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Abstract

Consider a multivariate nonparametric model where the unknown vector of functions depends
on two sets of explanatory variables. For a fixed level of one set of explanatory variables, we
provide consistent statistical tests, called local rank tests, to determine whether the multivariate
relationship can be explained by a smaller number of functions. We also provide estimators for the
smallest number of functions, called local rank, explaining the relationship. The local rank tests
and the estimators of the local rank are based on the asymptotics of the eigenvalues of some matrix.
This matrix is estimated by using kernel-based methods and the asymptotics of its eigenvalues is
established by using the so-called Fujikoshi expansions along with some techniques of the theory of
U-statistics. We present a simulation study which examines small sample properties of local rank
tests. We also apply the local rank tests and the local rank estimators of the paper to a demand
system given by a newly constructed data set. Our results can be viewed as localized counterparts
of tests for a number of factors in a nonparametric relationship introduced by Donald.

Keywords: nonparametric relationship, local rank, local rank estimation, kernel smoothing, consis-
tent tests, demand systems.

JEL classification: C12, C13, C14, D12.

1 Introduction

This study was motivated by the theory of ranks of demand systems. Recall that a demand system
in economics is a functional relation y = (y1, . . . , yJ)′ = f(x, z) = (f1(x, z), . . . , fJ(x, z))′ where yj ,
j = 1, . . . , J , is the proportion of the total expenditures for the jth good, called a budget share for the
jth good, x is total expenditures (income, in short) and z = (z1, . . . , zJ) are prices of J goods faced
by a consumer. Introduced by Gorman (1981) and later developed by Lewbel (1991), the rank of a
demand system can be either local or global. The local rank rk{f(·, z)} at a fixed value of z is defined
as the dimension of the function space spanned by the coordinate functions f1(x, z), . . . , fJ(x, z) of
f(x, z) when z is fixed. The global rank is the maximum of local ranks taken over all values of z.
In other words, the rank is the smallest number of functions needed to explain the demand system
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y = f(x, z), either locally at z or globally over all values of z. Ranks turn out to be of great interest
in Economic Theory where demand systems are derived through a utility maximization principle.
For example, Gorman (1981) showed that commonly used exactly aggregable demand systems, when
derived through a utility maximization principle, have always rank less than or equal to 3. Lewbel
(1991) showed that ranks have important implications on functional structure and aggregation of
demand systems. Some further theoretical studies related to ranks can be found in Lewbel (1989),
Russell and Farris (1993) and Lewbel and Perraudin (1995).

Parallel to understanding its implications for Economic Theory, the rank of a demand system
has been also studied from the point of view of a statistical estimation. A statistical model for a
demand system is assumed to have a stochastic form Yi = f(Xi, Zi) + εi, where Yi, Xi and Zi are the
shares of goods, the income and the prices faced by the ith consumer, and εi is the noise term. The
rank of a stochastic system is defined in the same way as in the deterministic situation by using the
coordinate functions of a vector f(x, z). The function f is assumed to have either a nonparametric or
a (semi)parametric form. The goal is to estimate the rank of a demand system from the observations
Yi, Xi and Zi. Under a semiparametric model, the rank of a demand system is typically expressed as
the rank of some matrix. The problem then becomes that of estimating the rank of a matrix. This can
be done by using one of the matrix rank estimation procedures found in the literature for example,
the minimum-χ2 test of Cragg and Donald (1997), or the LDU-based test of Gill and Lewbel (1992)
(with a correction of Cragg and Donald (1996)). Under a nonparametric model, the rank of a demand
system is estimated by following the central work of Donald (1997).

In most of the statistical work thus far, it has been assumed that prices are constant across
consumers, that is, a model contains no variable Zi. (In this case, there is no distinction between
local and global rank tests.) One did so for simplicity and also because most data sets on consumer
expenditure, in particular the well-known and commonly used Consumer Expenditures Survey (CEX,
in short) data set of the United States, does not contain information on prices. The assumption of
constant prices, however, is not realistic. For example, in the case of the United States, the CEX data
set covers households across all the United States and prices are clearly different in its various parts.
The focus of this work is on extensions of the rank estimation problems to situations where variations
in prices are taken into account. We will assume below a nonparametric form of a demand system
and provide statistical tests to determine its local ranks. Estimation of local ranks in a particular
(semi)-parametric model can be found in Donald, Fortuna and Pipiras (2004a). Estimation of global
ranks, being non-trivial, is left for the future work. Another significant part of this work consists of
producing a data set which simultaneously contains information on expenditures and prices faced by
a consumer in the United States. We do so by matching the CEX data on expenditures of a consumer
with the American Chamber of Commerce Researchers Association (ACCRA, in short) data of prices.
A data set similar to ours was recently constructed and used by Nicol (2001) in the context of a
statistical modelling of demand systems. Our work can also be viewed as a generalization of Donald
(1997). Since many ideas and proofs of this paper appear less sophisticated in Donald (1997), we
suggest that the reader refers to Donald (1997) for further insight into our work.

In view of our motivation described above, let (Xi, Zi) ∈ IRn × IRm be independent variables and
Yi ∈ IRG be a response variable explained by (Xi, Zi). Suppose that the relationship between the
variables Yi and (Xi, Zi) is given by the nonparametric model

Yi = F (Xi, Zi) + Ui, i = 1, . . . , N, (NP)
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where N is the number of observations, F (x, z) = (F1(x, z), . . . , FG(x, z))′ is an unknown G× 1 vector
of functions of x and z, and Ui is a G× 1 noise vector with the variance-covariance matrix

Σ = EUiU
′
i . (1.1)

One of the key assumptions of this work is the non-singularity (invertibility) of the matrix Σ. We will
also assume that (Xi, Zi) are independent for different i’s and that

E(Ui|Xi, Zi, Xj , Zj) = 0. (1.2)

These and additional assumptions on the variables Xi, Zi and Ui, and on the function F are stated in
Section 3. To state the problems considered in this paper, we need the following definition generalizing
the notion of a local rank rk{F (·, z)} introduced earlier.

Definition 1.1 Define the local rank of a G× 1 vector F (x, z) at z (and related to a d1× 1 subvector
x1 of x), denoted by

rk{F (·, z);x1}, (1.3)

as the smallest integer L such that, for a d1 × 1 subvector x1 of x, a G × d1 matrix c(z), a G × L
matrix A(z) and a L× 1 vector H(x, z), we have

F (x, z) = c(z)x1 + A(z)H(x, z). (1.4)

By rk{F (·, z); 0}, also denoted by rk{F (·, z)}, we shall mean the smallest L such that the decomposition
(1.4) holds without the term c(z)x1.

Observe that the definition of the local rank rk{F (·, z); 0} = rk{F (·, z)} is equivalent to that given
in the beginning of the section. Why then introduce the notion of a more general local rank? The
answer goes back to the assumption of the non-singularity of the covariance matrix Σ = EUiU

′
i which

we will use. If Yi = f(Xi, Zi) + εi is a nonparametric model of a demand system, then the sum of
the budget shares Yij , j = 1, . . . , J , in Yi = (Yi1, . . . , YiJ) is always equal to 1. This implies that the
covariance matrix of εi is singular and hence that the results of the paper do not, in principle, apply
because they rely on non-singular covariance matrices. The way out is to observe that, because of the
sum to 1 condition, rk{f(·, z)} = rk{F (·, z); 1}+ 1, where F (·, z) is a vector f(·, z) without any of its
coordinate functions and rk{F (·, z); 1} is defined by Definition 1.1 with d1 = 1 and x1 = 1. Then,
to estimate the local rank of a demand system, drop one share of goods from the analysis, allowing
to assume non-singular covariance matrix of disturbances, estimate rk{F (·, z); 1} and add 1 to the
result. From this perspective, why then consider the local ranks rk{F (·, z)} and rk{F (·, z);x1} with
x1 6= 1? We include these ranks in Definition 1.1 because of potential applications to problems other
than the rank of a demand system and also because our proofs in the case of rk{F (·, z); 1} and in the
general case of rk{F (·, z);x1} are not very different. In addition, Definition 1.1 follows the framework
of Donald (1997) where our general rank with no z is also implicitly defined.

In this work, we focus on and address the following problems related to local rank rk{F (·, z);x1}.

Basic problems. For a fixed z and L, provide statistical tests for the hypothesis testing problem of
H0 : rk{F (·, z);x1} ≤ L against the alternative H1 : rk{F (·, z);x1} > L. For a fixed z, provide an
estimator for the local rank rk{F (·, z);x1}.
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Since z is fixed, we will refer to the above statistical tests as local rank tests or rank tests local
at z. The basic idea behind these local rank tests, explained in greater detail in Section 2 below, is
to relate the local rank rk{F (·, z);x1} to the number of zero eigenvalues of some matrix. Then, by
testing for the number of zero eigenvalues of this matrix, one can make an inference about the local
rank rk{F (·, z);x1}. The difficult parts of this plan are to find the right matrix, to obtain its estimator
and, finally, to find and prove the asymptotics of the eigenvalues of the estimator which would allow
to distinguish between the two hypothesis. The goal of the paper is to show how these difficulties can
be overcome.

The rest of the paper is structured as follows. In Section 2, we explain the basic idea behind the
local rank tests and also introduce the related test statistic. In Section 3, we state our assumptions. In
Section 4, we establish the asymptotic properties of the test statistic and, based on these properties,
we formulate the local rank tests. Section 5 is on the estimation of the local rank itself. Simulation
results and applications to demand systems can be found in Sections 6 and 7, respectively. Finally, in
Section 8, we draw some conclusions. The proofs of all the results can be found in Appendices A and
B. Appendix C contains a result on asymptotics of a second order U -statistics.

2 Preliminaries

The basic idea behind local rank tests for (NP) model lies in the following lemma. See Appendix A
for its elementary proof.

Lemma 2.1 For some fixed z and L, we have rk{F (·, z);x1} ≤ L if and only if the matrix

Γw,z = Eγ(Xi, z)F̃ (Xi, z)F̃ (Xi, z)′, (2.1)

where γ(x, z) > 0 is any real-valued function and

F̃ (x, z) = F (x, z)− Eβ(Xi, z)F (Xi, z)X1
i
′(Eβ(Xi, z)X1

i X1
i
′)−1x1 (2.2)

with any real-valued function β(x, z) 6= 0, has G − L zero eigenvalues, or if and only if the matrix
Γw,zΣ−1 has G− L zero eigenvalues, where Σ is defined in (1.1).

Remark 2.1 Let rk{A} denote the rank of a matrix A. By Lemma 2.1, the condition rk{F (·, z);x1} ≤
L for some z and L, is also equivalent to the condition rk{Γw,z} ≤ L. In other words, we have

rk{F (·, z);x1} = rk{Γw,z}. (2.3)

In this work, by using Lemma 2.1, local rank tests will be based on the eigenvalues of an estimator of
the matrix Γw,zΣ−1. Connection to the rank of the matrix Γw,z allows, however, to view local rank
tests in a general framework of rank estimation of symmetric matrices. See Remarks 4.1 and 4.2 below
for a further discussion.

Local rank tests for (NP) model will then be based upon the smallest G−L eigenvalues of an estimator
of the matrix Γw,zΣ−1. As can be seen from the proof of Theorem 4.1 below, the matrix Σ−1 plays
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the role of a normalization in order to obtain standardized limit laws. The weights γ(x, z) and β(x, z)
are taken for convenience to allow for easier manipulations. We will take

γ(x, z) =
p(x, z)2

p̃(x)
, β(x, z) =

p(x, z)
p̃(x)

, (2.4)

where p(x, z) and p̃(x) are the densities of the vector (X,Z) and the variable X, respectively.
We will define the estimators for the matrices Γw,z and Σ by using kernel functions. Definition of

a kernel function, or simply a kernel, is given next. Set xb = xb1
1 . . . xbm

m and |b| = b1 + . . . + bm for
b = (b1, . . . , bm) ∈ (IN ∪ {0})m and x = (x1, . . . , xm) ∈ IRm.

Definition 2.1 A function K : IRm → IR is a kernel of order r ∈ IN on IRm if it has a compact support,
is bounded and satisfies the following conditions: (i)

∫
IRm K(x)dx = 1 and (ii)

∫
IRm xbK(x)dx = 0 for

any b ∈ (IN ∪ {0})m such that 1 ≤ |b| < r.

Kernel functions are used in statistics, as well as in other areas of applied or pure mathematics, because
of their localization property which involves a scaled kernel function

Kh(·) = h−mK(h−1·), (2.5)

where h > 0 is called a bandwidth. See Proposition B.1 in Appendix B for a precise statement of the
localization property. Two elementary consequences of this property can be expressed as

E
p(Xi, z)
p̃(Xi)

G(Xi, z) ≈ EG(Xi, Zi)Kh(z − Zi), (2.6)

Ep̃(Xi)G(Xi, Xi) ≈ EG(Xi, Xj)K̃h(Xi −Xj), (2.7)

where i 6= j (with Xi and Xj assumed independent), G is some function and ≈ denotes an approxi-
mation as h approaches zero (relation (2.6) follows from Lemma B.11, (c), below).

By using the relations (2.6) and (2.7), we can informally derive the estimator of Γw,z as follows.
Observe first that, by (2.4) and since E(Ui|Xi, Zi) = 0 by (1.2),

Eβ(Xi, z)F (Xi, z)X1
i
′ = E

p(Xi, z)
p̃(Xi)

F (Xi, z)X1
i
′ ≈ EF (Xi, Zi)X1

i
′
Kh(z − Zi)

= EYiX
1
i
′
Kh(z − Zi) ≈ 1

N

N∑

i=1

YiX
1
i
′
Kh(z − Zi), (2.8)

where K is a kernel on IRm, and similarly,

Eβ(Xi, z)X1
i X1

i
′ ≈ 1

N

N∑

i=1

X1
i X1

i
′
Kh(z − Zi). (2.9)

Therefore, multiplying (2.8) by the inverse of (2.9), we obtain that

Π1(z)′ := Eβ(Xi, z)F (Xi, z)X1
i
′(Eβ(Xi, z)X1

i X1
i
′)−1

≈ 1
N

N∑

i=1

YiX
1
i
′
Kh(z − Zi)

(
1
N

N∑

i=1

X1
i X1

i
′
Kh(z − Zi)

)−1

=: Π̂1(z)′. (2.10)
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Similarly, by using (2.6) again,

Γw,z = E
p(Xi, z)2

p̃(Xi)
(F (Xi, z)−Π1(z)′X1

i )(F (Xi, z)−Π1(z)′X1
i )′

≈ Ep(Xi, z)(F (Xi, Zi)−Π1(z)′X1
i )(F (Xi, z)−Π1(z)′X1

i )′Kh(z − Zi)

and, since E(Ui|Xi, Zi) = 0 by (1.2),

Γw,z ≈ Ep(Xi, z)(Yi −Π1(z)′X1
i )(F (Xi, z)−Π1(z)′X1

i )′Kh(z − Zi).

