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Abstract
This paper develops a new simulation estimation algorithm that is par-
ticularly useful for estimating dynamic panel data models with unobserved
endogenous state variables. The new approach can deal with the commonly
encountered and widely discussed “initial conditions problem,” as well as the
more general problem of missing state variables at any point during the sample
period. Repeated sampling experiments on a dynamic panel data probit model
with serially correlated errors indicate that the estimator has good small sam-
ple properties and is computationally practical for use with panels of the size
that are likely to be encountered in practice.
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1 Introduction

The problem of unobserved endogenous state variables frequently arises in the estima-
tion of dynamic discrete choice panel data models. The problem is present whenever
there are unobserved initial conditions, i.e., the history of the choice process begins
prior to the first period of observed data. The problem is also present whenever panel
data sets do not contain all of the choices for every individual within the sample
period. Consistent estimation in either of these cases requires “integrating out” all
possible choice sequences that the individual may have followed. However, as the
length of the panel grows and the choice set becomes larger, the “integrating out”
solution begins to require very high dimensional integrations, rendering it computa-
tionally impractical.

In this paper, we assesses the performance of a new simulated maximum likeli-
hood (SML) estimation algorithm that is particularly useful for estimating dynamic
panel data models with unobserved endogenous state variables. The novel estima-
tion technique was recently introduced by Keane and Wolpin (2001) (KW) in order
to estimate the parameters of a discrete choice dynamic programming problem with
both unobserved initial conditions and missing data during the sample period. How-
ever, the algorithm has a much wider applicability beyond the special case that KW
considered. In fact, it can be used to simulate the likelihood function in any context
where it is tractable to perform unconditional simulations of data from the model.
Simulation of the likelihood in dynamic models typically requires conditional simu-
lations (of choice probabilities conditional on past history). The advantage of our
algorithm lies in the fact that unconditional simulation is often straightforward in
contexts where conditional simulation is computationally infeasible (as is often the
case when past history is not fully observed).

In this paper, we describe how the SML algorithm developed by KW can be ex-
tended to a number of cases beyond the specific discrete choice dynamic programming

problem that they considered. In particular, we assess the performance of the esti-



mator on a panel data probit model with a time-varying exogenous covariate, lagged
endogenous variables and serially correlated errors. The panel data probit model has
been a leading case in past discussions of dynamic panel data models with unobserved
initial conditions (see Heckman (1981a)). Specification of a panel data probit model
also allows us to focus on and further develop the estimation technique. The results of
a series of repeated sampling experiments on the dynamic probit model show that the
SML estimator with the new algorithm has good small sample properties and is com-
putationally practical for use with panels of the size that are likely to be encountered
in practice.

Computationally tractable solutions to the problem of unobserved endogenous
state variables have been proposed before in the econometrics literature. Most no-
tably, Heckman (1981a) illustrated how, in a dynamic probit setting, one could use-
fully employ the simplifying assumption of equilibrium in the dynamic process and
derive an expression for the marginal probability of the initial state. This marginal
probability could then be incorporated into the likelihood function for consistent esti-
mation. A drawback of this method, however, is that equilibrium implies the process
has been in operation far into the past and that the exogenous variables are generated
by a stationary stochastic process. Time and age trends must, therefore, be excluded
from the set of explanatory variables.!

Heckman (1981a) also considered the estimation of fixed effects models as a poten-
tially attractive alternative solution to the initial conditions problem. Estimation of
a fixed effects model obviates the need to incorporate pre-sample information and the
need to commit to a particular mixing distribution for individual effects. However, in
nonlinear models of fixed panel length, the inconsistency of the fixed effects estimator
is transmitted to the structural parameters. Moreover, the effective sample size for

estimating the structural parameters of the model is the subsample of individuals that

!Card and Sullivan (1988) adopted this method for studying the dynamic effects of training on

re-employment probabilities.



change state. This latter fact can easily lead to a form of small sample selection bias.
This approach is also difficult to implement if the number of cross-sectional units is
large.?

As a better alternative to assuming equilibrium or estimating a fixed effects model,
Heckman (1981a) suggested approximating the marginal probability of the initial
state by a probit function which has as its argument as much presample information
on the exogenous variables as is available. The error term in the initial state index
function can also be left freely correlated with the errors in the index functions during
the sample period. This latter estimation strategy was shown to perform better than
the fixed effects probit model in Monte Carlo simulations. However, this approxima-
tion procedure can still produce biases in structural parameters that are relatively
large in magnitude.?

In stark contrast to the attention given to the initial conditions problem in dy-
namic panel data models, alternative practical solutions to the parallel problem of
missing data during the sample period have not yet been fully explored. Missing-
ness problems frequently arise in data sets used by applied economists. For example,
serious missing data problems exist in data sets such as the National Longitudinal
Study of Youth (NLSY) and the Panel Study of Income Dynamics (PSID). Although
Rubin (1976) , Dempster, Laird and Rubin (1977) and Little and Rubin (1987) have
extensively analyzed the EM algorithm as a general solution to missingness prob-

lems, the EM algorithm has important limitations and has not been used very much

’In the special cases of the linear probability model and the logit model, fixed effects can be
eliminated and structural parameters consistently estimated. For analyses of the conditional logit

model see Chamberlain (1984) and Honore and Kyriazidou (2000).

3Monte Carlo experiments in Heckman (1981a) and Hyslop (1999) often produce estimated pa-
rameters with biases of more than 10%. Heckman and Singer (1984) suggested a similar type of
solution to the initial conditions problem in multiple spell duration models. See Ham and LaLonde

(1996) for an application.



in practice.*

When faced with missing data problems, applied economists frequently resort
to the simpler methods of case deletion and imputation. Case deletion, which in
the context of panel data models usually takes the form of cutting the individual’s
history short, is a questionable solution. It can cause large amounts of information
to be discarded, resulting in inefficient estimates. Case deletion can also introduce
biases to the extent that completely observed histories differ systematically from
censored histories. In other words, biases are introduced when the data is not missing
completely at random, or the missingness process is nonignorable (see Little and
Rubin (1987)). Imputation of missing values by ad hoc methods is no less problematic.
Imputing averages tends to bias estimated variances and covariances toward zero while
imputing predicted values from regression models tends to bias correlations away from
zero (see Schafer (1997)). An additional problem is that standard errors of estimates
from models with imputed data usually do not reflect the additional variability due
to the imputations.

The SML technique that we analyze in this paper offers a systematic unified
“solution” to both the initial conditions problem and the problem of missingness
during the sample period. Our proposed solution does not involve the censoring of
incomplete histories or the use of ad hoc imputation methods. A key feature of the
estimation technique is that we use unconditional simulations of the model to form the
likelihood. This is in contrast to the usual approach to construction of the likelihood
in dynamic models which requires calculation of the initial state probability and the

probabilities of events at each date t conditional on the state at the start of time .

4 Analogous to the EM algorithm is the Gibbs-sampling data-augmentation algorithm. Geweke
and Keane (2000) used this approach to deal with unobserved initial conditions and missing data in
dynamic earnings models. The problem with EM and data augmentation is that the distribution of
a missing value conditional on all other information can be quite complex in dynamic models (see

also Ruud (1991)).



The key assumption that is required to form the likelihood in dynamic models with
unconditional simulations is that reported choices are measured with error. Assuming
classification error in reported choices avoids the need to condition on past history,
and avoids the usual problem in frequency simulation whereby an impractically large
number of simulations is necessary to compute choice probabilities. Furthermore, the
assumption that choices are measured with error is certainly valid in the vast majority
of data sets that economists use.

The classification error process that we incorporate into the model simply specifies
some probability that the reported choice is the true choice and some probability that
it is not. Classification error of this type is frequently present in data sets with discrete
outcomes and has been used in applied work (see, e.g., Poterba and Summers (1995)).
Moreover, if misclassification of this type is present and not included in the analysis,
maximum likelihood estimation leads to biased and inconsistent parameter estimates
(Hausman, Abrevaya and Scott-Morton (1998)). Repeated sampling experiments in
Hausman et. al. (1998) find considerable biases, in the range of 15% to 25%, in
ordinary probit models that fail to incorporate classification error into the likelihood.
In our approach, the investigator has a great deal of flexibility in terms of the details
of the specification of the classification error process, as we illustrate by considering
two alternative specifications.®

The rest of this paper is organized as follows. Section 2 describes the general dy-
namic panel data probit model used in the analysis. Section 3 develops two different
models of classification error that can be incorporated into the estimation algorithm.
We call the two different models of classification error unbiased and biased classi-

fication error, respectively. Section 4 describes the estimation algorithm. Section

"Hausman et. al. (1998) also demonstrate that a distributional assumption on the error term
and a monotonicity condition are necessary for separate identification of structural parameters and
classification error rates. The dynamic probit models that we consider meet these identification

conditions.



5 presents Monte-Carlo test results, assuming unbiased classification error, for both
a random effects model and an AR (1) error model. Section 6 tests the estimation
procedure under the biased classification error scheme. Section 7 summarizes and

concludes.

2 The Panel Data Probit Model

In the panel data probit model, the utility of the first option, for individual ¢ at time
t, is denoted as u;;, and the utility of the second option is normalized to zero. Utility
is always unobserved to the researcher but the individual is assumed to choose the
option which gives greatest utility. We will consider applications of our SML approach
to models of the general form

t—1
Uip = By + Bz + Z dirp, + Eit (1)
=0

where d;; is the indicator function defined by

0 otherwise.

Note that the specification in (1) allows the entire history of past choices to affect
current utility. It is thus more general than the more familiar first-order Markov
process. Depreciation in the importance of past choices is captured through the
weights p,.. The theoretical start of the process in the dynamic probit model is, by
definition, d;y = 0.

The error term ¢; in (1) is assumed to be serially correlated. Serial correlation
in the error term implies that lagged choices are endogenous. The source of serial

correlation could be time-invariant individual effects, i.e.,

Eit = [ T My (3)



N

where p,; is i.i.d. with zero mean and variance 0. Alternatively, serial correlation

w

could derive from an AR (1) process,

Eit = P1€i -1 + Ny (4)

where 7, is i.i.d. with zero mean and variance 0127.

Although the model outlined above may appear somewhat specific, it is impor-
tant to emphasize that the estimation procedure can accommodate a wide range of
covariate specifications and distributions of the error term. In KW and Sauer (2003),
the estimation technique is employed in a multinomial setting in which the error term
is decomposed into a nonparametric individual effect and a multivariate normal i.i.d.

disturbance.

3 Classification Error

In our approach, we assume that all discrete outcomes are measured subject to clas-
sification error. In most contexts in applied economics this is a sensible assumption.
Moreover, our approach can be implemented given any assumed classification error
process provided that it is possible to obtain a tractable expression for the probability
of observed choices conditional on true choices. Letting d}, denote the reported choice,
the model of misclassification that we consider is characterized by four classification

error rates

T11t = Pr(d;: 1 ‘ dit: 1)

Tolir = PI' (d;kt =1 ‘ dit = 0) (5)
Toor = 1 — o
Tioe = 1— T

where 7114 is the probability that the first option is reported to be chosen (df, = 1)
given that the first option is the true choice (d; = 1); mo1; is the probability that the



first option is reported to be chosen (df, = 1) given that the second option is the true
choice (di; = 0); and o and ¢, are the corresponding conditional probabilities for
d;, = 0.

