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Abstract

This paper develops a new simulation estimation algorithm that is par-

ticularly useful for estimating dynamic panel data models with unobserved

endogenous state variables. The new approach can deal with the commonly

encountered and widely discussed �initial conditions problem,� as well as the

more general problem of missing state variables at any point during the sample

period. Repeated sampling experiments on a dynamic panel data probit model

with serially correlated errors indicate that the estimator has good small sam-

ple properties and is computationally practical for use with panels of the size

that are likely to be encountered in practice.
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1 Introduction

The problem of unobserved endogenous state variables frequently arises in the estima-

tion of dynamic discrete choice panel data models. The problem is present whenever

there are unobserved initial conditions, i.e., the history of the choice process begins

prior to the Þrst period of observed data. The problem is also present whenever panel

data sets do not contain all of the choices for every individual within the sample

period. Consistent estimation in either of these cases requires �integrating out� all

possible choice sequences that the individual may have followed. However, as the

length of the panel grows and the choice set becomes larger, the �integrating out�

solution begins to require very high dimensional integrations, rendering it computa-

tionally impractical.

In this paper, we assesses the performance of a new simulated maximum likeli-

hood (SML) estimation algorithm that is particularly useful for estimating dynamic

panel data models with unobserved endogenous state variables. The novel estima-

tion technique was recently introduced by Keane and Wolpin (2001) (KW) in order

to estimate the parameters of a discrete choice dynamic programming problem with

both unobserved initial conditions and missing data during the sample period. How-

ever, the algorithm has a much wider applicability beyond the special case that KW

considered. In fact, it can be used to simulate the likelihood function in any context

where it is tractable to perform unconditional simulations of data from the model.

Simulation of the likelihood in dynamic models typically requires conditional simu-

lations (of choice probabilities conditional on past history). The advantage of our

algorithm lies in the fact that unconditional simulation is often straightforward in

contexts where conditional simulation is computationally infeasible (as is often the

case when past history is not fully observed).

In this paper, we describe how the SML algorithm developed by KW can be ex-

tended to a number of cases beyond the speciÞc discrete choice dynamic programming

problem that they considered. In particular, we assess the performance of the esti-
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mator on a panel data probit model with a time-varying exogenous covariate, lagged

endogenous variables and serially correlated errors. The panel data probit model has

been a leading case in past discussions of dynamic panel data models with unobserved

initial conditions (see Heckman (1981a)). SpeciÞcation of a panel data probit model

also allows us to focus on and further develop the estimation technique. The results of

a series of repeated sampling experiments on the dynamic probit model show that the

SML estimator with the new algorithm has good small sample properties and is com-

putationally practical for use with panels of the size that are likely to be encountered

in practice.

Computationally tractable solutions to the problem of unobserved endogenous

state variables have been proposed before in the econometrics literature. Most no-

tably, Heckman (1981a) illustrated how, in a dynamic probit setting, one could use-

fully employ the simplifying assumption of equilibrium in the dynamic process and

derive an expression for the marginal probability of the initial state. This marginal

probability could then be incorporated into the likelihood function for consistent esti-

mation. A drawback of this method, however, is that equilibrium implies the process

has been in operation far into the past and that the exogenous variables are generated

by a stationary stochastic process. Time and age trends must, therefore, be excluded

from the set of explanatory variables.1

Heckman (1981a) also considered the estimation of Þxed effects models as a poten-

tially attractive alternative solution to the initial conditions problem. Estimation of

a Þxed effects model obviates the need to incorporate pre-sample information and the

need to commit to a particular mixing distribution for individual effects. However, in

nonlinear models of Þxed panel length, the inconsistency of the Þxed effects estimator

is transmitted to the structural parameters. Moreover, the effective sample size for

estimating the structural parameters of the model is the subsample of individuals that

1Card and Sullivan (1988) adopted this method for studying the dynamic effects of training on

re-employment probabilities.

3



change state. This latter fact can easily lead to a form of small sample selection bias.

This approach is also difficult to implement if the number of cross-sectional units is

large.2

As a better alternative to assuming equilibrium or estimating a Þxed effects model,

Heckman (1981a) suggested approximating the marginal probability of the initial

state by a probit function which has as its argument as much presample information

on the exogenous variables as is available. The error term in the initial state index

function can also be left freely correlated with the errors in the index functions during

the sample period. This latter estimation strategy was shown to perform better than

the Þxed effects probit model in Monte Carlo simulations. However, this approxima-

tion procedure can still produce biases in structural parameters that are relatively

large in magnitude.3

In stark contrast to the attention given to the initial conditions problem in dy-

namic panel data models, alternative practical solutions to the parallel problem of

missing data during the sample period have not yet been fully explored. Missing-

ness problems frequently arise in data sets used by applied economists. For example,

serious missing data problems exist in data sets such as the National Longitudinal

Study of Youth (NLSY) and the Panel Study of Income Dynamics (PSID). Although

Rubin (1976) , Dempster, Laird and Rubin (1977) and Little and Rubin (1987) have

extensively analyzed the EM algorithm as a general solution to missingness prob-

lems, the EM algorithm has important limitations and has not been used very much

2In the special cases of the linear probability model and the logit model, Þxed effects can be

eliminated and structural parameters consistently estimated. For analyses of the conditional logit

model see Chamberlain (1984) and Honore and Kyriazidou (2000).

3Monte Carlo experiments in Heckman (1981a) and Hyslop (1999) often produce estimated pa-

rameters with biases of more than 10%. Heckman and Singer (1984) suggested a similar type of

solution to the initial conditions problem in multiple spell duration models. See Ham and LaLonde

(1996) for an application.
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in practice.4

When faced with missing data problems, applied economists frequently resort

to the simpler methods of case deletion and imputation. Case deletion, which in

the context of panel data models usually takes the form of cutting the individual�s

history short, is a questionable solution. It can cause large amounts of information

to be discarded, resulting in inefficient estimates. Case deletion can also introduce

biases to the extent that completely observed histories differ systematically from

censored histories. In other words, biases are introduced when the data is not missing

completely at random, or the missingness process is nonignorable (see Little and

Rubin (1987)). Imputation of missing values by ad hoc methods is no less problematic.

Imputing averages tends to bias estimated variances and covariances toward zero while

imputing predicted values from regression models tends to bias correlations away from

zero (see Schafer (1997)). An additional problem is that standard errors of estimates

from models with imputed data usually do not reßect the additional variability due

to the imputations.

The SML technique that we analyze in this paper offers a systematic uniÞed

�solution� to both the initial conditions problem and the problem of missingness

during the sample period. Our proposed solution does not involve the censoring of

incomplete histories or the use of ad hoc imputation methods. A key feature of the

estimation technique is that we use unconditional simulations of the model to form the

likelihood. This is in contrast to the usual approach to construction of the likelihood

in dynamic models which requires calculation of the initial state probability and the

probabilities of events at each date t conditional on the state at the start of time t.

4Analogous to the EM algorithm is the Gibbs-sampling data-augmentation algorithm. Geweke

and Keane (2000) used this approach to deal with unobserved initial conditions and missing data in

dynamic earnings models. The problem with EM and data augmentation is that the distribution of

a missing value conditional on all other information can be quite complex in dynamic models (see

also Ruud (1991)).
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The key assumption that is required to form the likelihood in dynamic models with

unconditional simulations is that reported choices are measured with error. Assuming

classiÞcation error in reported choices avoids the need to condition on past history,

and avoids the usual problem in frequency simulation whereby an impractically large

number of simulations is necessary to compute choice probabilities. Furthermore, the

assumption that choices are measured with error is certainly valid in the vast majority

of data sets that economists use.

The classiÞcation error process that we incorporate into the model simply speciÞes

some probability that the reported choice is the true choice and some probability that

it is not. ClassiÞcation error of this type is frequently present in data sets with discrete

outcomes and has been used in applied work (see, e.g., Poterba and Summers (1995)).

Moreover, if misclassiÞcation of this type is present and not included in the analysis,

maximum likelihood estimation leads to biased and inconsistent parameter estimates

(Hausman, Abrevaya and Scott-Morton (1998)). Repeated sampling experiments in

Hausman et. al. (1998) Þnd considerable biases, in the range of 15% to 25%, in

ordinary probit models that fail to incorporate classiÞcation error into the likelihood.

In our approach, the investigator has a great deal of ßexibility in terms of the details

of the speciÞcation of the classiÞcation error process, as we illustrate by considering

two alternative speciÞcations.5

The rest of this paper is organized as follows. Section 2 describes the general dy-

namic panel data probit model used in the analysis. Section 3 develops two different

models of classiÞcation error that can be incorporated into the estimation algorithm.

We call the two different models of classiÞcation error unbiased and biased classi-

Þcation error, respectively. Section 4 describes the estimation algorithm. Section

5Hausman et. al. (1998) also demonstrate that a distributional assumption on the error term

and a monotonicity condition are necessary for separate identiÞcation of structural parameters and

classiÞcation error rates. The dynamic probit models that we consider meet these identiÞcation

conditions.
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5 presents Monte-Carlo test results, assuming unbiased classiÞcation error, for both

a random effects model and an AR (1) error model. Section 6 tests the estimation

procedure under the biased classiÞcation error scheme. Section 7 summarizes and

concludes.

2 The Panel Data Probit Model

In the panel data probit model, the utility of the Þrst option, for individual i at time

t, is denoted as uit, and the utility of the second option is normalized to zero. Utility

is always unobserved to the researcher but the individual is assumed to choose the

option which gives greatest utility. We will consider applications of our SML approach

to models of the general form

uit = β0 + β1xit +
t−1X
τ=0

diτρτ + εit (1)

where dit is the indicator function deÞned by

dit =

 1 if uit ≥ 0
0 otherwise.

(2)

Note that the speciÞcation in (1) allows the entire history of past choices to affect

current utility. It is thus more general than the more familiar Þrst-order Markov

process. Depreciation in the importance of past choices is captured through the

weights ρτ . The theoretical start of the process in the dynamic probit model is, by

deÞnition, di0 = 0.

The error term εit in (1) is assumed to be serially correlated. Serial correlation

in the error term implies that lagged choices are endogenous. The source of serial

correlation could be time-invariant individual effects, i.e.,

εit = µi + ηit (3)
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where µi is i.i.d. with zero mean and variance σ
2
µ. Alternatively, serial correlation

could derive from an AR (1) process,

εit = φ1εi,t−1 + ηit (4)

where ηit is i.i.d. with zero mean and variance σ
2
η.

Although the model outlined above may appear somewhat speciÞc, it is impor-

tant to emphasize that the estimation procedure can accommodate a wide range of

covariate speciÞcations and distributions of the error term. In KW and Sauer (2003),

the estimation technique is employed in a multinomial setting in which the error term

is decomposed into a nonparametric individual effect and a multivariate normal i.i.d.

disturbance.

3 ClassiÞcation Error

In our approach, we assume that all discrete outcomes are measured subject to clas-

siÞcation error. In most contexts in applied economics this is a sensible assumption.

Moreover, our approach can be implemented given any assumed classiÞcation error

process provided that it is possible to obtain a tractable expression for the probability

of observed choices conditional on true choices. Letting d∗it denote the reported choice,

the model of misclassiÞcation that we consider is characterized by four classiÞcation

error rates

π11t = Pr (d∗it = 1 | dit = 1)
π01t = Pr (d∗it = 1 | dit = 0) (5)

π00t = 1− π01t
π10t = 1− π11t

where π11t is the probability that the Þrst option is reported to be chosen (d∗it = 1)

given that the Þrst option is the true choice (dit = 1); π01t is the probability that the
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Þrst option is reported to be chosen (d∗it = 1) given that the second option is the true

choice (dit = 0); and π00t and π10t are the corresponding conditional probabilities for

d∗it = 0.