Taking j 6= i, writing p(Xi, z) above as p̃(Xi)(p(Xi, z)/p̃(Xi)) and using relations (2.6) and (2.7), we
may get a further approximation of Γw,z as

Γw,z ≈ E(Yi −Π1(z)′X1
i )(F (Xj , Zj)−Π1(z)′X1

j )′K̃h(Xi −Xj)Kh(z − Zi)Kh(z − Zj), (2.11)

where K̃ is a kernel on IRn. Then, by using E(Uj |Xi, Zi, Xj , Zj) = 0 in (1.2) and by using the
approximation (2.10), we obtain that

Γw,z ≈ E(Yi −Π1(z)′X1
i )(Yj −Π1(z)′X1

j )′K̃h(Xi −Xj)Kh(z − Zi)Kh(z − Zj)

≈ E(Yi − Π̂1(z)′X1
i )(Yj − Π̂1(z)′X1

j )′K̃h(Xi −Xj)Kh(z − Zi)Kh(z − Zj). (2.12)

Based on these approximations, we define the estimator of Γw,z as follows.

Definition 2.2 Define the estimator of the matrix Γw,z in (2.1) with (2.2) and (2.4) as

Γ̂w,z =
1

N(N − 1)

N∑

i6=j

(Yi − Π̂1(z)′X1
i )(Yj − Π̂1(z)′X1

j )′K̃h(Xi −Xj)Kh(z − Zi)Kh(z − Zj), (2.13)

where Π̂1(z)′ is given by (2.10).

Remark 2.2 In the case of a nonparametric model with no variable z, Donald (1997) defined the
estimator for rank tests as

Γ̂w =
1

N(N − 1)

N∑

i6=j

(Yi − Π̂′1X
1
i )(Yj − Π̂′1X

1
j )′K̃h(Xi −Xj),

where Π̂1 = (X1′X1)−1X1′Y . The difference between our estimator Γ̂w,z and Donald’s estimator Γ̂w

is that we localize at z. Indeed, observe that Γ̂w,z becomes Γ̂w when we remove localization terms
Kh(z − Zi).

Remark 2.3 According to Definition 2.2 and the argument preceding it, we expect the estimator

Γ̂w,z =
1

N(N − 1)

N∑

i6=j

YiY
′
j K̃h(Xi −Xj)Kh(z − Zi)Kh(z − Zj), (2.14)

to be used for tests of local rank rk{F (·, z)} = rk{F (·, z); 0}. The definition (2.14) is simpler than
(2.13) because it does not involve the subtracted terms Π̂1(z)′X1

i . This correction appears in (2.13)
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to account for the term c(z)x1 in a general definition of a local rank rk{F (·, z);x1}. Interestingly, by
expressing the matrix Π̂1(z)′ as

Π̂1(z)′ = Y DX1′(X1DX1′)−1, (2.15)

where Y is a G × N matrix with columns Yi, X1 is a d1 × N matrix with columns X1
i and D =

diag{Kh(z − Z1), . . . , Kh(z − ZN )} is the N ×N diagonal matrix, we see that it can be viewed as a
generalized least-squares estimator for the matrix c(z) in the model Yi = c(Zi)X1

i + εi. The weight
matrix D in (2.15) is used for localization at a fixed value of z.

The estimator for the variance-covariance matrix Σ which we will use is defined as follows.

Definition 2.3 Define the estimator of the matrix Σ in (1.1) as

Σ̂ =
1
N

N∑

i=1

(Yi − F̂ (Xi, Zi))(Yi − F̂ (Xi, Zi))′, (2.16)

where

F̂ (x, z) =
1
N

N∑

i=1

YiK̃h(x−Xi)Kh(z − Zi) p̂(x, z)−1 (2.17)

and

p̂(x, z) =
1
N

N∑

i=1

K̃h(x−Xi)Kh(z − Zi). (2.18)

In contrast to the estimator (2.13) which is new, those in (2.16), (2.17) and (2.18) are standard
and commonly used estimators for the variance-covariance matrix Σ, an unknown vector of functions
F (x, z) and a density function p(x, z), respectively.

3 Assumptions

In this section, we list and briefly discuss the assumptions which will be used for local rank tests.

Assumption 1: Suppose that (Xi, Zi) ∈ IRn × IRm, i = 1, . . . , N , are i.i.d. random vectors such that
the support of (Xi, Zi), denoted by Hx×Hz, is the Cartesian product of compact intervals and (Xi, Zi)
are continuously distributed with a density p(x, z) which is bounded below by a constant and has an
extension to IRn × IRm with s ≥ r continuous bounded derivatives.

Assumption 2: Suppose that Ui, i = 1, . . . , N , are i.i.d. random vectors, independent of the sequence
(Xi, Zi) and such that EUi = 0 and EUiU

′
i = Σ, where Σ is a positive definite matrix. Assume also

that EU4
j < ∞.

Assumption 3: The function F : Hx × Hz → IRG is such that each of its component functions has
an extension to IRn × IRm with s ≥ r continuous bounded derivatives.

Assumption 4: The matrix

Q1(z) = E
p(X1, z)
p̃(X1)

X1
1X1

1
′ =

∫

IRn
x1

1x
1
1
′
p(x1, z)dx1, (3.1)
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is positive definite (invertible), where p̃(x) is the density function of Xi.

Assumption 5: The functions K̃ and K are symmetric kernels on IRn and IRm, respectively, of order
r.

Assumptions 1–4 are in the spirit of those used by Donald (1997). Assumption 1 requires that
the density of (Xi, Zi) is smooth, has a compact support and, moreover, is bounded from below.
Assumption 2 imposes an important invertibility restriction on the variance-covariance matrix Σ.
In Assumption 3, we suppose that the true nonparametric regression function satisfies smoothness
conditions. Assumption 4 requires that the matrix Π1(z) in (2.10) is well-defined. Finally, Assumption
5 states what type of kernels we will use. Some of these assumptions can be slightly weakened, for
example, by replacing the independence condition on Ui in Assumption 2 by suitable behavior of Ui

given Xi and Zi. We shall, however, not strive here for utmost generality and leave the assumptions
which are easier to work with.

4 Local rank tests

The following result is key to local rank tests for (NP) model. Let λ̂1(z) ≤ . . . ≤ λ̂G(z) be the
eigenvalues of the matrix Γ̂w,zΣ̂−1. Since the matrix Γ̂w,z or Γ̂w,zΣ̂−1 is symmetric but not necessarily
positive definite, its eigenvalues are real but not necessarily positive. Set

V (z) =
(
2‖K̃‖2

2‖K‖4
2E

p(Xi, z)2

p̃(Xi)

)−1/2
(4.1)

and let

V̂ (z) =
(
2‖K̃‖2

2‖K‖4
2N

−1
N∑

i=1

p̂(Xi, Zi)Kh(z − Zi)
)−1/2

, (4.2)

where p̂(x, z) is given in (2.18). By Lemma B.10 below, under suitable conditions, V̂ (z) is a consistent
estimator of V (z). Let also Zk be a symmetric k × k matrix having independent zero mean normal
(Gaussian) entries with variance 1 in the diagonal and variance 1/2 off the diagonal, and λ1(Zk) ≤
. . . ≤ λk(Zk) be the eigenvalues of Zk in increasing order.

Theorem 4.1 Suppose that Assumptions 1–5 of Section 3 hold, and that

Nhm+3n/2 →∞ and Nhm+n/2+2r → 0. (4.3)

Set L(z) = rk{F (·, z);x1}. Then, for j = 1, . . . , G− L(z),

V̂ (z)Nhm+n/2λ̂j(z) d→ λj(ZG−L(z)), (4.4)

and, for j = G− L(z) + 1, . . . , G,

V̂ (z)Nhm+n/2λ̂j(z)
p→ +∞. (4.5)
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The proof of Theorem 4.1 is given in Appendix A below. We now state two immediate corollaries of
Theorem 4.1 which can be used in local rank tests for (NP) model, namely, to test H0 : rk{F (·, z);x1} ≤
L against H1 : rk{F (·, z);x1} > L. To state the first corollary, let

T̂1(L, z) =
V̂ (z)Nhm+n/2

√
G− L

G−L∑

j=1

λ̂j(z). (4.6)

Recall that a stochastic dominance ξ ≤d η means that P (ξ > x) ≤ P (η > x) for all x ∈ IR.

Theorem 4.2 Under the assumptions of Theorem 4.1, we have that, under the hypothesis H0 :
rk{F (·, z);x1} ≤ L,

T̂1(L, z) d→ 1√
G− L

G−L∑

j=1

λj(ZG−L(z))
d≤ N (0, 1), (4.7)

where the stochastic dominance ≤d in (4.7) is, in fact, =d for L = rk{F (·, z);x1}, and, under the
hypothesis H1 : rk{F (·, z);x1} > L, T̂1(L, z) →p +∞.

Theorem 4.2 is proved in Appendix A. Observe that the stochastic dominance result in (4.7) and
the divergence of the test statistic T̂1(L, z) under the alternative hypothesis can be used to test for the
local rank rk{F (·, z);x1}. At a significance level α, the hypothesis H0 : rk{F (·, z);x1} ≤ L is accepted
if T̂1(L, z) ≤ Nα(0, 1) where Nα(0, 1) is the smallest ξ such that P (N (0, 1) ≥ ξ) = α.

Another way to test for rk{F (·, z);x1} is to consider the test statistic defined as the sum of squared
eigenvalues, namely,

T̂2(L, z) = V̂ (z)2N2h2m+n
G−L∑

j=1

(λ̂j(z))2. (4.8)

The following result concerns the asymptotics of T̂2(L, z) which can also be used to test for
rk{F (·, z);x1}. Its proof can be found in Appendix A. The notation χ2(k) below stands for a χ2-
distribution with k degrees of freedom.

Theorem 4.3 Under the assumptions of Theorem 4.1, we have that, under the hypothesis H0 :
rk{F (·, z);x1} ≤ L,

T̂2(L, z) d→
G−L∑

j=1

(λj(ZG−L(z)))
2

d≤ χ2((G− L)(G− L + 1)/2), (4.9)

where the stochastic dominance ≤d in (4.9) is, in fact, =d for L = rk{F (·, z);x1}, and, under the
hypothesis H1 : rk{F (·, z);x1} > L, T̂2(L, z) →p +∞.

Theorem 4.2 is in the spirit of Theorem 2 in Donald (1997). To our best knowledge, a result of
Theorem 4.3 does not appear elsewhere in connection to rank testing in a nonparametric relationship
(however, see Remark 4.1 below).

Remark 4.1 Observe that the test statistic T̂2(L, z) can be written as

T̂2(L, z) = V̂ (z)2N2h2m+n
G−L∑

j=1

µ̂j(z),
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where µ̂j(z) = (λ̂j(z))2 are the eigenvalues of the matrix (Γ̂w,zΣ̂−1Γ̂w,z)Σ̂−1. Then, we can show, for
example, as in the proof of Theorem 3 in Cragg and Donald (1993) that

T̂2(L, z) = V̂ (z)2N2h2m+n min
rk{Γ}≤L

vec(Γ̂w,z − Γ)′(Σ̂⊗ Σ̂)−1vec(Γ̂w,z − Γ), (4.10)

where rk{Γ} denotes the rank of a matrix Γ, and vec and ⊗ stand for the commonly used vec operation
and the Kronecker product, respectively. Relation (4.10) shows that T̂2(L, z) is a minimum-χ2 type
statistic used to test for the rank rk{Γw,z} of the matrix Γw,z (see Cragg and Donald (1997)). This
observation is not surprising because, by Remark 2.1 above, the local rank rk{F (·, z);x1} is equal
to rk{Γw,z}. Observe also that the number of degrees of freedom (G − L)(G − L + 1)/2 in (4.9) is
smaller than (G−L)(G−L) used in a minimum−χ2 test for the rank of a G×G matrix such as Γw,z.
This difference in degrees of freedom results from the symmetry restriction on the matrix Γw,z. The
exact number (G − L)(G − L + 1)/2 for the degrees of freedom in connection to rank estimation for
symmetric matrices also appears in Robin and Smith (2000).

Remark 4.2 Remarks 2.1 and 4.1 indicate that local rank tests can be viewed as tests for the rank
of the matrix Γw,z. The statistics and econometrics literature offers a number of tests for estimation
of rank of an unknown matrix, for example, the LDU-based test in Gill and Lewbel (1992), Cragg and
Donald (1996), the minimum-χ2 test in Cragg and Donald (1997) or the asymptotic least-squares test
in Robin and Smith (2000). A key assumption in all these tests is the asymptotic normality of some
estimator of an unknown matrix. In our case, it is not very difficult to see that the asymptotic normality
of Γ̂w,z can be shown by suitably adapting the proof of Theorem 4.1. However, we cannot readily apply
most of the rank tests available in the literature because they are formulated for matrices with no
restrictions. The matrices Γw,z and Γ̂w,z, on the other hand, are necessarily symmetric. Symmetry
imposes restrictions on matrices involved and consequently alters rank test results (see Remark 4.1
above). These issues are addressed in greater depth by Donald, Fortuna and Pipiras (2004b). Observe
also that none of the currently available methods for estimation of rank in a matrix correspond to
the first test statistic T̂1(L, z) in (4.6). This statistic was not considered in a general context because
eigenvalues are defined for square (in particular, symmetric) matrices only.

Remark 4.3 Observe from Definition 2.2 and the discussion preceding it that the bandwidths h
corresponding to Xi and Zi play somewhat different roles. The bandwidth corresponding to Zi allows
to localize the mean Γw,z at a fixed point z. The bandwidth corresponding to Xi allows to express
the mean Γw,z in a convenient way as a U -statistic by localizing Xi at Xj (U -statistic is defined
in Appendix C below). Hence, particularly in practice, one may want to distinguish between the
bandwidths corresponding to Xi and Zi, namely, to consider the test statistic

Γ̂w,z =
1

N(N − 1)

N∑

i 6=j

(Yi − Π̂1(z)′X1
i )(Yj − Π̂1(z)′X1

j )′K̃h1(Xi −Xj)Kh2(z − Zi)Kh2(z − Zj), (4.11)

where h1, h2 > 0 (compare with Definition 2.2). One may show that, under suitable conditions, the
eigenvalues λ̂j(z) of the matrix Γ̂w,zΣ̂−1 (where Γ̂w,z is defined in (4.11)) satisfy the limit results
analogous to those in Theorems 4.1, 4.2 and 4.3. The only difference is that the factor Nhm+n/2 in
the normalization of (4.4), (4.5), (4.6) and (4.8) should now be replaced by

Nhm
2 h

n/2
1 . (4.12)
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In our simulation study and applications (see Sections 6 and 7 below), we will consider the test statistic
(4.11) and use the normalization (4.12).

5 Estimation of local rank

In this section, we use the local rank tests to estimate the true rank rk{F (·, z);x1} in (NP) model. Two
methods available in the statistical literature can be used in order to determine the true rank, namely,
the sequential testing procedure and the model selection criteria. We will focus here on the sequential
testing procedure only because the model selection criteria has been found to perform poorly for small
samples in a related problem (see Cragg and Donald (1997)).

