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Abstract

This paper analyzes a stochastic model of evolution in normal form
games. The long-run behavior of individuals in this model is investi-
gated in the limit where mutation rates tend to zero, while the expected
number of mutations, and hence population sizes, tend to infinity. It
is shown that weakly dominated strategies do not survive evolution.
Also strategies which are not rationalizable in the game obtained from
the original game by the deletion of all weakly dominated strategies
disappear in the long-run. Furthermore it is shown that if evolution
leads to a unique prediction this prediction must be equivalent to a
trembling-hand perfect equilibrium.

JEL classification: C62, C72, C73
Keywords: learning, experimentation, W 1S∞-procedure
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1 Introduction

Evolution in evolutionary models of behavior in normal form games does not

necessarily eliminate weakly dominated strategies (see Samuelson, 1993).

This is true for dynamic models such as the replicator dynamics of Taylor

and Jonker (1978), and for the stochastic model of Kandori, Mailath, and

Rob (1993).

In deterministic models weakly dominated strategies can survive evolu-

tion when all opponents’ strategies, against which the weakly dominated

strategy performs poorly, diminish much faster than the weakly dominated

strategy and then vanish before the weakly dominated strategy does (see

e.g. Example 3.4 in Weibull, 1995).

In a stochastic finite-population model a la Kandori, Mailath, and Rob

(1993), weakly dominated strategies may feature in the support of the limit-

ing invariant distribution of play because of the possibility of ”evolutionary

drift”. Suppose play is currently in a state in which two conditions are sat-

isfied. First, a given weakly dominated strategy is not played by anyone

in the relevant player population. Second, opponents’ strategies, against

which the weakly dominated strategy performs worse than the strategy it is

dominated by, are not present either. But then the weakly dominated strat-

egy is an alternative best reply in the given state, and if employed by one

individual in the relevant population by mutation, there is no evolutionary
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pressure to remove it. In fact one could have a series of single mutations

in this population toward more and more individuals playing the weakly

dominated strategy. If nothing else changes, i.e. no other individual in any

other population changes strategy, evolutionary pressure does not bear on

individuals using the weakly dominated strategy, as it continues to be an

alternative best reply in these circumstances. For a concrete example of a

game in which this can happen see Samuelson (1993).

The fact that we can assume that (at least with positive probability)

nothing else changes in the play of the game seems to depend a lot on the

fact that each population in the game is of finite size, which is a feature of

the stochastic model employed both in Kandori, Mailath, and Rob (1993)

and Samuelson (1993).

In this paper I employ the model of Nöldeke and Samuelson (1993) for

normal form games, which gives rise to a sticky myopic best-reply dynamics.

As in Kuzmics (2003) I investigate the limiting behavior of individuals in

this stochastic evolutionary model when mutation rates tend to zero and

when simultaneously the expected number of mutations per period, hence

also the population sizes, tend to infinity. Under these conditions I can

show that weakly dominated strategies will not be played to a significant

extent in the long-run. I then show that in fact any strategy which is not

strongly rationalizable will not be played by a significant proportion of
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individuals in the long-run. A strategy is called strongly rationalizable if it

is rationalizable (Bernheim, 1984, and Pearce, 1984) in the game obtained

from the original game by deletion of all weakly dominated strategies. Hence,

this paper provides an evolutionary justification for the use of what has been

termed the W 1S∞-procedure, which stands for the deletion first of all weakly

dominated strategies and then iteratively of all strictly dominated strategies.

While epistemic conditions for the use of this procedure have been identified

by Dekel and Fudenberg (1990), Brandenburger (1992), Börgers (1994), Gul

(1996), and Ben Porath (1997), I believe that this paper is the first to identify

conditions on the evolutionary process under which non-W 1S∞ compatible

strategies do not survive evolution.

I move on to prove that if evolution, as modelled here, leads to a unique

prediction, to be made precise in the paper, then this unique prediction must

be equivalent to a trembling-hand perfect equilibrium (Selten, 1975).

2 Model

The following model is a straightforward adaptation of the model of Nöldeke

and Samuelson (1993) to normal form games. Let Γ be a normal form game.

Let there be n players i ∈ N = {1, ..., n} and let each player i be replaced

by a population of individuals M(i) with population size mi = |M(i)|. Let

Si denote player i’s set of pure strategies. Individuals are characterized by
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the pure strategy they are playing∗. A state is a characterization for each

individual in each population. Let the state space be denoted by Ω.

Individuals in every period t play against every possible configuration of

opponents. Between times t and t + 1 each individual in each population

first receives a draw from a Bernoulli random variable either to learn with

probability σ or not to learn, and then receives a second draw from an

independent Bernoulli variable either to experiment with probability µ or

not to experiment.

If an agent learns, the agent chooses a best reply to the aggregate be-

havior of individuals at time t. If there are multiple best replies the agent

chooses one according to a fixed probability distribution with full support

over all best replies. If the agent already plays a best reply she is assumed

to continue playing it. If she does not learn, the agent continues to play her

old strategy.