The investigator has a great deal of leeway in terms of how to specify the clas-
sification error rates myy; and mgy;. In our Monte Carlo analysis of the estimation
algorithm we will only consider cases in which the classification error rates are de-
pendent on the true choice, but are otherwise unconditional on the covariates in the
model. Classification error rates would depend on the true value of the dependent
variable if, for example, workers who change jobs more often misreport than work-
ers who do not change jobs. Hausman et. al. (1998) find evidence of this type of
misclassification in the PSID and the Current Population Survey.

Covariate-dependent misclassification can also be easily incorporated into the clas-
sification error model. However, we note that if the measurement error process were
made a sufficiently flexible function of covariates and lagged choices, one would lose
identification of the structural parameters in (1). Identification of structural pa-
rameters will be stronger the more parsimonious is the model of misclassification.
Moreover, economic theory provides guidance for specification of the decision model
but does not necessarily provide guidance for specification of the model of misclassi-
fication. For both these reasons, we will focus on fairly simple specifications of the
classification error process. A key distinction is whether classification error is biased

or unbiased. We consider these cases in turn.

3.1 Unbiased Classification Error

The assumption that classification error is unbiased imposes a very simple structure
on the classification error rates in (5). Unbiasedness in this context means that the
probability a person is observed to choose an option is equal to the true probability
that the person chooses that option, or Pr(df, =1) = Pr(d; =1). We find the

assumption of classification error quite appealing, because it forces the structural



parameters of the model to fit the conditional choice frequencies in each period, as
opposed to allowing classification error to drive model fit.

Unbiased classification error implies that the classification error rates in (5) are
linear in the true choice probability. To see this, note that by definition,

Pr(d,=1)=Pr(d;=1|dy=1)Pr(dy =1)+Pr(d;; =1|dy =0)Pr(dy; =0)
(6)

where, in writing Pr (df, = 1) and Pr(d; = 1), we have suppressed the obvious de-
pendence of these probabilities on z;; and lagged choices in order to conserve on
notation.

If we write the classification error rates as the following linear functions of Pr (d;; = 1),
Prd;=1|dy=1) = E+(1—-E)Pr(dy=1) (7)
Pr(d,=1|dy=0) = (1—-E)Pr(dy=1),

then these expressions can be substituted into (6) and shown to yield Pr (df, = 1) =
Pr(dy =1).

Note that as the true choice probability, Pr(d; = 1), approaches one, the prob-
ability of a correct classification, Pr(dj, =1 | d; = 1), also approaches one, which
must be the case to preserve unbiasedness. Further, as Pr(d;; = 1) approaches zero,
Pr(dj, =1 | dy = 1) approaches E. E can thus be interpreted as a “base” classifica-
tion error rate. In other words, low probability events have a probability equal to E of
being classified correctly. The probability of a correct classification increases linearly
from F toward one as the true choice probability approaches one. In estimation, F
is treated as a free parameter.

In terms of the original notation, the classification error rates can be written as
™11t = E + (1 - E) Pr (dzt = 1) (8)
ot — (1 — E) Pr (dzt = 1) .

Note the great parsimony that unbiasedness imposes on the classification error process

(i.e., it depends on the single parameter F.) However, one could certainly generalize

10



this specification by letting the base classification error rate F depend on covariates.
In that case, one obtains unbiasedness conditional on covariates.

Note also that this model of unbiased classification error is similar to the “flexible”
model of classification error considered in Hausman et. al. (1998). In both classifi-
cation error schemes, the probability of the reported choice is increasing in the index
function determining the true choice. The monotonicity condition for identification
of classification error rates is thus satisfied. This is also true for the model of biased

classification error that we consider below.

3.2 Biased Classification Error

Any classification error scheme that doesn’t impose the linear relationships in (7)
will, in general, lead to a biased classification error process in which Pr(d}, = 1) #
Pr(d;; = 1). The biased classification error scheme that we consider is characterized

by the following index function,
lit = Yo +71dit + Vodiy g + wat (9)

where d}, denotes the reported choice and w; is a stochastic term. If [; > 0 then
df = 1, while df, = 0 otherwise. Notice that the specification in (9) allows the
probability of reporting a particular choice to differ by the true choice, and also
allows for persistence in misreporting. The greater in magnitude is 7,, the more
likely is persistent misreporting.

Assuming w;; is distributed logistically yields a tractable, nonlinear expression for

the classification error rates,

eTotritr2d

T = Pr(dy =1 ‘ diy =1) = 1+ eYotritredy (10)

eYot72 di,_,

Toit — Pr(d;"t: 1 ‘ d@tIO) =

14+ eYotV2di 1 °

11



4 The SML Estimation Algorithm

Suppose the data consist of { D}, z;}» , where D = {dZ}]_, is the history of reported
choices for individual i, x; = {xit}tT:l is the history of the exogenous covariate for
individual 7, and N is the number of individuals in the sample. For ease of exposition,
assume that the {:Bit}thl history is fully observed for each individual ¢ and that t =1
is the first period of observed data. Since there may be missing choices during the
sample period, let I (d}, observed) be an indicator function which equals one if dj;
is observed, and zero otherwise. Under these conditions, estimation of the model

requires constructing M simulated choice histories for each {:Bit}thl history as follows:

1. Draw M times from the e; distribution for each individual ¢ in every period ¢

N VM
to form the sequence {{{6’;};} 1} )
=1) m=1

_ T N o AN\ M
2. Given {{xit}tzl}izl and the error sequence {{{5# Feq }i—l}m:1’ construct M
. . . . T . r VM .
simulated choice histories for each individual ¢ {{{d?ﬁ}t_l}, 1} according
1= 1

m=

to (1) and the decision rule (2).

M

3. Construct the classification error rates {{ﬁﬂt}t 1} for each individual .
=) m=1
The procedure to do this depends on whether classification error is assumed to

be unbiased or biased (see below.)

4. Form an unbiased simulator of the likelihood contribution for each individual 7

as:

1

13(DZ‘\9,xi)=MZH( (11)

1
Jj=

1 I(d;‘t observed)
Y Tl ldy = j,dj = k‘])
0 k=0

where 6 is the vector of model parameters.

In the case of unbiased classification error, 77}, depends on the true choice prob-

ability Pr(dy; = 1) (see equation (8)). Therefore, Pr(d; = 1) must be simulated.

12



Pr(d;; = 1) can be computed by forming the unbiased simulator
ﬁ (dzt =1 ‘ H;fn = — Z PI' <€Zt < 60 + ﬁlxlt + ZdZTpT> (12)

where H}' = {{xW}T > dn} 1} is the history of the exogenous covariate and the
simulated lagged endogenous covariate through time ¢.%

The classification error rate for df, = 1 and d} = 1 in this case is,
A =E+(Q1—-E)P(dy=1|HY). (13)

In the case of biased measurement error, 77, depends on the reported choice in
the previous period d;, ; (see equation (10)). If the reported choice in the previous
period is missing, d;, ; must be simulated. The reported choice in the previous period
is simulated according to (9) and is denoted as d;" ;.

The classification error rate for df, = 1 and d}} = 1 in this latter case is,

eYotritr2 d;(inl)

~m __
1 + e'0 1 72%e—1

where d*(m1 =1 (d;‘t L obse"r’ved) di, 1+ (1 —1I (d;'k,tfl 0bserved>) iy

The estimation procedure described in steps (1) through (4) builds the likelihood
contribution for each individual by averaging, over M simulated choice histories, the
product of the appropriate classification error rates implied by the simulated choice
history {d*};_, and the observed choice history {d%}_ . In step (4) the indicator
function I [d}} = j,d}, = k| “picks out” the appropriate classification error rate by
comparing dj, to d. If d}, is unobserved, then the value of I (d}, observed) is zero,
and there is no contribution to the likelihood (i.e., one simply enters one in the

product) in period ¢.”

%In the case of a mean zero normal €;;, the probability in the summation is ® (a) where a = 8’z /0.,

t—1
B'x =By + Brzi + Y. d7p,, and @ is the standard normal c.d.f.
7=0

"An extension of the estimation procedure would be to specify the probability that the choice is
not observed and incorporate this probability in the likelihood. This is necessary only if choices are

not missing at random.
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Note that any observed choice history has non-zero probability conditional on
any simulated choice history. This reflects the fact that any simulated choice history
can generate any observed choice history when there is classification error. It is also
important to note that (11) builds the likelihood using unconditional simulations of
the model. The simulation of conditional probabilities like P (d;; | Hy) is completely
avoided, circumventing the severe computational problems that typically arise if H
is not fully observed.

Also note that the estimation procedure accommodates serial correlation in the
error term through the draws on the {Eit}?zl histories and the resulting simulated
choice history. These in turn determine the appropriate classification error rates that
enter the likelihood. Similarly, the state space is updated according to previous sim-
ulated choices, rather than previous reported choices, which then determine current
simulated choices. Thus, accommodating serial correlation does not require the use
of a recursive simulator (such as GHK).

The asymptotic properties of the SML estimator described here are the same as
were discussed in Lee (1992) and Pakes and Pollard (1989). Consistency and asymp-
totic normality require that \/MN — 00 as N — 00. The estimator we have described
is just a special case of SML, differentiated from past approaches only in terms of
the algorithm used to simulate the likelihood contribution. However, the importance
of this should not be underestimated. Past Monte Carlo work has repeatedly shown
that within the class of SML estimators that share common asymptotic properties,
finite sample performance hinges critically on the quality of the particular algorithm

used to simulated choice probabilities.

4.1 Missing Covariates and Initial Conditions

The estimation procedure needs to be only slightly modified in order to accommodate
missing exogenous covariates and/or an initial conditions problem. In the case of

missing covariates, each missing x;; is simulated according to the assumed process

14



generating the x;;’s. For example, suppose the x;’s are time-varying and stochastic

and follow the AR(1) process,
Tit = QoTip—1 + Vit (15)

where v; is i.i.d. with zero mean and variance a , and where z;0 = 0. If z;_
is observed and x;; is missing, then the missing x;; is replaced by z}} which equals
¢o%i—1 plus a draw from the v distribution. A new draw from the v;; distribution
is taken for each simulated choice history m.

The likelihood contribution for each individual 7 in this case becomes

]- Mo T xi¢ observe m L
P( xz|9 ZHfm xz I( i b g (Zzﬂ-gkt dt :.]szt:k]

m:lt:l 7=0 k=0

) I(d;‘t observed)

(16)
where f,, (z;) is the density of the exogenous covariate.

Assuming v;; is distributed normally, the density of z;; according to draw sequence
m is, -

1 Tit — Py
fn (@) = -0 (%) (17)
where :fét"i)l = I (x;4—1 observed) xy—1 + (1 — I (x;4—1 observed))z};_, and ¢ is the
standard normal p.d.f.. Note that in the period in which z;; is missing, the density
does not affect the likelihood (or one enters the product). f,, (x;) affects the likeli-
hood only when z;; is observed. The parameters ¢, and o, now become part of the
parameter vector 6.

In the case of an initial conditions problem, ¢ = 1 is not the first period of observed
data. Let t = 7 be the first period of observed data where 7 > 1.8 Simulated choice
histories are still constructed from the theoretical start of the process, i.e., from ¢t =0
with d;g = x;0 = 0, irrespective of the value of 7. If the z;;’s are also missing, the path

of z;;’s must be simulated from ¢ = 1 until ¢t = 7.

8The first period of observed data could also be individual specific. In this case, there would be

a different 7; for each individual.
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The likelihood contribution for each individual 7 in this case takes the form

R 1 M T P ; 11 I(d;‘t observed)

PDLai | 0) = g7 2 1L fm ()™ >3 Wikl ldif = g, diy = K]
m=14—7 J=0k=0

(18)

In (18), the first d}, is observed at t = 7. In Heckman’s approximation method, one

would specify a distribution for d~. In our method, it is not necessary to construct

a marginal distribution for the initial state. The distribution of the initial state in

period 7 is implicitly determined by the simulated choice and covariate history from

t =1 throught =7 — 1.