Let T̂1(L, z) be the test statistic (4.6) used for local rank tests in (NP) model. The sequential
testing is based on the following procedure: first, for increasing integer values L = 1, . . . , G, and
by using the statistic T̂1(L, z), test the hypothesis H0 : rk{F (·, z);x1} ≤ L against the alternative
H1 : rk{F (·, z);x1} > L at a given level of significance α, that is, determine whether

T̂1(L, z) ≤ Nα(0, 1), (5.1)

where Nα(0, 1) is the minimum ξ such that P (N (0, 1) > ξ) = α; second, stop at the first value of L
which does not reject the hypothesis H0, that is, when (5.1) holds. Denote this value of L by L̂(z). In
view of Theorem 4.1, L̂(z) will not be a consistent estimator of rk{F (·, z);x1} because, as N increases
and h becomes small, L̂(z) will overestimate rk{F (·, z);x1} with probability α > 0 (which is a fixed
confidence level). The idea then, proposed by Pötscher (1983) in the context of determiniming the
order of an autoregressive moving average (ARMA) model and by Bauer, Pötscher and Hackl (1988)
in the context of model selection is to make α depend on N and h, that is, α = α(N,h), and let
α(N,h) → 0 as N → ∞ and h → 0. In this way, one can obtain a consistent estimator L̂(z) of
rk{F (·, z);x1}. Let

L̂1(z) = min{L : T̂1(L, z) < Nα(N,h)(0, 1)},
where Nα(N,h)(0, 1) is the smallest ξ such that P (N (0, 1) ≥ ξ) = α(N, h), be the minimum L which
does not reject the null hypothesis H0 : rk{F (·, z);x1} ≤ L at a significance level α(N, h). The
following result shows that L̂1(z) is a consistent estimator of rk{F (·, z);x1}, provided the specified
conditions on the significance levels α(N, h) hold. See Appendix A for a proof of this result.

Theorem 5.1 With the above notation and under the assumptions of Theorem 4.1, we have L̂1(z) →p

rk{F (·, z);x1} as long as α(N,h) → 0 and (− lnα(N, h))1/2/Nhm+n/2 → 0.

When using the test statistic T̂2(L, z), we need to consider

L̂2(z) = min{L : T̂2(L, z) < χ2
α(N,h)((G− L)(G− L + 1)/2)},

where χ2
α(N,h)((G−L)(G−L+1)/2) is the minimum ξ such that P (χ2((G−L)(G−L+1)/2) > ξ) =

α(N,h). The following result is analogous to Theorem 5.1 above. Its proof can be found in Appendix
A as well.

Theorem 5.2 With the above notation and under the assumptions of Theorem 4.1, we have L̂2(z) →p

rk{F (·, z);x1} as long as α(N,h) → 0 and − lnα(N, h)/N2h2m+n → 0.
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6 Simulation study

In this section, we use Monte Carlo simulations to examine size and power properties of local rank
tests and properties of local rank estimators obtained through sequential testing. We also compare
local rank estimation to other rank estimation procedures, e.g. the situation when the variable z (being
part of the nonparametric model) is ignored. For simplicity, we focus henceforth only on local ranks
rk{F (·, z)} = rk{F (·, z); 0} (see Definition 1.1).

The experimental setup is as follows. We consider Yi = δF (Xi, Zi) + Ui, i = 1, . . . , N , where

F (x, z) =




5+z
1+x4 sin(2.5 + x4)

1
3(2− z)(z + 1

2) arctan(5(x− 1− γz))

z(z + 1
2)(1 + z2)




. (6.1)

We suppose that (Xi, Zi), i = 1, . . . , N , are independent identically distributed IR2 random vectors:
Xi and Zi are distributed uniformly on [0, 2] and [−1, 1], respectively, and Xi and Zi are independent.
We consider two sample sizes N = 750 and N = 1500, and two signal-to-noise ratios δ = 1 and
δ = 1/2. The noise variables Ui are normally distributed as N (0, I3), where I3 is a 3 × 3 identity
matrix. We suppose γ = 1 though we shall also discuss briefly the case γ = 2. We shall estimate local
ranks rk{F (·, z)} at z = 1/2, z = 0 and z = −1/2 corresponding to rk{F (·, 1/2)} = 3, rk{F (·, 0)} = 2
and rk{F (·,−1/2)} = 1, respectively. Size and power computations will be based on local rank tests
for these values of z. The number of replications in Monte Carlo simulations is 1000 throughout. For
kernel smoothing, we use a popular Epanechnikov kernel.

Remark 6.1 Our experimental setup is motivated by the following considerations. On one hand, we
seek functions which lead to a desired local rank. For example, the functions in (6.1) are chosen in
such a way that rk{F (·, 1/2)} = 3. On the other hand, we do not want to consider noise perturbations
which are too small leading to nearly deterministic shapes of observed functions, or which are too
large in which case some observed functions become nearly indistinguishable. Such balance can be
achieved by examining the plots of the observed functions of interest. In our choice of the function F
and the noise variables, we have followed precisely this graphical approach.

Remark 6.2 In our simulation study, we consider two sample sizes N = 750 and N = 1500. Observe
that these values of N are, in particular, larger than those considered in a simulation study of Donald
(1997), namely, N = 200 and N = 1000. Our choice of larger N , however, should not be surprising.
Setting Zi ≡ z, the test statistic T̂1(L, z) reduces (up to a multiplicative constant ‖K‖−2

2 ) to the
corresponding test statistic T̂p(L) considered by Donald (1997). Hence, local rank tests for rk{F (·, z)}
can be essentially thought as rank tests of Donald (1997) applied to the observed data at the cross
section around a fixed value of z. For example, if N = 750, Zi is uniformly distributed on [−1, 1] and
h = 0.3 is a bandwidth, then there are on average 2N(2/h)−1 = 225 available observations at the cross
section of size 2h at a fixed value of z. Local rank tests with N = 750 and h = 0.3 then essentially
correspond to Donald’s rank tests with N = 225.

We shall focus in this section on local rank tests based on the test statistic T̂1(L, z). Results for
the test statistic T̂2(L, z) are discussed at the end of this section and related tables can found at the
end of this work.
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Table 1 presents size computations of local rank tests in our simulation study, based on the test
statistic T̂1(L, z). For example, for local rank 2 (at z = 1/2), the sizes are computed as actual
rejection frequencies by using the respective asymptotic 5 percent critical values for the local rank test
of H0 : rk{F (·, 1/2)} ≤ 2 in 1000 Monte Carlo replications with the specified values of N , bandwidths
hx and hz (see Remark 4.3 above) and signal-to-noise ratio δ. We consider all possible combinations of
bandwidths hx = 0.1, 0.3, 0.5 and hz = 0.1, 0.3, 0.5. These combinations cover a wide range of values of
hx and hz. Moreover, the interval [0.1, 0.5] corresponding to their smallest and largest values, contains
most of hx and hz which where obtained through the generalized and the usual cross validations in
a number of Monte Carlo simulations. For example, when N = 750 and δ = 1, the generalized cross
validation chose the values (hx, hz) = (0.2, 0.4) and (0.2, 0.3) in 30 Monte Carlo simulations.

Size of tests using T̂1

Local rank 1 (z = −1/2) 2 (z = 0)
N δ hx \ hz 0.1 0.3 0.5 0.1 0.3 0.5

0.1 6.1 5.1 9.6 0.1 1.0 2.3
1 0.3 3.3 4.7 14.4 0.1 0.5 1.5

0.5 2.4 4.1 16.8 0.1 0.5 1.9
750 min-χ2 7.0 8.3 24.6 2.0 2.7 6.4

0.1 4.8 3.6 6.4 0.1 0.4 0.2
1/2 0.3 2.5 3.7 5.4 0.0 0.1 0.3

0.5 1.9 2.3 5.7 0.0 0.2 1.2
min-χ2 6.9 6.4 9.1 0.5 0.8 1.7

0.1 3.1 3.5 18.3 0.8 1.0 3.3
1 0.3 2.0 2.6 30.6 0.3 0.6 5.0

0.5 1.6 2.7 36.8 0.3 0.5 6.5
1500 min-χ2 5.3 5.1 45.0 3.2 5.2 14.5

0.1 2.9 2.6 6.9 0.2 0.3 0.5
1/2 0.3 2.1 1.9 7.3 0.2 0.1 0.5

0.5 1.6 1.5 9.4 0.1 0.0 0.7
min-χ2 5.2 3.8 13.3 1.3 1.7 4.9

Table 1: Size of local rank tests using T̂1

To compare a nonparametric approach to a parametric one, we also present in Table 1 sizes
computed from a fixed parametric model. More precisely, we fit to the data a semiparametric factor
model Yi = A(Zi)H(Xi) + εi, where

H(x) =




1
x

(x− 1)2


 (6.2)

and A(z) is unknown. The local rank rk{F (·, z)} of the system F (x, z) = A(z)H(x) can be shown to
be the rank of the matrix A(z). We therefore estimate the matrix A(z) by using kernel smoothing
methods and then test for its rank by using a minimum-χ2 test for the rank of a matrix (Cragg
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and Donald (1997)). For more information on rank estimation in a semiparametric factor model, see
Donald, Fortuna and Pipiras (2004a).

A few observations can be drawn from Table 1. The results indicate that local rank tests are likely
to be undersized. Undersizing is most pronounced for local rank 2 (z = 0). Moreover, observe that
the size appears to increase as hz becomes larger, and it appears to get optimal as hx decreases. The
latter observation suggests that we should use hx corresponding to undersmoothing. Interestingly,
the same finding was also reported by Donald (1997) in the context of nonparametric rank testing
without z. What hz should be used is less clear, especially for rank 1. For rank 2, on the other hand,
a larger hz appears to be optimal. Then, we should perhaps use hz corresponding to oversmoothing.
Comparing nonparametric and parametric approaches, we see that local rank tests have significantly
greater sizes for the parametric model. This discrepancy possibly results from the fact that the first
function in (6.1), for example, is not easily approximated by a second order polynomial.

Power of tests using T̂1

True local rank L0 = 2 L0 = 3
Local rank test L = 1 L = 1 L = 2

N δ hx \ hz 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
0.1 17.8 42.4 52.4 89.7 100.0 100.0 51.7 93.3 98.7

1 0.3 23.4 55.9 58.3 97.1 100.0 100.0 67.7 98.5 99.9
0.5 25.6 61.7 49.6 99.1 100.0 100.0 74.4 98.8 99.7

750 min-χ2 23.4 59.9 56.5 97.7 100.0 100.0 80.1 99.4 99.7
0.1 6.9 13.7 12.1 27.8 85.1 99.0 18.2 42.4 63.8

1/2 0.3 9.4 14.5 17.7 46.9 96.2 100.0 26.5 57.5 72.6
0.5 7.0 16.8 15.7 49.2 97.6 100.0 28.9 63.9 75.7

min-χ2 7.6 17.9 20.7 47.3 97.1 100.0 29.8 69.6 82.6
0.1 33.7 81.8 83.2 99.9 100.0 100.0 78.8 99.7 100.0

1 0.3 50.9 94.0 88.6 100.0 100.0 100.0 92.3 100.0 100.0
0.5 52.8 94.4 81.8 100.0 100.0 100.0 93.6 100.0 100.0

1500 min-χ2 49.6 94.3 83.7 100.0 100.0 100.0 96.0 100.0 100.0
0.1 11.1 22.4 24.0 64.5 99.8 100.0 31.2 73.1 87.9

1/2 0.3 16.3 35.5 33.8 84.7 100.0 100.0 41.4 85.9 95.1
0.5 16.1 38.1 30.6 88.4 100.0 100.0 45.6 88.3 95.4

min-χ2 16.0 39.2 35.0 86.0 100.0 100.0 51.2 90.3 96.4

Table 2: Power of local rank tests using T̂1

Power computations for local rank tests are presented in Table 2. These are size adjusted powers
computed as follows. Consider for example the column L = 2 (L0 = 3) in Table 2. The powers in this
column are computed as actual rejection frequencies for the local rank test of H0 : rk{F (·, 1/2)} ≤ 2
(here, the true local rank rk{F (·, 1/2)} = 3 and hence the alternative H1 : rk{F (·, 1/2)} > 2 is true).
Size adjustment enters into computations through the critical values used for local rank tests, e.g. for
H0 : rk{F (·, 1/2)} ≤ 2. These critical values are taken as to make the sizes of the corresponding local
rank tests of Table 1 equal to 5 percent. For this column in Table 2, for example, the chosen critical
values make the actual size of local rank tests H0 : rk{F (·, 0)} ≤ 2 equal to 5 percent.
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The results of Table 2 suggest that power of local rank tests increases as hx and hz become larger.
Observe, however, that the loss in power is not very significant as long as hz is not too small. When
the variable z is ignored, Donald (1997) has also observed that there is little loss in power when
hx decreases. Together with the results of Table 1, this observation suggests that using smaller hx

corresponding to undersmoothing and larger hz corresponding to oversmoothing, may be more optimal
for local rank tests. Observe also that powers obtained by fitting the semiparametric factor model
are comparable to those of a nonparametric approach. This finding surprised us since we expected a
great loss in power for the parametric approach, similarly to the results found in Donald (1997). In
our understanding, this difference from Donald (1997) is just the result of our model choice (6.1).

