mean choice in the set of the N individuals be denoted by

mN =

P
si
N

. (1)

Notice that the fraction of investors willing to buy is

f =
mN + 1

2
. (2)

Clearly, if individuals decide with equal probability between a buying and a

selling attitude, the average value of mN is zero.

Still in the setting of no direct interaction between individuals, let us

now consider that the individuals are in a coercive situation, where a social

pressure to conform exists. This coercion may be exerted by a majority, the
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existence of leaders, communication media and/or other factors, like social

norms, that may induce the direction of everybody’s trading attitude. A

typical example is the release of public news about the stock. In the case

of good news, such as an increase in dividends, a strong pressure to buy

will appear. The opposite case of bad news will lead to a natural pressure

to sell the stock. Let hc denote the intensity of this coercion. Its sign just

define whether this coercion is in the direction to induce to buy, in which

case hc > 0, or in the direction to induce people to sell, in which case hc < 0.

We assume that isolated individuals conform with these social forces from

the external environment and each of them will choose the attitude that

maximizes

u1i = hcsi. (3)

No matter how small hc is, a small degree of coercion induces a stable con-

figuration of either massive buying attitudes or massive selling attitudes and

no equilibrium is attainable.

2.2 The Effect of Social Interaction

We now turn to the effect of interactions, exchanges and contacts between

individuals, abstracting from the effect of external coercion. Considering a

pair of individuals i and j, they can either agree with respect to the trading

attitude, in which case sisj = +1, or disagree, in which case sisj = −1. We
introduce J > 0 as a measure, in utility terms, of the degree of interaction

or exchange. The level of agreement for a given pair (i, j) is thus measured,

in utility units, by

Jsisj, (4)
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being +J in case of agreement and −J in case of disagreement. A given indi-
vidual i interacts with, say, n other individuals, labeled k1, k2, . . . , kn, with a

set of given attitudes {sj}j∈Ii , where Ii = {k1, k2, . . . , kn} .We assume that,
in the absence of external coercion, investor i chooses his/her attitude such

as to maximize what is perceived as his/her total degree of agreement (the

attitude being kept constant over all social contacts). Attitudes, however,

are not observable. What one observes is the buying/selling behavior. Let-

ting Ei(x) denote the subjective expected value of the random variable x for

agent i, we assume that agent i chooses si so as to maximize

u2i = J
X
j∈Ii

siEi(sj). (5)

Let us now determine what happens when both effects, social external

coercion and interactions between individuals, occur simultaneously. In that

case, it is obvious that every agent will choose the attitude that is aligned

with hc, that is to say, choose the attitude with the same signal as hc. In that

way, each individual i maximizes the sum

Gi = u1i + u2i = J
X
j∈Ii

siEi(sj) + hcsi (6)

and, at the same time, maximizes each of its components. Again, no matter

how small hc is, a small degree of coercion induces a stable configuration of ei-

ther massive buying attitudes or massive selling attitudes and no equilibrium

is attainable.

2.3 The Effect of Personal Values

Until now we have discussed two effects: the tendency to conform with social

external norms and the interaction with other individuals. We now turn
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to a third relevant factor, namely the fact that each person, in her or his

capacity as a group member, is a priori bound to a certain attitude by his/her

idiosyncratic preferences. An additional factor is then required in order to

convey all that is incultated in each person by the culture in which he or she

lives, leading the person to be ‘personally’ inclined to opt, for example, for

a positive rather than a negative attitude. This factor should act on each

individual like the external coercion factor, except that it is person specific.

If, for individual i, the intensity of this factor is αi, the isolated influence of

this additional factor leads him or her to maximize

u3i = αisi. (7)

Here, αi may vary in sign and intensity from one individual to another.

Depending on the nature of the model to be implemented, one may use

either a configuration of known {αi} or else, assume a probability distribution
p {αi} . Together with the other factors, we assume that individuals choose
their attitudes so as to maximize

Hi = u1i + u2i + u3i = J
X
j∈Ii

siEi(sj) + hisi, (8)

where hi = hc + αi is the effective field acting over agent i.

2.4 Uncertainty in the Utility

Given the impact of the social interaction in the choice of the agents’ attitude,

the utility of any individual will be a random variable. Its realization will

depend on the realization of the others’ attitudes. We assume that the opti-

mal choice of attitude by agent i represents the solution to the maximization

problem

8



max
si
Hi(si) + ²i(si).