If the agent receives an experimentation-draw she chooses an arbitrary

strategy according to a probability distribution with full support over all
∗In the model of Nöldeke and Samuelson (1993), which is designed for extensive form

games, individuals are characterized by a strategy as well as a conjecture about every

other individual’s strategy. By omitting the latter I here implicitly assume that when

individuals play the game they realize which strategy every player is using as in Kandori,

Mailath, and Rob (1993). This assumption, while not very reasonable for extensive form

games, seems fairly innocuous for normal form games.
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strategies available to this agent (including the one she is playing at the

moment). In the other case she does not change her strategy.

The above mutation-selection mechanism constitutes a Markov chain

on the state space Ω with transition probability matrix denoted by Qm
µ ,

indicating that it is different for different population sizes and different ex-

perimentation rates. The transition probabilities also vary with different

learning probabilities σ. In this paper, however, σ is assumed to be fixed at

a value strictly between 0 and 1.

The Markov chain induced by the above selection-mutation dynamics is

aperiodic and irreducible. Hence, it has a unique stationary distribution,

which shall be denoted by πm
µ , and satisfies

πm
µ Qm

µ = πm
µ . (1)

Let Θ = ×i∈N∆ (Si) be the space of all independent mixed strategy

profiles, where ∆ (D) is the set of all probability distributions over D.

Definition 1 For a fixed vector of population sizes, m, a state ω ∈ Ω is

said to be equivalent to a (mixed) strategy profile x ∈ Θ if for all player

populations M(i) the proportion of individuals playing action si ∈ Si in state

ω is identical to the probability attached by player i to strategy si in strategy

profile x.

Note that a mixed strategy profile is often equivalent to a specific state

7



only for a particular vector of population sizes m. Note also that irrational

mixed strategy profiles, in the sense that at least one entry in its distribution

is an irrational number, cannot be equivalent to any state for any vector of

population sizes m. Throughout this essay, though, I will not be interested

in any irrational mixed strategy. I will, therefore, ignore this problem.

Compare Kandori, Mailath, and Rob (1993) and Young (1993) for the

following definition of a stochastically stable state.

Definition 2 A (possibly mixed) strategy profile x ∈ Θ is stochastically

stable if for some finite m there is a state ω ∈ Ω, which is equivalent to x

and satisfies

lim
µ→0

πm
µ (ω) > 0. (2)

For x ∈ Θ let Ψx
ε denote the set of states in Ω which are equivalent to

a mixed strategy profile x′ ∈ Θ such that ‖x′ − x‖∞ ≤ ε, where ‖ · ‖∞ is

the maximum norm. I.e. Ψx
ε is the set of states for which for each player

population M(i) the difference between the proportion of individuals playing

strategy si ∈ Si and the probability attached to action si in the mixed strat-

egy x is not greater than ε in absolute values. Let ρm
µ =

(
µ, 1

m1µ , ..., 1
mnµ

)
and let ρm

µ → 0 mean that each component of ρm
µ tends to zero.

Definition 3 A (possibly mixed) strategy profile x ∈ Θ is stable under
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noise (SUN) if for all ε ∈ (0, 1)

lim
ρm

µ →0
πm

µ (Ψx
ε ) > 0. (3)

The strategy profile x ∈ Θ is strongly stable under noise (strongly

SUN) if for all ε ∈ (0, 1)

lim
ρm

µ →0
πm

µ (Ψx
ε ) = 1. (4)

3 Results

Let i ∈ N be an arbitrary player and let x ∈ Si be an arbitrary strategy

available to individuals at population M(i). Let Λi,x
k denote the set of states

in which the proportion of individuals at population M(i) is playing strategy

x is k
mi

.

Lemma 1 Let i ∈ {1, ..., n} be an arbitrary player and x ∈ Si an arbitrary

strategy available to individuals at population M(i).

lim
µ→0, miµ→∞

πm
µ

(
Λi,x

0

)
= 0. (5)

The proof of this lemma is identical, modulo notation, to the combined

proof of Lemma 1 and Corollary 1 in Kuzmics (2003). It is nevertheless

given in the appendix for convenience. The following corollary is immediate

from Lemma 1.
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Corollary 1 Denote by Ψ the set of states, in which there is a population

such that at least one strategy is not played by any individual at this popu-

lation, i.e.

Ψ =
n⋃

i=1

⋃
x∈Si

Λi,x
0 . (6)

Then

lim
ρm

µ →0
πm

µ (Ψ) = 0. (7)

For i ∈ N and x ∈ Si let Φi,x
τ =

⋃
k≤τmi

Λi,x
k denote the set of states in

which not more than a proportion of τ individuals play x at player popula-

tion M(i).

Lemma 2 Let i ∈ N and x ∈ Si be a pure strategy available to individuals

in population M(i). Let Bx ⊂ Ω denote the set of states in which x is a best

reply (given conjectures after learning) for individuals at population M(i).

Suppose limρm
µ →0 πm

µ (Bx) = 0. Then for all ε ∈ (0, 1):

lim
ρm

µ →0
πm

µ

(
Φi,x

ε

)
= 1. (8)

The proof of this lemma is virtually identical, modulo notation and tak-

ing set complements, to the proof of Lemma 4 in Kuzmics (2003). It is,

however, given in the appendix for convenience. Lemma 2 enables me to

prove a series of results.
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Theorem 1 Let wi ∈ Si, i ∈ N , be a weakly dominated strategy. Then for

any ε ∈ (0, 1):

lim
ρm

µ →0
πm

µ

(
Φi,wi

ε

)
= 1. (9)

Proof: Strategy wi can be a best reply only when there is some strategy

available to players in some other population M(j) which is not played by

any individual at M(j), i.e. wi can be a best reply only for states in Ψ as

defined in Corollary 1. The set Ψ, however, has zero limiting probability.