The investigator has a great deal of leeway in terms of how to specify the clas-

siÞcation error rates π11t and π01t. In our Monte Carlo analysis of the estimation

algorithm we will only consider cases in which the classiÞcation error rates are de-

pendent on the true choice, but are otherwise unconditional on the covariates in the

model. ClassiÞcation error rates would depend on the true value of the dependent

variable if, for example, workers who change jobs more often misreport than work-

ers who do not change jobs. Hausman et. al. (1998) Þnd evidence of this type of

misclassiÞcation in the PSID and the Current Population Survey.

Covariate-dependent misclassiÞcation can also be easily incorporated into the clas-

siÞcation error model. However, we note that if the measurement error process were

made a sufficiently ßexible function of covariates and lagged choices, one would lose

identiÞcation of the structural parameters in (1). IdentiÞcation of structural pa-

rameters will be stronger the more parsimonious is the model of misclassiÞcation.

Moreover, economic theory provides guidance for speciÞcation of the decision model

but does not necessarily provide guidance for speciÞcation of the model of misclassi-

Þcation. For both these reasons, we will focus on fairly simple speciÞcations of the

classiÞcation error process. A key distinction is whether classiÞcation error is biased

or unbiased. We consider these cases in turn.

3.1 Unbiased ClassiÞcation Error

The assumption that classiÞcation error is unbiased imposes a very simple structure

on the classiÞcation error rates in (5). Unbiasedness in this context means that the

probability a person is observed to choose an option is equal to the true probability

that the person chooses that option, or Pr (d∗it = 1) = Pr (dit = 1). We Þnd the

assumption of classiÞcation error quite appealing, because it forces the structural
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parameters of the model to Þt the conditional choice frequencies in each period, as

opposed to allowing classiÞcation error to drive model Þt.

Unbiased classiÞcation error implies that the classiÞcation error rates in (5) are

linear in the true choice probability. To see this, note that by deÞnition,

Pr (d∗it = 1) = Pr (d
∗
it = 1 | dit = 1)Pr (dit = 1) + Pr (d∗it = 1 | dit = 0)Pr (dit = 0)

(6)

where, in writing Pr (d∗it = 1) and Pr (dit = 1), we have suppressed the obvious de-

pendence of these probabilities on xit and lagged choices in order to conserve on

notation.

If we write the classiÞcation error rates as the following linear functions of Pr (dit = 1),

Pr (d∗it = 1 | dit = 1) = E + (1−E) Pr (dit = 1) (7)

Pr (d∗it = 1 | dit = 0) = (1− E) Pr (dit = 1) ,

then these expressions can be substituted into (6) and shown to yield Pr (d∗it = 1) =

Pr (dit = 1) .

Note that as the true choice probability, Pr (dit = 1), approaches one, the prob-

ability of a correct classiÞcation, Pr (d∗it = 1 | dit = 1), also approaches one, which
must be the case to preserve unbiasedness. Further, as Pr (dit = 1) approaches zero,

Pr (d∗it = 1 | dit = 1) approaches E. E can thus be interpreted as a �base� classiÞca-
tion error rate. In other words, low probability events have a probability equal to E of

being classiÞed correctly. The probability of a correct classiÞcation increases linearly

from E toward one as the true choice probability approaches one. In estimation, E

is treated as a free parameter.

In terms of the original notation, the classiÞcation error rates can be written as

π11t = E + (1− E) Pr (dit = 1) (8)

π01t = (1−E) Pr (dit = 1) .

Note the great parsimony that unbiasedness imposes on the classiÞcation error process

(i.e., it depends on the single parameter E.) However, one could certainly generalize
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this speciÞcation by letting the base classiÞcation error rate E depend on covariates.

In that case, one obtains unbiasedness conditional on covariates.

Note also that this model of unbiased classiÞcation error is similar to the �ßexible�

model of classiÞcation error considered in Hausman et. al. (1998). In both classiÞ-

cation error schemes, the probability of the reported choice is increasing in the index

function determining the true choice. The monotonicity condition for identiÞcation

of classiÞcation error rates is thus satisÞed. This is also true for the model of biased

classiÞcation error that we consider below.

3.2 Biased ClassiÞcation Error

Any classiÞcation error scheme that doesn�t impose the linear relationships in (7)

will, in general, lead to a biased classiÞcation error process in which Pr (d∗it = 1) 6=
Pr (dit = 1). The biased classiÞcation error scheme that we consider is characterized

by the following index function,

lit = γ0 + γ1dit + γ2d
∗
it−1 + ωit (9)

where d∗it denotes the reported choice and ωit is a stochastic term. If lit > 0 then

d∗it = 1, while d∗it = 0 otherwise. Notice that the speciÞcation in (9) allows the

probability of reporting a particular choice to differ by the true choice, and also

allows for persistence in misreporting. The greater in magnitude is γ2, the more

likely is persistent misreporting.

Assuming ωit is distributed logistically yields a tractable, nonlinear expression for

the classiÞcation error rates,

π11t = Pr (d∗it = 1 | dit = 1) =
eγ0+γ1+γ2d

∗
it−1

1 + eγ0+γ1+γ2d
∗
it−1

(10)

π01t = Pr (d∗it = 1 | dit = 0) =
eγ0+γ2d

∗
it−1

1 + eγ0+γ2d
∗
it−1
.
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4 The SML Estimation Algorithm

Suppose the data consist of {D∗
i , xi}Ni=1 where D∗

i = {d∗it}Tt=1 is the history of reported
choices for individual i, xi = {xit}Tt=1 is the history of the exogenous covariate for
individual i, and N is the number of individuals in the sample. For ease of exposition,

assume that the {xit}Tt=1 history is fully observed for each individual i and that t = 1
is the Þrst period of observed data. Since there may be missing choices during the

sample period, let I (d∗it observed) be an indicator function which equals one if d
∗
it

is observed, and zero otherwise. Under these conditions, estimation of the model

requires constructingM simulated choice histories for each {xit}Tt=1 history as follows:

1. Draw M times from the εit distribution for each individual i in every period t

to form the sequence
½n
{εmit }Tt=1

oN
i=1

¾M
m=1

.

2. Given
n
{xit}Tt=1

oN
i=1

and the error sequence
½n
{εmit }Tt=1

oN
i=1

¾M
m=1

, construct M

simulated choice histories for each individual i
½n
{dmit }Tt=1

oN
i=1

¾M
m=1

according

to (1) and the decision rule (2).

3. Construct the classiÞcation error rates
½nbπmjktoTt=1

¾M
m=1

for each individual i.

The procedure to do this depends on whether classiÞcation error is assumed to

be unbiased or biased (see below.)

4. Form an unbiased simulator of the likelihood contribution for each individual i

as:

bP (D∗
i | θ, xi) =

1

M

MX
m=1

TY
t=1

 1X
j=0

1X
k=0

bπmjktI [dmit = j, d∗it = k]
I(d∗it observed) (11)

where θ is the vector of model parameters.

In the case of unbiased classiÞcation error, bπmjkt depends on the true choice prob-
ability Pr (dit = 1) (see equation (8)). Therefore, Pr (dit = 1) must be simulated.
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Pr (dit = 1) can be computed by forming the unbiased simulator

bP (dit = 1 | Hm
it ) =

1

M

MX
m=1

Pr

Ã
εit ≤ β0 + β1xit +

t−1X
τ=0

dmiτρτ

!
(12)

where Hm
it =

n
{xiτ}tτ=1 , {dmiτ}t−1τ=1

o
is the history of the exogenous covariate and the

simulated lagged endogenous covariate through time t.6

The classiÞcation error rate for d∗it = 1 and d
m
it = 1 in this case is,

bπm11t = E + (1−E) bP (dit = 1 | Hm
it ) . (13)

In the case of biased measurement error, bπmjkt depends on the reported choice in
the previous period d∗i,t−1 (see equation (10)). If the reported choice in the previous

period is missing, d∗i,t−1 must be simulated. The reported choice in the previous period

is simulated according to (9) and is denoted as d∗mi,t−1.

The classiÞcation error rate for d∗it = 1 and d
m
it = 1 in this latter case is,

bπm11t = eγ0+γ1+γ2d
∗(m)
it−1

1 + eγ0+γ1+γ2d
∗(m)
it−1

(14)

where d∗(m)i,t−1 = I
³
d∗i,t−1 observed

´
d∗i,t−1 +

³
1− I

³
d∗i,t−1 observed

´´
d∗mi,t−1.

The estimation procedure described in steps (1) through (4) builds the likelihood

contribution for each individual by averaging, over M simulated choice histories, the

product of the appropriate classiÞcation error rates implied by the simulated choice

history {dmit }Tt=1 and the observed choice history {d∗it}Tt=1. In step (4) the indicator
function I [dmit = j, d

∗
it = k] �picks out� the appropriate classiÞcation error rate by

comparing d∗it to d
m
it . If d

∗
it is unobserved, then the value of I (d

∗
it observed) is zero,

and there is no contribution to the likelihood (i.e., one simply enters one in the

product) in period t.7

6In the case of a mean zero normal εit, the probability in the summation isΦ (a) where a = β
0x/σε,

β0x = β0 + β1xit +
t−1P
τ=0

dmiτρτ , and Φ is the standard normal c.d.f.

7An extension of the estimation procedure would be to specify the probability that the choice is

not observed and incorporate this probability in the likelihood. This is necessary only if choices are

not missing at random.
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Note that any observed choice history has non-zero probability conditional on

any simulated choice history. This reßects the fact that any simulated choice history

can generate any observed choice history when there is classiÞcation error. It is also

important to note that (11) builds the likelihood using unconditional simulations of

the model. The simulation of conditional probabilities like P (dit | Hit) is completely
avoided, circumventing the severe computational problems that typically arise if Hit

is not fully observed.

Also note that the estimation procedure accommodates serial correlation in the

error term through the draws on the {εit}Tt=1 histories and the resulting simulated
choice history. These in turn determine the appropriate classiÞcation error rates that

enter the likelihood. Similarly, the state space is updated according to previous sim-

ulated choices, rather than previous reported choices, which then determine current

simulated choices. Thus, accommodating serial correlation does not require the use

of a recursive simulator (such as GHK).

The asymptotic properties of the SML estimator described here are the same as

were discussed in Lee (1992) and Pakes and Pollard (1989). Consistency and asymp-

totic normality require that M√
N
→∞ as N →∞. The estimator we have described

is just a special case of SML, differentiated from past approaches only in terms of

the algorithm used to simulate the likelihood contribution. However, the importance

of this should not be underestimated. Past Monte Carlo work has repeatedly shown

that within the class of SML estimators that share common asymptotic properties,

Þnite sample performance hinges critically on the quality of the particular algorithm

used to simulated choice probabilities.

4.1 Missing Covariates and Initial Conditions

The estimation procedure needs to be only slightly modiÞed in order to accommodate

missing exogenous covariates and/or an initial conditions problem. In the case of

missing covariates, each missing xit is simulated according to the assumed process
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generating the xit�s. For example, suppose the xit�s are time-varying and stochastic

and follow the AR(1) process,

xit = φ2xi,t−1 + νit (15)

where νit is i.i.d. with zero mean and variance σ2v, and where xi0 = 0. If xit−1

is observed and xit is missing, then the missing xit is replaced by bxmit which equals
φ2xit−1 plus a draw from the νit distribution. A new draw from the νit distribution

is taken for each simulated choice history m.

The likelihood contribution for each individual i in this case becomes

bP (D∗
i , xi | θ) =

1

M

MX
m=1

TY
t=1

fm (xit)
I(xit observed)

 1X
j=0

1X
k=0

bπmjktI [dmit = j, d∗it = k]
I(d∗it observed)

(16)

where fm (xit) is the density of the exogenous covariate.

