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Abstract

In this paper a method is proposed to enhance the performance of
the score test. The standard score test is corrected in two ways. A first
step is to transform the score vector such that it is asymptotically (or
exactly) pivotal. For this purpose one can use the inverse of a square
root of a consistent variance estimate of the score vector, although
other possibilities exist. By bootstrapping the transformed score vec-
tor, a second-order correct variance matrix estimate is obtained, to be
used in the quadratic form score test statistic. In the second step, the
bootstrap simulations are recycled to compute a second-order correct
critical value. Monte Carlo simulations show that the corrected score
test outperforms the standard score test in terms of error in rejection
probability and power.
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1 Introduction

The Lagrange multiplier test, or score test, suggested independently by

Aitchison and Silvey (1958) and Rao (1948), tests for parametric restrictions.

Although the score test is an intuitively appealing and often used procedure,

the exact distribution of the score test statistic is generally unknown and is

often approximated by its first-order asymptotic χ2 distribution. In prob-

lems of econometric inference, however, first-order asymptotic theory may

be a poor guide, and this is also true for the score test, as demonstrated in

several Monte Carlo studies. See e.g. Breusch and Pagan (1979), Bera and

Jarque (1981), Davidson and MacKinnon (1983, 1984, 1992), Chesher and

Spady (1991), Horowitz (1994) and Aparicio and Villanua (2001), among

others.

One can use the bootstrap distribution of the score test statistic to obtain

a critical value which is more accurate then the asymptotic critical value

(Hall 1992). However, the score test uses a quadratic form statistic. In

the construction and implementation of such a quadratic form statistic two

important aspects which determine the performance of the test (both under

the null and the alternative), are (i) the weighting matrix (the estimate of

the variance matrix of the score vector) and (ii) the critical value. Since the

score test statistic is asymptotically pivotal (it is χ2), the bootstrap critical

value is second-order correct (whereas the asymptotic critical value is only

first-order correct). Imagine now that the statistic being bootstrapped uses

a poor weighting matrix (i.e. the variance matrix of the score vector is
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imprecisely estimated). Then the error in rejection probability (ERP)1 of

the test (using bootstrap critical values) will still be fine, but the power can

be very low. Therefore it is important to obtain not only an accurate critical

value, but also a good weighting matrix in the quadratic form test statistic.

The importance of the weighting matrix for the score test is also discussed

in Godfrey and Orme (2001). The problem of obtaining a good weighting

matrix by using the bootstrap is also addressed in Dhaene and Hoorelbeke

(2004).

This paper is about using the bootstrap to obtain both an accurate crit-

ical value and a good weighting matrix, using only a limited number of

simulations. The method is related to Beran’s (1988) technique of prepiv-

oting. Prepivoting is transforming a (univariate) statistic by its bootstrap

distribution function to obtain a new statistic whose ERP is smaller (us-

ing bootstrap critical values) than the ERP of the original statistic (using

bootstrap critical values). Although Beran (1988) uses the bootstrap distri-

bution function of the statistic to transform it, one can use any monotone

mapping which makes the (possibly multivariate) statistic less dependent on

the underlying probability distribution. I propose a multivariate rescaling

of the score vector, such that it is asymptotically pivotal (or exactly pivotal

if possible). One can always find such a transformation, given a consistent

estimate of the (asymptotic) variance matrix of the score vector. Then a

quadratic form statistic is constructed in this transformed score vector using
1The ERP of a test is the actual minus the nominal (i.e. chosen) probability of rejecting

the null hypothesis when it is true.
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the inverse of its bootstrap variance matrix as weighting matrix. This boot-

strap variance matrix is more accurate then an estimate of the asymptotic

covariance matrix. The simulations used to compute the bootstrap variance

matrix are then recycled to compute a critical value which is more accurate

then the asymptotic critical value. This avoids a nested bootstrap while it

yields a second-order correct critical value.

Section 2 contains a short review on the score test and presents the

bootstrap-based correction method. In Section 3 some simulation results on

the information matrix test (White, 1982) in the probit model and the linear

regression model are presented. The results indicate that the corrected score

test performs very well, both in terms of ERP and (ERP-corrected) power.

Section 4 concludes.