Hence Lemma 2 applies. QED

The fact that all weakly dominated strategies ”disappear” in the long

run is more than can be said when evolution is modelled by either mono-

tonic deterministic dynamics or stochastic dynamics with fixed population

sizes (see Samuelson, 1993). Hence, it is necessary to take population sizes

to infinity in the limit, to be able generally to exclude weakly dominated

strategies. It is not clear, however, whether it is necessary also to have the

expected number of mutations per period tend to infinity. In this essay I

will not investigate the question of necessary and sufficient conditions for

deleting weakly dominated strategies. I will, rather, try to analyze whether

more can be said about the behavior of the invariant distribution under the

given limiting conditions.

Let Γ1 denote the game which remains when all such weakly dominated

strategies are eliminated. I.e. Γ1 is derived from Γ by reducing each player’s
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pure strategy set by all weakly dominated strategies, while the payoff func-

tion is the same (with restricted domain). Let S1
i denote the restricted

strategy set for player i. The next theorem states that strategies which are

never a best reply in Γ1 must essentially disappear in the limit I consider.

Theorem 2 For i ∈ N let di ∈ S1
i be a strategy which is never a best reply

in Γ1. Then for any ε ∈ (0, 1):

lim
ρm

µ →0
πm

µ

(
Φi,di

ε

)
= 1. (10)

Proof: A strategy di ∈ S1
i is never a best reply in Γ1 if for any (pure or

mixed) strategy combination α−i ∈ ×i′ 6=i∆
(
S1

i′
)

there is another strategy

si(α−i) ∈ S1
i such that si(α−i) gives a higher payoff against α−i than di

does by at least some δ > 0. For η > 0 let Wη denote the set of states

such that at all populations the proportion of individuals who play a weakly

dominated strategy (in Γ) is below η. By continuity of the payoff functions

and the fact that δ > 0 we have that, provided η is small enough, di can only

be a best reply for states in W c
η , which, by Theorem 1 and the finiteness of

N and the finiteness of all Si for all i ∈ N , has zero limiting probability.

Hence, Lemma 2 applies. QED

The above argument can be iterated any finite number of times. A

strategy which survives the iterated deletion of never best replies is called

rationalizable (Bernheim, 1984, and Pearce, 1984). Let a strategy which
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is rationalizable in the game obtained from the original by deletion of all

weakly dominated strategies be termed strongly rationalizable. We then

have the following

Theorem 3 For i ∈ N , let di ∈ Si, be a strategy which is not strongly

rationalizable. Then for any ε ∈ (0, 1):

lim
ρm

µ →0
πm

µ

(
Φi,di

ε

)
= 1. (11)

While epistemic conditions for the use of what has been termed the

W 1S∞-procedure, which stands for the deletion of first all weakly dominated

strategies and then iteratively all strictly dominated strategies, have been

identified by Dekel and Fudenberg (1990), Brandenburger (1992), Börgers

(1994), Gul (1996), and Ben Porath (1997), the above theorem provides an

evolutionary justification for its use.

A corollary is immediate from Theorem 1.

Corollary 2 Let Γ = (I, S, u) be a 2-player normal form game, i.e. I =

{1, 2}. Let x = (x1, x2) ∈ S = S1 × S2 be a pure strategy profile. If x is

strongly SUN then x must be a (trembling-hand) perfect (Nash) equilibrium.

This is because in 2-player games every undominated Nash equilibrium

is perfect (see Theorem 3.2.2 in van Damme, 1991).

The game in Table i, taken from Exercise 6.10 in Ritzberger (2002),

suggests that a similar statement to Corollary 2 could hold also for normal
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A B

A 1,1,1 1,0,1

B 1,1,1 0,0,1

A

A B

A 1,1,0 0,0,0

B 0,1,0 1,0,0

B

Table i: A 3-player game, taken from Exercise 6.10 in Ritzberger (2002),

with an undominated Nash equilibrium which is not perfect.

form games with more than 2 players. In this game there are two admissible

(undominated) equilibria, (A,A,A) and (B,A,A). Only the first one is perfect.

Player 2’s as well as player 3’s strictly dominated strategy B disappear in

the long-run in our evolutionary dynamics in the sense of Theorem 1. Hence,

strategy B, in player populations 2 and 3, will be played by less than any

tiny proportion, ε2 and ε3, of individuals in the limit. For player 1 A is best

if and only if 1−ε2ε3 > (1−ε2)(1−ε3)+ε2ε3, i.e. if and only if ε2+ε3 > 3ε2ε3.

But this is true for any combination of ε2 and ε3 provided they are small

enough. In fact this means that (A,A,A) is strictly perfect (Okada, 1981).