Assuming νit is distributed normally, the density of xit according to draw sequence

m is,

fm (xit) =
1

σv
φ

xit − φ2bx(m)it−1
σv

 (17)

where bx(m)it−1 = I (xi,t−1 observed)xit−1 + (1− I (xi,t−1 observed)) bxmit−1 and φ is the
standard normal p.d.f.. Note that in the period in which xit is missing, the density

does not affect the likelihood (or one enters the product). fm (xit) affects the likeli-

hood only when xit is observed. The parameters φ2 and σv now become part of the

parameter vector θ.

In the case of an initial conditions problem, t = 1 is not the Þrst period of observed

data. Let t = eτ be the Þrst period of observed data where eτ > 1.8 Simulated choice
histories are still constructed from the theoretical start of the process, i.e., from t = 0

with di0 = xi0 = 0, irrespective of the value of eτ . If the xit�s are also missing, the path
of xit�s must be simulated from t = 1 until t = eτ .

8The Þrst period of observed data could also be individual speciÞc. In this case, there would be

a different eτ i for each individual.
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The likelihood contribution for each individual i in this case takes the form

bP (D∗
i , xi | θ) =

1

M

MX
m=1

TY
t=eτ fm (xit)

I(xit observed)

 1X
j=0

1X
k=0

bπmjktI [dmit = j, d∗it = k]
I(d∗it observed)

(18)

In (18), the Þrst d∗it is observed at t = eτ . In Heckman�s approximation method, one
would specify a distribution for d∗

ieτ . In our method, it is not necessary to construct
a marginal distribution for the initial state. The distribution of the initial state in

period eτ is implicitly determined by the simulated choice and covariate history from
t = 1 through t = eτ − 1.
4.2 Importance Sampling

The estimation procedure can also be modiÞed to take advantage of importance sam-

pling techniques that smooth the likelihood function and enable the use of standard

gradient methods of optimization.9 The non-smoothness of the simulated likelihood

function arises because, holding the draw sequence {εmit }Tt=1 Þxed, a change in θ can
induce discrete changes in the {dmit }Tt=1 sequence. We smooth the likelihood by Þrst
constructing simulated choice histories {dmit }Tt=1 at an initial θ = θ0. We then hold the
{dmit }Tt=1 sequences Þxed as we vary θ. Each simulated choice sequence then has an
associated importance sampling weight, Wm (θ), that varies with θ. The basic idea of

importance sampling is that, when we change θ, sequences that are more (less) likely

under the new θ receive increased (reduced) weight. Thus we have

Wm (θ) =
P
³
dmi1, ..., d

m
iT | bθ, xi´

P (dmi1, ..., d
m
iT | θ0, xi)

(19)

where the numerator is the joint probability that simulated choice history m occurs

given the current vector of trial parameters bθ. The denominator is the joint probability
that simulated choice history m occurs given the initial vector of trial parameters θ0.

9The non-smooth version of the estimation algorithm considered until now necessitates the use

of non-gradient methods of optimization such as the downhill simplex method.
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The joint probability of simulated choice history m in the dynamic probit model is

simply
TQ
t=1
Pr
µ
εit ≤ β0 + β1xit +

t−1P
τ=0
dmiτρτ

¶
.

The likelihood contribution for each individual i in this case takes the form

bP (D∗
i , xi | θ) =

1

M

MX
m=1

Wm (θ)
TY
t=eτ fm (xit)

I(xit observed)

 1X
j=0

1X
k=0

bπmjktI [dmit = j, d∗it = k]
I(d∗it observed)

(20)

Note that (20) is just a special case of (18) with Wm = 1 for each simulated choice

history m.10

An important computational advantage of the re-weighting scheme over the im-

plicit equal weighting scheme in (18) is that it requires simulated choice histories to

be generated only once for each individual, with an initial vector of trial parame-

ters θ0, as opposed to constructing simulated choice histories at each vector of trial

parameters bθ. KW used this smooth version of the algorithm to construct standard

errors, but used the non-smooth version in estimation (using a simplex algorithm).

Ackerberg (2001) describes an analogous use of importance sampling and has a good

discussion of how his approach differs from ours.

5 Monte-Carlo Tests - Unbiased ClassiÞcation Er-

ror

In this section, Monte-Carlo tests of the SML estimator with unbiased classiÞcation

error are reported. The algorithm used to generate artiÞcial data sets with unbiased

classiÞcation error is described in Appendix A. In subsection 5.1, estimation results

for a random effects speciÞcation are discussed. In subsection 5.2, we discuss the

estimation results for an AR(1) speciÞcation for the error term. In each repeated

sampling experiment, a vector of true model parameters is chosen and used to create

10The efficiency of importance sampling algorithms is often improved if weights are normalized to

sum to one.
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50 Monte-Carlo data sets which differ in the realizations of the stochastic elements

of the model. Parameter estimates are then obtained for each data set.

Each estimation on the 50 different panels {D∗
i , xi}Ni=1 uses a different seed for

the random elements of the model that generate the M unconditional simulations

for each individual in the sample. For each repeated sampling experiment, the true

parameters, the mean, the median, the empirical standard deviations, the root mean

square error of the estimates, and the t-statistics for the statistical signiÞcance of the

biases, based on the empirical standard deviations, are reported.

5.1 Random Effects Model

In the random effects model, the error term εit follows the components of variance

structure in (3) with both µi and ηit distributed normally. The exogenous covari-

ate xit is also assumed to be distributed normally and is generated by the AR (1)

process in (15). The depreciation weights ρτ are generated by an exponential decay

process, ρτ = ρe−α(t−τ−1). The parameter α captures the �speed� of depreciation

in the effect of past choices. The vector of estimable parameters for this model is

θ = {β0, β1,φ1, σv, ρ,α, σµ, E}. In the special case of no initial conditions problem
and no missing exogenous covariates, φ1 and σv need not be estimated. IdentiÞca-

tion conditions for this type of model (a generalized Polya process with decay) are

discussed in Heckman (1981b) .

Table 1 reports summary statistics, by time period and over individuals, for a rep-

resentative data set produced by the random effects model. The data set is generated

with the number of individuals N set to 500, the number of periods T set to 10, no

missing choices or missing exogenous covariates, and the vector of true parameters

set at θ = {−.10, 1.00, .25, 1.00, 1.00, .50, .80, .75}. For reasons of identiÞcation, the
variance of εit is normalized to one, so that σ2µ + σ

2
η = 1. The normalization implies

that the individual effect accounts for 64 percent of the variance in εit (σµ is set to

.80).
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The Mean dit column in Table 1 shows that there is an increasing proportion of

individuals over time that choose the Þrst option. At t = 1 just under 50 percent of

the sample have dit = 1. At t = 10, the proportion reaches 85 percent. The Mean d∗it

column shows that the proportion that report choosing the Þrst option closely tracks

the true proportion. This is a consequence of unbiased classiÞcation error. The Mean

β 0x column displays the mean and variance of β0x = β1xit + ρ
t−1P
τ=0
e−α(t−τ−1)diτ and

the Mean εit column displays the mean and variance of the composite error term.

The Þgures show that the mean of β0x increases at a decreasing rate reßecting the

increasing proportion of dit = 1 over time and the relatively strong depreciation of

past choices. The variance of β0x is roughly comparable to the variance of εit by the

third period.

The Mean π11t and Mean π00t columns of Table 1 present the average probabilities

of a correct classiÞcation. The average probability of a correct match of dit = 1 and

d∗it = 1, π11t, is .863 in period 1 and increases over time to .956 in period 10. The

average probability of a correct match of dit = 0 and d∗it = 0, π00t, is .887 in period 1

and decreases over time to .794 in period 10. This pattern emerges because π11t is an

increasing linear function of the proportion choosing dit = 1, and π00t is a decreasing

linear function of the same proportion, as shown in (8). The slope of the linear

functions is (1− E). The base classiÞcation error rate E is set to .75, implying that
low probability events have a relatively high probability of being classiÞed correctly.

5.1.1 Non-Smooth SML Algorithm

Table 2 reports the results of four repeated sampling experiments using the non-

smooth SML algorithm. The difference between the four experiments is in the pro-

portion of missing choices during the sample period. The four panels correspond to

data generating processes (DGPs) with no missing choices, 20% missing choices, 40%

missing choices and 60% missing choices, respectively. There are no missing exoge-

nous covariates. The number of simulated choice histories per individual, M , is set
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equal to 1000 throughout the study, unless otherwise noted. For starting values, we

use an initial parameter vector where each element is bumped 20% away from the

true values.

As the Þgures in Table 2 illustrate, the SML estimator produces biases, but the

biases are negligible in magnitude. The bias in the estimate of ρ is statistically signif-

icant in all four panels, however, the magnitude of the bias never exceeds 5.1 percent.

The biases in the estimates of β1 and E are sometimes signiÞcant but never exceed

2 percent. The medians of the parameter estimates are also quite close to the means

suggesting that the sampling distributions are symmetric. Note that the empirical

standard errors of the estimates generally increase with the increased incidence of

missing choices. The increased incidence of missing choices does not change the point

estimates much since the higher proportion of missing choices does not substantially

alter reported choice frequencies. Since choices are missing at random, the effect of

a higher proportion of missing choices is only to reduce the effective sample size.

The t-statistics for signiÞcant biases generally decrease because the biases are mostly

unaffected and the empirical standard errors increase.

The biases in the parameter estimates in Table 2 are relatively small considering

that biases on the order of 5-8% are quite common even in panel data models esti-

mated by classical maximum likelihood (see Heckman (1981a)). Note that the model

in the Þrst panel of Table 2, with no missing choices and no initial conditions problem,

is difficult to estimate by classical maximum likelihood. Choice probabilities are hard

to construct when only lagged reported choices are known and not lagged lagged true

choices.

The negligible small sample biases in Table 2 do not appear to be due to sim-

ulation error. Doubling the number of simulated choice histories M to 2000 does

not noticeably change the results. Lowering M to 500 also does not change the re-

sults but is 61% faster. The mean time to convergence over the 50 repetitions in the

second panel of Table 2 (20% missing choices and M = 1000) is 3.73 hours with a
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standard deviation of .92. The mean time to convergence with 20% missing choices

andM = 500 is 1.46 hours with a standard deviation of .34. All the experiments were

run on a desktop computer containing two 1.0 GHz processors and 0.5 GHz RAM.

Table 3 reports the results of three repeated sampling experiments for a modiÞed

DGP where the exogenous covariate is missing for the same observations in which

the choice is missing. The three panels display the estimation results for 20%, 40%

and 60% missing choices and covariates in each period, respectively. With missing

choices and covariates, the parameters of the exogenous covariate process, φ1 and σv,

are estimated along with the other parameters of the model. As the results in Table

3 illustrate, adding missing covariates does not change the general conclusions from

Table 2. The bias in the estimate of ρ is statistically signiÞcant but is still negligible

in magnitude. The maximum bias over all parameter estimates is only 4.8%.

Table 4 reports the results of three repeated sampling experiments that focus

on the initial conditions problem rather than missing information during the sample

period. The number of periods in the Þrst two experiments is increased to T = 20.

The DGP is modiÞed so that choices and covariates are completely missing in periods

t = 1, ..., 10 but there are no missing choices or covariates from t = 11, ..., 20.

The Þrst panel of Table 4 reports the results of simulating from t = 0, the theo-

retical start of the process, but with likelihood contributions from periods t = 11 to

t = 20 only. The biases in the estimates of β1, ρ,σν and σµ are statistically signiÞcant.

However, the magnitudes of the biases are negligible in magnitude. The maximum

bias over these four parameter estimates is only 3 percent. Simulating choices from

the theoretical start of the process works quite well.