Following Brock and Durlauf (2001), we make the common assumption

that the difference of these two random disturbances is a random variable

logistically distributed. In other words, for each i there exists βi ≥ 0 such
that

Pr[²i(−1)− ²i(+1) ≤ z] = 1

1 + exp(−βiz) .

This is sufficient to characterize the probabilistic distributions of various

choices. For example, for i 6= j,

Pr[si|Hi,Ei(sj)] = Pr[Hi(si) + ²i(si) > Hi(−si) + ²i(−si)] ∝ exp[βiHi(si)].

Independence of the random utility terms ² implies that the joint proba-

bility measure of a configuration {si} is given by

Pr [{si}|Hi,Ei(sj)∀i, j 6= i] = Πi exp[βiHi(si)]. (9)

The model is closed assuming that each agent has rational expectations,

meaning that all subjective expectations Ei(sj) can be replaced by the math-

ematical expectations E(sj), where these expectations are conditioned to the

different βi and the parameters of Hi. It follows (see e.g., Brock and Durlauf,

2001) that the mathematical expectations of the individual choices are de-

termined by the set of N coupled equations

E(si) = tanh

(
βi

"
hi + J

X
j 6=i
E(sj)

#)
. (10)
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3 Equilibrium Analysis

3.1 Aggregating utilities

In his seminal work, Keynes (1934) describes how professional investors be-

have in the market. In his view, they prefer to analyze how the crowd of

investors is likely to behave in the future, rather than devoting their energy

estimating fundamental values. He used the example of a beauty contest to

illustrate this point. In order to predict the winner of a beauty contest, ob-

jective beauty is not as important as the knowledge (or prediction) of others’

prediction of beauty.

In this paper we shall make this same important simplifying assumption

in order to solve the model and understand the possible equilibria of this

system. The main assumption is that individuals that take seriously into

account the influence of others in the determination of their attitudes, tend

to adopt the same attitude as what they predict the average buying or selling

attitude to be.

Similarly, Galam and Moscovici (1991) formalize the emergence of a group

as such in a social-psychological context and assume that, in equilibrium, the

interaction of individual i with each of his/her neighbors with expected atti-

tude E(sj) can be replaced by the Law of Large Numbers with the interaction

with an average attitude. That is done by replacing each E(sj) by

E(sj) =
1

N − 1
N−1X

k=1,k 6=j
sk (11)

If this is the case, the n neighbors become identical andX
j∈Ii

E(sj) =
n

N − 1
N−1X

k=1,k 6=j
sk.
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Notice that, as N increases without bound, the sum above tends to nmN .

Defining hJ as

hJ = J
X
j∈Ii

E(sj)→ JnmN as N →∞,

and substituting the sum above in the expression (8) for Hi we get

Hi = hJsi + hisi

= h̃isi,

where

h̃i = hJ + hi.

In other words, the result of the assumption underlying (11) is that, when

N increases without bound, the attitudes become asymptotically uncoupled.

Notice, however, that this is not the same asymptotic system as if J = 0 from

the beginning. In fact, Hi above resembles very much to u3i in equation (7),

with αi replaced by h̃i. But, as opposed to αi, this last factor depends on J ,

the coupling constant. Hence, each agent will maximizeHi above by choosing

si =sign h̃i. Thus, when N is arbitrarily large, the aggregate utility may be

written as

H ({si} , J, hc, {αi}) =
NX
i=1

Hi = NmNhJ +
NX
i=1

hisi (12)

Using the fact that mN = (
PN

i=1 si)/N and that hJ tends to JnmN as N

tends to infinity, for large enough N we may write

H ({si} , J, hc, {αi}) = Jn

N

Ã
NX
i=1

si

!2
+

NX
i=1

hisi. (13)
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Thus, given {si} , J, hc and {αi} , the value of aggregated utility H is a

function only of the mean attitude mN . Clearly, the optimal value of H
must be associated with a unique value of mN . A value of mN , however, is

not associated with a unique configuration of attitudes {si} . Several different
configurations may lead to the same value of mN . In that sense, equilibrium

is not unique. Also, because the solution of our model comes only within the

decoupling context, and this requires an asymptotic system, we shall refer

to the stable (and equilibrium) values of mN as m. The number of possi-

ble configurations compatible with one given value of m may thus become

very large. In order to have the relative weight of different values of m, a

probability measure describing its asymptotic distribution is required.

3.2 The Stable Values of m

For the special case of deterministic private incentives (hi = h,∀i) where the
distribution of random terms are identical across agents (βi = β,∀i), use of
equation (9) allows to write the probability distribution of m in equilibrium

as

Pr ({si}) = 1

ZN
exp{βH ({si})}.