4.2 Importance Sampling

The estimation procedure can also be modified to take advantage of importance sam-
pling techniques that smooth the likelihood function and enable the use of standard
gradient methods of optimization.” The non-smoothness of the simulated likelihood
function arises because, holding the draw sequence {5%‘}?:1 fixed, a change in 6 can
induce discrete changes in the {dﬂ‘}le sequence. We smooth the likelihood by first
constructing simulated choice histories {d?ﬁ}f:l at an initial 6 = 6y. We then hold the
{d?;}thl sequences fixed as we vary 6. Each simulated choice sequence then has an
associated importance sampling weight, W, (0), that varies with 6. The basic idea of
importance sampling is that, when we change 6, sequences that are more (less) likely
under the new 6 receive increased (reduced) weight. Thus we have
P (d, ... d% | 0,x;)

W O) = Bam T o,2)

(19)

where the numerator is the joint probability that simulated choice history m occurs
given the current vector of trial parameters 0. The denominator is the joint probability

that simulated choice history m occurs given the initial vector of trial parameters 6.

9The non-smooth version of the estimation algorithm considered until now necessitates the use

of non-gradient methods of optimization such as the downhill simplex method.
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The joint probability of simulated choice history m in the dynamic probit model is

simply H Pr (51,:5 < By + Py + Z anT)

The hkehhood contribution for each individual 7 in this case takes the form

1 M T x;¢+ observe L ~m m *
P( y Ly | 9 Z Wm (9) H .fm (xit)l( it o ? (Z Z W]kt dzt = j? dzt = k]
M = t=7 J=0k=0

(20)
Note that (20) is just a special case of (18) with W,, = 1 for each simulated choice
history m.!?

An important computational advantage of the re-weighting scheme over the im-
plicit equal weighting scheme in (18) is that it requires simulated choice histories to
be generated only once for each individual, with an initial vector of trial parame-
ters 6y, as opposed to constructing simulated choice histories at each vector of trial
parameters 6. KW used this smooth version of the algorithm to construct standard
errors, but used the non-smooth version in estimation (using a simplex algorithm).

Ackerberg (2001) describes an analogous use of importance sampling and has a good

discussion of how his approach differs from ours.

5 Monte-Carlo Tests - Unbiased Classification Er-
ror

In this section, Monte-Carlo tests of the SML estimator with unbiased classification
error are reported. The algorithm used to generate artificial data sets with unbiased
classification error is described in Appendix A. In subsection 5.1, estimation results
for a random effects specification are discussed. In subsection 5.2, we discuss the
estimation results for an AR(1) specification for the error term. In each repeated

sampling experiment, a vector of true model parameters is chosen and used to create

10The efficiency of importance sampling algorithms is often improved if weights are normalized to

sum to one.

17

) I(dfbft observed)



50 Monte-Carlo data sets which differ in the realizations of the stochastic elements
of the model. Parameter estimates are then obtained for each data set.

Each estimation on the 50 different panels {D;, xl}f\il uses a different seed for
the random elements of the model that generate the M unconditional simulations
for each individual in the sample. For each repeated sampling experiment, the true
parameters, the mean, the median, the empirical standard deviations, the root mean
square error of the estimates, and the t-statistics for the statistical significance of the

biases, based on the empirical standard deviations, are reported.

5.1 Random Effects Model

In the random effects model, the error term e; follows the components of variance
structure in (3) with both p, and 7, distributed normally. The exogenous covari-
ate z;; is also assumed to be distributed normally and is generated by the AR (1)
process in (15). The depreciation weights p. are generated by an exponential decay

—alt=m-1) = The parameter « captures the “speed” of depreciation

process, p, = pe
in the effect of past choices. The vector of estimable parameters for this model is
0 = {Bo, b1, 1,00, p,,0,, E}. In the special case of no initial conditions problem
and no missing exogenous covariates, ¢; and o, need not be estimated. Identifica-
tion conditions for this type of model (a generalized Polya process with decay) are
discussed in Heckman (19810) .

Table 1 reports summary statistics, by time period and over individuals, for a rep-
resentative data set produced by the random effects model. The data set is generated
with the number of individuals N set to 500, the number of periods T set to 10, no
missing choices or missing exogenous covariates, and the vector of true parameters
set at # = {—.10,1.00, .25,1.00, 1.00, .50, .80, .75}. For reasons of identification, the
variance of €; is normalized to one, so that ai + 0727 = 1. The normalization implies

that the individual effect accounts for 64 percent of the variance in e; (0, is set to

80).
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The Mean d;; column in Table 1 shows that there is an increasing proportion of
individuals over time that choose the first option. At ¢ = 1 just under 50 percent of
the sample have d;; = 1. At ¢t = 10, the proportion reaches 85 percent. The Mean d,
column shows that the proportion that report choosing the first option closely tracks
the true proportion. This is a consequence of unbiased classification error. The Mean
B’z column displays the mean and variance of 'z = B,z + p ti: e~(t=7=1g, and
the Mean ¢;; column displays the mean and variance of the C()Tr;posite error term.
The figures show that the mean of 3’z increases at a decreasing rate reflecting the
increasing proportion of d;; = 1 over time and the relatively strong depreciation of
past choices. The variance of 3’z is roughly comparable to the variance of €;; by the
third period.

The Mean 711, and Mean 7(g; columns of Table 1 present the average probabilities
of a correct classification. The average probability of a correct match of d;; = 1 and
d;, = 1, m1, is .863 in period 1 and increases over time to .956 in period 10. The
average probability of a correct match of d;; = 0 and d};, = 0, 7o, is .887 in period 1
and decreases over time to .794 in period 10. This pattern emerges because 711, is an
increasing linear function of the proportion choosing d;; = 1, and gy is a decreasing
linear function of the same proportion, as shown in (8). The slope of the linear
functions is (1 — E). The base classification error rate F is set to .75, implying that

low probability events have a relatively high probability of being classified correctly.

5.1.1 Non-Smooth SML Algorithm

Table 2 reports the results of four repeated sampling experiments using the non-
smooth SML algorithm. The difference between the four experiments is in the pro-
portion of missing choices during the sample period. The four panels correspond to
data generating processes (DGPs) with no missing choices, 20% missing choices, 40%
missing choices and 60% missing choices, respectively. There are no missing exoge-

nous covariates. The number of simulated choice histories per individual, M, is set
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equal to 1000 throughout the study, unless otherwise noted. For starting values, we
use an initial parameter vector where each element is bumped 20% away from the
true values.

As the figures in Table 2 illustrate, the SML estimator produces biases, but the
biases are negligible in magnitude. The bias in the estimate of p is statistically signif-
icant in all four panels, however, the magnitude of the bias never exceeds 5.1 percent.
The biases in the estimates of 3; and E are sometimes significant but never exceed
2 percent. The medians of the parameter estimates are also quite close to the means
suggesting that the sampling distributions are symmetric. Note that the empirical
standard errors of the estimates generally increase with the increased incidence of
missing choices. The increased incidence of missing choices does not change the point
estimates much since the higher proportion of missing choices does not substantially
alter reported choice frequencies. Since choices are missing at random, the effect of
a higher proportion of missing choices is only to reduce the effective sample size.
The t-statistics for significant biases generally decrease because the biases are mostly
unaffected and the empirical standard errors increase.

The biases in the parameter estimates in Table 2 are relatively small considering
that biases on the order of 5-8% are quite common even in panel data models esti-
mated by classical maximum likelihood (see Heckman (1981a)). Note that the model
in the first panel of Table 2, with no missing choices and no initial conditions problem,
is difficult to estimate by classical maximum likelihood. Choice probabilities are hard
to construct when only lagged reported choices are known and not lagged lagged true
choices.

The negligible small sample biases in Table 2 do not appear to be due to sim-
ulation error. Doubling the number of simulated choice histories M to 2000 does
not noticeably change the results. Lowering M to 500 also does not change the re-
sults but is 61% faster. The mean time to convergence over the 50 repetitions in the

second panel of Table 2 (20% missing choices and M = 1000) is 3.73 hours with a
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standard deviation of .92. The mean time to convergence with 20% missing choices
and M = 500 is 1.46 hours with a standard deviation of .34. All the experiments were
run on a desktop computer containing two 1.0 GHz processors and 0.5 GHz RAM.

Table 3 reports the results of three repeated sampling experiments for a modified
DGP where the exogenous covariate is missing for the same observations in which
the choice is missing. The three panels display the estimation results for 20%, 40%
and 60% missing choices and covariates in each period, respectively. With missing
choices and covariates, the parameters of the exogenous covariate process, ¢; and o,,
are estimated along with the other parameters of the model. As the results in Table
3 illustrate, adding missing covariates does not change the general conclusions from
Table 2. The bias in the estimate of p is statistically significant but is still negligible
in magnitude. The maximum bias over all parameter estimates is only 4.8%.

Table 4 reports the results of three repeated sampling experiments that focus
on the initial conditions problem rather than missing information during the sample
period. The number of periods in the first two experiments is increased to T' = 20.
The DGP is modified so that choices and covariates are completely missing in periods
t =1,...,10 but there are no missing choices or covariates from ¢t = 11, ..., 20.

The first panel of Table 4 reports the results of simulating from ¢ = 0, the theo-
retical start of the process, but with likelihood contributions from periods t = 11 to
t = 20 only. The biases in the estimates of 3,, p, o, and o, are statistically significant.
However, the magnitudes of the biases are negligible in magnitude. The maximum
bias over these four parameter estimates is only 3 percent. Simulating choices from
the theoretical start of the process works quite well.

The second panel of Table 4 reports the results of simply ignoring the initial
conditions problem by assuming the choice process starts at ¢ = 10 with d; ;9 =
0. Since there are no missing covariates in this experiment, the parameters of the
exogenous covariate process, ¢, and o,, are not estimated. In this case, the biases are

generally substantial in magnitude. Note that the standard errors of the estimates
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of p and « increase dramatically and that o, is badly biased upwards. The incorrect
treatment of the initial condition results in an overestimate of the importance of
individual effects (inflated variance).'*

The third panel of Table 4 reports the results of handling the initial conditions
problem by constructing a proxy for the initial value of the til dirp, term using the
observed data. The number of periods in this experiment 1Ts_ ?ncreased to T' = 30.
The DGP is modified so that choices and covariates are completely missing in periods
t = 1,...,10 but there are no missing choices or covariates from ¢t = 11,...,30. The
observed choices in period t = 11, ..., 20 are used to form a proxy for %0: dirp, and
the likelihood is constructed using only data from ¢ = 21, ..., 30. ;9 inTt_lr(iis method
is given by:

20
uio1 = By + B1Zi21 + p Z 670‘(21471)(12} + €i01- (20)
=11

The biases produced by this method are generally substantial in magnitude. Sim-
ilar to the results in the previous panel, in which the initial conditions problem was
ignored, the standard errors of the estimates of p and « increase dramatically and
the incorrect treatment of the initial condition leads to upward bias in the estimated
variance of the random effect. Also, the estimate of the base classification error rate
FE is severely biased downward.