Hence, for player population 1 the states in which B is a best-reply has

zero limiting probability. Then, by Lemma 2, player 1’s strategy B must

vanish in the long-run. In this game, then, only the perfect Nash equilibrium

(A,A,A) survives evolution in the long run. The second, also undominated,

Nash equilibrium (B,A,A) is not SUN.
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In fact, it can be shown for any normal form game (with any number

of players) that if evolution, as modelled here, leads to a unique long-run

prediction, a strongly SUN pure strategy profile, then this strategy profile

must be a perfect Nash equilibrium. I need two lemmas before I can prove

this claim.

Selten (1975) introduced the concept of a (trembling-hand) perfect (Nash)

equilibrium. One possible characterization of a perfect equilibrium is given

in the following lemma, which is also due to Selten (1975) (see also e.g.

Proposition 6.1 in Ritzberger, 2002, for a textbook treatment).

Lemma 3 A (possibly mixed) strategy profile x ∈ Θ is a (trembling-hand)

perfect (Nash) equilibrium if there is a sequence {xt}∞t=1 of completely mixed

strategy profiles (i.e. each xt ∈ int(Θ)) such that xt converges to x and x is

a best reply to xt for all t.

In the following lemma I establish what is essentially the inverse of this

condition. For x ∈ Θ and for ε > 0 let Ux
ε ⊂ Θ denote an ε-ball around x.

Lemma 4 Let x ∈ Θ be a Nash equilibrium which is not (trembling-hand)

perfect. Then there is an ε̄ > 0 such that for all ε ∈ (0, ε̄) it is true that for

all y ∈ Ux
ε ∩ int(Θ) x is not a best reply to y.

Proof: Suppose not. Then for all ε̄ there is an ε ∈ (0, ε̄) such that there

is a y = yε̄ ∈ Ux
ε ∩ int(Θ) such that x is a best reply to yε̄. But then
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{yε̄}ε̄>0 constitutes a sequence of completely mixed strategy profiles which

converges to x (for ε̄ tending to zero) and is such that x is a best reply to

each member in the sequence. Hence, by Lemma 3, x is perfect. Thus, we

arrive at a contradiction. QED

Theorem 4 Let Γ = (I, S, u) be an n-player normal form game, i.e. I =

{1, 2, ..., n}. Let x = (x1, x2, ..., xn) ∈ S = S1×S2×...×Sn be a pure strategy

profile. If x is strongly SUN then x must be a perfect Nash equilibrium.

Proof: Suppose x is strongly SUN but not perfect. Then by lemma 4 there

is a ε̄ > 0 such that for all ε ∈ (0, ε̄) it is true that for all y ∈ Ux
ε ∩ int(Θ), x

is not a best reply to y. Let Cj,xj ⊂ Ω denote the set of states in which xj ,

player j’s strategy in x ∈ S, is not a best reply (after learning). Fix ε ∈ (0, ε̄).

There is a player j ∈ I such that limρm
µ →0 πm

µ

(
Cj,xj ∩Ψx

ε

)
= δ > 0, where

Ψx
ε is the set of states in which for all i ∈ N the proportion of individuals

playing a pure strategy si ∈ Si and the probability attached to si in x

do not differ by more than ε. Suppose this were not true. Then for all

j ∈ I and for all sj ∈ Sj πm
µ

(
Cj,xj ∩Ψx

ε

)
→ 0. However, it must be that

Ψx
ε ⊂

⋃
j∈I Λj,xj

mj ∪
(⋃

j∈I

(
Cj,xj ∩Ψx

ε

))
. This is due to the fact that if a state

ω is in Ψε and strictly interior (not in Λj,xj
mj for any j ∈ N), then it must

be in one of the sets Cj,xj for some j ∈ N by force of Lemma 4, given that
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ε ∈ (0, ε̄). But then by the fact that the game is finite we have that

πm
µ (Ψx

ε ) ≤
∑
j∈I

πm
µ

(
Λj,xj

mj

)
+
∑
j∈I

πm
µ

(
Cj,xj ∩Ψx

ε

)
. (12)

But the right hand side tends to zero under the supposition, while the left

hand side tends to one. Hence, we arrive at a contradiction. Therefore, x

strongly SUN and yet not perfect implies that there is a player j ∈ I such

that limρm
µ →0 πm

µ

(
Cj,xj ∩Ψx

ε

)
= δ > 0.

For this player j ∈ I I will investigate the limiting probability of V =(
Φj,xj

(1−ε)

)c
, the set of states in which more than a proportion of (1 − ε)

individuals play xj at population M(j). By the fact that x is strongly SUN

we know that πm
µ (V ) tends to one in the limit. By equation (1) we also

know that

πm
µ (V ) =

∑
ω′∈Ω

πm
µ (ω′)

(
Qm

µ

)
ω′V

, (13)

where
(
Qm

µ

)
ω′V

=
∑

ω∈V

(
Qm

µ

)
ω′ω

. Hence,

πm
µ (V ) =

∑
ω′∈Cj,xj∩Ψx

ε

πm
µ (ω′)

(
Qm

µ

)
ω′V

+ (14)

+
∑

ω′ 6∈Cj,xj∩Ψx
ε

πm
µ (ω′)

(
Qm

µ

)
ω′V

. (15)

In the limit then

lim
µ→0, mj′µ→∞ ∀j′∈I

πm
µ (V ) ≤ 1− δ + (16)

lim
µ→0, mj′µ→∞ ∀j′∈I

πm
µ

(
Cj,xj ∩Ψx

ε

)
max

ω′∈Cj,xj∩Ψx
ε

(
Qm

µ

)
ω′V

. (17)

17



But for ω′ ∈ Cj,xj ∩Ψx
ε ,
(
Qm

µ

)
ω′V

is bounded away from 1, provided mj is

large enough.