2 The score test and a bootstrap correction

Consider a parametric model defined by a density function f(y, θ), where θ

is a p× 1 vector of parameters. The hypothesis

H0 : g(θ) = 0,

where g is a known q-vector valued function, can be tested using the score

test (or Lagrange multiplier test). The (suitably normalised) log-likelihood

function from an i.i.d. sample of size n is

l =
1√
n

n∑
i=1

log f(yi, θ),

with score vector s = ∂l/∂θ. (The arguments of l and s are omitted since

no confusion is possible.)
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For a nice review on the score test see Godfrey (1990). The general form

of the score statistic is

ω = ŝ′V̂ −1ŝ,

where ˆ indicates evaluation at the restricted ML estimate θ̂ (i.e. θ̂ maxi-

mizes l subject to g(θ) = 0) and V̂ is a consistent estimator of the informa-

tion matrix I = E[ss′]. Under H0, ω is asymptotically χ2(q) distributed.

We assume that I is non-singular. This ensures that V̂ will be non-singular

for sufficiently large n.

Using asymptotic critical values the ERP of the score test is of order

O(n−1) (Horowitz, 2001). Since the score test statistic is asymptotically

pivotal, bootstrap critical values are second-order correct (i.e. the ERP

is then O(n−2)) (Horowitz, 2001). Different choices of V̂ lead to different

tests. As is evident from the literature on the information matrix test, this

choice is not without importance. This is also noticed by Godfrey and Orme

(2001).

Here a method is proposed to obtain both a second-order correct vari-

ance matrix estimate and a second-order correct critical value, using only

one round of bootstrap simulations. To be more specific, assume there exists

a matrix A such that the score vector premultiplied by A is asymptotically

pivotal. An obvious choice for A is the inverse of a square root of a vari-

ance matrix estimate of the score vector, yielding a multivariate studentized

score vector. This is not the only possible choice for A, though, as is shown

in Section 3 for the information matrix test in the linear regression model.
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Given a consistent estimate of the variance matrix of the score, this method

is always applicable. Let V̂ −1/2 denote the inverse of a square root of a con-

sistent estimate of the asymptotic variance matrix of the score vector ŝ. For

the remainder of this section, take Â = V̂ −1/2. Then Âŝ is a multivariate

studentized score vector. Since the multivariate studentized score vector is

asymptotically pivotal, its bootstrap distribution is a second-order approx-

imation to its exact finite sample distribution. This bootstrap distribution,

however, can only be computed analytically in very simple cases. In general

one has to resort to simulations.

The procedure is as follows. Let d̂1 = ŝ, d̂2 = Âŝ, and let B > q be the

number of bootstrap replications. Then

1. compute θ̂ and d̂2;

2. for b = 1, . . . , B:

• generate a sample of size n from f(·, θ̂);

• for this sample compute θ̂b and d̂2b;

3. compute V̂2B = (B − 1)−1
∑B

b=1(d̂2b − d̄2B)(d̂2b − d̄2B)′, where d̄2B =

B−1
∑B

b=1 d̂2b;

4. compute ω2 = d̂′2V̂
−1
2B d̂2;

5. calculate the edf of ω2b = d̂′2bV̂
−1
2B d̂2b for b = 1, . . . , B and call this

F̂2B .

Under the null hypothesis, ω2 is asymptotically, as n → ∞ and B →
∞, χ2

q distributed. If one uses simulations to approximate the bootstrap
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variance matrix of d̂2, then B is finite. The asymptotic distribution of ω2 in

this case is T 2
q,B−1 (Hotelling’s T 2; see Dhaene and Hoorelbeke, 2004).

Since the studentized score vector d̂2 is asymptotically pivotal (by con-

struction), the error made by the bootstrap distribution of d̂2 is O(n−1)

(Horowitz, 2001). The error made by the first-order asymptotic distribu-

tion 2 is O(n−1/2). This also holds for the variance estimates of d̂2 derived

from both distributions (V̂2B and I respectively). If the studentized score

vector is exactly pivotal, then the bootstrap variance matrix equals the ex-

act finite sample variance matrix. So in this case, by choosing B sufficiently

large, this matrix can be estimated to any desired accuracy.

Using the T 2 critical values for ω2, one remains with first-order asymp-

totics. Hence, the ERP of the test based on ω2 with T 2 critical values and

the ERP of the test based on ω with χ2 critical values are both O(n−1).