Table 5 reports the results of four repeated sampling experiments in which there
is an initial conditions problem and the model has a more familiar first-order Markov
structure in past choices. The Markov model is nested in the general model by setting
a=0and 7 =1t—1so that 8’z = 3,24 + pdiy_1. The first panel of Table 5 reports
the results of handling the initial conditions problem by simulating from ¢t = 0 and
including likelihood contributions from periods ¢ = 10 to ¢ = 20. Simulating choices

from the theoretical start of the process works quite well in the Markov model. The

' The variance of the composite error term is restricted to be between zero and one. Since almost
all of the estimates of o, are close to the upper boundary of one, the standard deviation over the

fifty estimates is very small.
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resulting biases are small in magnitude, never exceeding 4.1%.

The second panel of Table 5 reports the results of ignoring the initial conditions
problem in the Markov model by setting d;g = 0. The estimate of p in this experi-
ment is substantially biased downward and o, is substantially biased upward. In the
Markov model, the incorrect treatment of the initial condition results in estimates
that imply an overly weak effect of previous choices on current utility, and an overly
strong individual effect.

The third panel of Table 5 reports the results of constructing the initial condition
by substituting the observed choice in period 10 into the utility function in period 11
(i.e., treating the choice at t = 10 as exogenous.) The biases produced in this method
are generally less severe than ignoring the initial conditions problem but the bias in
the estimate of p is substantial in magnitude (14%). As might be expected when
treating the initial condition as exogenous, the estimate of p is biased upwards.!?

The fourth panel of Table 5 applies the Heckman (1981a) method of approximating
the marginal probability of the initial state using a probit model that incorporates
only information on exogenous covariates. In order to handle classification error,
this method must be nested within our algorithm. The Heckman method specifies a
different latent index function, uff, in the first period of observed data. We specify

the latent index at ¢t = 10 as
uy =70+ 1%+ €if (21)

where the variance of ¢/ is normalized to one and the correlation coefficient between
ell and the individual effect p, is Pueii- As before, the likelihood function includes
contributions from ¢ = 10, ..., 20. The parameters v, 7; and p,,.n are estimated along
with the other parameters of the model.

The estimation results show that nesting the Heckman method in our procedure

2Tn the AR(1) error model to be discussed below, treating the initial condition as exogenous

produces a bias in the estimate of p which is considerably larger (23%).
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works relatively well in the random effects model. p is over-estimated by only 6.4% on
average. Although the biases are not substantial for Heckman’s approximate solution
approach (except for the constant), simulation from the theoretical start of the process

is clearly preferable as the parameter estimates are less biased and more precise.!?

5.1.2 The Smooth SML Algorithm (Importance Sampling)

The smooth version of the estimation algorithm, differs from the non-smooth version
in that the former requires simulated choice histories to be generated only once for
each individual in the sample, at the initial vector of trial parameters. The smooth
version enables the use of standard gradient methods of optimization as opposed to
generally more time consuming non-gradient methods of optimization such as the
downhill simplex method. Thus, the smooth version of the algorithm should be faster
to converge. We again set simulation size M = 1000 and use an initial parameter
vector where each element is bumped 20% away from true values.

Table 6 reports the results of three repeated sampling experiments that use the
smooth SML algorithm and that are analogous to the repeated sampling experiments
in Table 2 that use the non-smooth algorithm. The three experiments in Table 6
differ in the proportion of missing choices during the sample period. There are no
missing exogenous covariates and no initial conditions problem.

Similar to the results in Table 2, the results in Table 6 illustrate that the bias in
the estimate of p is statistically significant but the magnitude of the bias is negligible.
The bias in the estimate of p never exceeds 4.8 percent. Note that the estimates of
p and « are less median biased than mean biased under the smooth algorithm. The
maximum mean bias in the estimate of a is 9.8% while the maximum median bias
is 7.4%. In contrast to the estimates of p and «, the other parameters of the model

are more precisely estimated under the smooth algorithm. The upward bias in the

13The Heckman solution also produces more serious biases in the AR(1) error model. The Heckman

estimate of p in the AR(1) error model is biased upward by 20%.
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estimates of p and «, the greater extent of mean bias as compared to median bias, and
the relatively larger standard errors in estimates of these versus the other parameters
are a consequence of several high valued outliers in the 50 repetitions.

It is important to note that there is a large difference in mean time to convergence
between the smooth and non-smooth algorithms in these experiments. As reported
earlier, the mean time to convergence over the 50 repetitions in the second panel of
Table 2 (20% missing choices) is 3.73 hours with a standard deviation of .92. The
mean time to convergence over the 50 repetitions in the first panel of Table 6 (20%
missing choices) is 1.96 hours with a standard deviation of .89. The smooth version
is 47% faster.

Table 7 reports the results of three repeated sampling experiments that use the
smooth SML algorithm and that are analogous to the repeated sampling experiments
in Table 3. In these experiments, the exogenous covariate is missing for the same
observation in which a choice is missing. In the first panel, with 20% missing choices
and covariates in each period, the biases are not statistically significant and are neg-
ligible in magnitude. Increasing the proportion of missing choices and covariates to
40% increases the biases in the estimates of p and «, but they remain negligible in
magnitude. Further increasing the proportion of missing choices and covariates to
60% produces more serious biases in the estimates of p and «. The direction of the
biases in these latter parameter estimates and the large relative increase in their stan-
dard errors are suggestive of an identification problem when there is a large amount
of missing information in the data. In general, when covariates are missing there is
less information that can be used to “impute” missing choices.'*

In summary, for the random effects model, the performance of the smooth algo-

14 Although p and « capture different aspects of the importance of past choices, the under-estimate
of p generally decreases the impact of past choices while the under-estimate of o generally increases
the impact. Note that Little and Rubin (1987) also report identification problems in the EM algo-

rithm when there is a large extent of missing information in the data.
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rithm seems slightly inferior to that of the non-smooth algorithm. While the smooth
algorithm is faster, it has the disadvantage that as 0 departs from 6, the importance
sampling weights W, (0) for some sequences m can get small, implying that relatively

[

few sequences are doing all the “work” in simulating the choice probabilities. This is

a well known problem with importance sampling algorithms.!?

5.2 AR(1) Error Model

In the AR (1) error model, the error term &; follows the first-order serial correla-
tion process in (4) with 7;, assumed to be distributed normally. As in the random
effects model, the exogenous covariate x;; is also distributed normally and is gen-
erated by the AR (1) process in (15). The depreciation weights p, follow the same

a(t—r-1

exponential decay process, p, = pe~ ). The vector of estimable parameters is

0 ={Bo: B1s s, b1, 00, 9, B}

Table 8 reports summary statistics, by time period and over individuals, for a
representative data set produced by the AR (1) error model. The data set is generated
with the number of individuals N set to 500, the number of periods T set to 10,
no missing choices or missing covariates, and the vector of true parameters set at
6 = {-.10,1.00,1.00, .50, .25,1.00, .80,.75}. Note that an AR (1) error parameter
of .80 implies a considerable amount of serial correlation. As in the random effects
model, the variance of €;; is normalized to one and the frequency simulator that is
used to compute true classification error rates has M set to 1000. A comparison of
Tables 1 and 8 shows that the summary statistics produced by the AR (1) error model

are quite similar to the summary statistics produced by the random effects model.

15The conclusions from the experiments on the random effects model as well as the AR(1) error
model are not sensitive to the extent of classification error in the data generating process. Similar
results were obtained for F, the base classification error rate, set to .25 and .50. Lower values of F

correspond to a greater extent of classification error.
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5.2.1 Non-Smooth SML Algorithm

The order of repeated sampling experiments on the AR(1) error model is the same
as the order of experiments on the random effects model. Thus, Tables 9 — 12 are
analogous to Tables 2 — 5. The four panels of Table 9 report the results of increasing
the incidence of missing choices during the sample period with no initial conditions
problem and no missing covariates. As in the corresponding experiments on the
random effects model, the bias in p is significant in all four panels but negligible in
magnitude, never exceeding 5.5%. The standard errors of the parameter estimates are
generally smaller in the AR(1) error model. Negligible biases and relatively smaller
standard errors in comparison to the random effects model also result when adding
missing exogenous covariates (compare Tables 3 and 10).

In Table 11, different solutions to the initial conditions problem in the AR(1) error
model are examined. The first panel shows that simulating choices from the theoret-
ical start of the process works well. The second panel, in which the initial conditions
problem is ignored, reveals serious biases. As in the corresponding experiment on the
random effects model, in which the standard deviation of the individual effect is sub-
stantially biased upward, the AR(1) error parameter is substantially over-estimated.
The biases in the estimates of p and « are also very large. Since p is biased downward
and « is biased upward, the estimates understate the importance of lagged choices.

The third panel shows results when using observed data to form a proxy for the
initial value of the til di-p, term. The magnitudes of the biases when using this
approach are generaﬁgfo smaller in the AR(1) error model than in the random effects
model. However, as in the random effects model, the estimates of p and « are biased
upward.

Table 12 examines different solutions to the initial conditions problem in the
Markov model. As in the random effects model, simulating from the theoretical
start of the process works well. Ignoring the initial conditions problem produces

substantial biases that are similar in direction and magnitude to the random effects
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model. As mentioned earlier, treating the initial condition as exogenous (panel 3) and
using the Heckman approximation method (panel 4) result in more serious biases in
the AR(1) error model than in the random effects model. In these latter two methods,

the estimates of p are biased upward by 23% and 20%, respectively.

5.2.2 The Smooth SML Algorithm (Importance Sampling)

Table 13 reports the results of estimating the AR(1) error model with no missing
exogenous covariates and no initial conditions problem using the smooth SML algo-
rithm. Similar to the corresponding results in the random effects model, the bias
in the estimate of p is statistically significant but never exceeds 5.3 percent. The
estimates of o and p are less median biased than mean biased and have relatively
larger standard errors than the other parameter estimates, as was found in the ran-
dom effects model. The maximum mean bias in the estimate of « is 7.8% while the
maximum median bias is only 3.6%.

The AR(1) error model converges much faster when using the smooth algorithm.
The mean time to convergence over the 50 repetitions in the second panel of Table 9
(20% missing choices) is 3.07 hours with a standard deviation of .71. The mean time
to convergence over the 50 repetitions in the first panel of Table 13 (20% missing
choices) is 1.90 hours with a standard deviation of .78. The AR(1) error model
converges slightly faster than the random effects model.

Table 14 reports the results of adding missing exogenous covariates. As in the
random effects model, with 20% missing choices and covariates in each period, the
biases are negligible in magnitude. The biases in the estimates of p and « increase but
remain negligible in magnitude when the proportion of missing choices and covariates
is increased to 40%. As in the random effects model, increasing the proportion of
missing choices and covariates to 60% produces rather serious biases in the estimates
of p and . But, these biases are not quite as severe as in the corresponding experiment

on the random effects model.

28



6 Monte-Carlo Tests - Biased Classification Error

In this section, Monte-Carlo tests of the SML estimator with biased classification
error, as specified in (10), are performed. The algorithm used to generate artificial
data sets with biased classification error is described in Appendix B. In subsection
6.1, estimation results for the random effects model are discussed and in subsection

6.2 we discuss estimation results for the AR(1) error model.

6.1 Random Effects Model
6.1.1 Non-Smooth SML Algorithm

The three panels of Table 15 report the results of estimating the random effects model
with biased classification error using the non-smooth SML algorithm. The vector of
true structural parameters is the same as in the case of unbiased classification error.
In all three panels, 20% of the choices and exogenous covariates are missing in each
period and there is no initial conditions problem. The three experiments in Table 15
differ in the true parameters of the classification error process, 7v,, v; and v,.