We define B = βh. Thus, the proportionality constant ZN should correspond

to the sum over all states (all possible configurations)

ZN =
X
{si}

exp{βH ({si})}.

With the help of equation (13), ZN may be rewritten as

ZN =
X
{si}

exp

βJn

N

Ã
NX
i=1

si

!2
+B

NX
i=1

si

 . (14)

12



It then follows that the expected value of m can be written as

E(m) =
1

ZN

X
{si}

ÃPN
i=1 si
N

!
exp{βH ({si})},

or still,

E(m) = 1

N

∂

∂B
lnZN (15)

Hence the expected mean trading attitude m can be directly obtained from

ZN . In the appendix we show that 1/N lnZN can be written asymptotically

as

lim
N→∞

1

N
lnZN = min

η
f(η)

where

f(η) = η2
ν

2
− ln cosh(ην +B)

with ν = β2Jn, implying that all the probabilistic mass is concentrated at

the minima of the above function satisfying the first-order conditions

η = tanh(ην +B).

The value of η that solves this equation is thus a function of B, to be

denoted by η(B). From equation (15) we can now write

E(m) =
∂

∂B
[max

η
f(η)]

=
∂

∂B

n
−η(B)2ν

2
+ ln cosh[η(B)ν +B]

o
= η(B).
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Since by the Law of Large Numbers the probability distribution of m is

degenerated in the considered limit, it follows that E(m) = m with proba-

bility 1 and thus m must satisfy

m = tanh [β (nJm+ h)] ,

that can be seen as the particular version of equation (10) for this case.

In order to consider the contribution of the idiosyncratic influences hi, we

should replace the expression nJm+ h, reflecting the limit value of hJ + h,

by the effective total random influence nJm + hi. Under the integrability

condition E(|h|) < ∞, Amaro de Matos and Perez (1991) show that the

average attitude minimizes the function

f∗(η) = η2
ν

2
−
Z
p(hi) ln cosh(ην +Bi)dhi,

where Bi = βhi. The solution for the stable mean attitude is shown to read

m =

Z
p (hi) tanh [β (nJm+ hi)] dhi (16)

This equation generalizes the above equation for m and gives the implicit

stable values of m for arbitrary random fields hi.

3.3 Phase Diagram

The stable values ofm are solutions of the above equation (16). In the simple

initial case, where the probability mass of the random field hi is concentrated

around the value h, if βJ > 1, there is a critical value of βh above which

there is a single solution to (16) and below which there exist three different

solutions.
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As pointed out in Durlauf (1999), this means that when private incentives

(expressed by h) are sufficiently weak, then the desire for conformity (as

measured by J) present in individual decisions may generate multiple, self-

consistent stable behaviors. In turn, this means that the relationship between

the individual incentives and aggregate behavior can be highly nonlinear. For

example, close to criticality, a small change in h may change the number of

stable values for m in the system.

For the more general general case of random hi, we refer to Salinas and

Wreszinski (1985) to characterize the possible minima of f , and thus the

possible values of stable mean attitudes. Typically, and depending on the

values of β, J and on the probability p(hi), there may be different types of

minima for f∗(η). If η∗ is a minimum of f∗(η), then a Taylor expansion

around η∗ will look like

f∗(η) = f∗(η∗) + θ
(η − η∗)2k

2k
+ o

£
(η − η∗)2k

¤
.

We call k the type of the minimum η∗ and θ its strength.

The several different possibilities are

1. one global quadratic minimum (k = 1);

2. two global quadratic minima (k = 1);

3. several quadratic minima (k = 1);

4. one global quartic minimum (k = 2);

5. one global minimum (k = 3).
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Notice that the solutions that minimize f∗(η) correspond to stable values

of average trading attitude, not necessarily to equilibrium. Equilibrium is

attained only for those stable configurations of trading attitudes that imply

m = 0. Also, criticality of the parameters occur only in the last two cases.

Studying equilibrium means to study the cases where m = 0. If we have a

case where m = 0 and k > 1, we then know that the system is under an

unstable equilibrium in the sense that a little change of parameters (β, J or

h) may take it away from equilibrium to a different stable configuration of

trading attitudes (m 6= 0), generating an excess demand or an excess supply
for the asset.

4 Price Fluctuations in Equilibrium

In this Section we are going to consider a system initially at equilibrium.