Given the correction in the weighting matrix, however, it is expected that

in finite samples the ERP of ω2 with T 2 critical values will be smaller than

the ERP of ω with χ2 critical values. The simulations in Section 3 indeed

show that this is true, at least for the information matrix test in the probit

model and in the linear model.

If one uses bootstrap critical values, the tests based on ω or ω2 both

have an ERP of O(n−2), i.e. the bootstrap critical values are second-order

correct (see e.g. Horowitz, 2001), since the score test statistic is asymp-
2The first-order asymptotic distribution of d̂2 under H0 is multivariate normal with

mean zero and variance matrix the identity matrix, if V̂ −1/2 is used to transform the
score vector. In other cases, d̂2 is multivariate normal with mean zero and some variance
matrix, independent of the parameter vector.
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totically pivotal. In some cases the score test statistic is exactly pivotal.

Then bootstrap critical values are exact (i.e. the ERP goes to zero for B

tending to infinity for fixed n). To avoid a nested bootstrap procedure for

the bootstrap test based on ω2, one can use the appropriate quantile of F̂2B

(as constructed above), which re-uses the simulations of the bootstrap vari-

ance calculation. If the test statistic is asymptotically (or exactly) pivotal,

these critical values are also second-order (or exactly) correct. Thus, with

only one round of simulations both a more accurate weighting matrix and a

more accurate critical value (compared to first-order asymptotic theory) are

obtained. This procedure, however, requires somewhat more simulations,

due to the dependency introduced between V̂2B and d̂2b, compared with the

standard bootstrap-correction method (i.e. when only the critical value is

corrected).

To explain the effect the weighting matrix can have on power, consider

the following (somewhat artificial) example of the Jarque-Bera (1980) statis-

tic. The Jarque-Bera statistic tests for skewness and non-normal kurtosis,

using the following score vector:

ŝ =
(

ŝ1

ŝ2

)
=

1√
n

n∑
t=1

(
ε̂3t

ε̂4t − 3

)
,

where ε̂t = (yt − β̂)/σ̂, β̂ and σ̂ are the estimated parameters of a normal

model without covariates. The variance matrix of ŝ is

V =
(

6 0
0 24

)
.

Naturally, the Jarque-Bera statistic equals ŝ2
1/6 + ŝ2

2/24. Suppose now in-

stead of using V , the following variance estimate was used in the construction
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of the test statistic:

V̂ =
(

6 0
0 1010

)
.

Then it follows that ω = (ŝ1 ŝ2)V̂ −1(ŝ1 ŝ2)′ ≈ 1
6 ŝ

2
1. As a consequence,

the test based on this statistic would have no power against leptokurtic or

platykurtic alternatives. This example is rather extreme, but it shows that

also for power the weighting matrix matters.

The procedure set out above can be iterated to obtain further reductions

in ERP. Having obtained V̂2B , take, for j > 2, d̂j = V̂
−1/2
j−1,Bd̂j−1 and ωj =

d̂′j V̂
−1
jB d̂j where V̂jB is the bootstrap variance matrix of d̂j . The error made

by V̂jB is O(n−j/2). The test based on ωj with a critical value from F̂jB has

an ERP which is O(n−j).

3 Simulations

In this section some Monte Carlo results are reported on how the proposed

method performs when correcting the information matrix test (White, 1982)

in the probit model and the linear regression model. The information matrix

test is a score test for parameter constancy (Chesher 1984). Let yt have

density f(y, θ), where θ is a p× 1 vector of parameters, having density h(θ),

expectation θ0 and variance Σ. The information matrix test is a score test

for the null hypothesis H0 : Σ = 0, i.e. θ is degenerate with P (θ = θ0) = 1.