To see this let {Ω × Ω, P} denote a probability space where P is such

that P (ω′, ω) = πm
µ (ω′)

(
Qm

µ

)
ω′,ω

for all (ω′, ω) ∈ Ω×Ω. Define U : Ω×Ω →

{0, 1, ...,mi} such that U(ω′, ω) is the number of individuals at population

M(j) who play xj in state ω. Similarly let V : Ω × Ω → {0, 1, ...,mi}

be a random variable such that V (ω′, ω) is the number of individuals at

population M(j) who play xj in state ω. Note that

{ω ∈ Ω|U(ω′, ω) = k} = {ω ∈ Ω|W (ω′, ω) = k} = Λj,xj

k .

Let Z : Ω× Ω → {−mi,−mi + 1, ...,−1, 0, 1, ...,mi} denote a third random

variable such that Z(ω′, ω) is the ”loss” of xj-players at population M(j) in

the transition from state ω′ to ω. Obviously we must have that Z(ω′, ω) =

− (V (ω′, ω)− U(ω′, ω)), or Z = U − V . Note that max
ω′∈Cj,xj∩Ψx

ε

(
Qm

µ

)
ω′V

is achieved by an ω′ ∈ Λj,xj
m . Hence,

max
ω′∈Cj,xj∩Ψx

ε

(
Qm

µ

)
ω′V

= max
ω′∈Cj,xj∩Λ

j,xj
m

(
Qm

µ

)
ω′V

.

However,

max
ω′∈Cj,xj∩Λ

j,xj
m

(
Qm

µ

)
ω′V

= P (Z ≤ εmj |U = mj).

Given U(ω′, ω) = mj , however, Z is binomially distributed with parameters

σ and mj . This implies that the expectation satisfies E(Z|U = mj) = σmj
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while the variance satisfies V (Z|U = mj) = σ(1− σ)mj . Then

P (Z ≤ εmj |U = mj) = P (Z − σmj ≤ (ε− σ)mj |U = mj) (18)

= P (σmj − Z ≥ (σ − ε)mj |U = mj) (19)

≤ P (|σmj − Z| ≥ (σ − ε)mj |U = mj) (20)

≤ P (|Z − σmj | ≥ (σ − ε)mj |U = mj) (21)

≤ σ(1− σ)mj

(σ − ε)2m2
j

, (22)

where the last inequality is an application of Chebyshev’s inequality. Given

σ > 0 is fixed, we can of course choose ε̄ and hence ε small enough such

that ε < σ, which is needed in the equations above. But then for mj large

enough we have σ(1−σ)mj

(σ−ε)2m2
j

< 1.

Hence, we have

lim
ρm

µ →0
πm

µ (V ) < 1. (23)

Thus we arrive at a contradiction. QED

4 Discussion

I this paper I show that evolution, as modelled here, eliminates weakly

dominated strategies. Also strategies which are not rationalizable in re-

duced game, the game obtained from the original by deletion of all weakly

dominated strategies disappear in the long-run. A natural question to ask

is whether evolution, as modelled here, also eliminates strategies which are
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only weakly dominated in the reduced game, i.e. whether evolution allows

the iterated deletion of weakly dominated strategies. This is not true, how-

ever. In Example 2 I show that a second order weakly dominated strategy

may well survive evolution, as modelled here.

In this paper I call a pure strategy profile, which is the unique long-run

prediction of the evolutionary process, in the sense of Definition 3, strongly

stable under noise (strongly SUN). Of course, in some games evolution, as

modelled here, does not give rise to a unique, hence strongly SUN, predic-

tion. The game discussed in Example 3 illustrates this. But when there

is a pure strategy profile which strongly SUN then it must constitute a

trembling-hand perfect equilibrium (Selten, 1975). In Example 2 I demon-

strate that a strategy profile which is strongly SUN does not necessarily

constitute a proper equilibrium (Myerson, 1978). The coordination game

discussed in Example 1 illustrates furthermore that neither a mixed nor

pure proper (and hence perfect) equilibrium is necessarily stable under noise

(SUN), notwithstanding strongly SUN. To summarize: Let x ∈ Θ. Then

x is strongly SUN ⇒ x is perfect (24)

x is strongly SUN 6⇒ x is proper (25)

x is proper 6⇒ x is SUN (26)

Example 1 This example is to demonstrate that perfect or even proper
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equilibria (Myerson, 1978) may not necessarily be SUN. Consider the co-

ordination game with payoffs given in Table ii. First, note that no small

A B

A 2,2 0,0

B 0,0 1,1

Table ii: A coordination game.