The first panel specifies values of the parameters that produce a relatively low
level of classification error bias. The parameters in the second panel produce an
intermediate level of bias and the parameters in the third panel produce a relatively
high extent of bias. The classification error rates m1; = Pr(dj, =1|dy; =1) and
moie = Pr(d, =1|di =0) are (.97,.18), (.95,.27) and (.95,.50), in the first, second
and third panels, respectively.

The estimation results indicate relatively few statistically significant biases. Only
the estimates of p and o, are consistently significantly biased. However, the magni-
tudes of these biases are negligible. The biases rarely exceed 3 percent. Note that
increases in the extent of biased classification error leads to larger empirical standard
errors. The more classification error bias, the less efficient are the estimates.

In general, the algorithm seems to perform very well for the DGPs with biased
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classification error, both in terms of uncovering the structural parameters and in
terms of uncovering the parameters of the classification error process. The algorithm
with a high extent of classification error bias and 20% missing choices and covariates
is also faster than the corresponding specification with unbiased classification error.
The time to convergence per parameter is .54 hours in the former case and .57 hours

in the latter.'6

6.1.2 Smooth SML Algorithm

The three panels of Table 16 report the results of estimating three different random
effects models with biased classification error using the smooth SML algorithm. In
all three panels, 20% of the choices are missing in each period, there is no initial
conditions problem and there is a relatively low extent of true classification error
bias, as in panel 1 of Table 15. In the first panel, the results of estimating a first-
order Markov process with no missing exogenous covariates are reported. There are
no statistically significant biases in the estimates of the structural parameters and
the magnitudes of the biases are extremely small. There are significant biases in the
estimates of the classification error process parameters. However, the magnitudes of
the biases are negligible.

In the second panel, the results of estimating the Polya model with no missing
covariates are reported. The same pattern as in the first panel emerges. There are
no statistically significant biases in the estimates of the structural parameters, and
the biases in the estimates of the parameters of the classification error process are
negligible in magnitude. In the third panel, the results of estimating the Polya model
with missing covariates are reported. The general conclusions are unchanged. As in
the case of unbiased classification using the smooth SML algorithm, increasing the

extent of missing choices and covariates increases the magnitude of the biases.

16The overall time to convergence for the unbiased and biased classification error models cannot

be directly compared because they have a different number of parameters.
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6.2 AR(1) Error Model
6.2.1 Non-Smooth SML Algorithm

The three panels in Table 17 repeat the series of repeated sampling experiments
in Table 15 with an AR(1) specification for the error term rather than a random
effects specification. The results in all three panels tell a similar story. The biases
are negligible in magnitude, rarely exceeding 3 percent, and the empirical standard

errors grow with the extent of bias in the true classification error process.

6.2.2 Smooth SML Algorithm

The three panels in Table 18 repeat the series of repeated sampling experiments
in Table 16 with an AR(1) specification for the error term. The general conclusions
from the corresponding experiments on the random effects model carry over to AR(1)

errors. The biases are negligible in magnitude and mostly not statistically significant.

7 Conclusion

This paper assesses the performance of a new computationally practical SML esti-
mation algorithm for dynamic discrete choice panel data models with unobserved
endogenous state variables. The estimation technique offers a systematic unified ap-
proach to the initial conditions problem and the problem of missing data during the
sample period. The parallel problems of unobserved initial conditions and missing
data during the sample period are overcome by forming the likelihood with uncon-
ditional simulations of the model from the theoretical start of the process. In order
to make it feasible to simulate the likelihood using unconditional simulations, it is
necessary to assume a classification error process in discrete choices. The assumption
that reported choices are misclassified, however, is a reasonable one in almost all em-

pirical applications in economics. The estimation technique can accommodate a wide
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range of classification error processes, as long as it is possible to write a tractable
expression for the classification error rates.

The estimation method was tested via a series of repeated sampling experiments
on a general panel data probit model with a time-varying exogenous covariate, lagged
endogenous variables, serially correlated errors and both unbiased and biased classi-
fication error processes. The estimator was shown to have good small sample prop-
erties. Under the non-smooth version of the SML estimation algorithm, we found
that biases are negligible in magnitude even for exceedingly high amounts of missing
information in the data. Under the faster, smooth version of the SML estimation
algorithm, biases were also negligible in magnitude except for cases in which there is
a very high frequency of missing choices and missing exogenous covariates.

It was also shown that the estimation technique can be combined with Heckman’s
(1981a) approximate solution to the initial conditions problem. That is, one can
specify an approximation to the marginal distribution of the initial condition, but
use our approach to integrate over missing information during the sample period.
Such a hybrid approach may be appealing when there is no natural starting point to
the process. One caveat, however, is that the Heckman approximate solution method
worked much less well in our experiments with the AR(1) error model.

Interestingly, our SML algorithm seems to perform better (in terms of consistently
producing negligible bias) for models with biased classification error. In order to
impose the constraint that classification error be unbiased, one must specify that
classification error rates are functions of true choice probabilities. This means that
classification error rates must themselves be simulated. This induces some additional
noise and computation time into the likelihood simulation. In contrast, with biased
classification error, one can specify that classification error rates are closed form
functions of true choices (and perhaps also lagged observed choices and covariates).
Our algorithm already requires that true choice histories be simulated, so once this

has been done, no additional simulation is necessary to form the classification error
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rates. This saves computation time and avoids one component of simulation error.
Future research will examine the small sample properties of the estimation tech-
nique in more complex settings. For example, observed continuous outcomes, such as
wages, can be incorporated into estimation by specifying measurement error densities
that enter the likelihood. The algorithm can also be extended to a multinomial choice
context, and to contexts where construction of the latent indices in the choice model
requires solution of a dynamic program. It is in this latter context that particular
versions of the estimation technique have been previously applied. The estimation
method can also be further developed to handle cases in which the missing data are

not missing at random.
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Appendix A

Data Generating Process

Unbiased Classification Error

Given a vector of true parameters of the model and defining the initial conditions
of the model as d;y = x;0 = 0, each data set in the repeated sampling experiments
is constructed in two stages. The first stage consists of generating the exogenous
covariates and computing the “true” classification error rates. The second stage
consists of generating the sequence of true choices and misclassified choices, using the
true classification rates computed in the first stage. The second stage also determines
if a choice is missing from the data. The two stages of the data generating process

are as follows:

Stage 1

1. Draw N times from the z;; distribution in every period ¢ to construct the se-

quence {{xit}le}iil )

2. Draw M times from the Eit distribution~ for each individual i in every period

N M —

t to form the sequence {{{E:?}tTZI} 1} . Note that M will generally differ
=) m=1

from the number of simulated choice histories M generated for each individual

in estimation.

. T N ~m T N M ar

3. Given {{xit}tzl} , and the error sequence {{{ait }tzl}, 1} , construct M
1=

i= m=1

M

_ N
simulated choices for each individual ¢ in every period ¢ {{{d{?}T } }

t=1),_
i=1) m=1

according to (1) and the decision rule (2).

4. Form the frequency simulator

s 1 M -1 _
P<dit =1 HzT) = ﬁ Z Pr <5it < 50"‘51%1&‘1‘2‘12207)
m=1 =0
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where H]} = {{xiT}i_l , {@@}321}

5. Construct the “true” classification error rates 7z for each individual %, accord-

ing to (8), using P in place of Pr (dy = 1).
Stage 2

1. Draw N times from the ¢;; distribution for each individual ¢ in every period t

N

to form the sequence {{Eit}le}, v
1=

2. Given the {{xit}tT:l}
N N
| » construct N true choices {{dit}thl}

= =

N
_, sequence generated in the first stage, and the error

sequence { {en}l, }

and the decision rule (2).

| according to (1)

3. In order to construct the sequence of reported choices, draw T' times for each

individual ¢ from a uniform random number generator to obtain the sequence
r N
{{Uit}tzl}izl '

4. Compare the uniform random draws to the classification error rates to deter-
mine if choices are correctly reported. That is, construct N reported choices
{{d;-*t ﬁil }thl by implementing the following rule: if d;; = 1 and U;; < 71, then
d;, =1, else d}, = 0. Similarly, if d; = 0 and U;; < moo¢ then d}, = 0, else d};, = 1.

5. In order to determine if a reported choice is missing, draw T times for each

individual ¢ from a uniform random number generator to obtain the sequence
~ yT N
{{Ui }t=1}i_1 '

6. Compare the uniform draws to the probability 7°* that d} is missing in period
t. That is, implement the following rule: if Uy, < 7 then I (df, observed) =1,
else I (d}, observed) = 0.
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Note that step 6 does not specify 7 as a function of the exogenous covariates or
the observed choices. The data are thus missing completely at random. Generating
an initial conditions problem and/or missing exogenous covariates as well as data
that is missing at random or missing not at random simply involves modifying 7

accordingly.
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Appendix B

Data Generating Process

Biased Classification Error

The data generating process in the case of biased classification error follows the
same general rules as in the case of unbiased classification error. The only difference
is that the data generating process can be accomplished in one stage rather than two.

True choice probabilities do not need to be simulated. The procedure is as follows:

1. Draw N times from the z; distribution in every period t to construct the se-

N

quence {{xit}tT:l }i:1 )

2. Draw N times from the ¢; distribution for each individual 7 in every period ¢

N

to form the sequence {{5#}?:1}._1-

3. Given {{xit}thl}Nl and {{5#}3:1}]‘\117 construct N true choices {{dit}tT:l}N

i= i=1
according to (1) and the decision rule (2).

4. Draw T times for each individual ¢ from a uniform random number generator

N
to obtain the sequence {{Uit}tT:l} L

T
5. Construct N reported choices {{d;‘t éil}t*l by implementing the following rule:
it dy =1 and Uy < w14 then df, = 1, else df, = 0. Similarly, if d;; = 0 and
Uir < mooe then d, = 0, else df, = 1. The “true” classification error rates

are obtained directly from (11). It is assumed that dj, = d;, = 0.

6. Draw T times for each individual ¢ from a uniform random number generator

~ 7 N
to obtain the sequence {{UZ }t 1} .
=1J)i=1

7. Implement the following rule: if Uy < 7 then I (d}, observed) = 1, else
I (dZ, observed) = 0.
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Table 1

Summary Statistics
Representative Data Set
Random Effects Model
Unbiased Classification Error

Mean Mean Mean Mean Mean Mean

i di d;, Bz it T11¢ To0t N

1 4800 4800 -.0124 .0094 .8630 .8870 500
(.2701) (1.0147)

2 .5780 .5780 .4909 .0149 .8947 .8553 500
(.5601) (1.0046)

3 .6560 .6660 .8940 -.0116 .9142 .8359 500
(.8547) (.9919)

4 7140 .7260 1.1917 -.0005 .9264 .8236 500
(1.0645)  (1.0102)

5 7460 .7440 1.4164 -.0232 .9347 .8153 500
(1.1355) (.9606)

6 .7640 .7580 1.6214 -.0089 9414 .8086 500
(1.2164)  (1.0396)

7 .8140 .8000 1.7812 -.0325 9474 .8026 500
(1.1329) (1.020)

8 .8120 .8100 1.8797 .0138 .9509 7991 500
(1.2081)  (1.0405)

9 .8220 .8100 1.9806 .0092 .9545 7955 500
(1.1668)  (1.0107)

10 .8460 .8500 1.9863 .0211 .9565 7935 500

(1.0949)  (.9539)