The second panel of Table 4 reports the results of simply ignoring the initial

conditions problem by assuming the choice process starts at t = 10 with di,10 =

0. Since there are no missing covariates in this experiment, the parameters of the

exogenous covariate process, φ1 and σν, are not estimated. In this case, the biases are

generally substantial in magnitude. Note that the standard errors of the estimates
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of ρ and α increase dramatically and that σµ is badly biased upwards. The incorrect

treatment of the initial condition results in an overestimate of the importance of

individual effects (inßated variance).11

The third panel of Table 4 reports the results of handling the initial conditions

problem by constructing a proxy for the initial value of the
t−1P
τ=0
diτρτ term using the

observed data. The number of periods in this experiment is increased to T = 30.

The DGP is modiÞed so that choices and covariates are completely missing in periods

t = 1, ..., 10 but there are no missing choices or covariates from t = 11, ..., 30. The

observed choices in period t = 11, ..., 20 are used to form a proxy for
20P
τ=0
diτρτ and

the likelihood is constructed using only data from t = 21, ..., 30. ui21 in this method

is given by:

ui21 = β0 + β1xi21 + ρ
20X
τ=11

e−α(21−τ−1)d∗iτ + εi21. (20)

The biases produced by this method are generally substantial in magnitude. Sim-

ilar to the results in the previous panel, in which the initial conditions problem was

ignored, the standard errors of the estimates of ρ and α increase dramatically and

the incorrect treatment of the initial condition leads to upward bias in the estimated

variance of the random effect. Also, the estimate of the base classiÞcation error rate

E is severely biased downward.

Table 5 reports the results of four repeated sampling experiments in which there

is an initial conditions problem and the model has a more familiar Þrst-order Markov

structure in past choices. The Markov model is nested in the general model by setting

α = 0 and τ = t − 1 so that β0x = β1xit + ρdit−1. The Þrst panel of Table 5 reports
the results of handling the initial conditions problem by simulating from t = 0 and

including likelihood contributions from periods t = 10 to t = 20. Simulating choices

from the theoretical start of the process works quite well in the Markov model. The

11The variance of the composite error term is restricted to be between zero and one. Since almost

all of the estimates of σµ are close to the upper boundary of one, the standard deviation over the

Þfty estimates is very small.
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resulting biases are small in magnitude, never exceeding 4.1%.

The second panel of Table 5 reports the results of ignoring the initial conditions

problem in the Markov model by setting di9 = 0. The estimate of ρ in this experi-

ment is substantially biased downward and σµ is substantially biased upward. In the

Markov model, the incorrect treatment of the initial condition results in estimates

that imply an overly weak effect of previous choices on current utility, and an overly

strong individual effect.

The third panel of Table 5 reports the results of constructing the initial condition

by substituting the observed choice in period 10 into the utility function in period 11

(i.e., treating the choice at t = 10 as exogenous.) The biases produced in this method

are generally less severe than ignoring the initial conditions problem but the bias in

the estimate of ρ is substantial in magnitude (14%). As might be expected when

treating the initial condition as exogenous, the estimate of ρ is biased upwards.12

The fourth panel of Table 5 applies the Heckman (1981a)method of approximating

the marginal probability of the initial state using a probit model that incorporates

only information on exogenous covariates. In order to handle classiÞcation error,

this method must be nested within our algorithm. The Heckman method speciÞes a

different latent index function, uHit , in the Þrst period of observed data. We specify

the latent index at t = 10 as

uHit = γ0 + γ1xit + ε
H
it (21)

where the variance of εHit is normalized to one and the correlation coefficient between

εHit and the individual effect µi is ρµ²H . As before, the likelihood function includes

contributions from t = 10, ..., 20. The parameters γ0, γ1 and ρµ²H are estimated along

with the other parameters of the model.

The estimation results show that nesting the Heckman method in our procedure

12In the AR(1) error model to be discussed below, treating the initial condition as exogenous

produces a bias in the estimate of ρ which is considerably larger (23%).
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works relatively well in the random effects model. ρ is over-estimated by only 6.4% on

average. Although the biases are not substantial for Heckman�s approximate solution

approach (except for the constant), simulation from the theoretical start of the process

is clearly preferable as the parameter estimates are less biased and more precise.13

5.1.2 The Smooth SML Algorithm (Importance Sampling)

The smooth version of the estimation algorithm, differs from the non-smooth version

in that the former requires simulated choice histories to be generated only once for

each individual in the sample, at the initial vector of trial parameters. The smooth

version enables the use of standard gradient methods of optimization as opposed to

generally more time consuming non-gradient methods of optimization such as the

downhill simplex method. Thus, the smooth version of the algorithm should be faster

to converge. We again set simulation size M = 1000 and use an initial parameter

vector where each element is bumped 20% away from true values.

Table 6 reports the results of three repeated sampling experiments that use the

smooth SML algorithm and that are analogous to the repeated sampling experiments

in Table 2 that use the non-smooth algorithm. The three experiments in Table 6

differ in the proportion of missing choices during the sample period. There are no

missing exogenous covariates and no initial conditions problem.

Similar to the results in Table 2, the results in Table 6 illustrate that the bias in

the estimate of ρ is statistically signiÞcant but the magnitude of the bias is negligible.

The bias in the estimate of ρ never exceeds 4.8 percent. Note that the estimates of

ρ and α are less median biased than mean biased under the smooth algorithm. The

maximum mean bias in the estimate of α is 9.8% while the maximum median bias

is 7.4%. In contrast to the estimates of ρ and α, the other parameters of the model

are more precisely estimated under the smooth algorithm. The upward bias in the

13The Heckman solution also produces more serious biases in theAR(1) error model. The Heckman

estimate of ρ in the AR(1) error model is biased upward by 20%.
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estimates of ρ and α, the greater extent of mean bias as compared to median bias, and

the relatively larger standard errors in estimates of these versus the other parameters

are a consequence of several high valued outliers in the 50 repetitions.

It is important to note that there is a large difference in mean time to convergence

between the smooth and non-smooth algorithms in these experiments. As reported

earlier, the mean time to convergence over the 50 repetitions in the second panel of

Table 2 (20% missing choices) is 3.73 hours with a standard deviation of .92. The

mean time to convergence over the 50 repetitions in the Þrst panel of Table 6 (20%

missing choices) is 1.96 hours with a standard deviation of .89. The smooth version

is 47% faster.

Table 7 reports the results of three repeated sampling experiments that use the

smooth SML algorithm and that are analogous to the repeated sampling experiments

in Table 3. In these experiments, the exogenous covariate is missing for the same

observation in which a choice is missing. In the Þrst panel, with 20% missing choices

and covariates in each period, the biases are not statistically signiÞcant and are neg-

ligible in magnitude. Increasing the proportion of missing choices and covariates to

40% increases the biases in the estimates of ρ and α, but they remain negligible in

magnitude. Further increasing the proportion of missing choices and covariates to

60% produces more serious biases in the estimates of ρ and α. The direction of the

biases in these latter parameter estimates and the large relative increase in their stan-

dard errors are suggestive of an identiÞcation problem when there is a large amount

of missing information in the data. In general, when covariates are missing there is

less information that can be used to �impute� missing choices.14

In summary, for the random effects model, the performance of the smooth algo-

14Although ρ and α capture different aspects of the importance of past choices, the under-estimate

of ρ generally decreases the impact of past choices while the under-estimate of α generally increases

the impact. Note that Little and Rubin (1987) also report identiÞcation problems in the EM algo-

rithm when there is a large extent of missing information in the data.
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rithm seems slightly inferior to that of the non-smooth algorithm. While the smooth

algorithm is faster, it has the disadvantage that as bθ departs from θ0, the importance
sampling weightsWm (θ) for some sequencesm can get small, implying that relatively

few sequences are doing all the �work� in simulating the choice probabilities. This is

a well known problem with importance sampling algorithms.15

5.2 AR (1) Error Model

In the AR (1) error model, the error term εit follows the Þrst-order serial correla-

tion process in (4) with ηit assumed to be distributed normally. As in the random

effects model, the exogenous covariate xit is also distributed normally and is gen-

erated by the AR (1) process in (15). The depreciation weights ρτ follow the same

exponential decay process, ρτ = ρe
−α(t−τ−1). The vector of estimable parameters is

θ = {β0, β1, ρ,α,φ1, σv,φ2, E}.
Table 8 reports summary statistics, by time period and over individuals, for a

representative data set produced by the AR (1) error model. The data set is generated

with the number of individuals N set to 500, the number of periods T set to 10,

no missing choices or missing covariates, and the vector of true parameters set at

θ = {−.10, 1.00, 1.00, .50, .25, 1.00, .80, .75}. Note that an AR (1) error parameter
of .80 implies a considerable amount of serial correlation. As in the random effects

model, the variance of εit is normalized to one and the frequency simulator that is

used to compute true classiÞcation error rates has fM set to 1000. A comparison of

Tables 1 and 8 shows that the summary statistics produced by the AR (1) error model

are quite similar to the summary statistics produced by the random effects model.

15The conclusions from the experiments on the random effects model as well as the AR(1) error

model are not sensitive to the extent of classiÞcation error in the data generating process. Similar

results were obtained for E, the base classiÞcation error rate, set to .25 and .50. Lower values of E

correspond to a greater extent of classiÞcation error.
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5.2.1 Non-Smooth SML Algorithm

The order of repeated sampling experiments on the AR(1) error model is the same

as the order of experiments on the random effects model. Thus, Tables 9 − 12 are
analogous to Tables 2− 5. The four panels of Table 9 report the results of increasing
the incidence of missing choices during the sample period with no initial conditions

problem and no missing covariates. As in the corresponding experiments on the

random effects model, the bias in ρ is signiÞcant in all four panels but negligible in

magnitude, never exceeding 5.5%. The standard errors of the parameter estimates are

generally smaller in the AR(1) error model. Negligible biases and relatively smaller

standard errors in comparison to the random effects model also result when adding

missing exogenous covariates (compare Tables 3 and 10).

In Table 11, different solutions to the initial conditions problem in the AR(1) error

model are examined. The Þrst panel shows that simulating choices from the theoret-

ical start of the process works well. The second panel, in which the initial conditions

problem is ignored, reveals serious biases. As in the corresponding experiment on the

random effects model, in which the standard deviation of the individual effect is sub-

stantially biased upward, the AR(1) error parameter is substantially over-estimated.

The biases in the estimates of ρ and α are also very large. Since ρ is biased downward

and α is biased upward, the estimates understate the importance of lagged choices.

The third panel shows results when using observed data to form a proxy for the

initial value of the
t−1P
τ=0
diτρτ term. The magnitudes of the biases when using this

approach are generally smaller in the AR(1) error model than in the random effects

model. However, as in the random effects model, the estimates of ρ and α are biased

upward.

Table 12 examines different solutions to the initial conditions problem in the

Markov model. As in the random effects model, simulating from the theoretical

start of the process works well. Ignoring the initial conditions problem produces

substantial biases that are similar in direction and magnitude to the random effects
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model. As mentioned earlier, treating the initial condition as exogenous (panel 3) and

using the Heckman approximation method (panel 4) result in more serious biases in

the AR(1) error model than in the random effects model. In these latter two methods,

the estimates of ρ are biased upward by 23% and 20%, respectively.

5.2.2 The Smooth SML Algorithm (Importance Sampling)

Table 13 reports the results of estimating the AR(1) error model with no missing

exogenous covariates and no initial conditions problem using the smooth SML algo-

rithm. Similar to the corresponding results in the random effects model, the bias

in the estimate of ρ is statistically signiÞcant but never exceeds 5.3 percent. The

estimates of α and ρ are less median biased than mean biased and have relatively

larger standard errors than the other parameter estimates, as was found in the ran-

dom effects model. The maximum mean bias in the estimate of α is 7.8% while the

maximum median bias is only 3.6%.