Empirical distribution of L̂ using T̂1 (N = 750, α = 0.05)
True rank L0 = 1 L0 = 2 L0 = 3

δ hx hz L̂ = 1 L̂ = 2 L̂ = 3 L̂ = 1 L̂ = 2 L̂ = 3 L̂ = 1 L̂ = 2 L̂ = 3
0.1 0.939 0.060 0.001 0.809 0.190 0.001 0.095 0.647 0.258

0.1 0.3 0.949 0.051 0.000 0.571 0.419 0.010 0.000 0.143 0.857
0.5 0.904 0.093 0.003 0.351 0.626 0.023 0.000 0.030 0.970
0.1 0.967 0.033 0.000 0.810 0.189 0.001 0.041 0.622 0.337

0.3 0.3 0.953 0.046 0.001 0.457 0.538 0.005 0.000 0.079 0.921
1 0.5 0.856 0.140 0.004 0.222 0.763 0.015 0.000 0.006 0.994

0.1 0.976 0.024 0.000 0.806 0.193 0.001 0.020 0.659 0.321
0.5 0.3 0.959 0.041 0.000 0.432 0.563 0.005 0.000 0.070 0.930

0.5 0.832 0.164 0.004 0.208 0.773 0.019 0.000 0.004 0.996
0.1 0.930 0.065 0.005 0.694 0.286 0.020 0.016 0.280 0.704

min-χ2 0.3 0.917 0.078 0.005 0.331 0.642 0.027 0.000 0.015 0.985
0.5 0.754 0.227 0.019 0.162 0.774 0.064 0.000 0.002 0.998
0.1 0.898 0.047 0.001 0.911 0.068 0.001 0.718 0.263 0.015

0.1 0.3 0.964 0.036 0.000 0.898 0.098 0.004 0.174 0.698 0.128
0.5 0.936 0.064 0.000 0.859 0.139 0.002 0.007 0.683 0.310
0.1 0.953 0.025 0.000 0.922 0.061 0.000 0.633 0.347 0.018

0.3 0.3 0.963 0.037 0.000 0.889 0.110 0.001 0.054 0.726 0.220
1/2 0.5 0.946 0.053 0.001 0.810 0.187 0.003 0.000 0.580 0.420

0.1 0.957 0.019 0.000 0.942 0.053 0.000 0.613 0.377 0.010
0.5 0.3 0.977 0.023 0.000 0.872 0.126 0.002 0.037 0.751 0.212

0.5 0.943 0.055 0.002 0.830 0.168 0.002 0.000 0.593 0.407
0.1 0.911 0.064 0.005 0.889 0.103 0.005 0.464 0.409 0.127

min-χ2 0.3 0.936 0.060 0.004 0.796 0.196 0.008 0.023 0.471 0.506
0.5 0.909 0.085 0.006 0.717 0.266 0.017 0.000 0.289 0.711

Table 3: Empirical distribution of L̂ using T̂1

For the sake of completeness, we provide in Tables 3 and 4 empirical distributions of local rank
estimators obtained through sequential testing at a constant significance level α = 0.05, for local
ranks rk{F (·,−1/2)} (true rank L0 = 1), rk{F (·, 0)} (true rank L0 = 2) and rk{F (·, 1/2)} (true
rank L0 = 3). It is quite remarkable that local rank tests perform so well when N = 1500, δ = 1,
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and do fairly well even when N = 1500, δ = 1/2 and N = 750, δ = 1. The results appear poor for
N = 750, δ = 1/2 but we should not expect them better because there is just too much noise in the
data. Let us also note that values for the empirical distribution of L̂ in Tables 3 and 4 sometimes do
not sum to 1, e.g. when N = 750, L0 = 1, δ = 1/2, hx = 0.1 and hz = 1 in Table 3. In these cases, the
estimator of L̂ takes also the value 0 (all three functions are indistinguishable from 0).

Empirical distribution of L̂ using T̂1 (N = 1500, α = 0.05)
True rank L0 = 1 L0 = 2 L0 = 3

δ hx hz L̂ = 1 L̂ = 2 L̂ = 3 L̂ = 1 L̂ = 2 L̂ = 3 L̂ = 1 L̂ = 2 L̂ = 3
0.1 0.969 0.031 0.000 0.704 0.288 0.008 0.001 0.366 0.633

0.1 0.3 0.965 0.034 0.001 0.233 0.757 0.010 0.000 0.005 0.995
0.5 0.817 0.177 0.006 0.046 0.921 0.033 0.000 0.000 1.000
0.1 0.980 0.020 0.000 0.604 0.393 0.003 0.000 0.232 0.768

0.3 0.3 0.974 0.026 0.000 0.086 0.908 0.006 0.000 0.001 0.999
1 0.5 0.694 0.304 0.002 0.012 0.938 0.050 0.000 0.000 1.000

0.1 0.984 0.016 0.000 0.605 0.392 0.003 0.000 0.247 0.753
0.5 0.3 0.973 0.027 0.000 0.076 0.919 0.005 0.000 0.000 1.000

0.5 0.632 0.366 0.002 0.013 0.922 0.065 0.000 0.000 1.000
0.1 0.947 0.049 0.004 0.500 0.468 0.032 0.000 0.061 0.939

min-χ2 0.3 0.949 0.048 0.003 0.057 0.891 0.052 0.000 0.000 1.000
0.5 0.550 0.421 0.029 0.009 0.846 0.145 0.000 0.000 1.000
0.1 0.970 0.029 0.000 0.919 0.079 0.002 0.413 0.528 0.059

0.1 0.3 0.974 0.026 0.000 0.819 0.178 0.003 0.005 0.544 0.451
0.5 0.931 0.069 0.000 0.716 0.279 0.005 0.000 0.290 0.710
0.1 0.979 0.021 0.000 0.910 0.088 0.002 0.238 0.666 0.096

0.3 0.3 0.981 0.019 0.000 0.770 0.229 0.001 0.002 0.385 0.613
1/2 0.5 0.927 0.073 0.000 0.582 0.413 0.005 0.000 0.143 0.857

0.1 0.984 0.016 0.000 0.913 0.086 0.001 0.194 0.714 0.092
0.5 0.3 0.985 0.014 0.001 0.779 0.221 0.000 0.000 0.403 0.597

0.5 0.906 0.094 0.000 0.578 0.415 0.007 0.000 0.149 0.851
0.1 0.948 0.048 0.004 0.836 0.151 0.013 0.138 0.513 0.349

min-χ2 0.3 0.962 0.036 0.002 0.644 0.339 0.017 0.000 0.146 0.854
0.5 0.867 0.125 0.008 0.472 0.479 0.049 0.000 0.036 0.964

Table 4: Empirical distribution of L̂ using T̂1

Finally, in Table 5, we present empirical distribution of estimated rank L̂ when the variable z
is ignored altogether. In other words, though still generating the variables (Yi, Xi, Zi) as above, we
now focus only on the data (Yi, Xi), i = 1, . . . , N , and estimate its rank either by Donald’s (1997)
nonparametric approach or by a minimum-χ2 test as the rank of a regression coefficient matrix after
fitting a quadratic parametric model. It is interesting to compare the results of Table 5 to those of
Tables 3 and 4. First, by letting hz become very large, for any z, the test statistic T̂1(L, z) approaches
the rank test statistic T̂p(L) considered by Donald (1997). Thus, if we included much larger values of
hz in Tables 3 and 4, we should get the results similar to those in Table 5. Table 5 thus sheds light
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on the estimation of local ranks when hz becomes large.
Second, observe also that the results of Table 5 for L̂ = 3 are a little smaller but still comparable

to those in Tables 3 and 4 for the true rank L0 = 3, L̂ = 3 (with hz = 0.3 or 0.5). Since L0 =
3 = rk{F (·, 1/2)} = maxz rk{F (·, 1/2)} for the function system (6.1), one might think that the rank
estimated ignoring the value z, provides a good estimator for the global rank maxz rk{F (·, z)}. Our
guess is that, depending on the model, this will not always be true. A simple example is the function
system (6.1) with γ = 2. Since the argument 5(x − 1 − 2z) of the second function in (6.1) can take
now a much larger range of values, the second coordinate of the data Yi will appear much more like
a white noise as a function of Xi (Zi being ignored). Hence, the rank estimated ignoring z will not
concentrate at 3 as in Table 5 but at the value 2. We have studied the data of this example through
simulations. The obtained results confirmed our guess.

Empirical distribution of L̂ ignoring z

N δ hx L̂ = 1 L̂ = 2 L̂ = 3
0.1 0.000 0.189 0.811

1 0.3 0.000 0.103 0.897
0.5 0.000 0.106 0.894

750 min-χ2 0.000 0.047 0.953
0.1 0.007 0.825 0.168

2 0.3 0.001 0.777 0.222
0.5 0.001 0.788 0.211

min-χ2 0.000 0.662 0.337
0.1 0.000 0.012 0.988

1 0.3 0.000 0.002 0.998
0.5 0.000 0.002 0.998

1500 min-χ2 0.000 0.000 1.000
0.1 0.000 0.604 0.396

2 0.3 0.000 0.454 0.546
0.5 0.000 0.461 0.539

min-χ2 0.000 0.319 0.681

Table 5: Empirical distribution of L̂ ignoring z (α = 0.05)

We have focused thus far on the simulation results obtained through the test statistic T̂1(L, z). In
Tables 10–13 below, we also report analogous results based on the alternative test statistic T̂2(L, z).
The results of Tables 3–4 for T̂1(L, z) and Tables 10–11 for T̂2(L, z) suggest that the statistic T̂2(L, z)
slightly overestimates (respectively, underestimates) the local rank as compared to the statistic T̂1(L, z)
when the true rank is not full, that is, the true rank L0 = 1 or L0 = 2 in the tables (respectively, the
true rank is full, that is the true rank L0 = 3 in the tables). This observation translates into the fact
that the tests based on T̂2(L, z) have better size properties than those based on T̂1(L, z) (compare
Tables 1 and 12). Focus now on the power properties of the statistics T̂1(L, z) and T̂2(L, z) in Tables
2 and 13, respectively. It can be seen from these tables that the power of tests based on T̂2(L, z) is
typically worse than that based on T̂1(L, z). Observe, however, that the powers are still comparable
in most cases of practical interest. (There is a significant difference in power for L0 = 3, L = 2 and
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δ = 1 when hx or hz is the smallest, and for L0 = 3, L = 2 when the signal-to-noise ratio δ = 1/2 is
the smallest.) Since the tests based on T̂2(L, z) have better size properties, this suggests that using
the statistic T̂2(L, z) may often be more reliable than using the statistic T̂1(L, z).

7 Application to demand system

In this section, we estimate local rank in a demand system. The data set which we use contains
information on expenditures and prices faced by a number of consumers across the United States.
Expenditures are taken from the US CEX micro data of the first quarter of 2000.1 More specifically,
we first extract from the CEX data set only those households which contain married couples, whose
tenure status is renter household or homeowner with or without mortgage, and whose age of the head
is between 25 and 60. We also drop from our analysis those households whose total income was lower
than $3,000 or higher than $75,000. (In addition, we consider households in the so-called metropolitan
statistical areas because we can associate prices only to these households; see below.) Such selection,
similarly used by Nicol (2001), Donald (1997), Lewbel (1991) and others, allows to have a somewhat
homogeneous sample of households. With each of the selected households, we also retain the variables
of interest to our study, namely, some location variables (for matching with prices) and expenditure
variables, grouped into 6 categories of goods: food, health care, transportation, household, apparel
(clothing) and miscellaneous goods. The total number of households which met the above criteria was
897 (out of 7860 in the CEX data set).

The CEX data set contains no information on prices. We draw prices from the ACCRA data set2

which provides a composite price index and prices indices for 6 different categories of goods (grocery
items, housing, utilities, transportation, health care and miscellaneous goods and services) for various
cities across the US. We are able to associate these prices to household selected from the CEX data set
by using some location variables in the CEX data set as matching variables, and also some confidential
information kindly provided by the Bureau of Labor Statistics. Details on matching procedure can be
obtained from the author upon request.

Though ACCRA prices are available for a few categories of goods and could be assigned for each
type of expenditures considered in the demand system, we shall use only the composite price index in
our study. We do so to avoid the so-called empty-space phenomenon (see, for example, pp. 59-60 in
Pagan and Ullah (1999) or pp. 92-93 in Silverman (1986)): for a high-dimensional vectors Zi, a great
number of observations is needed in order to localize at a fixed value z. We expect that the simplest
one-dimensional case becomes a guide to more general situations of multidimensional vectors Zi which
require larger data sets. These can be constructed, for example, as in Nicol (2001), by considering
the CEX and the ACCRA data for multiple quarters and using a CPI data to account for inflation in
multiple quarters.

After performing the above steps, we produce the data set of the expenditure shares Yi, the
logarithm of the income (total expenditures) Xi and the prices Zi, i = 1, . . . , N , for N = 901 households
across the US. The shares Yi are for 6 categories of goods and the prices Zi are one-dimensional. For

1U.S. Dep. of Labor, Bureau of Labor Statistics. Consumer Expenditure Survey, 1999: Interview Survey and Detailed
Expenditure Files [Computer file]. Washington, DC: U.S. Dept. of Labor, Bureau of Labor Statistics [producer], 2001.
Ann Arbor, MI: Inter-University Consortium for Political and Social Research [distributor], 2001.

2ACCRA Cost of Living Index, Data for First Quarter 2000, ACCRA, July 2000, 33(1). For more information, see
http://www.accra.org
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notational simplicity, we have divided the price indices Zi by 100 so that z = 100 in the ACCRA data
now corresponds to z = 1. The logarithm of the income Xi, rather than the income itself, was used
by Donald (1997), Hausman et al (1995) and others.

Our goal is to illustrate how local rank of the constructed data set can be estimated at several
values of the prices z. We cannot apply rank estimation tests of Section 4 directly to the data Yi,
Xi and Zi because the different shares in Yi add up to 1 and hence the perturbation terms Ui in the
nonparametric model (NP) have a singular variance-covariance matrix Σ (the key Assumption 2 of
Section 3 is therefore violated). As indicated in the introduction, a way out of this difficulty is to
eliminate one share from the analysis. When one share is removed, the rest of the shares do not add
up to 1 and it becomes reasonable to suppose that the variance-covariance matrix of the perturbation
terms is non-singular. Moreover, by Lemma B.12 in Appendix B below, the local rank of a full demand
system can be estimated from the local rank (related to x1 = 1) of a reduced system by adding 1.
To estimate local rank of the full demand system, we hence eliminate one share from the analysis,
estimate the local rank (related to x1 = 1) in the reduced system by using tests of Section 4 and then
add 1 to ranks in the obtained results. It can be shown theoretically and is easily observed in practice
that the local rank tests of Section 4 are invariant to which share is eliminated from the analysis.

Tables 6–8 present local rank estimation results for the full data set at three different values of
prices z = 1, z = 0.95 and z = 1.2. These values were motivated by the fact that prices associated
with household in the constructed data set ranged from 0.911 to 1.251. The smoothing parameters hx

and hz take one of the values hx = 0.1, 0.3 and 0.55, and hz = 0.05, 0.09 and 0.15. These choices were
suggested in part by the fact that hx = 0.55 and hz = 0.09 were the optimal smoothing parameters
obtained by the generalized cross validation procedure for the data set consisting of all expenditure
shares. The entries in Tables 6–7 are the p-values for the local rank tests of Section 4 applied to the
constructed data set. We do not report the p-values for L = 4 and L = 5 because there are no results
where the rank L ≤ 3 is rejected (except in one extreme case mentioned above).

Rank estimation at z = 1
Local rank test L = 1 L = 2 L = 3

Statistic hx \ hz 0.05 0.09 0.15 0.05 0.09 0.15 0.05 0.09 0.15
0.1 0.000 0.000 0.000 0.327 0.001 0.000 0.948 0.957 0.885

T̂1 0.3 0.000 0.000 0.000 0.067 0.000 0.000 0.955 0.953 0.896
0.55 0.000 0.000 0.000 0.051 0.000 0.000 0.980 0.986 0.971
0.1 0.000 0.000 0.000 0.055 0.000 0.000 0.653 0.493 0.763

T̂2 0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.689 0.770 0.791
0.55 0.000 0.000 0.000 0.000 0.000 0.000 0.614 0.407 0.333

Table 6: P -values in rank estimation at z = 1

The results of Tables 6 and 7 suggest that the local ranks of the full demand system is 3 at z = 1
and z = 0.95. This conclusion is reached for almost all considered values hx, hz, both tests statistics
and any reasonably small significance level α.3 Note also from Tables 6 and 7 that the p-values

3When the smallest considered bandwidth hx = 0.1 and hz = 0.05 are used at z = 0.95, observe from Table 7 that the
hypothesis H0 : L ≤ 3 is rejected at the significance level α = 0.05. In fact, in this only case, the local rank equal to 6
was estimated by using the test statistic T̂2(L, z). We do not fully understand this behavior of the test statistic T̂2(L, z).
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are smaller for the statistic T̂2(L, z) which is consistent with our findings in the simulation study of
Section 6. The results of Table 8, on the other hand, suggest that the local rank is 2 at z = 1.2. This
conclusion is more evident when the test statistic T̂1(L, z) is used and, in particular, it is true at the
significance level α = 0.05 for both statistics when the smoothing parameter values hx = 0.55 and
hz = 0.09 obtained by the generalized cross validation are used. We have also tried estimating local
rank at other higher values of z and for data sets of households with other characteristics. We have
found in all of these experiments that estimates of local ranks tend to become smaller as z increases.