Chesher (1984) shows that the part of the score vector corresponding to

Σc = vech(Σ) (the vectorised lower triangular part of Σ) at Σ = 0 equals

s =
1√
n

n∑
t=1

(F1tF
′
1t + F2t)c,
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where F1t = ∂ log f(yt, θ)/∂θ and F2t = ∂F1t/∂θ
′. White (1982) and Chesher

(1984) derive the asymptotic distribution of ŝ (s evaluated at the restricted

ML estimate θ̂). Under the null hypothesis, ŝ is asymptotically multivariate

normal with mean zero and variance matrix V∞(θ0). The information matrix

test statistic is then defined as

ω = ŝ′V̂ −1ŝ,

where V̂ is a consistent estimate of V∞(θ0). The statistic has an asymptotic

χ2
q distribution, where q = p(p + 1)/2. In the literature on the information

matrix test a number of estimators of V∞(θ0) have been proposed (White,

1982; Chesher, 1983; Lancaster, 1984; Orme, 1990; Davidson and MacK-

innon, 1992). The ensuing tests behave quite differently in term of ERP

and power, stressing the importance of the weighting matrix. In this paper

the focus is on the original White (1982) statistic and the Chesher (1983) -

Lancaster (1984) (CL) statistic. White’s variance estimator just replaces all

expectations in the formula of the asymptotic variance by sample averages.

The variance estimator proposed by Chesher (1983) and Lancaster (1984)

uses the information matrix equality in such a way that the computation of

third derivatives of the log-likelihood can be avoided. The information ma-

trix equality states that, if the model is true, the expectation of the hessian

matrix of the log-likelihood equals minus the expectation of the outer prod-

uct of the gradient vector of the log-likelihood. The CL statistic uses the

latter expression of the information matrix in the variance estimator, hence

the statistic is also called the outer-product-of-gradient (OPG) version. It
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also replaces expectations by sample averages.

The CL statistic is denoted ωC = ŝ′V̂ −1
C ŝ. The bootstrap-corrected CL

statistic is denoted ωBC = d̂′C V̂
−1
BC d̂C , where d̂C = V̂

−1/2
C ŝ and V̂BC is the

bootstrap variance matrix of d̂C . The same notation applies to the White

statistic: ωW and ωBW .

First, the more general case of asymptotic pivotalness is considered by

looking at the probit model. Next, the IM test in the normal regression

model is studied. In this model, exact pivotalness is obtained, and an alter-

native transformation of the score vector (different from the inverse square

root of the variance matrix estimate) is proposed.

In the probit model

P (yt = 1) = Φ(x′tβ) = Φt, t = 1, . . . , n ,

with Φ(·) the standard normal cdf, yt a binary variable, xt a k× 1 regressor

and β a k × 1 parameter. The score vector, evaluated at the ML estimate

β̂, is

ŝ =
1√
n

n∑
t=1

(Yt − Φ̂t)φ̂′t
Φ̂t(1− Φ̂t)

(xtx
′
t)

c

where Ac = Kvech(A), K = [0q×1 Iq], q = k(k+1)/2−1, φ̂′t = φ′(x′tβ̂) is the

derivative of the standard normal pdf and Φ̂t = Φ(x′tβ̂). The first element of

the score vector is disregarded since it is identically equal to zero if the first

element of xt is a constant (which is assumed here). In the probit model,

the IM test is a consistent misspecification test.

In the simulation experiments xt consists of a constant and k − 1 inde-

pendent standard normal variates, with k = 2 and k = 3. The sample size
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n ranges over 50, 100, 200 and 400. The parameter β is equal to (1
2 , 1)

′ and

(1
2 , 1, 1)

′. The number of simulations B to compute the bootstrap variance

matrix and the critical value is set to 499 3. The same number is used for

the standard parametric bootstrap method. The simulation study was car-

ried out with 10000 Monte Carlo runs. The regressor matrix is held fixed

across Monte Carlo replications, as in earlier Monte Carlo experiments on

the information matrix test (Chesher and Spady (1991), Horowitz (1994)

and Orme (1990)).

Three properties are investigated: the ERP of the tests using asymptotic

critical values, the ERP of the tests using bootstrap critical values and the

power against a heteroskedastic alternative.

First, the ERP of ωW , ωC and their bootstrap-corrected versions, using

asymptotic critical values is studied. This means that the distributions of

e.g. ωC and ωBC are approximated by the χ2
q distribution and the T 2

q,B−1

distribution, respectively. If asymptotic critical values are employed, one can

easily see the net effect of using a improved weighting matrix by comparing

e.g.the ERPs of ωC and ωBC . The ERP is displayed using p-value plots

(Davidson and MacKinnon, 1998). A p-value plot gives the (estimated)

actual rejection probability (RP) of a test as a function of the nominal RP.

On the 45◦ line actual and nominal RP agree, so ideally the p-value plot

coincides with the 45◦ line.