The AR(1) error model converges much faster when using the smooth algorithm.

The mean time to convergence over the 50 repetitions in the second panel of Table 9

(20% missing choices) is 3.07 hours with a standard deviation of .71. The mean time

to convergence over the 50 repetitions in the Þrst panel of Table 13 (20% missing

choices) is 1.90 hours with a standard deviation of .78. The AR(1) error model

converges slightly faster than the random effects model.

Table 14 reports the results of adding missing exogenous covariates. As in the

random effects model, with 20% missing choices and covariates in each period, the

biases are negligible in magnitude. The biases in the estimates of ρ and α increase but

remain negligible in magnitude when the proportion of missing choices and covariates

is increased to 40%. As in the random effects model, increasing the proportion of

missing choices and covariates to 60% produces rather serious biases in the estimates

of ρ and α. But, these biases are not quite as severe as in the corresponding experiment

on the random effects model.
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6 Monte-Carlo Tests - Biased ClassiÞcation Error

In this section, Monte-Carlo tests of the SML estimator with biased classiÞcation

error, as speciÞed in (10), are performed. The algorithm used to generate artiÞcial

data sets with biased classiÞcation error is described in Appendix B. In subsection

6.1, estimation results for the random effects model are discussed and in subsection

6.2 we discuss estimation results for the AR(1) error model.

6.1 Random Effects Model

6.1.1 Non-Smooth SML Algorithm

The three panels of Table 15 report the results of estimating the random effects model

with biased classiÞcation error using the non-smooth SML algorithm. The vector of

true structural parameters is the same as in the case of unbiased classiÞcation error.

In all three panels, 20% of the choices and exogenous covariates are missing in each

period and there is no initial conditions problem. The three experiments in Table 15

differ in the true parameters of the classiÞcation error process, γ0, γ1 and γ2.

The Þrst panel speciÞes values of the parameters that produce a relatively low

level of classiÞcation error bias. The parameters in the second panel produce an

intermediate level of bias and the parameters in the third panel produce a relatively

high extent of bias. The classiÞcation error rates π11t = Pr (d∗it = 1 | dit = 1) and
π01t = Pr (d

∗
it = 1 | dit = 0) are (.97, .18), (.95, .27) and (.95, .50), in the Þrst, second

and third panels, respectively.

The estimation results indicate relatively few statistically signiÞcant biases. Only

the estimates of ρ and σv are consistently signiÞcantly biased. However, the magni-

tudes of these biases are negligible. The biases rarely exceed 3 percent. Note that

increases in the extent of biased classiÞcation error leads to larger empirical standard

errors. The more classiÞcation error bias, the less efficient are the estimates.

In general, the algorithm seems to perform very well for the DGPs with biased
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classiÞcation error, both in terms of uncovering the structural parameters and in

terms of uncovering the parameters of the classiÞcation error process. The algorithm

with a high extent of classiÞcation error bias and 20% missing choices and covariates

is also faster than the corresponding speciÞcation with unbiased classiÞcation error.

The time to convergence per parameter is .54 hours in the former case and .57 hours

in the latter.16

6.1.2 Smooth SML Algorithm

The three panels of Table 16 report the results of estimating three different random

effects models with biased classiÞcation error using the smooth SML algorithm. In

all three panels, 20% of the choices are missing in each period, there is no initial

conditions problem and there is a relatively low extent of true classiÞcation error

bias, as in panel 1 of Table 15. In the Þrst panel, the results of estimating a Þrst-

order Markov process with no missing exogenous covariates are reported. There are

no statistically signiÞcant biases in the estimates of the structural parameters and

the magnitudes of the biases are extremely small. There are signiÞcant biases in the

estimates of the classiÞcation error process parameters. However, the magnitudes of

the biases are negligible.

In the second panel, the results of estimating the Polya model with no missing

covariates are reported. The same pattern as in the Þrst panel emerges. There are

no statistically signiÞcant biases in the estimates of the structural parameters, and

the biases in the estimates of the parameters of the classiÞcation error process are

negligible in magnitude. In the third panel, the results of estimating the Polya model

with missing covariates are reported. The general conclusions are unchanged. As in

the case of unbiased classiÞcation using the smooth SML algorithm, increasing the

extent of missing choices and covariates increases the magnitude of the biases.

16The overall time to convergence for the unbiased and biased classiÞcation error models cannot

be directly compared because they have a different number of parameters.
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6.2 AR (1) Error Model

6.2.1 Non-Smooth SML Algorithm

The three panels in Table 17 repeat the series of repeated sampling experiments

in Table 15 with an AR(1) speciÞcation for the error term rather than a random

effects speciÞcation. The results in all three panels tell a similar story. The biases

are negligible in magnitude, rarely exceeding 3 percent, and the empirical standard

errors grow with the extent of bias in the true classiÞcation error process.

6.2.2 Smooth SML Algorithm

The three panels in Table 18 repeat the series of repeated sampling experiments

in Table 16 with an AR(1) speciÞcation for the error term. The general conclusions

from the corresponding experiments on the random effects model carry over to AR(1)

errors. The biases are negligible in magnitude and mostly not statistically signiÞcant.

7 Conclusion

This paper assesses the performance of a new computationally practical SML esti-

mation algorithm for dynamic discrete choice panel data models with unobserved

endogenous state variables. The estimation technique offers a systematic uniÞed ap-

proach to the initial conditions problem and the problem of missing data during the

sample period. The parallel problems of unobserved initial conditions and missing

data during the sample period are overcome by forming the likelihood with uncon-

ditional simulations of the model from the theoretical start of the process. In order

to make it feasible to simulate the likelihood using unconditional simulations, it is

necessary to assume a classiÞcation error process in discrete choices. The assumption

that reported choices are misclassiÞed, however, is a reasonable one in almost all em-

pirical applications in economics. The estimation technique can accommodate a wide
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range of classiÞcation error processes, as long as it is possible to write a tractable

expression for the classiÞcation error rates.

The estimation method was tested via a series of repeated sampling experiments

on a general panel data probit model with a time-varying exogenous covariate, lagged

endogenous variables, serially correlated errors and both unbiased and biased classi-

Þcation error processes. The estimator was shown to have good small sample prop-

erties. Under the non-smooth version of the SML estimation algorithm, we found

that biases are negligible in magnitude even for exceedingly high amounts of missing

information in the data. Under the faster, smooth version of the SML estimation

algorithm, biases were also negligible in magnitude except for cases in which there is

a very high frequency of missing choices and missing exogenous covariates.

It was also shown that the estimation technique can be combined with Heckman�s

(1981a) approximate solution to the initial conditions problem. That is, one can

specify an approximation to the marginal distribution of the initial condition, but

use our approach to integrate over missing information during the sample period.

Such a hybrid approach may be appealing when there is no natural starting point to

the process. One caveat, however, is that the Heckman approximate solution method

worked much less well in our experiments with the AR(1) error model.

Interestingly, our SML algorithm seems to perform better (in terms of consistently

producing negligible bias) for models with biased classiÞcation error. In order to

impose the constraint that classiÞcation error be unbiased, one must specify that

classiÞcation error rates are functions of true choice probabilities. This means that

classiÞcation error rates must themselves be simulated. This induces some additional

noise and computation time into the likelihood simulation. In contrast, with biased

classiÞcation error, one can specify that classiÞcation error rates are closed form

functions of true choices (and perhaps also lagged observed choices and covariates).

Our algorithm already requires that true choice histories be simulated, so once this

has been done, no additional simulation is necessary to form the classiÞcation error
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rates. This saves computation time and avoids one component of simulation error.

Future research will examine the small sample properties of the estimation tech-

nique in more complex settings. For example, observed continuous outcomes, such as

wages, can be incorporated into estimation by specifying measurement error densities

that enter the likelihood. The algorithm can also be extended to a multinomial choice

context, and to contexts where construction of the latent indices in the choice model

requires solution of a dynamic program. It is in this latter context that particular

versions of the estimation technique have been previously applied. The estimation

method can also be further developed to handle cases in which the missing data are

not missing at random.
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Appendix A

Data Generating Process

Unbiased ClassiÞcation Error

Given a vector of true parameters of the model and deÞning the initial conditions

of the model as di0 = xi0 = 0, each data set in the repeated sampling experiments

is constructed in two stages. The Þrst stage consists of generating the exogenous

covariates and computing the �true� classiÞcation error rates. The second stage

consists of generating the sequence of true choices and misclassiÞed choices, using the

true classiÞcation rates computed in the Þrst stage. The second stage also determines

if a choice is missing from the data. The two stages of the data generating process

are as follows:

Stage 1

1. Draw N times from the xit distribution in every period t to construct the se-

quence
n
{xit}Tt=1

oN
i=1
.

2. Draw fM times from the εit distribution for each individual i in every period

t to form the sequence
½n
{eεmit }Tt=1oNi=1

¾ eM
m=1

. Note that fM will generally differ

from the number of simulated choice histories M generated for each individual

in estimation.

3. Given
n
{xit}Tt=1

oN
i=1

and the error sequence
½n
{eεmit }Tt=1oNi=1

¾ eM
m=1

, construct fM
simulated choices for each individual i in every period t

(½n edmit oTt=1
¾N
i=1

) eM
m=1

according to (1) and the decision rule (2).

4. Form the frequency simulator

bP ³ edit = 1 | Hm
it

´
=
1fM

eMX
m=1

Pr

Ã
εit ≤ β0 + β1xit +

t−1X
τ=0

edmiτρτ
!
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where Hm
it =

½
{xiτ}tτ=1 ,

n edmiτotτ=1
¾
.

5. Construct the �true� classiÞcation error rates πjkt for each individual i, accord-

ing to (8) , using bP in place of Pr (dit = 1).
Stage 2

1. Draw N times from the εit distribution for each individual i in every period t

to form the sequence
n
{εit}Tt=1

oN
i=1
.

2. Given the
n
{xit}Tt=1

oN
i=1

sequence generated in the Þrst stage, and the error

sequence
n
{εit}Tt=1

oN
i=1
, construct N true choices

n
{dit}Tt=1

oN
i=1
according to (1)

and the decision rule (2) .

3. In order to construct the sequence of reported choices, draw T times for each

individual i from a uniform random number generator to obtain the sequencen
{Uit}Tt=1

oN
i=1
.

4. Compare the uniform random draws to the classiÞcation error rates to deter-

mine if choices are correctly reported. That is, construct N reported choicesn
{d∗it}Ni=1

oT
t=1

by implementing the following rule: if dit = 1 and Uit < π11t then

d∗it = 1, else d
∗
it = 0. Similarly, if dit = 0 and Uit < π00t then d

∗
it = 0, else d

∗
it = 1.

5. In order to determine if a reported choice is missing, draw T times for each

individual i from a uniform random number generator to obtain the sequence½n eUitoT
t=1

¾N
i=1
.

6. Compare the uniform draws to the probability πobs that d∗it is missing in period

t. That is, implement the following rule: if eUit < πobs then I (d∗it observed) = 1,
else I (d∗it observed) = 0.
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Note that step 6 does not specify πobs as a function of the exogenous covariates or

the observed choices. The data are thus missing completely at random. Generating

an initial conditions problem and/or missing exogenous covariates as well as data

that is missing at random or missing not at random simply involves modifying πobs

accordingly.
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Appendix B

Data Generating Process

Biased ClassiÞcation Error

The data generating process in the case of biased classiÞcation error follows the

same general rules as in the case of unbiased classiÞcation error. The only difference

is that the data generating process can be accomplished in one stage rather than two.