Rank estimation at z = 0.95
Local rank test L = 1 L = 2 L = 3

Statistic hx \ hz 0.05 0.09 0.15 0.05 0.09 0.15 0.05 0.09 0.15
0.1 0.000 0.000 0.000 0.493 0.103 0.000 0.993 0.983 0.942

T̂1 0.3 0.000 0.000 0.000 0.136 0.005 0.000 0.997 0.988 0.949
0.55 0.000 0.000 0.000 0.051 0.000 0.000 0.994 0.985 0.969
0.1 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.376 0.672

T̂2 0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.137 0.479 0.808
0.55 0.000 0.000 0.000 0.000 0.000 0.000 0.312 0.547 0.583

Table 7: P -values in rank estimation at z = 0.95

In Table 9, we also present rank estimation results when the price variable Zi is ignored. The
statistic T̂1 in Table 9 refers to that used by Donald (1997) and the statistic T̂2 is defined analogously
to the statistic T̂2(L, z) used in this work. The results of Table 9 strongly suggest that the rank of a
demand system ignoring the price variable Zi is 3. This conclusion should not be surprising as rank 3
has been found in many other demand systems by various authors, e.g. Donald (1997), Lewbel (1991)
and others.

Rank estimation at z = 1.2
Local rank test L = 1 L = 2 L = 3

Statistic hx \ hz 0.05 0.09 0.15 0.05 0.09 0.15 0.05 0.1 0.19
0.1 0.242 0.040 0.026 0.556 0.276 0.250 0.752 0.586 0.599

T̂1 0.3 0.213 0.068 0.030 0.505 0.591 0.355 0.767 0.913 0.918
0.55 0.152 0.018 0.006 0.402 0.459 0.282 0.711 0.891 0.928
0.1 0.991 0.566 0.588 0.998 0.808 0.938 0.989 0.725 0.985

T̂2 0.3 0.982 0.137 0.059 0.990 0.764 0.257 0.984 0.809 0.871
0.55 0.975 0.022 0.001 0.982 0.637 0.098 0.990 0.872 0.870

Table 8: P -values in rank estimation at z = 1.2

Several observations can be made from the above rank estimation results. Interestingly, different
local ranks may be estimated at distinct values of prices z. This motivates the study of global rank
tests and finding causes for the observed phenomenon which we intend to pursue in a future work.
The role and significance of the rank estimation ignoring prices should also be further clarified.
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Rank estimation ignoring z

Statistic hx L = 1 L = 2 L = 3
0.1 0.000 0.000 0.552

T̂1 0.3 0.000 0.000 0.918
0.55 0.000 0.000 0.967
0.1 0.000 0.000 0.936

T̂2 0.3 0.000 0.000 0.601
0.55 0.000 0.000 0.598

Table 9: P -values in rank estimation ignoring z

8 Conclusions

In the present work, we provided consistent tests to determine the local rank in nonparametric models.
Two tests statistics were considered: one defined as a sum of the eigenvalues and the other defined
as a sum of the squared eigenvalues of a kernel-based estimator of a matrix. The asymptotics of
these statistics were based on the asymptotics of the eigenvalues which was established by using
Fujikoshi expansion and U -statistics techniques. Simulation study showed that the local rank tests
perform fairly well and that the two tests statistics have slightly different small sample properties.
Our results extend those of Donald (1997) to the case where coefficient matrices vary with covariates
so that distinction between local and global ranks becomes necessary. We applied our rank estimation
methods to determine local ranks in a demand system constructed by combining the CEX and the
ACCRA data sets. Results obtained in applications to demand systems show importance of studying
global ranks. Estimation of global ranks will be addressed in a future work.

A Proofs of principal results
Proof of Lemma 2.1: Let us show first that rk{F (·, z); x1} ≤ L implies that the matrix Γw,z has G − L zero eigenvalues.

By Definition 1.1, we have rk{F (·, z); x1} ≤ L if and only if (1.4) is verified. Relation (1.4) implies that β(x, z)F (x, z)x1′ =

β(x, z)c(z)x1x1′ + A(z)β(x, z)H(x, z)x1′ and, in particular, by substituting Xi for x and taking the expectation, that

Eβ(Xi, z)F (Xi, z)X1
i
′
= Eβ(Xi, z)c(z)X1

i X1
i
′
+ A(z)Eβ(Xi, z)H(Xi, z)X1

i
′
.

Multiplying this relation by (Eβ(Xi, z)X1
i X1

i
′
)−1x1 and subtracting it from (1.4), we obtain that

F̃ (x, z) = A(z)
(
H(x, z)− Eβ(Xi, z)H(Xi, z)X1

i
′
(Eβ(Xi, z)X1

i X1
i
′
)−1x1

)
.

It follows that there are G−L linearly independent vectors cj(z), j = 1, . . . , G−L, such that cj(z)′F̃ (x, z) = 0. This is equivalent

to cj(z)′γ(x, z)1/2F̃ (x, z) = 0 and

E
(
cj(z)′γ(Xi, z)1/2F̃ (Xi, z)

)2
= cj(z)′Γw,zcj(z) = 0,

for j = 1, . . . , G− L. The last relation holds if and only if the matrix Γw,z has G− L zero eigenvalues. One can, in fact, go back
in the arguments above which establishes the first “if and only if” part of the lemma. The second “if and only if” part is easy to
show. 2
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Proof of Theorem 4.1: The proof of the convergence (4.4) uses ideas of the proof of Lemma 2 in Section 2.2 of Donald (1997).

To simplify notation, we set K̃ij = K̃h(Xi −Xj), Kz,i = Kh(z − Zi), and

Π1(z)′ =
( 1

N

N∑
i=1

F (Xi, z)X1
i
′
Kh(z − Zi)

)
Q̂1(z)−1, Q̂1(z) =

1

N

N∑
i=1

X1
i X1

i
′
Kh(z − Zi),

U(z)′ =
( 1

N

N∑
i=1

UiX
1
i
′
Kh(z − Zi)

)
Q̂1(z)−1, ∆F (z)′ =

( 1

N

N∑
i=1

∆F (Xi, Zi, z)X1
i
′
Kh(z − Zi)

)
Q̂1(z)−1,

where ∆F (xi, zi, z) = F (xi, zi) − F (xi, z). By using Definition 2.2 of Γ̂w,z , and by writing Yi = F (Xi, Zi) + Ui = F (Xi, z) +

∆F (Xi, Zi, z) + Ui and Π̂1(z) in (2.10) as Π̂1(z) = Π1(z) + ∆F (z) + U(z), we can express the matrix Γ̂w,z as

Γ̂w,z = A1 + δA2 + δ2A3 = A1 + δ(A2 + A′2) + δ2(A3 + A′3 + A4), (A.1)

where δ−1 =
√

Nhm+n/2, the first order term A1 is

A1 = A1,1 −Π1(z)′A1,2 −A′1,2Π1(z) + Π1(z)′A1,3Π1(z),

where

A1,1 =
1

N(N − 1)

N∑
i6=j

F (Xi, z)F (Xj , z)′K̃ijKz,iKz,j ,

A1,2 =
1

N(N − 1)

N∑
i6=j

X1
i F (Xj , z)′K̃ijKz,iKz,j , A1,3 =

1

N(N − 1)

N∑
i 6=j

X1
i X1

j
′
K̃ijKz,iKz,j ,

the second order term A2 is

A2 = δ−1(A2,1 + A2,3)− δ−1(A2,2 + A2,4)Π1(z) + δ−1(∆F (z) + U(z))′(A1,3Π1(z)−A1,2),

where

A2,1 =
1

N(N − 1)

N∑
i6=j

∆F (Xi, Zi, z)F (Xj , z)′K̃ijKz,iKz,j , A2,2 =
1

N(N − 1)

N∑
i 6=j

∆F (Xi, Zi, z)X1
j
′
K̃ijKz,iKz,j ,

A2,3 =
1

N(N − 1)

N∑
i 6=j

UiF (Xj , z)′K̃ijKz,iKz,j , A2,4 =
1

N(N − 1)

N∑
i 6=j

UiX
1
j
′
K̃ijKz,iKz,j ,

the third order term A3 is

A3 = δ−2(A3,1 + A3,2) + δ−2((∆F (z) + U(z))′A1,3 −A2,2 −A2,4)(∆F (z) + U(z)),

where

A3,1 =
1

2N(N − 1)

N∑
i6=j

∆F (Xi, Zi, z)∆F (Xj , Zj , z)′K̃ijKz,iKz,j , A3,2 =
1

N(N − 1)

N∑
i6=j

∆F (Xi, Zi, z)U ′jK̃ijKz,iKz,j ,

and

A4 =
δ−2

N(N − 1)

N∑
i6=j

UiU
′
jK̃ijKz,iKz,j .

We are interested in the eigenvalues of the matrix Γ̂w,zΣ̂−1. These are also the eigenvalues of the matrix J ′Γ̂w,zJ(J ′Σ̂J)−1,
where J is any orthogonal matrix (that is, J−1 = J ′). The idea then is to take a special J which would allow for easier manipulations
later. In order to choose such J , observe first that, by Lemma B.1 below, the matrix A1Σ−1 has G − L(z) zero eigenvalues and
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the remaining ones are strictly positive with probability approaching 1. Since we need to show convergence in distribution, we may
suppose without loss of generality that all the eigenvalues of A1Σ−1 are positive. Hence, there is an orthogonal matrix J = J(N, z)
such that the matrix

J ′A1Σ−1J = J ′A1J(J ′ΣJ)−1 (A.2)

is diagonal with the eigenvalues of A1Σ−1 on the diagonal. Since Σ is positive definite, there is an orthogonal matrix J0 such that
J ′0ΣJ0 = C, where C is a diagonal matrix. We will suppose without loss of generality that C = I and hence that J ′0ΣJ0 = I. Since
there is an orthogonal matrix J1 such that J0J1 = J , we have

J ′ΣJ = J ′1J ′0ΣJ0J1 = J ′1J1 = I. (A.3)

Relations (A.2) and (A.3), and the discussion above imply that the matrix J ′A1J is diagonal with G− L(z) zeros on the diagonal
and the remaining elements on the diagonal strictly positive (with probability approaching 1). One can then arrange the matrix J
as J = (J1 J2), where J1 is a G × L(z) submatrix and J2 is a G × (G − L(z)) submatrix, in such a way that J ′2A1J2 = 0. Since
J2 consists of eigenvectors corresponding to zero eigenvalues of A1, it follows from Lemma B.2 below that A2J2 = 0 and hence
that J ′A2J has its last G− L(z) columns identically zero. Similarly, the last G− L(z) rows of J ′A′2J are identically zero as well.
Finally, observe also that, by using (A.3), the effect of J ’s on the term A4 is such that E(J ′UiUiJ) = I.

By using Σ̂ = Σ + δB with B = op(1) in Lemma B.9 below, Ai = Op(1), i = 1, . . . , 4, in Lemmas B.3–B.6 below and the

discussion above, δ−2λ̂j(z) is equal to δ−2 times the jth smallest eigenvalue of the matrix

J ′Γ̂w,zJ(J ′Σ̂J)−1 = J ′Γ̂w,zJ(J ′ΣJ + δJ ′BJ)−1 = J ′Γ̂w,zJ(I + δJ ′BJ)−1

= J ′(A1 + δA2 + δ2A3)J(I − δJ ′BJ + δ2J ′B2J − . . .)

= D1 + δD2 + δ2D3 + Op(δ3),

where D1 = J ′A1J = J ′A1J is diagonal, D2 = J ′(A2 −A1B)J = Op(1) and D3 = J ′(A3 −A2B +A1B2)J = Op(1). By applying

Lemma 1 in Fujikoshi (1977), we can conclude that λ̂j(z), j = 1, . . . , G− L(z), are also the eigenvalues of the matrix

0I + δD̃2 + δ2D̃3 + Op(δ3), (A.4)

where the matrices D̃2 and D̃3 are described in greater detail below.

The matrix D̃2 in (A.4) is a (G−L(z))× (G−L(z)) matrix made of the last G−L(z) rows and the last G−L(z) columns of
the matrix D2 = J ′A2J − J ′A1BJ . Recall from (A.1) and the discussion above that J ′A2J is a sum of two matrices J ′A2J and
J ′A′2J , the matrix J ′A2J with its last G− L(z) columns zero and the matrix J ′A′2J with its last G− L(z) rows zero. Hence, the
(G− L(z))× (G− L(z)) matrix corresponding to J ′A2J is identically zero. Turning to the second term J ′A1BJ = J ′A1J(J ′BJ)
in the matrix D2, since J ′A1J is diagonal with its last G − L(z) rows zero, we obtain that the (G − L(z)) × (G − L(z)) matrix

corresponding to J ′A1BJ is identically zero as well. Then, D̃2 = 0 and hence λ̂j(z), j = 1, . . . , G− L(z), are also the eigenvalues

of the matrix δ2D̃3 + Op(δ3) or δ−2λ̂j(z) = Nhm+n/2λ̂j(z), j = 1, . . . , G− L(z), are the eigenvalues of the matrix

D̃3 + op(1). (A.5)

According to Lemma 1 in Fujikoshi (1977), the matrix D̃3 in (A.5) (or (A.4)) is a sum of two matrices D̃3,1 and D̃3,2. The

first term D̃3,1 is made of the last G− L(z) rows and the last G− L(z) columns of the matrix D3. The second term D̃3,2 involves
the sum of some submatrices of the last G − L(z) rows and the last G − L(z) columns of the matrix D2. By using the facts that

A2 = op(1), B = op(1) and a special structure of the matrix J ′A1J , one can conclude that D̃3,2 = op(1). As for the matrix D̃3,1,
by using A3 = op(1), we obtain that it consists of the last G− L(z) rows and the last G− L(z) columns of the matrix

J ′A4J + op(1) =
δ−2

N(N − 1)

N∑
i 6=j

(J ′Ui)(J
′Uj)

′K̃ijKz,iKz,j + op(1).