ε-ball around the mixed Nash equilibrium ((1/3, 2/3); (1/3, 2/3)), which, be-

ing strictly interior, is proper and, hence, perfect, can carry positive limiting

probability. But likewise the proper equilibrium in pure strategies (B,B) fails

to be SUN. As Kandori, Mailath, and Rob (1993) showed, (B,B) is not

stochastically stable. Note that taking the population size to infinity can-

not alter that fact that all limiting probability will center on (A,A) in the

long-run. This is due to the fact that the transition probability from the risk-

dominant (A,A) to the risk-dominated equilibrium (B,B) will still be orders

smaller.

Example 2 The game given in Table iii taken from Samuelson (1992) il-

lustrates that evolution, as modelled here, does not generally eliminate it-

eratively weakly dominated strategies (see also Example 5.5 of Ritzberger,

2002). It also demonstrates that a strategy profile which is strongly SUN

does not need to constitute a proper equilibrium. In this game strategies C
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D E F

A 1,1 1,1 2,1

B 1,1 0,0 3,1

C 1,2 1,3 1,1

Table iii: A game from Samuelson (1992).

and F are both weakly dominated and by Theorem 1 must essentially vanish

in the limit. This leaves us with a 2 × 2 game where strategies B and E

are weakly but not strictly dominated. The now weakly dominated strategies

are a best reply in some states which may carry positive limiting probabil-

ity. B is a best reply if the number of individuals in player population M(2)

who play E is lower than the number of people playing F. Similarly E is a

best reply if the number of individuals in player population M(1) who play

B is lower than the number of people playing C. Which strategy profile is

SUN, unfortunately, depends on the conditional mutation probabilities given

by the vector λ. Suppose first that 1 − λE > 1 − λF , i.e. when individuals

at M(2) mutate they are more likely to mutate to E. Suppose similarly that

1 − λB > 1 − λC . Then (A,D) is strongly SUN. This is because when the

mutation rate becomes smaller the probability of more individuals playing F

than E, or more C then B, tends to zero. Hence the set of states in which

either B or E is a best reply tends to zero. Consider now the case where
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1−λE > 1−λF and 1−λB < 1−λC . Then for player population 1 the ar-

gument above still applies. However, players from population 2 now mostly

face a situation in which there are more C-players than B-players at M(1).

Hence, with a probability tending to one, E is the unique best reply. Hence

in this case (A,E) is strongly SUN. Similarly one can find circumstances

under which (B,D) is strongly SUN. It is even possible, when all λ’s are

identical, that only the set of all states in which payoffs are 1 to each player

and players do not play C or F, is strongly SUN, if we define strongly SUN

for sets in the obvious way.

H T

H 1,-1 -1,1

T -1,1 1,-1

Table iv: Matching Pennies.

Example 3 The game in Table iv, Matching Pennies, illustrates that for

fixed σ even strategy profiles which are not an equilibrium in any reasonable

definition can be SUN. In this game there is only one Nash equilibrium,

which is completely mixed at ((1/2, 1/2); (1/2, 1/2)). It is easy to see that

with a fixed σ > 0 we cannot expect the evolutionary system to stay too close

to this Nash equilibrium. To see this suppose that at the moment the state is

such that just a little less than 1/2 of the player population 1 plays H, and
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that the same is true for player population 2. Now for player population 1 T

is the unique best reply in this state. Of all H-players at population 1, then,

we expect a proportion of σ individuals to learn and switch to T . But then

next period we expect the state to be such that only approximately 1/2−σ/2

individuals play H, which is obviously less than 1/2 − ε for any small ε.

Similarly for player population 2, H is the unique best reply in the given

state. Hence, we expect to see approximately 1/2 + σ/2 individuals playing

H next period. This, again, is quite far off 1/2 + ε for any small ε. Similar

statements can be made for almost any state close to the Nash equilibrium

state. Hence, we cannot expect that in the long-run the system will be close

to the Nash equilibrium state. Yet it seems that the smaller σ the closer

states will generally be to the equilibrium in the long-run. Investigating this

might provide an interesting line of research from here.

A Proof of Lemma 1

Define Di
x as the set of states such that x ∈ Si is not a best reply for any

agent in population M(i). Let λx denote the conditional probability that if

an agent mutates she does not mutate to playing strategy x.

Given the property of the invariant distribution (1) any probability
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πm
µ (ω) can be expressed as

πm
µ (ω) =

∑
ω′∈Ω

πm
µ (ω′)

(
Qm

µ

)
ω′ω

, (27)

where
(
Qm

µ

)
ω′ω

is the transition probability that the system moves from ω′

to ω.

Equivalently for any set of states, Λ,

πm
µ (Λ) =

∑
ω∈Λ

∑
ω′∈Ω

πm
µ (ω′)

(
Qm

µ

)
ω′ω

. (28)

Changing the order of summation yields

πm
µ (Λ) =

∑
ω′∈Ω

πm
µ (ω′)

(
Qm

µ

)
ω′Λ

, (29)

where
(
Qm

µ

)
ω′Λ

=
∑

ω∈Λ

(
Qm

µ

)
ω′ω

.