True choice probabilities do not need to be simulated. The procedure is as follows:

1. Draw N times from the xit distribution in every period t to construct the se-

quence
n
{xit}Tt=1

oN
i=1
.

2. Draw N times from the εit distribution for each individual i in every period t

to form the sequence
n
{εit}Tt=1

oN
i=1
.

3. Given
n
{xit}Tt=1

oN
i=1

and
n
{εit}Tt=1

oN
i=1
, construct N true choices

n
{dit}Tt=1

oN
i=1

according to (1) and the decision rule (2) .

4. Draw T times for each individual i from a uniform random number generator

to obtain the sequence
n
{Uit}Tt=1

oN
i=1
.

5. Construct N reported choices
n
{d∗it}Ni=1

oT
t=1
by implementing the following rule:

if dit = 1 and Uit < π11t then d∗it = 1, else d∗it = 0. Similarly, if dit = 0 and

Uit < π00t then d∗it = 0, else d∗it = 1. The �true� classiÞcation error rates πjkt

are obtained directly from (11). It is assumed that d∗i0 = di0 = 0.

6. Draw T times for each individual i from a uniform random number generator

to obtain the sequence
½n eUitoT

t=1

¾N
i=1
.

7. Implement the following rule: if eUit < πobs then I (d∗it observed) = 1, else

I (d∗it observed) = 0.
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Table 1

Summary Statistics
Representative Data Set
Random Effects Model

Unbiased Classification Error

Mean Mean Mean Mean Mean Mean
t dit d∗it β0x εit π11t π00t N

1 .4800 .4800 -.0124 .0094 .8630 .8870 500
(.2701) (1.0147)

2 .5780 .5780 .4909 .0149 .8947 .8553 500
(.5601) (1.0046)

3 .6560 .6660 .8940 -.0116 .9142 .8359 500
(.8547) (.9919)

4 .7140 .7260 1.1917 -.0005 .9264 .8236 500
(1.0645) (1.0102)

5 .7460 .7440 1.4164 -.0232 .9347 .8153 500
(1.1355) (.9606)

6 .7640 .7580 1.6214 -.0089 .9414 .8086 500
(1.2164) (1.0396)

7 .8140 .8000 1.7812 -.0325 .9474 .8026 500
(1.1329) (1.020)

8 .8120 .8100 1.8797 .0138 .9509 .7991 500
(1.2081) (1.0405)

9 .8220 .8100 1.9806 .0092 .9545 .7955 500
(1.1668) (1.0107)

10 .8460 .8500 1.9863 .0211 .9565 .7935 500
(1.0949) (.9539)

Note: dit is the true choice, d∗it is the reported choice, π11t and π00t are the probabilities of a correct
classification, and β0x = uit − β0. Variances are in parentheses. The frequency simulator that is
used to compute the true classification error rates has fM set to 1000. The model is:

uit = β0 + β1xit +
t−1X
τ=0

diτρτ + εit

di0 = 0, ρτ = ρe−α(t−τ−1)

xit = φ2xi,t−1 + νit, xit ∼ N
¡
0,σ2ν

¢
εit = µi + ηit, µi ∼ N

¡
0,σ2µ

¢
, ηit ∼ N

¡
0, 1− σ2µ

¢
.
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Table 2

Repeated Sampling Experiments
Random Effects Model

Unbiased Classification Error
(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

No Missing Choices (t = 1, ..., 10)

β0 -.1000 -.0975 -.0950 .0427 .0427 .42
β1 1.0000 1.0171 1.0196 .0552 .0578 2.20
ρ 1.0000 1.0463 1.0462 .0513 .0691 6.38
α .5000 .4912 .4926 .0499 .0506 -1.22
σµ .8000 .8062 .8009 .0269 .0276 1.62
E .7500 .7408 .7417 .0162 .0186 -3.99

20% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.0995 -.1017 .0428 .0428 .08
β1 1.0000 1.0114 1.0199 .0611 .0622 1.32
ρ 1.0000 1.0450 1.0356 .0528 .0694 6.04
α .5000 .4864 .4985 .0719 .0731 -1.34
σµ .8000 .8095 .8066 .0259 .0275 2.59
E .7500 .7409 .7399 .0184 .0206 -3.50

40% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1025 -.1001 .0530 .0530 -.33
β1 1.0000 1.0183 1.0265 .0612 .0648 2.09
ρ 1.0000 1.0505 1.0425 .0524 .0728 6.81
α .5000 .4887 .4882 .0633 .0643 -1.26
σµ .8000 .8047 .7989 .0339 .0343 .98
E .7500 .7437 .7412 .0231 .0239 -1.94

60% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1070 -.1052 .0596 .0600 -.82
β1 1.0000 1.0147 1.0161 .0860 .0872 1.21
ρ 1.0000 1.0485 1.0562 .0603 .0773 5.68
α .5000 .4970 .4982 .0817 .0817 -.26
σµ .8000 .8016 .8012 .0486 .0487 .23
E .7500 .7477 .7426 .0287 .0288 -.55

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 1.
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Table 3

Repeated Sampling Experiments
Random Effects Model

Unbiased Classification Error
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.1051 -.1023 .0436 .0439 -.83
β1 1.0000 1.0167 1.0191 .0611 .0634 1.92
ρ 1.0000 1.0479 1.0446 .0444 .0653 7.63
α .5000 .4977 .5031 .0656 .0657 -.24
φ2 .2500 .2520 .2505 .0176 .0177 .80
σν .5000 .5015 .5016 .0057 .0059 1.86
σµ .8000 .8056 .8017 .0287 .0292 1.38
E .7500 .7428 .7430 .0172 .0187 -2.95

40% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.1087 -.1099 .0539 .0546 -1.15
β1 1.0000 1.0141 1.0233 .0678 .0692 1.48
ρ 1.0000 1.0458 1.0374 .0636 .0784 5.10
α .5000 .4953 .4949 .0600 .0602 .56
φ2 .2500 .2521 .2546 .0253 .0254 .59
σν .5000 .5012 .5012 .0069 .0070 1.21
σµ .8000 .8046 .8063 .0347 .0350 .94
E .7500 .7474 .7416 .0245 .0246 -.74

60% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.0997 -.1116 .0542 .0543 .05
β1 1.0000 1.034 1.0258 .0894 .0924 1.85
ρ 1.0000 1.0401 1.0512 .0682 .0791 4.15
α .5000 .4957 .4973 .0721 .0722 -.42
φ2 .2500 .2507 .2498 .0372 .0373 .13
σν .5000 .5011 .5017 .0089 .0090 .88
σµ .8000 .8096 .8044 .0421 .0432 1.61
E .7500 .7493 .7440 .0288 .0288 -.16

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 1.
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Table 4

Repeated Sampling Experiments
Random Effects Model

Unbiased Classification Error
(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Simulate from start of process with di0 = 0 (t = 11, ..., 20)

β0 -.1000 -.1001 -.1022 .0295 .0295 -.02
β1 1.0000 1.0286 1.0337 .0454 .0537 4.46
ρ 1.0000 1.0298 1.0253 .0324 .0440 6.51
α .5000 .5044 .5004 .0320 .0323 .98
φ2 .2500 .2501 .2526 .0135 .0135 .05
σν .5000 .5015 .5025 .0042 .4985 2.56
σµ .8000 .8130 .8145 .0245 .0277 3.74
E .7500 .7450 .7410 .0193 .0199 -1.82

Assume process starts with di,10 = 0 (t = 11, ..., 20)

β0 -.1000 .9367 .9513 .0543 1.0381 135.05
β1 1.0000 .2966 .2844 .0938 .7096 -53.01
ρ 1.0000 .9543 .9333 .3278 .3310 -.99
α .5000 .4187 .3995 .2957 .3067 -1.94
σµ .8000 .9905 .9923 .0090 .1907 149.11
E .7500 .7144 .7125 .0230 .0424 -10.96

Use reported data from t = 11, ..., 20 to proxy
for initial condition at t = 21 (t = 11, ..., 30)

β0 -.1000 -.5239 -.4859 .3039 .5216 -9.86
β1 1.0000 .4742 .4671 .1788 .5553 -20.80
ρ 1.0000 1.0522 1.1064 .3076 .3120 1.20
α .5000 .5839 .6139 .2299 .2448 2.58
σµ .8000 .9388 .9758 .0811 .1608 12.10
E .7500 .5795 .5714 .0615 .1812 -19.61

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 1.
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Table 5

Repeated Sampling Experiments
Random Effects Model

Unbiased Classification Error
First Order Markov Process

(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Simulate from start of process with di0 = 0 (t = 10, ..., 20)
β0 -.1000 -.1127 -.1086 .0391 .0411 -2.30
β1 1.0000 1.0379 1.0364 .0324 .0500 8.25
ρ 1.0000 1.0330 1.0319 .0386 .0508 6.04
φ2 .2500 .2496 .2511 .0136 .0136 -.19
σν .5000 .5014 .5011 .0045 .4986 2.17
σµ .8000 .8137 .8133 .0294 .0324 3.29
E .7500 .7293 .7294 .0150 .0256 -9.75

Assume process starts with di9 = 0 (t = 10, ..., 20)
β0 -.1000 .1598 .1594 .0775 .2712 23.70
β1 1.0000 .9126 .9171 .0693 .1115 -8.92
ρ 1.0000 .6396 .6171 .1025 .3747 -24.87
σµ .8000 .8823 .8948 .0369 .0902 15.80
E .7500 .7218 .7226 .0222 .0395 -8.99

Use reported data at t = 10 to proxy
for initial condition at t = 11 (t = 10, ..., 20)

β0 -.1000 -.1882 -.1867 .0771 .1171 -8.09
β1 1.0000 1.0328 1.0480 .0595 .0679 3.90
ρ 1.0000 1.1369 1.1465 .1024 .1710 9.45
σµ .8000 .7838 .7843 .0460 .0488 -2.49
E .7500 .7240 .7262 .0233 .0349 -7.91

Use Heckman’s approximation method to proxy
for initial condition at t = 11 (t = 10, ..., 20)

β0 -.1000 -.1721 -.1705 .0728 .1025 -7.01
β1 1.0000 .9868 .9831 .0616 .0630 -1.52
ρ 1.0000 1.0637 1.0673 .1074 .1249 4.20
σµ .8000 .7735 .7767 .0472 .0542 -3.97
E .7500 .7438 .7456 .0181 .0191 -2.44
γ0 .3819 .3843 .0757
γ1 .6857 .6799 .1008
ρµ²H .6565 .6589 .0627

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The Markov model replaces
t−1P
τ=0

diτρτ in Table 1 with ρdi,t−1.
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Table 6

Repeated Sampling Experiments
Random Effects Model

Unbiased Classification Error
Smooth Algorithm

(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1033 -.1034 .0158 .0161 -1.50
β1 1.0000 1.0000 1.0001 .0093 .0093 .04
ρ 1.0000 1.0485 1.0301 .1049 .1155 3.27
α .5000 .5493 .5371 .0840 .0974 4.15
σµ .8000 .7993 .7990 .0033 .0034 -1.57
E .7500 .7454 .7453 .0165 .0171 -1.97

40% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1014 -.1018 .0178 .0179 -.57
β1 1.0000 1.0003 1.0000 .0107 .0107 .22
ρ 1.0000 1.0397 1.0224 .1192 .1257 2.35
α .5000 .5419 .5061 .0943 .1032 3.14
σµ .8000 .7998 .7995 .0038 .0038 -.43
E .7500 .7492 .7476 .0215 .0215 -.28

60% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1011 -.0986 .0204 .0204 -.39
β1 1.0000 1.0002 1.0011 .0121 .0121 .13
ρ 1.0000 1.0417 1.0138 .1277 .1343 2.31
α .5000 .5487 .5170 .1211 .1305 2.85
σµ .8000 .8000 .8001 .0046 .0046 .04
E .7500 .7511 .7452 .0275 .0275 .29

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 1.