Hence, it follows that

D̃3 =
δ−2

N(N − 1)

N∑
i 6=j

ŨiŨ
′
jK̃ijKz,iKz,j + op(1),

where a (G− L(z))× 1 vector Ũj satisfies EŨjŨ ′j = I. By Lemma B.8 below, we have

V̂ (z)D̃3
d→ ZG−L0(z). (A.6)
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The convergence (4.4) then follows from (A.5) and (A.6) by the continuous mapping theorem.

The convergence (4.5) holds, since by the continuous mapping theorem, λ̂j(z) → λj(z) in probability, where 0 ≤ λ1(z) ≤ . . . ≤
λG(z) are the eigenvalues of the matrix Γw,zΣ−1 and, by Lemma 2.1, λj(z) > 0 for j = G− L(z) + 1, . . . , G. 2

Proof of Theorem 4.2: The convergence in (4.7) follows from (4.4) in Theorem 4.1. In order to show the stochastic dominance
in (4.7), we use the proof of Theorems 1 and 2 in Donald (1997). By the Poincaré separation theorem (see Magnus and Neudecker
(1999), p. 209, or Rao (1973), p. 65), we have λi(ZG−L(z)) ≤ λi(B

′ZG−L(z)B) for i = 1, . . . , G− L, where L(z) = rk{F (·, z); x1}
and B is any (G−L(z))× (G−L) matrix such that B′B = IG−L. Now take B = (0(G−L)×(L−L(z)) IG−L)′ so that B′B = IG−L.
Observe that B′ZG−L(z)B =d ZG−L and hence

1√
G− L

G−L∑
j=1

λj(ZG−L(z))
d
≤ 1√

G− L

G−L∑
j=1

λj(ZG−L) =
1√

G− L
tr(ZG−L)

d
= N (0, 1).

The convergence under the hypothesis H1 follows from (4.5) of Theorem 4.1. 2

Proof of Theorem 4.3: The convergence in (4.9) follows from (4.4) in Theorem 4.1. To prove the stochastic dominance in (4.9),
observe first that

G−L∑
j=1

(λj(ZG−L(z)))
2 =

G−L∑
j=1

λj(Z2
G−L(z)), (A.7)

where λj(Z2
G−L(z)

), j = 1, . . . , G − L(z), denote the eigenvalues of Z2
G−L(z)

in the increasing order. Letting B =

(0(G−L)×(L−L(z)) IG−L)′ and arguing as in the proof of Theorem 4.2, we can conclude that

G−L∑
j=1

λj(Z2
G−L(z))

d
≤

G−L∑
j=1

λj((B
′ZG−L(z)B)(B′ZG−L(z)B)), (A.8)

Since B′ZG−L(z)B =d ZG−L, it follows from (A.7) and (A.8) that

G−L∑
j=1

(λj(ZG−L(z)))
2

d
≤

G−L∑
j=1

λj(Z2
G−L) = tr{Z2

G−L} = vec(ZG−L)′vec(ZG−L)
d
= χ2

(
(G− L)(G− L + 1)/2

)
,

since ZG−L is a symmetric matrix consisting of independent (below the diagonal) zero mean normal random variables with variance
1 on the diagonal and variance 1/2 off the diagonal (use the fact 2(N (0, 1/2))2 =d N (0, 1)2). 2

Proof of Theorem 5.1: The proof is similar to that of Theorem 3 in Donald (1997) or Theorem 5.2 in Robin and Smith (2000). Let

AL denote the event that the null hypothesis H0 : rk{F (·, z); x1} ≤ L is rejected by using the statistic T̂1(L, z) at the significance
level α = α(N, h). Then, we have

P (L̂1(z) = L) = P (A1 ∩ . . . ∩ AL−1 ∩ Ac
L) , (A.9)

where Ac
L denotes the complement of AL. Let Nα(N,h)(0, 1) be the minimum ξ such that P (N (0, 1) ≥ ξ) = α(N, h).

Obviously, Nα(N,h)(0, 1) → ∞ if α(N, h) → 0. It is also an easy exercise to see that Nα(N,h)(0, 1)/Nhm+n/2 → 0 if

(− ln α(N, h))1/2/Nhm+n/2 → 0. Then, for any L < rk{F (·, z); x1}, we obtain from (A.9) that

P (L̂2(z) = L) ≤ P (Ac
L) = 1− P (T̂1(L, z) > Nα(N,h)(0, 1)) = 1− P (T̂1(L, z)/Nhm+n/2 > Nα(N,h)(0, 1)/Nhm+n/2) → 0, (A.10)

by using T̂1(L, z)/Nhm+n/2 → Const > 0 and Nα(N,h)(0, 1)/Nhm+n/2 →∞. Observe also that, by setting L(z) = rk{F (·, z); x1},
we have

P (L̂2(z) > L(z)) ≤ P (AL(z)) = P (T̂1(L(z), z) > Nα(N,h)(0, 1)) → 0, (A.11)

by using Theorem 4.2 and since Nα(N,h)(0, 1) → 0. The convergence in (A.10) and (A.11) show that P (L̂2(z) = L(z)) → 1. 2

Proof of Theorem 5.2: The proof is similar to that of Theorem 5.1 above. Introduce χ2
α(N,h)

((G − L)(G − L + 1)/2) as the

minimum ξ such that P (χ2((G − L)(G − L + 1)/2) ≥ ξ) = α(N, h). Observe that, by Theorem 5.8 in Pötscher (1983), we have
χ2

α(N,h)
((G− L)(G− L + 1)/2) →∞ if α(N, h) → 0 and χ2

α(N,h)
((G− L)(G− L + 1)/2) → 0 if − ln α(N, h)/N2h2m+n → 0. 2
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B Intermediate results
We first prove two elementary results used in Theorem 4.1 in Appendix A.

Lemma B.1 The matrix A1 (or the matrix A1Σ−1) in (A.1) has G−L(z) zero eigenvalues and the remaining ones are positive
with probability approaching 1.

Proof: Observe that

A1 =
1

N(N − 1)

N∑
i6=j

(F (Xi, z)−Π1(z)′X1
i )(F (Xj , z)−Π1(z)′X1

j )′K̃ijKz,iKz,j . (B.1)

By using (1.4), we have Π1(z) = c(z) + A(z)H1(z), where H1(z) =
(
N−1

∑N

i=1
H(Xi, z)X1

i
′
Kz,i

)
Q̂1(z)−1 and Q̂1(z) is defined

before (A.1). By using (1.4) again, we then deduce that F (Xi, z)− Π1(z)′X1
i = A(z)(H(Xi, z)−H1(z)X1

i ). By substituting this

relation into (B.1) we further obtain that A1 = A(z)H1A(z)′, where H1 = (N(N − 1))−1
∑N

i6=j
(H(Xi, z)−H1(z)X1

i )(H(Xj , z)−
H1(z)X1

j )′K̃ijKz,iKz,j . Since A(z) is a G×L(z) matrix, there are G−L(z) linearly independent vectors cj(z) such that cj(z)A(z) =

0. Then, A1cj(z)′ = A(z)H1A(z)′cj(z)′ = 0 for j = 1, . . . , G − L(z), which shows that A1 has G − L(z) zero eigenvalues. The
remaining eigenvalues are positive with probability approaching 1 because A1 →p Γw,z (Lemma B.3 below) and the matrix Γw,z

has G− L(z) zero eigenvalues with the remaining ones strictly positive (Lemma 2.1 above). 2

Lemma B.2 The eigenvectors corresponding to G− L(z) zero eigenvalues of the matrix A1 in Lemma B.1 are also eigenvectors
for the matrix A2 in (A.1) corresponding to a zero eigenvalue.

Proof: Let c be an eigenvector corresponding to a zero eigenvalue of the matrix A1. Then, with the notation of the proof of

Lemma B.1 above cA(z) = 0. Observe now that A2 can be expressed as A2 = (δN(N −1))−1
∑N

i6=j

(
∆F (Xi, Zi, z)+Ui−∆F (z)−

U(z)
)(

F (Xj , z)−Π1(z)′X1
j

)′
K̃ijKz,iKz,j . Then, as in the proof of Lemma B.1, A2 = (δN(N −1))−1

∑N

i6=j

(
∆F (Xi, Zi, z)+Ui−

∆F (z)− U(z)
)(

H(Xj , z)−H1(z)X1
j

)′
K̃ijKz,iKz,j A(z)′. Since cA(z) = 0, it follows that A2c′ = 0. 2

The next four lemmas concern the orders of the terms A1, A2, A3 and A4 in the decomposition (A.1). Their proofs often use
the notion of a second order U-statistic whose definition we recall in Appendix C, together with a useful result on their asymptotic
behavior.

Lemma B.3 Under the assumptions of Theorem 4.1, we have A1 = Γw,z + op(1).

Proof: By using Lemma B.7 below, it is enough to show that

A1,1 = E
p(Xi, z)2

p̃(Xi)
F (Xi, z)F (Xi, z)′ + op(1), (B.2)

A1,2 = E
p(Xi, z)2

p̃(Xi)
F (Xi, z)′ + op(1), (B.3)

A1,3 = E
p(Xi, z)2

p̃(Xi)
+ op(1), (B.4)

where A1,1, A1,2 and A1,3 are defined after (A.1). We will prove only relation (B.2) in the case G = 1 since the proofs of (B.3)
and (B.4) are similar, and the case G ≥ 2 follows by considering matrices component-wise. Observe that A1,1 can be expressed as

a second order U-statistic (C.1) with Wi = (Xi, Zi) and aN (Wi, Wj) = F (Xi, z)F (Xj , z)K̃ijKz,iKz,j . By using the assumptions
of Theorem 4.1 and applying Lemma B.11, (a), below, we have

EaN (Wi, Wj) = E
p(Xi, z)2

p̃(Xi)
F (Xi, z)F (Xi, z) + o(1),

E
(
E(aN (Wi, Wj)|Wi)

2
)

= O(h−m) = o(N), EaN (Wi, Wj)
2 = O(h−2m−n) = o(N2),

since Nhm →∞ and Nhm+n/2 →∞. The relation (B.2) then follows from Lemma C.1 below. 2
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Lemma B.4 Under the assumptions of Theorem 4.1, we have A2 = op(1).

Proof: We will argue that

A2,i = Op

(
hr +

√
h2

Nhm
+

√
h2

N2h2m+n

)
, i = 1, 2, (B.5)

A2,i = Op

(
1√

Nhm
+

1√
N2h2m+n

)
, i = 3, 4, (B.6)

where A2,i, i = 1, 2, 3, 4, are defined after (A.1). Then, by using the definition of A2, Lemma B.7 below and the relations (B.3)

and (B.4), the order of A2 can be shown to be Op(
√

Nhm+n/2+2r +
√

hn/2 + 1/
√

Nhm+n/2 = op(1) since Nhm+n/2+2r → 0 and
Nhm+n/2 →∞. Consider first the relation (B.5) with i = 2 and suppose for simplicity that G = 1 and d = 1. Observe that A2,2 is

a second order U-statistic (C.1) with Wi = (Xi, Zi) and aN (Wi, Wj) = 2−1
(
∆F (Xi, Zi, z)X1

j +∆F (Xj , Zj , z)X1
i

)
K̃ijKz,iKz,j =:

aN,1(Wi, Wj) + aN,2(Wi, Wj). By using the assumptions of Theorem 4.1 and applying Lemma B.11, (a), below, we get
EaN (Wi, Wj) = O(hr) and

E
(
E(aN (Wi, Wj)|Wi)

2
)
≤ 2E

(
E(aN,1(Wi, Wj)|Wi)

2
)

+ 2E
(
E(aN,2(Wi, Wj)|Wi)

2
)

= O(h2−m + h2r−m) = O(h2−m),

EaN (Wi, Wj)
2 ≤ 2EaN,1(Wi, Wj)

2 + 2EaN,2(Wi, Wj)
2 = O

(
h2

h2m+n

)
.

Relation (B.5) with i = 2 then follows from Lemma C.1 below. The proof of (B.5) with i = 1 is similar. In the case of (B.6) with
i = 4, supposing for simplicity that G = 1 and d = 1, A2,4 is a second order U-statistic with Wi = (Yi, Xi, Zi) and aN (Wi, Wj) =

2−1(UiX
1
j + UjX1

i )K̃ijKz,iKz,j =: UiaN,1(Wi, Wj) + UjaN,2(Wi, Wj). By using the assumptions of Theorem 4.1 and applying

Lemma B.11, (a), below again, we have EaN (Wi, Wj) = 0, E
(
E(aN (Wi, Wj)|Wi)

2
)

= EU2
i

(
E(aN,1(Wi, Wj)|Wi)

2
)

= O(h−m)

and EaN (Wi, Wj)
2 = EaN,1(Wi, Wj)

2 + EaN,2(Wi, Wj)
2 = O(h−2m−n). The conclusion follows from Lemma C.1 below. The

proof of (B.6) with i = 3 is similar. 2

Lemma B.5 Under the assumptions of Theorem 4.1, we have A3 = op(1).

Proof: We will argue that

A3,1 = Op

(
h2r +

√
h2r+2

Nhm
+

√
h4

N2h2m+n

)
, (B.7)

A3,2 = Op

(√
h2r

Nhm
+

√
h2

N2h2m+n

)
, (B.8)

where A3,1 and A3,2 are defined after (A.1). Then, by the definition of A3, Lemma B.7 below and the relations (B.4),

(B.5) and (B.6), we can deduce that A3 = Op

(√
Nhm+n/2+2r + 1/

√
Nhm + h + hn/2

)
= op(1) since Nhm+n/2+2r → 0

and Nhm → ∞. Supposing for simplicity that G = 1, A3,1 is a second order U -statistic (C.1) with Wi = (Xi, Zi) and

aN (Wi, Wj) = ∆F (Xi, Zi, z)∆F (Xj , Zj , z)K̃ijKz,iKz,j . Then, by using the assumptions of Theorem 4.1 and applying Lemma

B.11, (a), below, we have EaN (Wi, Wj) = O(h2r), E
(
E(aN (Wi, Wj)|Wi)

2
)

= O(h2r+2−m) and EaN (Wi, Wj)
2 = O(h4−2m−n).

Relation (B.7) then follows by using Lemma C.1. As for A3,2, it is a second order U -statistic (C.1) with Wi = (Yi, Xi, Zi) and

aN (Wi, Wj) = 2−1(∆F (Xi, Zi, z)Uj + ∆F (Xj , Zj , z)Ui)K̃ijKz,iKz,j . By the assumptions of Theorem 4.1, EaN (Wi, Wj) = 0 and,

by using Lemma B.11, (a), below, we can show that E
(
E(aN (Wi, Wj)|Wi)

2
)

= O(h2r−m) and EaN (Wi, Wj)
2 = O(h2−2m−n).

Relation (B.8) follows from Lemma C.1 below. 2

Lemma B.6 Under the assumptions of Theorem 4.1, we have A4 = Op(1).