We are interested in the set Λ = Λi,x
0 . It is easy to show that for any

ω′ ∈ Λi,x
k ,

(
Qm

µ

)
ω′Λi,x

0


= pk0 ∀ ω′ ∈ Di

x

≤ pk0 otherwise
, (30)

where

pk0 =
k∑

j=0

σj(1− σ)k−j

(
k

j

)
(µλx)k−j (1− µ(1− λx))mi−k+j . (31)

This is because there are many ways to move from a state where k out

of mi individuals at population M(i) play x to a state where none do.

Suppose the current state ω is in Di
x. A possible transition is that any j ≤ k

individuals who are currently playing x learn and change their strategy and
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the remaining k − j agents mutate to play anything other than x, while

everyone else does not change their strategy to x. pk0 is then just the sum

of all the probabilities of these various possible transitions.

Careful inspection of equation (31) reveals that

pk0 = (1− µ(1− λx))mi−k
k∑

j=0

(
k

j

)
(σ (1− µ(1− λx)))j ((1− σ)(µλx))k−j

= (1− µ(1− λx))mi−k (µλx + σ(1− µ))k . (32)

Hence, for all k < mi,

pk+1,0

pk0
=

µλx + σ(1− µ)
1− µ(1− λx)

, (33)

which is less than 1 for small µ.

Using equations (29) and (30) yields

πm
µ

(
Λi,x

0

)
≤

mi∑
k=0

πm
µ

(
Λi,x

k

)
pk0. (34)

Rearranging leads to

πm
µ

(
Λi,x

0

)
≤ 1

1− p00

mi∑
k=1

πm
µ

(
Λi,x

k

)
pk0 (35)

and hence

πm
µ

(
Λi,x

0

)
≤

1− πm
µ

(
Λi,x

0

)
1− p00

max
k≥1

{pk0}. (36)

Finally

πm
µ

(
Λi,x

0

)
≤ 1

1 + 1−p00

maxk≥1{pk0}
. (37)
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By equation (33) maxk≥1{pk0} = p10 for µ small enough. This confirms

the intuition that the easiest way to move to Λi,x
0 is coming from Λi,x

1 .

Now, by equations (32) and (33),

p10 = (1− µ(1− λx))mi
µλx + σ(1− µ)
1− µ(1− λx)

. (38)

Hence,

∀mi ∀κ > 1 ∃µ̄ : ∀µ ≤ µ̄

p10 ≤ κσ (1− µ(1− λx))mi . (39)

Hence, for all mi and for all κ > 1 there is a µ̄ such that for all µ < µ̄,

πm
µ

(
Λi,x

0

)
≤ 1

1 + 1−(1−µ(1−λx))mi

κσ(1−µ(1−λx))mi

, (40)

To show that πm
µ

(
Λi,x

0

)
tends to zero in the case where µ goes to zero

while miµ tends to infinity, it is enough to prove that (1− µ(1− λx))mi goes

to zero under these circumstances.

(1− µ(1− λx))mi = (1− µ(1− λx))
µmi

µ (41)

=
[
(1− µ(1− λx))

1
µ

]µmi

(42)

and the fact that (1− µ(1− λx))
1
µ tends to e−(1−λx) < 1 as µ tends to zero.

QED
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B Proof of Lemma 2

Let {Ω×Ω, P}† denote a probability space, where P is such that‡ P (ω, ω′) =

πm
µ (ω)

(
Qm

µ

)
ω,ω′

for all (ω, ω′) ∈ Ω × Ω. Define U : Ω × Ω → {0, 1, ...,mi}

such that U(ω, ω′) is the number of individuals at population M(i) who play

x in state ω. Similarly let V : Ω × Ω → {0, 1, ...,mi} be a random variable

such that V (ω, ω′) is the number of individuals at population M(i) who play

x in state ω′. Note that

{ω ∈ Ω|U(ω, ω′) = k} = {ω′ ∈ Ω|W (ω, ω′) = k} = Λi,x
k .

Let Z : Ω× Ω → {−mi,−mi + 1, ...,−1, 0, 1, ...,mi} denote a third random

variable such that Z(ω, ω′) is the ”loss” of x-players at population M(i) in

the transition from state ω to ω′. Obviously Z(ω, ω′) = U(ω, ω′)−V (ω, ω′).

Note that P (U = k) = πm
µ

(
Λi,x

k

)
by definition. Also P (V = k) =

πm
µ

(
Λi,x

k

)
. To see this let (·, ω′) = {(ω, ω′)|ω ∈ Ω}. Then P (·, ω′) =

∑
ω∈Ω P (ω, ω′) =

∑
ω∈Ω πm

µ (ω)
(
Qm

µ

)
ω,ω′

= πm
µ (ω′) by definition of the in-

variant distribution. But the set of states where V = k is just
⋃

ω′∈Λi,x
k

(·, ω′).

Hence, P (V = k) = πm
µ

(
Λi,x

k

)
.

Given this we have E(U) = E(V ) and, hence, E(Z) = 0. The expecta-

tion of Z can be written as E (E(Z|U)) by the law of iterated expectations.