The p-value plots for k = 3 and n = 100 are displayed in Figure 1. The
3Rather than 500, since with B = 499 the 5% bootstrap critical value is the 475th

(largest) value of the ordered ω2b.
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Figure 1: Probit model: p-value plots using asymptotic critical
values for k = 3 and n = 100
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discussion will focus only on this design point, but the findings hold more

generally. The full set of results can be found in the Appendix. It is clear

from the figure that ωW and ωC have an enormous ERP (as is also shown in

many previous Monte Carlo studie), e.g. for a 5% level test the actual RP

for ωW is about 28% and for ωC it is even about 79%. Also their bootstrap-

corrected versions ωBW and ωBC have a non-zero ERP, but offer already a

significant improvement upon ωW and ωC (e.g. at a 5% level, ωBW has an

actual RP of about 5.7%, and for ωBC it is about 14%). The only difference

between ωW and ωC , and ωBW and ωBC , is that the latter use an improved

weighting matrix.

One can achieve a much better performance under the null hypothesis by

using bootstrap critical values. The statistics are asymptotically pivotal, so
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Figure 2: Probit model: p-value plots using bootstrap critical
values for k = 3 and n = 100
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bootstrap critical values are second-order correct. The improvement upon

the (first-order) asymptotic approximation is remarkable, as can be seen in

Figure 2(a), where the p-value plots are given for ωW and ωC using bootstrap

critical values (with 499 bootstrap simulations), and with critical values from

the bootstrap recycling method (also with B = 499; see p. 6) for ωBW and

ωBC .

The power is investigated against the following heteroskedastic alterna-

tive:

P (yt = 1) = Φ
(

x′tβ
η(xt)

)
,

where η(xt) = x2
2t. To save on CPUtime the number of simulations B to
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Figure 3: Probit model: RP-power plots for k = 3 and n = 100
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compute the bootstrap variance is decreased to 100, since now only the

bootstrap variance matrix has to be computed, whereas for the experiments

under the null also bootstrap p-values had to be computed.

Power is plotted as a function of actual RP under the pseudo-true null

(called RP-power curves here), as in Horowitz (1994), Horowitz and Savin

(2000) and Davidson and MacKinnon (1996). By using this method, the

power of the tests is corrected for the (sometimes large) ERP under the

null. Figure 3 plots the RP-power curves for k = 3 and n = 100. The

power of the bootstrap-corrected statistic ωBC is larger than that of ωC ,

but the power of ωBW is about the same as that of ωW . Let us return to the

example of the Jarque-Bera statistic given earlier for a possible explanation

of this last observation. The version of the Jarque-Bera test using the very
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imprecisely estimated weighting matrix is not sensitive for departures from

normal kurtosis, but it has power against skewed alternatives. So, if the

alternative is only skewed (and thus has normal kurtosis), then there is

less or no gain (with respect to power) in correcting the weighting matrix. I

suspect that a similar story is true here for White’s version of the information

matrix test and the particular alternative.

Consider now the linear regression model

yt = x′tβ + σεt, t = 1, . . . , n ,

with xt a k × 1-vector of regressors (including 1), parameters β (k × 1) and

σ > 0 (thus p = k + 1 and q = p(p+ 1)/2 − 1), and an error term εt which

is i.i.d. and standard normal. In the simulations the regression parameter

β is set equal to a vector of ones, and also σ = 1, but this choice does not

affect the results since the statistics are exactly pivotal. The score vector,

evaluated at the ML estimate θ̂ = (β̂′, σ̂), equals

ŝ =
1√
nσ̂2

n∑
t=1


 (ε̂2t − 1)(xtx

′
t)

c

(ε̂3t − 3ε̂t)xt

ε̂4t − 5ε̂2t + 2




where ε̂t is εt evaluated at θ̂. As shown by Hall (1987), the information

matrix test in the linear model is a combined test against heteroskedasticity

(first subvector of ŝ), conditional skewness (second subvector of ŝ) and non-

normal kurtosis (last element of ŝ).

In this model the information matrix test statistic is exactly pivotal,

hence bootstrap critical values are exact. Also the bootstrap variance ma-

trix of the studentized score vector is exact. In Section 2 it was already
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mentioned that V̂ −1/2 is not the only possible matrix which makes the score

vector asymptotically, or in this case, exactly pivotal. Given that the stan-

dardised residuals ε̂t are invariant with respect to θ, it suffices to multiply ŝ

by σ̂2 to make it exactly pivotal.