Note: d;; is the true choice, dJ; is the reported choice, 711+ and mgg; are the probabilities of a correct
classification, and 8’z = uy — 3,. Variances are in parentheses. The frequency simulator that is

used to compute the true classification error rates has M set to 1000. The model is:

dio

Tit

= 0,p, =pe®
= Goig—1+ Vi, Ty ~ N (0,07)
= :U“’L'+77it7:U“/L'NN(Ova—Z)ynitNN(O,lfa'z)_

t—1

= Bo+ Bz + Z dirpr + €it

7=0
(t—7-1)

©w



Table 2

Repeated Sampling Experiments
Random Effects Model
Unbiased Classification Error
(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 8 Median 3 Std(@ RMSE  t-Stat

No Missing Choices (t = 1, ..., 10)

Bo -.1000 -.0975 -.0950 .0427 .0427 42
01 1.0000 1.0171 1.0196 .0552 .0578 2.20
p 1.0000 1.0463 1.0462 .0513 .0691 6.38
o .5000 4912 4926 .0499 .0506  -1.22
ou .8000 .8062 .8009 .0269 .0276 1.62
I .7500 .7408 7417 .0162 0186  -3.99

20% Missing Choices (t =1, ...,10)

By -.1000 -.0995 -.1017 .0428 .0428 .08
01 1.0000 1.0114 1.0199 0611 .0622 1.32
p 1.0000 1.0450 1.0356 .0528 .0694 6.04
o .5000 .4864 .4985 .0719 0731 -1.34
ou .8000 .8095 .8066 .0259 0275 2.59
I .7500 .7409 7399 0184 .0206  -3.50

40% Missing Choices (¢t =1, ..., 10)

By -.1000 -.1025 -.1001 .0530 .0530 -.33
01 1.0000 1.0183 1.0265 .0612 .0648 2.09
p 1.0000 1.0505 1.0425 .0524 0728 6.81
o .5000 4887 4882 .0633 0643 -1.26
ou .8000 .8047 .7989 .0339 .0343 .98
I .7500 7437 7412 .0231 0239 -1.94

60% Missing Choices (t =1, ...,10)

By -.1000 -.1070 -.1052 .0596 .0600 -.82
01 1.0000 1.0147 1.0161 .0860 .0872 1.21
p 1.0000 1.0485 1.0562 .0603 0773 5.68
o .5000 4970 .4982 0817 .0817 -.26
ou .8000 .8016 .8012 .0486 .0487 23
I .7500 7477 .7426 .0287 .0288 -.95

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(3) and RM SE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

The model is the same as in Table 1.



Table 3

Repeated Sampling Experiments
Random Effects Model
Unbiased Classification Error
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 3 Median 3 Std(@ RMSE t-Stat

20% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.1051 -.1023 .0436 .0439 -.83
B84 1.0000 1.0167 1.0191 0611 .0634 1.92
p 1.0000 1.0479 1.0446 .0444 .0653 7.63
o .5000 4977 .5031 .0656 0657 -.24
(o .2500 .2520 .2505 .0176 0177 .80
oy .5000 .5015 .5016 .0057 .0059 1.86
ou .8000 .8056 .8017 0287 .0292 1.38
I .7500 7428 .7430 0172 0187  -2.95

40% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.1087 -.1099 .0539 0546  -1.15
01 1.0000 1.0141 1.0233 0678 .0692 1.48
p 1.0000 1.0458 1.0374 .0636 0784 5.10
o .5000 4953 .4949 .0600 .0602 .56
09 .2500 2521 .2546 .0253 .0254 .59
oy .5000 5012 5012 .0069 .0070 1.21
oy .8000 .8046 .8063 .0347 .0350 94
E .7500 7474 .7416 .0245 .0246 -.74

60% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0997 -.1116 .0542 .0543 .05
01 1.0000 1.034 1.0258 .0894 .0924 1.85
P 1.0000 1.0401 1.0512 .0682 0791 4.15
o] .5000 4957 4973 0721 0722 -42
09 .2500 .2507 .2498 .0372 .0373 13
oy .5000 5011 5017 .0089 .0090 .88
ou .8000 .8096 .8044 .0421 .0432 1.61
I .7500 .7493 .7440 .0288 .0288 -.16

Note: The number of replications in each experiment is 50 and the number of individuals in the

—

sample is 500. Std(8) and RM SE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

The model is the same as in Table 1.



Table 4

Repeated Sampling Experiments

Random Effects Model

Unbiased Classification Error

(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean E Median B Std(@ RMSE  t-Stat
Simulate from start of process with d;o =0 (¢t = 11, ..., 20)
Bo -.1000 -.1001 -.1022 .0295 .0295 -.02
01 1.0000  1.0286 1.0337 .0454 .0537 4.46
P 1.0000  1.0298 1.0253 .0324 .0440 6.51
@ .5000 .5044 .5004 .0320 .0323 .98
o5 .2500 .2501 .2526 .0135 .0135 .05
oy .5000 5015 .5025 .0042 .4985 2.56
ou .8000 .8130 .8145 .0245 .0277 3.74
E .7500 7450 7410 .0193 0199  -1.82
Assume process starts with d; 10 =0 (¢ = 11, ..., 20)
Bo -.1000 .9367 .9513 .0543  1.0381 135.05
04 1.0000 .2966 .2844 .0938 7096  -53.01
P 1.0000 .9543 .9333 .3278 .3310 -.99
@ .5000 4187 .3995 .2957 3067 -1.94
ou .8000 .9905 9923 .0090 1907 149.11
E .7500 7144 7125 .0230 0424 -10.96
Use reported data from ¢ = 11, ..., 20 to proxy
for initial condition at t = 21 (¢t = 11, ..., 30)
Bo -.1000 -.5239 -.4859 .3039 5216 -9.86
01 1.0000 4742 4671 .1788 .5553  -20.80
P 1.0000  1.0522 1.1064 .3076 .3120 1.20
e .5000 .5839 .6139 .2299 .2448 2.58
Ou .8000 .9388 9758 .0811 1608  12.10
E .7500 5795 5714 .0615 1812 -19.61

o~

The model is the same as in Table 1.

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (

MoanAgfg
std(B)

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(3) and RM SE refer to the sample standard deviation and the root mean square

)



Table 5

Repeated Sampling Experiments
Random Effects Model
Unbiased Classification Error
First Order Markov Process
(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value MeanB Median 3 Std(@ RMSE  t-Stat

Simulate from start of process with d;o = 0 (¢ = 10, ..., 20)

Bo -.1000 -.1127 -.1086 .0391 0411 -2.30
01 1.0000  1.0379 1.0364 .0324 .0500 8.25
p 1.0000  1.0330 1.0319 .0386 .0508 6.04
o) .2500 .2496 2511 .0136 .0136 -.19
o .5000 .5014 5011 .0045 .4986 2.17
o .8000 .8137 .8133 .0294 .0324 3.29
E 7500 .7293 .7294 .0150 0256 -9.75
Assume process starts with d;g =0 (¢t = 10, ..., 20)

Bo -.1000 .1598 .1594 0775 2712 23.70
JoN 1.0000 9126 9171 .0693 1115 -8.92
p 1.0000 .6396 6171 .1025 3747 -24.87
o .8000 .8823 .8948 .0369 .0902  15.80
E .7500 7218 7226 .0222 0395  -8.99

Use reported data at ¢ = 10 to proxy

for initial condition at ¢t = 11 (¢t = 10, ...,20)
B -.1000 -.1882 -.1867 0771 1171 -8.09
01 1.0000  1.0328 1.0480 .0595 .0679 3.90
P 1.0000  1.1369 1.1465 1024 1710 9.45
o .8000 .7838 .7843 .0460 0488  -2.49
E 7500 .7240 7262 .0233 0349  -7.91
Use Heckman’s approximation method to proxy
for initial condition at ¢ = 11 (¢t = 10, ...,20)

B -.1000 -1721 -.1705 .0728 1025 -7.01
01 1.0000 .9868 9831 .0616 0630  -1.52
P 1.0000  1.0637 1.0673 1074 1249 4.20
o .8000 7735 1767 .0472 0542 -3.97
E .7500 .7438 7456 .0181 0191 -2.44
Yo .3819 .3843 0757
Y1 .6857 .6799 .1008
PucH .6565 .6589 .0627

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(3) and RM SE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

t—1
The Markov model replaces Y dirp, in Table 1 with pd; ;1.
0
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Table 6

Repeated Sampling Experiments
Random Effects Model
Unbiased Classification Error
Smooth Algorithm
(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 3 Median 3 Std(@ RMSE t-Stat

20% Missing Choices (t = 1, ..., 10)

Bo -.1000 -.1033 -.1034 .0158 .0161  -1.50
81 1.0000 1.0000 1.0001 .0093 .0093 .04
p 1.0000 1.0485 1.0301 .1049 1155 3.27
o .5000 .5493 5371 .0840 .0974 4.15
Ou .8000 .7993 .7990 .0033 .0034  -1.57
I .7500 7454 7453 .0165 0171 -1.97

40% Missing Choices (¢t = 1, ..., 10)

Bo -.1000 -.1014 -.1018 0178 .0179 -.57
81 1.0000 1.0003 1.0000 .0107 .0107 22
p 1.0000 1.0397 1.0224 1192 1257 2.35
o .5000 .5419 .5061 .0943 .1032 3.14
Ou .8000 .7998 .7995 .0038 .0038 -43
I .7500 .7492 .7476 .0215 0215 -.28

60% Missing Choices (t =1, ...,10)

Bo -.1000 -.1011 -.0986 .0204 .0204 -.39
81 1.0000 1.0002 1.0011 0121 .0121 13
p 1.0000 1.0417 1.0138 1277 1343 2.31
o .5000 .5487 5170 1211 1305 2.85
ou .8000 .8000 .8001 .0046 .0046 .04
K .7500 L7511 7452 0275 0275 .29

Note: The number of replications in each experiment is 50 and the number of individuals in the

—

sample is 500. Std(8) and RM SE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

The model is the same as in Table 1.



Table 7

Repeated Sampling Experiments
Random Effects Model
Unbiased Classification Error
Smooth Algorithm
(Missing X’s, No Initial Conditions Problem)

Parameter True Value MeanB Median 3 Std(@ RMSE  t-Stat

20% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0948 -.0960 0178 0185 2.06
Iof 1.0000 .9986 .9989 .0106 .0107 -.92
p 1.0000 .9923 .9906 .1098 1101 -.50
o .5000 5154 4954 .0953 .0966 1.15
o .2500 .2508 .2535 .0145 .0145 .40
oy .5000 5014 5015 .0055 .0057 1.77
ou .8000 .8010 .8011 .0038 .0039 1.93
E .7500 7462 .7469 .0168 0172 -1.61

40% Missing Choices and X’s (¢t = 1, ..., 10)

By -.1000 -.0867 -.0922 .0265 .0297 3.56
01 1.0000 9970 .9959 .0153 0155 -1.39
p 1.0000 .9455 9416 1201 1319 -3.21
o .5000 4752 4757 .0805 0842 -2.18
o .2500 .2510 .2498 .0185 0185 .38
oy .5000 .5013 5017 .0065 .0066 1.47
Ou .8000 .8031 .8019 .0059 .0067 3.69
E .7500 7514 .7504 .0215 .0216 45

60% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0539 -.0567 .0355 .0582 9.19
Iof 1.0000 9959 9999 .0262 0265  -1.10
P 1.0000 7979 7738 1362 2437 -10.50
o .5000 .3826 3714 .0986 15833 -8.42
o .2500 .2630 .2636 .0286 .0314 3.21
oy .5000 .5000 .5000 .0078 .0078 .03
Ou .8000 8111 .8106 .0095 .0146 8.31
E .7500 .7540 .7465 .0283 .0286 99

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(8) and RM SE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

The model is the same as in Table 1.