This means that the average trading attitude is zero. If the system is com-

posed of infinite agents this is indeed true. However, for any finite system,

whenever an agent chooses his/her behavior based on the perceived mean at-

titude of the others, his/her resulting utility is random, allowing the average

trading attitude to fluctuate around zero. In the first part of this Section we

study the impact of such fluctuations in prices. In the second part we study

how fluctuations of the random field affect the dynamics of prices, when the

system evolves in equilibrium.
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4.1 Static Fluctuations

4.1.1 Fluctuations of m

In what follows we assume equilibrium i.e., m = 0. For any real γ, consider

the following random variable

AN =

PN
i=1 si −Nm
N1−γ .

Hence, we can write

mN = m+N
−γAN .

In the case of strict social interaction, i.e., when hi = 0, Ellis and Newman

(1978) have shown that, with γ = 1
2k
and as N → ∞, AN is distributed

according to a density proportional to

exp
¡−u2k¢ .

In other words, away from criticality (k = 1), equilibrium fluctuations of the

average trading attitude are Normal. At criticality, or at unstable equilibrium

(k = 2), equilibrium fluctuations of the average trading attitude are non-

Normal, with much higher variance. The latter case reflects a situation where

any slight change of parameters leads the system into an excess demand or

excess supply of assets, leading the system away from the original equilibrium.

Under the presence of random fields, Amaro de Matos and Perez (1991)

have shown that, with γ = k
2(2k−1) and as N →∞, AN is distributed accord-

ing to a density proportional to

exp
£−(u− u◦)2k¤
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if k = 1, where u◦ is a Normal random variable, with mean zero and variance

depending on the distribution p(h), or

u2(k−1) exp
£
δs2(2k−1)

¤
if k > 1.

Notice that the difference in the scaling factor γ implies that critical fluc-

tuations under random fields are higher than under strict social interaction,

implying that the unstable equilibrium is more unstable under the presence

of individual incentives.

4.1.2 Price Fluctuations

Considering that m fluctuates around zero, we consider in this Section what

happens to the equilibrium price under such fluctuations. Let P be the initial

stock price and εs (P ) and εd (P ) denote respectively the elasticities of the

supply and demand curve at that price level.

If dm > 0, there will be a pressure on the demand for the stock, and the

stock price should increase to restablish equilibrium. In that case the excess

demand is Ndm. Then, there will be a change in price

dP =
P

Q
εs (P )Ndm,

Notice that, in equilibrium, the transacted amount Q is always N/2. The

corresponding return on the stock is thus

dP

P
= 2εs (P ) dm.

If, on the other hand, dm < 0, this reflects an excess supply and the

stock price should decrease to restablish equilibrium. In that case the excess
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supply is Ndm and the change in price is

dP =
P

Q
εd (P )Ndm,

where εd(P ) < 0 is now the elasticity of the demand. The corresponding

return on the stock is
dP

P
= 2εd (P ) dm.

Given that we know the distribution of dm, we can characterize the dis-

tribution of the returns. Away from criticality, this model leads to Normally

distributed returns if the equilibrium price is such that |εd(P )| = |εs(P )|.
However, if these two elasticities are different, as it is likely to occur, the

distribution of the returns will be Two-Piece-Normal distributed, reflecting

unbalanced risk, biased towards the direction of higher elasticity.

At criticality, the distribution of returns can also be characterized al-

though in this case there are no closed formulas for the volatility. Here,

if |εd(P )| > |εs(P )| there is a higher probability that excess supply domi-
nates out-of-equilibrium deviations, leading to a crash. On the other hand, if

|εd(P )| < |εs(P )| there is a higher probability that excess supply dominates
out-of-equilibrium deviations, leading to a bubble.

4.2 Dynamic Fluctuations

Until now, we have dealt with an effective field hi = hc + αi decomposed

as a random variable hi plus a constant value hc. Hence, appart from that

constant value hc, the probability density p(hi) describes the distribution of

the individual incentives among the agents and can be replaced without any

loss of generality by p(αi) to describe the stable configurations as satisfying

m =

Z
p (αi) tanh [β (nJm+ αi + hc)] dαi.
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We now shall consider how the dynamics for the external field hc may

affect the time evolution of equilibrium prices. As before, the starting point

is that for equilibrium to exist, the value of m must be zero. From equation

(16), we can write

m = f [m,hc] ,

where

f [m,hc] =

Z
p (αi) tanh [β (nJm+ αi + hc)] dhi.

Imposing m = 0 as a solution implies thatZ
p (αi) tanh [β(αi + hc)] dαi = 0.