Proof: Arguing as in the proof of Lemma B.8 below, we may show that A4 is asymptotically normal and hence, A4 = Op(1). 2

The next result was used a number of times in the proofs of Lemmas B.3–B.6 above.
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Lemma B.7 Under the assumptions of Theorem 4.1 and with the notation before (A.1),

Q̂1(z) = Q1(z) + op(1), Π1(z)′ =

(
EF (Xi, z)X1

i
′ p(Xi, z)

p̃(Xi)

)
Q1(z)−1 + op(1) (B.9)

and

∆F (z) = Op

(
hr +

h√
Nhm

)
, U(z) = Op

(
1√

Nhm

)
. (B.10)

Proof: We suppose for simplicity that G = 1 and d = 1. To prove the first relation in (B.9), observe that E(Q̂1(z) − Q1(z))2 =

EQ̂1(z)2− 2EQ̂1(z)Q1(z)+Q1(z)2. By using the definition of Q̂1(z) and Lemma B.11, (c), below, we have EQ̂1(z) = Q1(z)+ o(1)
and

EQ̂1(z)2 =
1

N
E((X1

i )2Kz,i)
2 +

N − 1

N
(E(X1

i )2Kz,i)
2 = O

(
1

Nhm

)
+ Q1(z)2.

Hence, E(Q̂1(z)−Q1(z))2 = o(1) which yields the first relation in (B.9). To prove the second relation in (B.9), it is enough to show

that E(F 1(z) − F1(z))2 → 0, where F 1(z) = Π(z)Q̂1(z) and F1(z) = EF (Xi, z)X1
i p(Xi, z)/p̃(Xi). This can be done by writing

E(F 1(z)−F1(z))2 = EF 1(z)2−2EF 1(z)F1(z)+F1(z)2 and using Lemma B.11, (c), below to conclude that EF 1(z) = F1(z)+o(1)
and EF 1(z)2 = E(F (Xi, z)X1

i Kz,i)
2/N + (N − 1)(EF (Xi, z)X1

i Kz,i)
2/N = O(1/Nhm) + F1(z)2.

Relations in (B.10) can be proved in a similar way. For example, to show the first relation, it is enough to show that

E∆F 1(z)2 = Op(h2r +hr/Nhm), where ∆F 1(z) = ∆F (z)Q̂1(z). This follows by writing E∆F 1(z)2 = E(∆F (Xi, Zi, z)Kz,i)
2/N +

(N − 1)(E∆F (Xi, Zi, z)Kz,i)
2/N and applying the Lemma B.11, (c), below to obtain E(∆F (Xi, Zi, z)Kz,i)

2 = O(h2−m) and
E∆F (Xi, Zi, z)Kz,i = O(hr). 2

We now prove an asymptotic normality result (A.6) used in the proof of Theorem 4.1.

Lemma B.8 Under the assumptions and with the notation of Theorem 4.1 and its proof, we have

V̂ (z)
hm+n/2

N

N∑
i 6=j

ŨiŨ
′
jK̃ijKz,iKz,j

d→ ZG−L(z). (B.11)

Proof: Set t = G− L(z), Ũi = (Ũi1, . . . , Ũit)
′ and

Ap,q(N) =
hm+n/2

N

N∑
i6=j

ŨipŨjqK̃ijKz,iKz,j , p, q = 1, . . . , t,

so that the left-hand side of (B.11) can be expressed as V̂ (z)(Ap,q(N))p,q=1,...,t. We will show first that, for fixed p and q,

Ap,q(N)
d→ N (0, σ2

p,qV (z)−2), (B.12)

where V (z) is defined in the beginning of Section 4 and σ2
p,q = 1, if p = q, and 1/2, if p 6= q. By using Lemma B.10 below, the

convergence (B.11) then holds component-wise.
To show (B.12), we follow the proof of Theorem 4.5 in White and Hong (1999) (see also Lemma B.2 in Donald (1997)).

Since Ũi can be expressed in terms of Wi = (Yi, Xi, Zi), we can write Ap,q(N) =
∑N

i6=j
ãN (Wi, Wj) =

∑
i<j

aN (Wi, Wj),

where ãN (Wi, Wj) = hm+n/2N−1ŨipŨjqK̃ijKz,iKz,j and aN (Wi, Wj) = ãN (Wi, Wj) + ãN (Wj , Wi). Observe that, for i < j,
E(aN (Wi, Wj)|Wi) = 0. Hence, by Proposition 3.2 in de Jong (1987), convergence (B.12) holds if (1) Var(Ap,q(N)) → σ2

p,q, and

(2) GN,i = o(Var(Ap,q(N))2) = o(1) for i = 1, 2 and 4, where

GN,1 =
∑

1≤i<j≤N

Ea4
ij , GN,2 =

∑
1≤i<j<k≤N

(
Ea2

ija2
ik + Ea2

jia
2
jk + Ea2

kia
2
kj

)
,

GN,4 =
∑

1≤i<j<k<l≤N

(
Eaijaikaljalk + Eaijailakjakl + Eaikailajkajl

)
with aij = aN (Wi, Wj).
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To show part (1), observe that, by using Lemma B.11, (b), below,

Var(Ap,q(N)) = 2σ2
p,q

h2m+n

N2
(N − 1)NE(K̃ijKz,iKz,j)

2 = σ2
p,q2‖K̃‖22‖K‖42E

p(Xi, z)2

p̃(Xi)
+ o(1) = σ2

p,qV (z)−2 + o(1).

As for part (2), by using the Lemma B.11, (d), below,

GN,1 ≤ Const
h4m+2n

N4

∑
i6=j

EK̃4
ijK4

z,iK
4
z,j ≤ Const

h4m+2n

N2
EK̃4

ijK4
z,iK

4
z,j = O

(
1

N2h2m+n

)
= o(1),

GN,2 ≤ Const
h4m+2n

N
EK̃2

ijK̃2
ilK

4
z,iK

2
z,jK2

z,l = O

(
1

Nhm

)
= o(1),

GN,4 ≤ Consth4m+2nEK̃ijK̃ikK̃ljK̃lkK2
z,iK

2
z,jK2

z,kK2
z,l = O(h2n) = o(1).

Arguing similarly as above, we may show that, for any cj ∈ IR, pj , qj ∈ {1, . . . , t}, a linear combination
∑d

j=1
cjApj ,qj (N) is

asymptotically normal with the limiting variance σ(p, q)2 characterized by

Var

(
d∑

j=1

cjApj ,qj (N)

)
→ σ(p, q)2.

Since EAp,q(N)Ap′,q′ (N) = 0 for different pairs (p, q) and (p′, q′), we conclude that σ(p, q)2 = σ2
p1,q1

+ . . .+σ2
pd,qd

. Together with
the convergence (B.12), this shows that (B.11) holds. 2

The next two results were used in the proof of Theorem 4.1 to replace the variance-covariance matrix Σ and a normalizing

constant V (z) by their estimators Σ̂ and V̂ (z), respectively. (See (4.1) and (4.2) for definitions of V (z) and V̂ (z), respectively.)

Lemma B.9 Under the assumptions of Theorem 4.1, we have Σ̂ = Σ + δB with B = op(1).

Proof: As shown in the proof of Lemma 2 in Donald (1997), pp. 126–127,

Σ̂ = Σ + Op

(
1√
N

+
1

Nhm+n
+ h2r

)
.

By using the assumptions of Theorem 4.1 and since δ−1 =
√

Nhm+n/2, we obtain that Σ̂ = Σ + δB with B = op(1). 2

Lemma B.10 Under the assumptions of Theorem 4.1, we have V̂ (z) = V (z) + op(1).

Proof: In view of (4.1) and (4.2), it is enough to show that N−1
∑N

i=1
p̂(Xi, Zi)Kh(z − Zi) converges in probability to

Ep(Xi, z)2/p̃(Xi). Setting Kij = Kh(Zi − Zj) and using (2.18), we can write the sum above as

1

N2

∑
i,j

K̃ijKz,iKij =
K̃(0)K(0)

Nhm+n

1

N

∑
i

Kz,i +
1

N2

N∑
i6=j

K̃ijKz,iKij =: I1 + I2.

Arguing as in the proof of Lemma B.7, we can show that N−1
∑

i
Kz,i = Op(1). Since Nhm+n → ∞, it follows that I1 = op(1).

Arguing as in the proof of Lemma B.3, we obtain that I2 = EK̃ijKz,iKij + op(1). By using Lemma B.11, (b), below we have

EK̃ijKz,iKij = Ep(Xi, z)2/p̃(Xi) + o(1) which concludes this proof. 2

The next result, used a number of times earlier, is a direct consequence of a localization property of kernel functions stated in

Proposition B.1 below. We use our earlier notation K̃ij = K̃h(Xi −Xj), Kz,i = K̃h(z − Zi) and Kij = Kh(Zi − Zj).
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Lemma B.11 Suppose that G, H : IRn × IRm × IRm → IR are two deterministic functions with continuous bounded deriva-

tives up to order r, K and K̃ are kernels functions of order r and (Xi, Zi) are i.i.d. random vectors satisfying, Assump-

tion 1 of Section 3. Then, (a) for i 6= j, EG(Xi, Zi, z)H(Xj , Zj , z)K̃ijKz,iKz,j = EG(Xi, z, z)H(Xi, z, z)p(Xi, z)2/p̃(Xi) +

O(hr), E(G(Xi, Zi, z)H(Xj , Zj , z)K̃ijKz,iKz,j)
2 = ‖K‖22h−2m−nEG(Xi, z, z)2H(Xi, z, z)2p(Xi, z)2/p̃(Xi) + O(h−2m−n+2), and

E(E(G(Xi, Zi, z)H(Xj , Zj , z)K̃ijKz,iKz,j |Xi, Zi)
2) = O(h−m+2r+2) if G(xi, z, z) ≡ 0 and H(xi, z, z) ≡ 0, O(h−m+2r) if

H(xi, z, z) ≡ 0, and O(h−m), otherwise; (b) for i 6= j, EK̃ijKz,iKij = Ep(Xi, z)2/p̃(Xi) + O(hr), E(K̃ijKz,iKij)
2 =

O(h−2m−n), E(E(K̃ijKz,iKij |Xi, Zi)
2) = O(h−m), and E(E(K̃ijKz,jKij |Xi, Zi)

2) = O(h−m); (c) EG(Xi, Zi, z)Kz,i =

EG(Xi, z, z)p(Xi, z)/p̃(Xi) + O(hr), E(G(Xi, Zi, z)Kz,i)
2 = EG(Xi, z, z)2p(Xi, z)/p̃(Xi) + O(h2); (d) for i < j < k < l,

E(K̃ijKz,iKz,j)
4 = O(h−6m−3n), E(K̃2

ijK̃2
ilK

4
z,iK

2
z,jK2

z,l) = O(h−5m−2n) and EK̃ijK̃ikK̃ljK̃lkK2
z,iK

2
z,jK2

z,kK2
z,l = O(h−4m).

Proof: The results of the lemma are consequences of Proposition B.1 below and the assumptions of the lemma. To show the first
result of (a), observe that its left-hand side is

∫ (∫
G(xi, zi, z)H(xj , zj , z)p(xi, zi)p(xj , zj)K̃h(xi − xj)Kh(z − zj)Kh(z − zi)dxjdzjdzi

)
dxi

=

∫
G(xi, z, z)H(xi, z, z)p(xi, z)2dxi + O(hr),

which is also its right-hand side. The second result of (a) follows from the first one since K̃h(x)2 = h−n‖K̃‖22K̃2,h(x) and

Kh(z)2 = h−m‖K‖22K2,h(z), where K̃2,h(x) = h−nK̃(x/h)2/‖K̃‖22 and K2,h(z) = h−mK(z/h)2/‖K‖22 are kernel functions of
order 2. The third result of (a) can be obtained by observing that its left-hand side is

h−m‖K‖22
∫

G(xi, zi, z)p(xi, zi)K2,h(z − zi)

(∫
H(xj , zj , z)p(xj , zj)Kh(xi − xj)Kh(z − zj)dxjdzj

)2

dxidzi.

When H(xi, z, z) ≡ 0, for example, the inner integral squared above is O(h2r) and hence the full integral is

O(h2r−m)
∫

G(xi, zi, z)p(xi, zi)K2,h(z − zi) = O(h2r−m+2) if G(xi, z, z) ≡ 0, and O(h2r−m), otherwise. The first three re-

sults of part (b) can be shown similarly as in part (a). The last result of (b) can be proved by observing that its left-hand side
is ∫

p(xi, zi)

(∫
p(xj , zj)K̃h(xi − xj)Kh(z − zj)Kh(zi − zj)dxjdzj

)2

dxidzi

and

∫
p(xj , zj)K̃h(xi − xj)Kh(z − zj)Kh(zi − zj)dxjdzj = O

(∫
p(xj , zj)|K̃h(xi − xj)|h−2m1{|z−zj |≤Ch}1{|zi−zj |≤Ch}dxjdzj

)

= O

(∫
p(xj , zj)|K̃h(xi − xj)|h−m1{|z−zj |≤Ch}dxjdzj

)
h−m1{|zi−z|≤Ch} = O(1)h−m1{|zi−z|≤Ch}.

The results of parts (c) and (d) can be proved in a similar, in fact, much simpler way. 2

The following localization property of kernel functions can be easily proved by using Taylor expansions and the definition of
the order of a kernel function. We omit its prove for shortness sake.

Proposition B.1 Let K be a kernel on IRm of order r ∈ IN. Suppose that a function g : IRm → IR is r−times continuously
differentiable in a neighborhood of z0 ∈ IRm. Then, as h → 0,

∫

IRm

g(z)Kh(z − z0)dz = g(z0) + O(hr). (B.13)

Moreover, if the function g has its r-order derivatives bounded on IRm, then the term O(hr) in (B.13) does not depend on z0.

The next lemma, implicit in Donald (1997), was used in Section 7 to argue that local rank of a demand system can be estimated
from the local rank of a reduced demand system.
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Lemma B.12 Let f(x, z) = (f1(x, z), . . . , fJ (x, z))′ be a J × 1 vector of functions such that
∑J

j=1
fj(x, z) = 1. Then,

rk{f(·, z)} = rk{F (·, z); 1}+ 1, (B.14)

where F (x, z) is a (J − 1)× 1 vector obtained by removing an arbitrary coordinate function fj(x, z) from the vector f(x, z) and the
local rank rk{F (·, z); 1} is defined in Definition 1.1.

Proof: Suppose without loss of generality that the coordinate function f1(x, z) is eliminated. Set L(z) = rk{f(·, z)} and let
F (1)(x, z) denote the vector f(x, z) with the coordinate function f1(x, z) eliminated. By Definition 1.1,

f(x, z) = a(z)h(x, z), (B.15)

where a(z) = (akl(z)) is a J × L(z) matrix and h(x, z) = (hl(x, z)) is a L(z)× 1 vector. Since the J shares add up to 1, we obtain
from (B.15) that

1 =

(
J∑

k=1

ak1(z)

)
h1(x, z) + · · ·+

(
J∑

k=1

akL(z)(z)

)
hL(z)(x, z).