6



Table 7

Repeated Sampling Experiments
Random Effects Model

Unbiased Classification Error
Smooth Algorithm

(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.0948 -.0960 .0178 .0185 2.06
β1 1.0000 .9986 .9989 .0106 .0107 -.92
ρ 1.0000 .9923 .9906 .1098 .1101 -.50
α .5000 .5154 .4954 .0953 .0966 1.15
φ2 .2500 .2508 .2535 .0145 .0145 .40
σν .5000 .5014 .5015 .0055 .0057 1.77
σµ .8000 .8010 .8011 .0038 .0039 1.93
E .7500 .7462 .7469 .0168 .0172 -1.61

40% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.0867 -.0922 .0265 .0297 3.56
β1 1.0000 .9970 .9959 .0153 .0155 -1.39
ρ 1.0000 .9455 .9416 .1201 .1319 -3.21
α .5000 .4752 .4757 .0805 .0842 -2.18
φ2 .2500 .2510 .2498 .0185 .0185 .38
σν .5000 .5013 .5017 .0065 .0066 1.47
σµ .8000 .8031 .8019 .0059 .0067 3.69
E .7500 .7514 .7504 .0215 .0216 .45

60% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.0539 -.0567 .0355 .0582 9.19
β1 1.0000 .9959 .9999 .0262 .0265 -1.10
ρ 1.0000 .7979 .7738 .1362 .2437 -10.50
α .5000 .3826 .3714 .0986 .1533 -8.42
φ2 .2500 .2630 .2636 .0286 .0314 3.21
σν .5000 .5000 .5000 .0078 .0078 .03
σµ .8000 .8111 .8106 .0095 .0146 8.31
E .7500 .7540 .7465 .0283 .0286 .99

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 1.
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Table 8

Summary Statistics
Representative Data Set
AR(1) Error Model

Unbiased Classification Error

Mean Mean Mean Mean Mean Mean
t dit d∗it β0x εit π11t π00t N

1 .4600 .4580 -.0125 -.0330 .8622 .8878 500
(.2701) (1.0164)

2 .5740 .5700 .4709 -.0220 .8935 .8565 500
(.5272) (1.0525)

3 .6340 .6280 .8778 -.0146 .9128 .8372 500
(.8917) (.9698)

4 .6940 .6800 1.1514 -.0055 .9265 .8235 500
(1.1668) (.8593)

5 .7380 .7420 1.3771 .0504 .9367 .8133 500
(1.2028) (.8507)

6 .7700 .7840 1.5895 .0311 .9454 .8046 500
(1.2453) (.8962)

7 .8000 .7960 1.7679 .0392 .9537 .7963 500
(1.1408) (.9582)

8 .8360 .8620 1.8576 .0142 .9588 .7912 500
(1.1427) (.9893)

9 .8480 .8260 1.9912 .0086 .9640 .7860 500
(1.1048) (1.0212)

10 .8600 .8720 2.0187 .0233 .9677 .7823 500
(.9955) (.9182)

Note: dit is the true choice, d∗it is the reported choice, π11t and π00t are the probabilities of a correct
classification, and β0x = uit − β0. Variances are in parentheses. The frequency simulator that is
used to compute the true classification error rates has fM set to 1000. The model is:

uit = β0 + β1xit +
t−1X
τ=0

diτρτ + εit

di0 = 0, ρτ = ρe−α(t−τ−1)

εit = φ1εi,t−1 + ηit, ηit ∼ N(0, 1− φ21)

xit = φ2xi,t−1 + νit, xit ∼ N
¡
0,σ2ν

¢
.
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Table 9

Repeated Sampling Experiments
AR(1) Error Model

Unbiased Classification Error
(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

No Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1008 -.0967 .0418 .0418 -.14
β1 1.0000 1.0105 1.0101 .0492 .0503 1.50
ρ 1.0000 1.0357 1.0317 .0479 .0598 5.27
α .5000 .5058 .5088 .0371 .0375 1.11
φ1 .8000 .8002 .7943 .0266 .0266 .06
E .7500 .7457 .7445 .0137 .0143 -2.23

20% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1020 -.1028 .0414 .0414 -.35
β1 1.0000 1.0045 1.0136 .0552 .0554 .57
ρ 1.0000 1.0377 1.0356 .0408 .0556 6.53
α .5000 .5066 .5125 .0514 .0519 .91
φ1 .8000 .8006 .8016 .0257 .0257 .17
E .7500 .7469 .7463 .0191 .0193 -1.14

40% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1034 -.1034 .0423 .0424 -.57
β1 1.0000 .9906 1.0015 .0711 .0718 -.93
ρ 1.0000 1.0470 1.0361 .0540 .0716 6.15
α .5000 .5072 .5154 .0585 .0590 .87
φ1 .8000 .7974 .7984 .0331 .0333 -.56
E .7500 .7488 .7470 .0244 .0245 -.36

60% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1056 -.1065 .0605 .0607 -.66
β1 1.0000 .9904 .9850 .0800 .0806 -.85
ρ 1.0000 1.0553 1.0506 .0731 .0917 5.34
α .5000 .5054 .5064 .0560 .0562 .68
φ1 .8000 .7986 .8035 .0405 .0405 -.25
E .7500 .7479 .7430 .0360 .0361 -.42

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 8.
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Table 10

Repeated Sampling Experiments
AR(1) Error Model

Unbiased Classification Error
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.1042 -.0981 .0391 .0394 -.76
β1 1.0000 1.0021 1.0060 .0519 .0519 .29
ρ 1.0000 1.0444 1.0393 .0424 .0614 7.40
α .5000 .5057 .5058 .0423 .0428 1.12
φ2 .2500 .2521 .2486 .0181 .0183 .83
σν .5000 .5018 .5024 .0057 .0060 2.21
φ1 .8000 .7996 .8003 .0264 .0264 -.12
E .7500 .7473 .7486 .0174 .0176 -1.08

40% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.1052 -.1014 .0400 .0403 -.92
β1 1.0000 1.0036 1.0011 .0566 .0567 .45
ρ 1.0000 1.0460 1.0400 .0446 .0640 7.30
α .5000 .5018 .5053 .0405 .0405 .32
φ2 .2500 .2522 .2531 .0261 .0262 .61
σν .5000 .5019 .5026 .0067 .0070 1.98
φ1 .8000 .8002 .7989 .0301 .0301 .05
E .7500 .7504 .7524 .0251 .0251 .12

60% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.1041 -.0996 .0524 .0526 -.55
β1 1.0000 1.0003 1.0124 .0748 .0748 .03
ρ 1.0000 1.0433 1.0372 .0610 .0748 5.03
α .5000 .5047 .5077 .0621 .0623 .54
φ2 .2500 .2521 .2514 .0384 .0385 .39
σν .5000 .5007 .5018 .0086 .0086 .61
φ1 .8000 .7988 .8019 .0364 .0364 -.23
E .7500 .7514 .7514 .0346 .0348 .77

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 8.
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Table 11

Repeated Sampling Experiments
AR(1) Error Model

Unbiased Classification Error
(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Simulate from start of process with di0 = 0 (t = 11, ..., 20)

β0 -.1000 -.0896 -.0925 .0265 .0285 2.77
β1 1.0000 1.0224 1.0221 .0479 .0529 3.31
ρ 1.0000 1.0194 1.0148 .0298 .0356 4.60
α .5000 .5121 .5128 .0238 .0267 3.59
φ2 .2500 .2511 .2531 .0138 .0139 .56
σν .5000 .5011 .5013 .0047 .0049 1.58
φ1 .8000 .8071 .8100 .0280 .0289 1.80
E .7500 .7420 .7455 .0261 .0273 -2.16

Assume process starts with di,10 = 0 (t = 11, ..., 20)

β0 -.1000 .9503 .9682 .0605 1.0520 122.84
β1 1.0000 .1699 .3883 .4544 .9463 -12.92
ρ 1.0000 .5849 .5266 .2792 .5003 -10.51
α .5000 .7102 .7385 .3180 .3812 4.67
φ1 .8000 .9221 .9259 .0316 .1261 27.33
E .7500 .7656 .7485 .1323 .1332 .83

Use reported data from t = 11, ..., 20 to proxy
for initial condition at t = 21 (t = 11, ..., 30)

β0 -.1000 -.0862 -.0812 .0617 .0632 1.58
β1 1.0000 .9406 .9781 .0932 .1105 -4.50
ρ 1.0000 1.0445 1.0219 .0924 .1026 3.41
α .5000 .5908 .5674 .0737 .1170 8.72
φ1 .8000 .7562 .7749 .0828 .0937 -3.74
E .7500 .7348 .7378 .0288 .0325 -3.73

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 8.
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Table 12

Repeated Sampling Experiments
AR(1) Error Model

Unbiased Classification Error
First Order Markov Process

(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Simulate from start of process with di0 = 0 (t = 10, ..., 20)
β0 -.1000 -.1171 -.1125 .0429 .0462 -2.81
β1 1.0000 1.0185 1.0191 .0323 .0373 4.05
ρ 1.0000 1.0354 1.0316 .0465 .0585 5.38
φ2 .2500 .2511 .2509 .0139 .0140 .56
σν .5000 .5013 .5016 .0050 .0052 1.89
φ1 .8000 .8081 .8077 .0266 .0278 2.15
E .7500 .7401 .7403 .0126 .0160 -5.58

Assume process starts with di9 = 0 (t = 10, ..., 20)
β0 -.1000 .1895 .1797 .0547 .2946 37.43
β1 1.0000 .8189 .8025 .0727 .1951 -17.63
ρ 1.0000 .5932 .5807 .1054 .4202 -27.29
φ1 .8000 .8377 .8343 .0268 .0463 9.95
E .7500 .7539 .7544 .0164 .0168 1.68

Use reported data at t = 10 to proxy
for initial condition at t = 11 (t = 10, ..., 20)

β0 -.1000 -.2416 -.2501 .0492 .1500 -20.36
β1 1.0000 1.0150 1.0239 .0430 .0456 2.46
ρ 1.0000 1.2330 1.2380 .0702 .2434 23.47
φ1 .8000 .7480 .7456 .0374 .0640 -9.83
E .7500 .7322 .7316 .0151 .0234 -8.35

Use Heckman’s approximation method to proxy
for initial condition at t = 11 (t = 10, ..., 20)

β0 -.1000 -.2181 -.2206 .0538 .1298 -15.54
β1 1.0000 1.0333 1.0315 .0471 .0577 5.00
ρ 1.0000 1.1997 1.2129 .0604 .2086 23.37
φ1 .8000 .7727 .7746 .0316 .0418 -6.13
E .7500 .7385 .7385 .0116 .0164 -7.00
γ0 .4149 .4118 .0564
γ1 .6628 .6614 .0722
ρµ²H .7238 .7266 .0386

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The Markov model replaces
t−1P
τ=0

diτρτ in Table 8 with ρdi,t−1.
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Table 13

Repeated Sampling Experiments
AR(1) Error Model

Unbiased Classification Error
Smooth Algorithm

(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.0988 -.0987 .0188 .0188 .47
β1 1.0000 .9994 .9995 .0103 .0103 -.39
ρ 1.0000 1.0531 1.0358 .1631 .1715 2.30
α .5000 .5358 .5136 .0865 .0936 2.92
φ1 .8000 .8004 .8001 .0040 .0040 .72
E .7500 .7488 .7477 .0178 .0178 -.46

40% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.0965 -.0969 .0191 .0194 1.28
β1 1.0000 .9993 1.0005 .0104 .0105 -.47
ρ 1.0000 1.0508 1.0286 .1398 .1488 2.57
α .5000 .5398 .5263 .0870 .0957 3.23
φ1 .8000 .8009 .8007 .0040 .0041 1.58
E .7500 .7522 .7504 .0223 .0234 .70

60% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.0928 -.0912 .0228 .0239 2.24
β1 1.0000 .9992 .9980 .0095 .0096 -.60
ρ 1.0000 1.0350 1.0013 .1607 .1644 1.54
α .5000 .5297 .5103 .0936 .0982 2.24
φ1 .8000 .8018 .8017 .0045 .0049 2.79
E .7500 .7533 .7487 .0297 .0300 .77

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 8.
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Table 14

Repeated Sampling Experiments
AR(1) Error Model

Unbiased Classification Error
Smooth Algorithm

(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.0916 -.0910 .0169 .0189 3.48
β1 1.0000 1.0001 1.0004 .0117 .0117 .03
ρ 1.0000 .9852 .9869 .1012 .1023 -1.03
α .5000 .5048 .4932 .0614 .0616 .55
φ2 .2500 .2516 .2535 .0154 .0155 .74
σν .5000 .5015 .5025 .0055 .0057 1.90
φ1 .8000 .8016 .8017 .0037 .0040 3.11
E .7500 .7495 .7485 .0174 .0174 -.19

40% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.0861 -.0899 .0227 .0266 4.33
β1 1.0000 .9935 .9929 .0171 .0183 -2.68
ρ 1.0000 .9454 .9176 .1317 .1425 -2.93
α .5000 .4937 .4705 .0947 .0949 -.47
φ2 .2500 .2564 .2561 .0211 .0221 2.13
σν .5000 .5006 .5009 .0066 .0067 .69
φ1 .8000 .8030 .8020 .0047 .0056 4.52
E .7500 .7530 .7522 .0216 .0218 .97

60% Missing Choices and X’s (t = 1, ...,10)

β0 -.1000 -.0669 -.0652 .0337 .0472 6.93
β1 1.0000 .9836 .9857 .0274 .0324 -4.50
ρ 1.0000 .8601 .8131 .1910 .2368 -5.18
α .5000 .4537 .4303 .1159 .1248 -2.82
φ2 .2500 .2702 .2665 .0254 .0324 5.61
σν .5000 .4995 .5000 .0083 .0083 -.47
φ1 .8000 .8078 .8076 .0073 .0107 7.56
E .7500 .7559 .7548 .0286 .0292 1.46

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 8.
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Table 15

Repeated Sampling Experiments
Random Effects Model

Biased Classification Error
(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Low Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0922 -.944 .0387 .0394 1.42
β1 1.0000 1.0198 1.0131 .0531 .0567 2.63
ρ 1.0000 1.0144 1.0102 .0390 .0415 2.61
α .5000 .5031 .5104 .0489 .0490 .45
φ2 .2500 .2489 .2456 .0161 .0161 -.47
σν .5000 .5018 .5018 .0050 .0053 2.47
σµ .8000 .8068 .8041 .0239 .0248 1.99
γ0 -3.5000 -3.4867 -3.4762 .0580 .0595 1.62
γ1 5.0000 4.9845 5.0033 .0728 .0744 -1.51
γ2 2.0000 2.0161 2.0236 .0446 .0475 2.56

Medium Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0941 -.0988 .0425 .0429 .98
β1 1.0000 1.0045 1.0119 .0608 .0609 .52
ρ 1.0000 1.0222 1.0232 .0465 .0515 3.37
α .5000 .5160 .5253 .0658 .0677 1.71
φ2 .2500 .2476 .2452 .0162 .0163 -1.04
σν .5000 .5022 .5026 .0050 .0054 3.04
σµ .8000 .8049 .8041 .0272 .0276 1.29
γ0 -3.0000 -2.9902 -2.9826 .0561 .0570 1.24
γ1 4.0000 3.98 3.9951 .0776 .0787 -1.19
γ2 2.0000 2.0104 2.0134 .0782 .0789 .94

High Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0988 -.0918 .0708 .0708 .12
β1 1.0000 1.0145 1.0068 .0693 .0708 1.48
ρ 1.0000 1.0218 1.0228 .0791 .0820 1.94
α .5000 .5088 .5328 .0993 .0997 .63
φ2 .2500 .2484 .2460 .0164 .0165 -.70
σν .5000 .5021 .5028 .0051 .2980 2.90
σµ .8000 .8023 .7999 .0406 .3050 .40
γ0 -3.0000 -2.9918 -2.9983 .0638 .0643 .91
γ1 3.0000 2.9842 2.9920 .0829 .0844 -1.34
γ2 3.0000 3.0190 3.0371 .1018 .1036 -1.32

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 1.

15



Table 16

Repeated Sampling Experiments
Random Effects Model

Biased Classification Error
Low Classification Error Bias

Smooth Algorithm
(20% Missing Choices, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

No Missing X’s (Markov model) (t = 1, ..., 10)
β0 -1.000 -.1006 -.0996 .0179 .0179 -.22
β1 1.0000 .9985 .9990 .0087 .0088 -1.19
ρ 1.0000 .9972 .9915 .0561 .0561 -.35
σµ .8000 .7997 .7993 .0037 .0038 -.47
γ0 -3.5000 -3.3219 -3.2916 .2840 .3352 4.43
γ1 5.0000 4.7449 4.7237 .3041 .3969 -5.93
γ2 2.0000 2.0537 2.0093 .1870 .1945 2.03

No Missing X’s (t = 1, ..., 10)
β0 -.1000 -.0968 -.0963 .0148 .0152 1.52
β1 1.0000 .9982 1.0002 .0139 .0140 -.94
ρ 1.0000 .9902 .9904 .0863 .0868 -.80
α .5000 .5049 .4922 .0662 .0664 .53
σµ .8000 .8006 .8004 .0032 .0033 1.37
γ0 -3.5000 -3.3357 -3.2874 .2398 .2907 4.84
γ1 5.0000 4.7959 4.8140 .2442 .3183 -5.91
γ2 2.0000 2.0410 2.0349 .1835 .1881 1.58

Missing X’s (t = 1, ...,10)
β0 -.1000 -.0965 -.0957 .0159 .0163 1.54
β1 1.0000 .9973 .9993 .0135 .0138 -1.43
ρ 1.0000 .9926 .9897 .0933 .0936 -.56
α .5000 .5082 .4982 .0698 .0731 .83
φ2 .2500 .2505 .2477 .0150 .0150 .23
σν .5000 .5019 .5023 .0049 .0053 2.65
σµ .8000 .8007 .8007 .0034 .0035 1.41
γ0 -3.5000 -3.3503 -3.3084 .2461 .2880 4.30
γ1 5.0000 4.8156 4.8272 .2598 .3186 -5.02
γ2 2.0000 2.0356 2.0363 .1779 .1815 1.41

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model in panels 2 and 3 are the same as in Table 1. The Markov model in panel 1 replaces
t−1P
τ=0

diτρτ in Table 1 with ρdi,t−1.
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Table 17

Repeated Sampling Experiments
AR(1) Error Model

Biased Classification Error
(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Low Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.1033 -.1039 .0406 .0407 .57
β1 1.0000 1.0176 1.0114 .0649 .0673 1.91
ρ 1.0000 1.0322 1.0325 .0385 .0502 5.92
α .5000 .5017 .5050 .0461 .0461 .25
φ2 .2500 .2496 .2502 .0165 .0165 -.16
σν .5000 .5018 .5023 .0049 .0052 2.62
φ1 .8000 .7987 .7961 .0264 .0265 -.35
γ0 -3.5000 -3.4987 -3.4809 .0664 .0665 .14
γ1 5.0000 4.9831 5.0056 .0697 .0717 -1.72
γ2 2.0000 2.0265 2.0196 .0451 .0513 4.15

Medium Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0893 -.0982 .0525 .0536 1.44
β1 1.0000 1.0075 1.0040 .0745 .0749 .71
ρ 1.0000 1.0283 1.0364 .0534 .0604 3.75
α .5000 .5162 .5101 .0540 .0563 2.12
φ2 .2500 .2478 .2469 .0163 .0164 -.94
σν .5000 .5024 .5027 .0046 .0052 3.74
φ1 .8000 .8016 .8023 .0312 .0312 .35
γ0 -3.0000 -3.0058 -3.0009 .0716 .0718 -.57
γ1 4.0000 3.9802 3.9803 .0735 .0761 -1.90
γ2 2.0000 2.0151 2.0227 .0659 .0676 1.62

High Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0926 -.0896 .0756 .0758 .69
β1 1.0000 1.0135 1.0201 .0778 .0790 1.23
ρ 1.0000 1.0276 1.0255 .0682 .0735 2.86
α .5000 .5074 .5033 .0624 .0629 .83
φ2 .2500 .2476 .2446 .0152 .0153 -1.10
σν .5000 .5019 .5030 .0051 .0055 2.62
φ1 .8000 .7980 .8046 .0386 .0387 -.36
γ0 -3.0000 -3.0026 -2.9870 .0823 .0824 -.23
γ1 3.0000 2.9899 2.9807 .0680 .0687 -1.04
γ2 3.0000 3.0186 3.0185 .0693 .0717 1.90

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model is the same as in Table 8.
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Table 18

Repeated Sampling Experiments
AR(1) Error Model

Biased Classification Error
Low Classification Error Bias

Smooth Algorithm
(20% Missing Choices, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

No Missing X’s (Markov model) (t = 1, ..., 10)
β0 -1.000 -.0957 -.0974 .0135 .0142 2.26
β1 1.0000 .9985 .9991 .0088 .0090 -1.19
ρ 1.0000 .9849 .9853 .0404 .0432 -2.65
φ1 .8000 .8009 .8008 .0031 .0032 2.12
γ0 -3.5000 -3.3853 -3.3548 .3321 .3514 2.44
γ1 5.0000 4.7582 4.7928 .3004 .3856 -5.69
γ2 2.0000 2.1277 2.1208 .2004 .2376 4.51

No Missing X’s (t = 1, ..., 10)
β0 -.1000 -.0957 -.0963 .0187 .0192 1.64
β1 1.0000 1.0003 1.0022 .0108 .0108 .17
ρ 1.0000 1.0021 .9954 .0993 .0993 .15
α .5000 .5048 .4999 .0450 .0453 .76
φ1 .8000 .8009 .8005 .0039 .0039 1.58
γ0 -3.5000 -3.3875 -3.3778 .2774 .2993 2.87
γ1 5.0000 4.8043 4.8417 .2679 .3318 -5.16
γ2 2.0000 2.1189 2.1113 .1795 .2153 4.68

Missing X’s (t = 1, ...,10)
β0 -.1000 -.0954 -.0958 .0185 .0191 1.75
β1 1.0000 1.0003 1.0014 .0108 .0108 .20
ρ 1.0000 1.0017 .9906 .0983 .0983 .12
α .5000 .5046 .5012 .0443 .0445 .73
φ2 .2500 .2497 .2497 .0133 .0133 -.14
σν .5000 .5019 .5024 .0047 .0050 2.83
φ1 .8000 .8009 .8004 .0038 .0039 1.63
γ0 -3.5000 -3.3885 -3.3811 .2752 .2970 2.86
γ1 5.0000 4.8058 4.8436 .2676 .3307 -5.13
γ2 2.0000 2.1185 2.1083 .1785 .2143 4.69

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as

√
50

µ
Meanbβ−β
Std(bβ)

¶
.

The model in panels 2 and 3 are the same as in Table 8. The Markov model in panel 1 replaces
t−1P
τ=0

diτρτ in Table 8 with ρdi,t−1.
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