Given that p (αi) is given and fixed, and the integral runs over all possible

values of αi, the above equality must be seen as determining β as a function

of the level of the external field hc. Hence, in equilibrium we write

f [m,hc] =

Z
p (hi) tanh [β (hc) (nJm+ αi + hc)] dαi. (17)

4.2.1 Information Flow and Price Pressures

With m = 0, the fact that there is a flow of information in the market about

the stock is modeled in this context as a one dimensional stochastic field hc

satisfying the diffusion stochastic differential equation

dhc = ahdt+ bhdWt.

A change dhc in the external field will have as an immediate effect a change

dm in the initial value m = 0.

As before, we have

dP

P
= 2dm×

½
εs (P ) if dm > 0
εd (P ) if dm < 0

(18)
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The first thing to notice is that returns under good news and under bad news

do not have necessarily the same behaviour. In order to study the dynamics

of prices, we must therefore study the dynamics of equilibrium attitudes dm

under the arrival of information flows. This is done next.

4.2.2 The Dynamics of m

Changes in hc will generate changes in m. Given equation (17), if hc follows

a diffusion process, m will also follow a diffusion process by Itô’s Lemma.

Let the diffusion process of m be given by

dm = amdt+ bmdWt.

Equation (17), allows us to write dm = df . In order to explicitly write am

and bm, we use Itô’s Lemma to explicitly write df and identify the drift

and diffusion coefficient for both diffusions. Details for df are given in the

Appendix, leading to

am = ah
(β + hcβ

0)φ(1) + φ(α)

1− βJnφ(1)

− b2mm
J2n2β2∆(1)

1− βJnφ(1)

− 2bmbh
Jnβ[(β0hc + β)∆(1) +∆(α)]

1− βJnφ(1)

− b2hh
[(β0hc + β)∆(1) + β0∆(α)− β00φ(α)− (β00hc + 2β0)Φ(1)]

1− βJnφ(1)

where

Φ(x) =

Z
xp(αi)dαi

1

cosh2[β(hc)(hc + αi)]
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and

∆(x) =

Z
xp(αi)dαi

tanh[β(hc)(hc + αi)]

cosh2[β(hc)(hc + αi)]
.

Also,

bm = bh
(β + hcβ

0)φ(1) + φ(α)

1− βJnφ(1)
.

These are the drift and the diffusion coefficient for the average trading atti-

tude, generating a price process

dP

P
= 2(amdt+ bmdWt)× εs (P ) if dm > 0

εd (P ) if dm < 0
(19)

constrained to the values of β satisfying the equilibrium conditionZ
p (αi) tanh [β(αi + hc)] dαi = 0.

4.2.3 Some Particular Cases

We now analyse some special cases. In the absence of social interactions

(J = 0) we have

am = ah[(β + hcβ
0)φ(1) + φ(α)]

− b2hh[(β
0hc + β)∆(1) + β0∆(α)− β00φ(α)− (β00hc + 2β0)Φ(1)]

and

bm = bh[(β + hcβ
0)φ(1) + φ(α)],

together with the equilibrium constraintZ
p (αi) tanh [β(αi + hc)] dαi = 0.

A more trivial solution can be found satisfying the above constraint by

considering the solution for very small β. In fact, the equilibrium constraint

22



is trivially satisfied for β = 0. In that case Φ(1) = 1,Φ(α) = E(α) and

∆(x) = 0. We then have

am = ahE(α)

and

bm = bhE(α),

and the price process reads

dP

P
= 2E(α)(ahdt+ bhdWt)×

½
εs (P ) if dm > 0
εd (P ) if dm < 0

(20)

Notice that even in this very simple case, upward fluctuations of the price

process are different from downwards fluctuations.

In particular, if hc → ∞, meaning that the external information is too
strong, the only equilibrium solution is

β(hc) = o
¡
h−1c
¢
.

If the above condition is not satisfied, we will have in that limit

Φ(x) = ∆(x) = 0

leading to am = bm = 0.

5 Final remarks

In this work we have studied the impact of social interactions on price fluctu-

ations in financial markets under equilibrium. Social interactions are not the

only relevant ingredient determining price fluctuations. External information

and individual incentives are as essential as the social pressure to conform.
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We were able to understand and isolate the role of different factors in the

determination of price fluctuations, and to describe non trivial sensitivities

to changes in equilibrium due to the existence of social interactions.

In particular, even under the absence of information flows, fluctuations

in the decision about whether or not to invest under equilibrium may lead

to non-trivial price fluctuations. In equilibrium situations in the vicinity

of crashes or bubbles, price fluctuations are shown to become much larger.