Suppose, for example, that
∑J

k=1
ak1(z) 6= 0. Then, we have

h1(x, z) =

(
J∑

k=1

ak1(z)

)−1

−
(

J∑
k=1

ak1(z)

)−1 (
J∑

k=1

ak2(z)

)
h2(x, z)− . . .−

(
J∑

k=1

ak1(z)

)−1 (
J∑

k=1

akL(z)(z)

)
hL(z)(x, z)

Substituting this expression into (B.15), we conclude that

F (1)(x, z) = c(z) + A(z)H(x, z), (B.16)

where A(z) is a (J − 1)× (L(z)− 1) matrix, H(x, z) is a (L(z)− 1)× 1 vector and c(z) is a (J − 1)× 1 vector. In view of Definition
1.1, (B.16) implies that

rk{F (1)(·, z); 1} ≤ L(z)− 1. (B.17)

To show the converse, observe that, by using (1.4), the elements f2(x, z), . . . , fJ (x, z) of F (1)(x, z) can be expressed as linear
combinations of rk{F (1)(·, z); 1}+ 1 functions of x and z. Since f1(x, z) = 1− f2(x, z)− . . .− fJ (x, z), the function f1(x, z) can be
also expressed as a linear combination of these rk{F (1)(·, z); 1}+ 1 functions. In view of Definition 1.1, we obtain that

L(z) = rk{f(·, z)} ≤ rk{F (1)(·, z); 1}+ 1. (B.18)

The conclusion follows from (B.17) and (B.18). 2

C Asymptotics for second order U-statistics
The notion of a second order U -statistic was used numerous time above.

Definition C.1 Let Wi, i = 1, . . . , N , be i.i.d. random vectors in IRd and aN : IRd × IRd 7→ IR be a symmetric kernel (that is,
aN (x, y) = aN (y, x)). A second order U-statistic for the sequence {Wi} is defined as

UN =
2

(N − 1)N

∑
1≤i<j≤N

aN (Wi, Wj). (C.1)

The following useful result concerns the limit behavior of a second order U-statistic. Although it easily follows from the proof of
Lemma 3.1 in Powell, Stock and Stoker (1989), the result is often easier to use and yields stronger results than a direct application
of Lemma 3.1 in Powell et al. (1989) itself.

Lemma C.1 Let UN be a second order U-statistic defined by (C.1). Then,

UN = EaN (Wi, Wj) + Op

(√
E(E(aN (Wi, Wj)|Wi)2)

N
+

√
EaN (Wi, Wj)2

N2

)
. (C.2)
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Proof: Let

ÛN = EaN (Wi, Wj) +
2

N

N∑
i=1

(E(aN (Wi, Wj)|Wi)− EaN (Wi, Wj)) (C.3)

be the so-called projection of the U -statistic UN (see Serfling (1980) or Powell et al. (1989)). Then, as in the proof of Lemma 3.1
in Powell et al. (1989),

E(UN − ÛN )2 =
2

(N − 1)N

∑
1≤i<j≤N

EbN (Wi, Wj)
2,

where bN (Wi, Wj) = aN (Wi, Wj) − E(aN (Wi, Wj)|Wi) − E(aN (Wi, Wj)|Wj) + EaN (Wi, Wj). Since EbN (Wi, Wj)
2 =

O(EaN (Wi, Wj)
2), we obtain that E(UN − ÛN )2 = O(EaN (Wi, Wj)

2/N2) or

UN − ÛN = Op

(√
EaN (Wi, Wj)2

N2

)
. (C.4)

By the independence of E(aN (Wi, Wj)|Wi) for different i’s and by using the formula E(ξ − Eξ)2 ≤ Eξ2, we have

E
( 2

N

N∑
i=1

(E(aN (Wi, Wj)|Wi)− EaN (Wi, Wj))
)2

=
4

N
E

(
E(aN (Wi, Wj)|Wi)− EaN (Wi, Wj)

)2

≤ 4E(E(aN (Wi, Wj)|Wi)
2)

N
.

The result (C.2) then follows from (C.3) and (C.4). 2

References

Bauer, P., Pötscher, B. M. & Hackl, P. (1988), ‘Model selection by multiple test procedures’, Statistics 19(1), 39–
44.

Cragg, J. G. & Donald, S. G. (1993), ‘Testing identifiability and specification in instrumental variable models’,
Econometric Theory 9(2), 222–240.

Cragg, J. G. & Donald, S. G. (1996), ‘On the asymptotic properties of LDU-based tests of the rank of a matrix’,
Journal of the American Statistical Association 91(435), 1301–1309.

Cragg, J. G. & Donald, S. G. (1997), ‘Inferring the rank of a matrix’, Journal of Econometrics 76(1-2), 223–250.

de Jong, P. (1987), ‘A central limit theorem for generalized quadratic forms’, Probability Theory and Related
Fields 75(2), 261–277.

Donald, S. G. (1997), ‘Inference concerning the number of factors in a multivariate nonparametric relationship’,
Econometrica 65(1), 103–131.

Donald, S. G., Fortuna, N. & Pipiras, V. (2004a), Local rank tests for smooth semiparametric factor models,
In preparation.

Donald, S. G., Fortuna, N. & Pipiras, V. (2004b), Rank estimation in symmetric matrices with some applications,
In preparation.

Fujikoshi, Y. (1977), Asymptotic expansions for the distributions of some multivariate tests, in ‘Multivariate
analysis, IV (Proc. Fourth Internat. Sympos., Dayton, Ohio, 1975)’, North-Holland, Amsterdam, pp. 55–71.

Gill, L. & Lewbel, A. (1992), ‘Testing the rank and definiteness of estimated matrices with applications to
factor, state-space and ARMA models’, Journal of the American Statistical Association 87(419), 766–776.

31



Gorman, W. M. (1981), Some Engel curves, in A. Deaton, ed., ‘Essays in the theory and measurement of
consumer behaviour: in honour of Sir Richard Stone’, Cambridge University Press, Cambridge, pp. 7–29.

Hausman, J. A., Newey, W. K. & Powell, J. L. (1995), ‘Nonlinear errors in variables: estimation of some Engel
curves’, Journal of Econometrics 65(1), 205–233.

Lewbel, A. (1989), ‘A demand system rank theorem’, Econometrica 57(3), 701–705.

Lewbel, A. (1991), ‘The rank of demand systems: theory and nonparametric estimation’, Econometrica
59(3), 711–730.

Lewbel, A. & Perraudin, W. (1995), ‘A theorem on portfolio separation with general preferences’, Journal of
Economic Theory 65(2), 624–626.

Magnus, J. R. & Neudecker, H. (1999), Matrix Differential Calculus with Applications in Statistics and Econo-
metrics, John Wiley & Sons Ltd., Chichester. Revised reprint of the 1988 original.

Nicol, C. J. (2001), ‘The rank and model specification of demand systems: an empirical analysis using United
States microdata’, Canadian Journal of Economics 34(1), 259–289.

Pagan, A. & Ullah, A. (1999), Nonparametric Econometrics, Cambridge University Press, Cambridge.

Pötscher, B. M. (1983), ‘Order estimation in ARMA-models by Lagrangian multiplier tests’, The Annals of
Statistics 11(3), 872–885.

Powell, J. L., Stock, J. H. & Stoker, T. M. (1989), ‘Semiparametric estimation of index coefficients’, Econometrica
57(6), 1403–1430.

Rao, C. R. (1973), Linear Statistical Inference and its Applications, Second edn, John Wiley & Sons, New York-
London-Sydney. Wiley Series in Probability and Mathematical Statistics.

Robin, J.-M. & Smith, R. J. (2000), ‘Tests of rank’, Econometric Theory 16(2), 151–175.

Russell, T. & Farris, F. (1993), ‘The geometric structure of some systems of demand equations’, Journal of
Mathematical Economics 22(4), 309–325.

Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, John Wiley & Sons Inc., New York.
Wiley Series in Probability and Mathematical Statistics.

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York.

White, H. & Hong, Y. (1999), M-testing using finite and infinite dimensional parameter estimators, Discussion
paper 93-01R, Department of Economics, University of California, San Diego.
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Empirical distribution of L̂ using T̂2 (N = 750, α = 0.05)
True rank L0 = 1 L0 = 2 L0 = 3

δ hx hz L̂ = 1 L̂ = 2 L̂ = 3 L̂ = 1 L̂ = 2 L̂ = 3 L̂ = 1 L̂ = 2 L̂ = 3
0.1 0.826 0.079 0.095 0.675 0.222 0.103 0.096 0.682 0.222

0.1 0.3 0.921 0.059 0.020 0.508 0.454 0.038 0.000 0.189 0.811
0.5 0.877 0.113 0.010 0.322 0.649 0.029 0.000 0.039 0.961
0.1 0.935 0.055 0.010 0.739 0.248 0.013 0.047 0.672 0.281

1 0.3 0.3 0.949 0.050 0.001 0.377 0.612 0.011 0.000 0.091 0.909
0.5 0.811 0.184 0.005 0.174 0.816 0.010 0.000 0.008 0.992
0.1 0.953 0.046 0.001 0.751 0.248 0.001 0.032 0.703 0.265

0.5 0.3 0.937 0.063 0.000 0.351 0.645 0.004 0.000 0.092 0.908
0.5 0.780 0.217 0.003 0.166 0.825 0.009 0.000 0.008 0.992
0.1 0.816 0.063 0.100 0.792 0.094 0.108 0.638 0.280 0.081

0.1 0.3 0.936 0.048 0.016 0.858 0.124 0.018 0.189 0.717 0.094
0.5 0.923 0.067 0.010 0.834 0.154 0.012 0.006 0.738 0.256
0.1 0.931 0.047 0.010 0.896 0.090 0.006 0.584 0.390 0.025

1/2 0.3 0.3 0.957 0.043 0.000 0.852 0.146 0.002 0.064 0.770 0.166
0.5 0.935 0.064 0.001 0.747 0.252 0.001 0.000 0.642 0.358
0.1 0.940 0.046 0.000 0.928 0.066 0.003 0.554 0.441 0.005

0.5 0.3 0.962 0.038 0.000 0.834 0.164 0.002 0.056 0.783 0.161
0.5 0.906 0.094 0.000 0.791 0.207 0.002 0.000 0.650 0.350

Table 10: Empirical distribution of L̂ using T̂2

Empirical distribution of L̂ using T̂2 (N = 1500, α = 0.05)
True rank L0 = 1 L0 = 2 L0 = 3

δ hx hz L̂ = 1 L̂ = 2 L̂ = 3 L̂ = 1 L̂ = 2 L̂ = 3 L̂ = 1 L̂ = 2 L̂ = 3
0.1 0.924 0.048 0.028 0.627 0.327 0.046 0.003 0.412 0.585

0.1 0.3 0.951 0.039 0.010 0.153 0.807 0.040 0.000 0.005 0.995
0.5 0.799 0.185 0.016 0.033 0.939 0.028 0.000 0.000 1.000
0.1 0.968 0.031 0.001 0.541 0.450 0.009 0.000 0.288 0.712

1 0.3 0.3 0.957 0.043 0.000 0.060 0.937 0.003 0.000 0.001 0.999
0.5 0.622 0.376 0.002 0.008 0.959 0.033 0.000 0.000 1.000
0.1 0.966 0.034 0.000 0.522 0.474 0.004 0.000 0.286 0.714

0.5 0.3 0.944 0.056 0.000 0.047 0.949 0.004 0.000 0.001 0.999
0.5 0.547 0.451 0.002 0.007 0.946 0.047 0.000 0.000 1.000
0.1 0.928 0.042 0.030 0.877 0.096 0.027 0.428 0.516 0.056

0.1 0.3 0.953 0.036 0.011 0.789 0.192 0.019 0.007 0.608 0.385
0.5 0.898 0.084 0.018 0.662 0.320 0.018 0.000 0.363 0.637
0.1 0.967 0.033 0.000 0.879 0.118 0.003 0.257 0.672 0.071

1/2 0.3 0.3 0.962 0.038 0.000 0.695 0.303 0.002 0.000 0.463 0.537
0.5 0.886 0.114 0.000 0.521 0.475 0.004 0.000 0.193 0.807
0.1 0.970 0.030 0.000 0.883 0.117 0.000 0.198 0.739 0.063

0.5 0.3 0.963 0.037 0.000 0.685 0.315 0.000 0.000 0.475 0.525
0.5 0.867 0.133 0.000 0.519 0.476 0.005 0.000 0.194 0.806

Table 11: Empirical distribution of L̂ using T̂2
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Size of tests using T̂2

Local rank 1 (z = −1/2) 2 (z = 0)
N δ hx \ hz 0.1 0.3 0.5 0.1 0.3 0.5

0.1 17.4 7.9 12.3 10.3 3.8 2.9
1 0.3 6.5 5.1 18.9 1.3 1.1 1.0

750 0.5 4.7 6.3 22.0 0.1 0.4 0.9
0.1 16.3 6.4 7.7 10.8 1.8 1.2

1/2 0.3 5.7 4.3 6.5 0.6 0.2 0.1
0.5 4.6 3.8 9.4 0.3 0.2 0.2
0.1 7.6 4.9 20.1 4.6 4.0 2.8

1 0.3 3.2 4.3 37.8 0.9 0.3 3.3
1500 0.5 3.4 5.6 45.3 0.4 0.4 4.7

0.1 7.2 4.7 10.2 2.7 1.9 1.8
1/2 0.3 3.3 3.8 11.4 0.3 0.2 0.4

0.5 3.0 3.7 13.3 0.0 0.0 0.5

Table 12: Size of local rank tests using T̂2

Power of tests using T̂2

True local rank L0 = 2 L0 = 3
Local rank test L = 1 L = 1 L = 2

N δ hx \ hz 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
0.1 14.4 44.6 53.5 80.9 100.0 100.0 12.4 80.9 96.2

1 0.3 23.9 62.3 58.1 94.6 100.0 100.0 28.5 92.1 99.6
750 0.5 25.2 60.8 50.5 96.9 100.0 100.0 31.8 93.9 99.6

0.1 5.2 11.6 12.9 21.5 77.9 98.9 1.7 7.9 25.1
1/2 0.3 8.3 15.6 22.9 38.2 93.8 100.0 2.9 21.0 41.8

0.5 7.0 20.1 14.3 45.4 95.6 100.0 1.9 23.6 43.5
0.1 34.4 85.6 87.9 99.7 100.0 100.0 55.3 99.5 100.0

1 0.3 50.7 94.4 87.3 100.0 100.0 100.0 74.3 99.9 100.0
1500 0.5 54.4 94.8 80.6 100.0 100.0 100.0 76.4 100.0 100.0

0.1 10.3 22.0 22.9 53.5 99.4 100.0 3.6 37.7 65.1
1/2 0.3 14.3 33.7 32.2 77.7 100.0 100.0 9.6 60.7 85.8

0.5 16.0 36.6 22.9 85.5 100.0 100.0 10.1 62.9 88.1

Table 13: Power of local rank tests using T̂2
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