†As the state space is finite I omit the sigma-algebra, which can be taken as the set of

all subsets of Ω× Ω, in the description of the probability space.
‡Given the axioms of a probability measure this is sufficient to uniquely define P.
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Let B = {(ω, ω′)|ω ∈ Bx}. Obviously P (B) = πm
µ (Bx). Then

E

(
Z

mi

)
= πm

µ (Bx) E

(
Z

mi

∣∣∣∣B)+ (43)

+
mi∑
k=0

πm
µ

(
Λi,x

k \Bx
)

E

(
Z

mi

∣∣∣∣U = k ∧Bc
)

.

= πm
µ (Bx) E

(
Z

mi

∣∣∣∣B)+ (44)

+
mi∑
k=0

πm
µ

(
Λi,x

k

)
E

(
Z

mi

∣∣∣∣U = k ∧Bc
)
−

−
mi∑
k=0

πm
µ

(
Λi,x

k ∩Bx
)

E

(
Z

mi

∣∣∣∣U = k ∧Bc
)

.

Now, E
(

Z
mi

∣∣∣U = k ∧B
)
≥ −1 as the greatest change in x-players can

never exceed the total number of individuals at M(i). Similarly

E
(

Z
mi

∣∣∣U = k ∧Bc
)
≤ 1. We then have

0 = E

(
Z

mi

)
≥ −2πm

µ (Bx) +
mi∑
k=0

πm
µ

(
Λi,x

k

)
E

(
Z

mi

∣∣∣∣U = k ∧Bc
)

. (45)

Let αk = E
(

Z
mi

∣∣∣U = k ∧Bc
)
. Rearranging then yields

2πm
µ (Bx) ≥

mi∑
k=0

πm
µ

(
Λi,x

k

)
αk. (46)

Let k∗ = dεmie, where dre denotes the smallest integer greater than r.

By Lemma 5 below there is an ᾱ > 0 such that for all k ≥ k∗ αk ≥ ᾱ provided

µ is small enough. Also αk ≥ α0 = −µ(1 − λx) for all k, in particular also

for all k < k∗.

Hence,

mi∑
k=0

αkπ
m
µ

(
Λi,x

k

)
≥

k∗−1∑
k=0

ᾱπm
µ

(
Λi,x

k

)
−

mi∑
k=k∗

µ(1− λx)πm
µ

(
Λi,x

k

)
(47)
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≥ ᾱπm
µ

(
Φi,x,c

ε

)
− µ(1− λx)πm

µ

(
Φi,x

ε

)
(48)

≥ ᾱπm
µ

(
Φi,x,c

ε

)
− µ(1− λx)

(
1− πm

µ

(
Φi,x,c

ε

))
(49)

≥ (ᾱ + µ(1− λx))πm
µ

(
Φi,x,c

ε

)
− µ(1− λx) (50)

Combining inequalities (46) and (50), we obtain

(ᾱ + µ(1− λx))πm
µ

(
Φi,x,c

ε

)
− µ(1− λx) ≤

mi∑
k=0

αkπ
m
µ

(
Λi,x

k

)
≤ 2πm

µ (Bx).

(51)

Taking µ → 0 while miµ for all i ∈ N tends to infinity in inequality (51),

we obtain

ᾱ lim
ρm

µ →0
πm

µ

(
Φi,x,c

ε

)
≤ 0 (52)

Hence, πm
µ

(
Φi,x,c

ε

)
→ 0. QED

Lemma 5 Let k∗ = dεmie. There is an ᾱ > 0 and a µ̄ > 0 such that for

all k ≥ k∗ αk ≥ ᾱ provided µ < µ̄. Also αk ≥ α0 = −µ(1− λx) for all k.

Proof: By definition αk = 1
mi

E (Z|U = k ∧Bc). To calculate the term

E (Z|U = k ∧Bc) note that Z can be written as the difference of two random

variables Y and X (different from V and U), where X(ω, ω′) is the number

of individuals at M(i) who, in the transition from ω to ω′, switch strategy

from something other than x to x, and Y (ω, ω′) is the number of individuals

at M(i) who, in the transition from ω to ω′, switch strategy from x to

anything other than x. Conditional on U(ω, ω′) = k and (ω, ω′) ∈ Bc
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both X and Y are binomially distributed, i.e. X ∼ Bin (mi − k, µ(1− λx))

and Y ∼ Bin (k, σ(1− µ) + µλx). Hence, the term E (Z|U = k ∧Bc) is the

difference between the expectation of these two binomial variables and given

by

E (Z|U = k ∧Bc) = k (σ(1− µ) + µλx)− (mi − k)µ(1− λx).

The term αk is then negative if and only if

k

mi
>

µ(1− λx)
σ(1− µ) + µ

. (53)

In particular if k = εmi, αk > 0 if

ε >
µ(1− λx)

σ(1− µ) + µ
. (54)

It is easy to see that α0 < 0. However, for an arbitrary ε > 0, αk > 0

for all k > εmi, provided µ is small enough. Indeed there is a µ̄ > 0 and

an ᾱ > 0 such that for all µ ≤ µ̄ we have that αk ≥ ᾱ for all k > k∗.

Suppose, for the sake of simplicity, that εmi is an integer. Then αk∗ =

ε (σ(1− µ) + µλx)− (1− ε)µ(1− λx). One might, for instance, set ᾱ = εσ
2 .

Also observe that for all k we have that αk ≥ α0 = −µ(1− λx). QED
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