Deviating from equilibrium, in our model, means to attain a stable configura-

tion of trading attitudes that generate either an excess supply, in which case

we would have a crash, or an excess demand, in which case we would have

a bubble. Such deviations are possible from equilibrium, provided that the

system passes through what we have called unstable equilibria. The point

was made that such transitions are highly sensitive to variations on the in-

dividual incentives. This sensitivity is due basically to the presence of the

social interactions.

We also show that upward and downward equilibrium fluctuations are dif-

ferent in size, basically due to the fact that, in general, the demand elasticity

is different from the supply elasticity at the equilibrium price level.

Finally, we considered the case where there is an information flow, leading

to stochastic fluctuations of the external influence. Such fluctuations are

shown to affect the equilibrium price process of assets in financial markets.

The stochastic nature of the information flow influences the price process, and

the equilibrium constraint implies that the probabilistic parameter regulating

how the decision of an agent affects the uncertainty about his/her utility

changes with the intensity of external influence. For small enough values

of this probabilistic parameter, the fluctuations of prices are seen to reflect
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trivially the fluctuations of the external information. Another implication of

the model is that for strong enough external influence, it may be extremely

hard to satisfy the equilibrium condition, in which case the price process

would not fluctuate.
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A Rewriting the sum over states ZN

In order to rewrite the expression (14) for ZN in a more suitable way, we use

the trivial identity

exp
³α
2

´
=

1√
2π

Z +∞

−∞
exp

µ
−x

2

2
+
√
αx

¶
dx,

with

α

2
=

βJn

N

Ã
NX
i=1

si

!2
,

so that it follows that the sum over states ZN can be written as

ZN =
X
{si}

1√
2π

Z +∞

−∞
exp

"
−x

2

2
+

Ãr
β2Jn

N
x+B

!
NX
i=1

si

#
dx

=
1√
2π

Z +∞

−∞
exp

µ
−x

2

2

¶(
2 cosh

"
x

r
β2Jn

N
+B

#)N
.

Making the change of variables ν = β2Jn and

η = x(νN)−1/2,

the expression for ZN can be rewritten as

ZN =

r
νN

2π
2N
Z +∞

−∞
exp[−Nf(η)]dη

where

f(η) = η2
ν

2
− ln cosh(ην +B).
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Using the Laplace asymptotic method, we can now study the asymptotic

probability properties of the mean statement m. In fact,

lim
N→∞

1

N
ln

Z +∞

−∞
exp[Nf(η)]dη = min

η
f(η).

That is to say, asymptotically the sum over all states ZN has its probabilistic

mass fully concentrated over the configurations leading to the minimum value

of f and thus satisfying the first-order conditions

η = tanh(ην +B).

B Deriving the Diffusion Process for df

From Itô’s Lemma,

df =

½
(Of) a+ 1

2
tr
£
b|
¡
O2f

¢
b
¤¾
dt+ (Of) bdWt.

Identification of the drift and diffusion coefficient for m leads to

am =
∂f

∂m
am +

∂f

∂h
ah +

1

2
tr
£
b|
¡
O2f

¢
b
¤

=
∂f

∂m
am +

∂f

∂h
ah +

1

2

·
b2m

∂2f

∂m2
+ 2bmbh

∂2f

∂m∂h
+ b2h

∂2f

∂h2

¸
and

bm =
∂f

∂m
bm +

∂f

∂h
bh

where all the partial derivatives are calculated with m = 0. We then get

am =
1

1− ∂f
∂m

½
∂f

∂h
ah +

1

2

·
b2m

∂2f

∂m2
+ 2bmbh

∂2f

∂m∂h
+ b2h

∂2f

∂h2

¸¾
and

bm =
∂f
∂h

1− ∂f
∂m

bh
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Noticing that

tanhx =
exp(x)− exp(−x)
exp(x) + exp(−x)

and

coshx =
exp(x) + exp(−x)

2

it follows that

tanh0 x =
1

cosh2 x

and

tanh00 x =
tanhx

cosh2 x
.

We then have for the several derivatives,

fm = βJnΦ(1)

fh = (β + hcβ
0)Φ(1) + Φ(α)

fmm = −2J2n2β2∆(1)
fhh = (2β0 + hcβ00)Φ(1) + β00Φ(α)− 2(β0hc + β)∆(1)− 2β0∆(α)
fhm = −2Jnβ[(β0hc + β)∆(1) +∆(α)],

with Φ(x) and ∆(x) defined as in the main text.
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