Table 8

Summary Statistics
Representative Data Set
AR(1) Error Model

Unbiased Classification Error

Mean Mean Mean Mean Mean Mean

i d;y d;, B'x it T11¢ To0t N

1 .4600 .4580 -.0125 -.0330 .8622 .8878 500
(.2701)  (1.0164)

2 .5740 .5700 4709 -.0220 .8935 .8565 500
(5272)  (1.0525)

3 .6340 .6280 8778 -.0146 9128 .8372 500
(.8917) (.9698)

4 .6940 .6800 1.1514 -.0055 .9265 .8235 500
(1.1668)  (.8593)

5 7380 .7420 1.3771 .0504 .9367 .8133 500
(1.2028)  (.8507)

6 7700 .7840 1.5895 .0311 .9454 .8046 500
(1.2453)  (.8962)

7 .8000 .7960 1.7679 .0392 9537 7963 500
(1.1408)  (.9582)

8 .8360 .8620 1.8576 .0142 .9588 7912 500
(1.1427)  (.9893)

9 .8480 .8260 1.9912 .0086 .9640 7860 500
(1.1048)  (1.0212)

10 .8600 .8720 2.0187 .0233 9677 7823 500

(.9955)  (.9182)

Note: dj; is the true choice, d}, is the reported choice, 711 and 7o are the probabilities of a correct
classification, and 8'x = uy — 3,. Variances are in parentheses. The frequency simulator that is
used to compute the true classification error rates has M set to 1000. The model is:

it =

t—1
Bo + Bixit + Z dirp, + it
=0

0, p. = pe—zx(t—‘r—l)
¢1€i,t*1 + Nits Mit ™~ N(07 1-—- d)%)
GoTi—1 + Vit, Ty ~ N (0,02) .



Table 9

Repeated Sampling Experiments
AR(1) Error Model
Unbiased Classification Error
(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 8 Median 3 Std(@ RMSE  t-Stat

No Missing Choices (t = 1, ..., 10)

Bo -.1000 -.1008 -.0967 .0418 .0418 -.14
01 1.0000 1.0105 1.0101 .0492 .0503 1.50
p 1.0000 1.0357 1.0317 .0479 .0598 5.27
o .5000 .5058 .5088 0371 0375 1.11
ol .8000 .8002 7943 .0266 .0266 .06
I .7500 7457 7445 0137 0143 -2.23

20% Missing Choices (t =1, ...,10)

By -.1000 -.1020 -.1028 .0414 .0414 -.35
01 1.0000 1.0045 1.0136 .0552 .0554 b7
p 1.0000 1.0377 1.0356 .0408 .0556 6.53
o .5000 .5066 5125 .0514 .0519 91
ol .8000 .8006 .8016 0257 .0257 A7
I .7500 .7469 7463 .0191 0193 -1.14

40% Missing Choices (¢t =1, ..., 10)

By -.1000 -.1034 -.1034 .0423 .0424 -.57
01 1.0000 .9906 1.0015 0711 0718 -.93
p 1.0000 1.0470 1.0361 .0540 .0716 6.15
o .5000 5072 5154 .0585 .0590 .87
ol .8000 7974 7984 .0331 .0333 -.56
I .7500 .7488 .7470 .0244 .0245 -.36

60% Missing Choices (t =1, ...,10)

By -.1000 -.1056 -.1065 .0605 .0607 -.66
01 1.0000 .9904 .9850 .0800 .0806 -.85
p 1.0000 1.0553 1.0506 0731 .0917 5.34
o .5000 .5054 .5064 .0560 .0562 .68
ol .8000 .7986 .8035 .0405 .0405 -.25
I .7500 7479 .7430 .0360 .0361 -.42

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(3) and RM SE refer to the sample standard deviation and the root mean square

MeanB—B)

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 ( 5t4(3)

The model is the same as in Table 8.



Table 10

Repeated Sampling Experiments
AR(1) Error Model
Unbiased Classification Error
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 3 Median 3 Std(@ RMSE t-Stat

20% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.1042 -.0981 .0391 .0394 -.76
B84 1.0000 1.0021 1.0060 .0519 .0519 .29
p 1.0000 1.0444 1.0393 .0424 .0614 7.40
o .5000 5057 .5058 .0423 .0428 1.12
(o .2500 .2521 .2486 .0181 .0183 .83
oy .5000 .5018 .5024 .0057 .0060 2.21
ol .8000 .7996 .8003 .0264 .0264 =12
I .7500 7473 .7486 0174 .0176  -1.08

40% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.1052 -.1014 .0400 .0403 -.92
01 1.0000 1.0036 1.0011 .0566 .0567 45
p 1.0000 1.0460 1.0400 .0446 .0640 7.30
o .5000 .5018 .5053 .0405 .0405 .32
09 .2500 .2522 2531 .0261 .0262 .61
oy .5000 .5019 .5026 .0067 .0070 1.98
ol .8000 .8002 .7989 .0301 .0301 .05
E .7500 .7504 7524 .0251 .0251 12

60% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.1041 -.0996 .0524 .0526 -.55
01 1.0000 1.0003 1.0124 .0748 .0748 .03
P 1.0000 1.0433 1.0372 .0610 0748 5.03
o] .5000 .5047 5077 .0621 .0623 .54
09 .2500 .2521 .2514 .0384 .0385 .39
oy .5000 .5007 .5018 .0086 .0086 .61
ol .8000 .7988 .8019 .0364 .0364 -.23
I .7500 7514 7514 .0346 .0348 7

Note: The number of replications in each experiment is 50 and the number of individuals in the

—

sample is 500. Std(8) and RM SE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)
The model is the same as in Table 8.
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Table 11

Repeated Sampling Experiments

AR(1) Error Model

Unbiased Classification Error
(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean E Median B Std(@ RMSE  t-Stat
Simulate from start of process with d;o =0 (¢t = 11, ..., 20)
Bo -.1000 -.0896 -.0925 .0265 .0285 2.77
01 1.0000 1.0224 1.0221 .0479 .0529 3.31
P 1.0000  1.0194 1.0148 .0298 .0356 4.60
@ .5000 5121 5128 .0238 .0267 3.59
o5 .2500 2511 .2531 .0138 .0139 .56
oy .5000 5011 .5013 .0047 .0049 1.58
o .8000 .8071 .8100 .0280 .0289 1.80
E .7500 7420 7455 .0261 .0273 -2.16
Assume process starts with d; 10 =0 (¢ = 11, ..., 20)
Bo -.1000 .9503 .9682 .0605  1.0520 122.84
04 1.0000 .1699 .3883 4544 9463 -12.92
P 1.0000 .5849 .5266 .2792 .5003  -10.51
@ .5000 7102 7385 .3180 .3812 4.67
o .8000 9221 .9259 .0316 1261 27.33
E .7500 7656 7485 1323 1332 .83
Use reported data from ¢ = 11, ..., 20 to proxy
for initial condition at t = 21 (¢t = 11, ..., 30)
Bo -.1000 -.0862 -.0812 .0617 .0632 1.58
01 1.0000 .9406 9781 .0932 1105 -4.50
P 1.0000  1.0445 1.0219 .0924 .1026 3.41
e .5000 .5908 5674 .0737 1170 8.72
on .8000 7562 7749 .0828 0937 -3.74
E .7500 7348 7378 .0288 0325 -3.73

Note: The number of replications in each experiment is 50 and the number of individuals in the

o~

sample is 500. Std(3) and RM SE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

The model is the same as in Table 8.
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Table 12

Repeated Sampling Experiments
AR(1) Error Model
Unbiased Classification Error
First Order Markov Process
(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value MeanB Median 3 Std(@ RMSE  t-Stat

Simulate from start of process with d;o = 0 (¢ = 10, ..., 20)

5o -.1000  -.1171 -.1125 .0429 0462  -2.81
01 1.0000  1.0185 1.0191 .0323 .0373 4.05
P 1.0000  1.0354 1.0316  .0465 .0585 5.38
o) .2500 2511 2509 .0139 .0140 .56
o .5000 .5013 .5016  .0050 .0052 1.89
ol .8000 .8081 .8077  .0266 .0278 2.15
E .7500 7401 7403 .0126 .0160  -5.58
Assume process starts with d;g =0 (¢t = 10, ..., 20)
Bo -.1000 .1895 1797 .0547 2946 37.43
JoN 1.0000 .8189 .8025 0727 1951 -17.63
P 1.0000 .5932 5807  .1054 4202 -27.29
o .8000 .8377 .8343  .0268 .0463 9.95
E .7500 7539 7544 .0164 .0168 1.68

Use reported data at ¢ = 10 to proxy
for initial condition at ¢t = 11 (¢t = 10, ...,20)

Bo -.1000 -.2416 -.2501 .0492 1500  -20.36
01 1.0000 1.0150 1.0239 .0430 .0456 2.46
p 1.0000 1.2330 1.2380 .0702 2434 23.47
o3} .8000 .7480 7456 .0374 .0640  -9.83
E .7500 7322 7316 .0151 0234  -8.35

Use Heckman’s approximation method to proxy
for initial condition at ¢ = 11 (¢t = 10, ...,20)

B -.1000 -.2181 -.2206 .0538 1298 -15.54
Iof 1.0000 1.0333 1.0315 0471 0577 5.00
p 1.0000 1.1997 1.2129 .0604 2086  23.37
ol .8000 127 7746 .0316 .0418  -6.13
E .7500 7385 7385 .0116 .0164  -7.00
Yo 4149 4118 .0564
Y1 .6628 .6614 0722
Pt 7238 .7266 .0386

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(3) and RM SE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

t—1
The Markov model replaces Y dirp, in Table 8 with pd; ;1.
0

T=
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Table 13

Repeated Sampling Experiments
AR(1) Error Model
Unbiased Classification Error
Smooth Algorithm
(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 3 Median 3 Std(@ RMSE t-Stat

20% Missing Choices (t = 1, ..., 10)

Bo -.1000 -.0988 -.0987 .0188 .0188 47
81 1.0000 .9994 9995 .0103 .0103 -.39
p 1.0000 1.0531 1.0358 1631 A715 2.30
o .5000 .5358 .5136 .0865 .0936 2.92
ol .8000 .8004 .8001 .0040 .0040 .72
I .7500 .7488 7477 0178 0178 -.46

40% Missing Choices (¢t = 1, ..., 10)

Bo -.1000 -.0965 -.0969 .0191 .0194 1.28
81 1.0000 9993 1.0005 .0104 .0105 -47
p 1.0000 1.0508 1.0286 .1398 .1488 2.57
o .5000 .5398 .5263 .0870 .0957 3.23
ol .8000 .8009 .8007 .0040 .0041 1.58
I .7500 7522 7504 .0223 .0234 .70

60% Missing Choices (t =1, ...,10)

Bo -.1000 -.0928 -.0912 .0228 .0239 2.24
81 1.0000 .9992 .9980 .0095 .0096 -.60
p 1.0000 1.0350 1.0013 1607 1644 1.54
o .5000 .5297 .5103 .0936 .0982 2.24
ol .8000 .8018 .8017 .0045 .0049 2.79
K .7500 7533 7487 .0297 .0300 7

Note: The number of replications in each experiment is 50 and the number of individuals in the

—

sample is 500. Std(8) and RM SE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

The model is the same as in Table 8.
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Table 14

Repeated Sampling Experiments
AR(1) Error Model
Unbiased Classification Error
Smooth Algorithm
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 3 Median 3 Std(@ RMSE t-Stat

20% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0916 -.0910 .0169 .0189 3.48
81 1.0000 1.0001 1.0004 0117 0117 .03
p 1.0000 .9852 .9869 1012 1023 -1.03
o .5000 .5048 .4932 .0614 .0616 .55
(o .2500 .2516 .2535 .0154 .0155 .74
oy .5000 5015 .5025 .0055 .0057 1.90
ol .8000 .8016 .8017 .0037 .0040 3.11
I .7500 .7495 .7485 0174 0174 -.19

40% Missing Choices and X’s (¢t = 1, ..., 10)

By -.1000 -.0861 -.0899 0227 .0266 4.33
01 1.0000 .9935 .9929 0171 0183  -2.68
p 1.0000 9454 9176 1317 1425 -2.93
o .5000 4937 4705 .0947 .0949 -47
o .2500 .2564 .2561 0211 .0221 2.13
oy .5000 .5006 .5009 .0066 .0067 .69
ol .8000 .8030 .8020 .0047 .0056 4.52
E .7500 .7530 7522 .0216 .0218 97

60% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0669 -.0652 .0337 .0472 6.93
B84 1.0000 9836 9857 0274 0324 -4.50
P 1.0000 .8601 8131 1910 2368  -5.18
o .5000 4537 4303 1159 1248 -2.82
(o .2500 .2702 .2665 .0254 .0324 5.61
oy .5000 .4995 .5000 .0083 .0083 -47
ol .8000 .8078 .8076 .0073 .0107 7.56
I .7500 7559 7548 .0286 .0292 1.46

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(8) and RM SE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

The model is the same as in Table 8.
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Table 15

Repeated Sampling Experiments
Random Effects Model
Biased Classification Error
(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean 8 Median 3 Std(8) RMSE t-Stat

Low Classification Error Bias (t =1, ...,10)

By -.1000 -.0922 -.944 .0387 .0394 1.42
01 1.0000 1.0198 1.0131 .0531 .0567 2.63
1) 1.0000 1.0144 1.0102 .0390 .0415 2.61
o .5000 .5031 .5104 .0489 .0490 45
o .2500 .2489 .2456 .0161 .0161 =47
oy .5000 .5018 5018 .0050 .0053 2.47
ou .8000 .8068 .8041 .0239 .0248 1.99
Yo -3.5000  -3.4867 -3.4762 .0580 .0595 1.62
Y1 5.0000 4.9845 5.0033 .0728 0744 -1.51
Yo 2.0000 2.0161 2.0236 .0446 .0475 2.56
Medium Classification Error Bias (¢t = 1, ..., 10)
Bo -.1000 -.0941 -.0988 .0425 .0429 .98
01 1.0000 1.0045 1.0119 .0608 .0609 .02
1) 1.0000 1.0222 1.0232 .0465 .0515 3.37
«Q .5000 .5160 .5253 .0658 0677 1.71
(o .2500 .2476 .2452 .0162 0163  -1.04
oy .5000 .5022 .0026 .0050 .0054 3.04
ou .8000 .8049 .8041 .0272 .0276 1.29
Yo -3.0000  -2.9902 -2.9826 .0561 .0570 1.24
Y1 4.0000 3.98 3.9951 0776 0787 -1.19
Yo 2.0000 2.0104 2.0134 .0782 .0789 .94
High Classification Error Bias (¢t =1, ...,10)
Bo -.1000 -.0988 -.0918 .0708 .0708 12
01 1.0000 1.0145 1.0068 .0693 .0708 1.48
p 1.0000 1.0218 1.0228 .0791 .0820 1.94
o .5000 .5088 .0328 .0993 .0997 .63
09 .2500 .2484 .2460 .0164 .0165 -.70
oy .5000 .5021 .5028 .0051 .2980 2.90
ou .8000 .8023 .7999 .0406 .3050 40
Yo -3.0000  -2.9918 -2.9983 .0638 .0643 91
Y1 3.0000 2.9842 2.9920 .0829 0844  -1.34
Yo 3.0000 3.0190 3.0371 1018 1036 -1.32

Note: The number of replications in each experiment is 50 and the number of individuals in the

o~

sample is 500. Std(8) and RM SE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)
The model is the same as in Table 1.
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Table 16

Repeated Sampling Experiments
Random Effects Model
Biased Classification Error
Low Classification Error Bias
Smooth Algorithm
(20% Missing Choices, No Initial Conditions Problem)

Parameter True Value Meanﬁ Medianﬁ Std(8) RMSE t-Stat

No Missing X’s (Markov model) (¢ =1, ...,10)

Bo -1.000 -.1006 -.0996 .0179 .0179 -.22
01 1.0000 .9985 9990 .0087 .0088  -1.19
p 1.0000 9972 9915 .0561 .0561 -.35
ou .8000 7997 .7993 .0037 .0038 =47
Yo -3.5000  -3.3219 -3.2916 .2840 .3352 4.43
Y1 5.0000 4.7449 4.7237 3041 3969 -5.93
Yo 2.0000 2.0537 2.0093 1870 .1945 2.03
No Missing X’s (t =1, ..., 10)
B -.1000 -.0968 -.0963 .0148 .0152 1.52
01 1.0000 .9982 1.0002 .0139 .0140 -.94
p 1.0000 .9902 .9904 .0863 .0868 -.80
o .5000 .5049 4922 .0662 .0664 .53
ou .8000 .8006 .8004 .0032 .0033 1.37
Yo -3.5000  -3.3357 -3.2874 .2398 .2907 4.84
Y1 5.0000 4.7959 4.8140 .2442 3183 -5.91
Yo 2.0000 2.0410 2.0349 1835 1881 1.58
Missing X’s (t =1, ..., 10)
Bo -.1000 -.0965 -.0957 .0159 .0163 1.54
01 1.0000 9973 9993 .0135 0138 -1.43
p 1.0000 .9926 9897 .0933 .0936 -.56
o .5000 .5082 4982 .0698 .0731 .83
o .2500 .2505 .2477 .0150 .0150 .23
oy .5000 .5019 .0023 .0049 .0053 2.65
ou .8000 .8007 .8007 .0034 .0035 1.41
Yo -3.5000  -3.3503 -3.3084 .2461 .2880 4.30
Y1 5.0000 4.8156 4.8272 .2598 3186 -5.02
Yo 2.0000 2.0356 2.0363 779 1815 1.41

Note: The number of replications in each experiment is 50 and the number of individuals in the

sample is 500. Std(3) and RM SE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as v/50 (%)
The model in panels 2 and 3 are the same as in Table 1. The Markov model in panel 1 replaces
ti: dirp, in Table 1 with pd;s_1.
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Table 17

Repeated Sampling Experiments
AR(1) Error Model
Biased Classification Error
(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean 8 Median 3 Std(8) RMSE t-Stat

Low Classification Error Bias (t =1, ...,10)

By -.1000 -.1033 -.1039 .0406 .0407 D7
01 1.0000 1.0176 1.0114 .0649 .0673 1.91
1) 1.0000 1.0322 1.0325 .0385 .0502 5.92
o .5000 .5017 .5050 .0461 .0461 .25
o .2500 .2496 .2502 .0165 .0165 -.16
oy .5000 .5018 .5023 .0049 .0052 2.62
ol .8000 7987 .7961 .0264 .0265 -.35
Yo -3.5000  -3.4987 -3.4809 .0664 .0665 .14
Y1 5.0000 4.9831 5.0056 .0697 0717 -1.72
Yo 2.0000 2.0265 2.0196 .0451 .0513 4.15
Medium Classification Error Bias (¢t = 1, ..., 10)
Bo -.1000 -.0893 -.0982 .0525 .0536 1.44
01 1.0000 1.0075 1.0040 .0745 .0749 .71
1) 1.0000 1.0283 1.0364 .0534 .0604 3.75
a .5000 .5162 .5101 .0540 .0563 2.12
(o .2500 .2478 .2469 .0163 .0164 -94
oy .5000 .5024 .5027 .0046 .0052 3.74
o3 .8000 .8016 .8023 .0312 .0312 .35
Yo -3.0000  -3.0058 -3.0009 .0716 .0718 -.57
Y1 4.0000 3.9802 3.9803 .0735 .0761  -1.90
Yo 2.0000 2.0151 2.0227 .0659 .0676 1.62
High Classification Error Bias (¢t =1, ...,10)
Bo -.1000 -.0926 -.0896 .0756 .0758 .69
01 1.0000 1.0135 1.0201 0778 .0790 1.23
p 1.0000 1.0276 1.0255 .0682 .0735 2.86
o .5000 5074 .0033 .0624 .0629 .83
09 .2500 .2476 .2446 .0152 .0153  -1.10
oy .5000 .5019 .5030 .0051 .0055 2.62
ol .8000 .7980 .8046 .0386 .0387 -.36
Yo -3.0000  -3.0026 -2.9870 .0823 .0824 -.23
Y1 3.0000 2.9899 2.9807 .0680 .0687  -1.04
Yo 3.0000 3.0186 3.0185 .0693 0717 1.90

Note: The number of replications in each experiment is 50 and the number of individuals in the

o~

sample is 500. Std(8) and RM SE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)
The model is the same as in Table 8.
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Table 18

Repeated Sampling Experiments
AR(1) Error Model
Biased Classification Error
Low Classification Error Bias
Smooth Algorithm
(20% Missing Choices, No Initial Conditions Problem)

Parameter True Value Meanﬁ Medianﬁ Std(8) RMSE t-Stat

No Missing X’s (Markov model) (¢ =1, ...,10)

Bo -1.000 -.0957 -.0974 .0135 .0142 2.26
01 1.0000 .9985 9991 .0088 .0090 -1.19
p 1.0000 .9849 9853 .0404 0432 -2.65
ol .8000 .8009 .8008 .0031 .0032 2.12
Yo -3.5000  -3.3853 -3.3548 3321 3514 2.44
Y1 5.0000 4.7582 4.7928 .3004 3856 -5.69
Yo 2.0000 2.1277 2.1208 .2004 .2376 4.51
No Missing X’s (t =1, ..., 10)
B -.1000 -.0957 -.0963 .0187 .0192 1.64
01 1.0000 1.0003 1.0022 .0108 .0108 A7
p 1.0000 1.0021 .9954 .0993 .0993 .15
o .5000 .5048 4999 .0450 .0453 .76
ol .8000 .8009 .8005 .0039 .0039 1.58
Yo -3.5000  -3.3875 -3.3778 2774 .2993 2.87
Y1 5.0000 4.8043 4.8417 2679 3318 -5.16
Yo 2.0000 2.1189 2.1113 1795 2153 4.68
Missing X’s (t =1, ..., 10)
Bo -.1000 -.0954 -.0958 .0185 .0191 1.75
01 1.0000 1.0003 1.0014 .0108 .0108 .20
p 1.0000 1.0017 .9906 .0983 .0983 12
o .5000 .5046 5012 .0443 .0445 .73
o .2500 .2497 .2497 .0133 .0133 -.14
oy .5000 .5019 .5024 .0047 .0050 2.83
0N .8000 .8009 .8004 .0038 .0039 1.63
Yo -3.5000  -3.3885 -3.3811 2752 .2970 2.86
Y1 5.0000 4.8058 4.8436 2676 3307 -5.13
Yo 2.0000 2.1185 2.1083 1785 .2143 4.69

Note: The number of replications in each experiment is 50 and the number of individuals in the

sample is 500. Std(3) and RM SE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as v/50 (%)
The model in panels 2 and 3 are the same as in Table 8. The Markov model in panel 1 replaces
ti: dirp, in Table 8 with pd; ;1.
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