So, in the simulation study for the normal linear model, not only ωW ,

ωC and their bootstrap-corrected versions ωBW and ωBC are included, but

also ωBT = d̂′T V̂
−1
BT d̂T , where d̂T = σ̂2ŝ and V̂BT is the bootstrap variance

matrix of d̂T .

Figure 4 shows the p-value plots when asymptotic critical values are used.

Again, the poor performance of ωW and ωC , and the improvement offered

by ωBW and ωBC are obvious. Overall ωBT is found to have the smallest

ERP.

Figure 4: Linear model: p-value plots using asymptotic critical
values for k = 3 and n = 100
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Figure 5: Linear model: p-value plots using bootstrap critical
values for k = 3 and n = 100

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

nominal RP

ac
tu

al
 R

P

(a)

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20
x 10

−3

nominal RP

E
R

P

(b)

45°
ω

W
ω

BW
ω

C
ω

BC
ω

BT

In the normal linear model the IM statistics are exactly pivotal, meaning

that bootstrap critical values are exact. All tests have now an ERP which

is zero for B = ∞, but the ERP is already very small for B = 499, as is

evidenced by Figure 5(b).

The power of the test is studied against a heteroskedastic alternative

with density φ((yt −x′tβ)/(ση(xt)), where η(xt) =
√|x2t | 4. Figure 6 shows

that ωBC has more power than ωC . Here, also the corrected White statistic

ωBW has a larger power than ωW . The test based on ωBT , however, has

undeniably the largest power.

Thus, the bootstrap-corrected score test, which uses an improved weight-
4The tests in the normal linear model seemed to be somewhat more powerful against

heteroskedasticity than in the probit model, therefore the alternative is weakened here.
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Figure 6: Linear model: RP-Power plots for k = 3 and n = 100
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ing matrix and more accurate critical values, outperforms the standard score

test in terms of both ERP and power. The test based on ωBT , which uses

an almost trivial transformation of the score vector, is found to be the best

in terms of ERP and power (at least in this Monte Carlo set-up), but such

a statistic may not exist for all models and all score tests.

4 Conclusion

The usual bootstrap correction for score tests focusses on the critical value.

In this paper it is argued that not only the critical value should be corrected,

but also the weighting matrix used in the quadratic form statistic of the

score test. By transforming the score vector to make it asymptotically (or

exactly) pivotal, the bootstrap variance matrix is second-order correct (or
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exact). Then by re-using the (parametric) bootstrap simulations, a second-

order correct (or exact) critical value is obtained for the corrected statistic.

The Monte Carlo experiments show that the method indeed provides an

improvement upon the standard score test.
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Appendix

Figure 7: Probit model: p-value plots using asymptotic critical
values for k = 2 and (a) n = 50; (b) n = 100; (c) n = 200; and (d)
n = 400
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Figure 8: Probit model: p-value plots using asymptotic critical
values for k = 3 and (a) n = 50; (b) n = 100; (c) n = 200; and (d)
n = 400
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Figure 9: Probit model: ERP plots using bootstrap critical val-
ues for k = 2 and (a) n = 50; (b) n = 100; (c) n = 200; and (d)
n = 400
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Figure 10: Probit model: ERP plots using bootstrap critical val-
ues for k = 3 and (a) n = 50; (b) n = 100; (c) n = 200; and (d) n = 400
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Figure 11: Probit model: RP-Power plots for k = 2 and (a) n = 50;
(b) n = 100; (c) n = 200; and (d) n = 400
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Figure 12: Probit model: RP-Power plots for k = 3 and (a) n = 50;
(b) n = 100; (c) n = 200; and (d) n = 400
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Figure 13: Linear model: p-value plots using asymptotic critical
values for k = 2 and (a) n = 50; (b) n = 100; (c) n = 200; and (d)
n = 400
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Figure 14: Linear model: p-value plots using asymptotic critical
values for k = 3 and (a) n = 50; (b) n = 100; (c) n = 200; and (d)
n = 400
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Figure 15: Linear model: ERP plots using bootstrap critical val-
ues for k = 2 and (a) n = 50; (b) n = 100; (c) n = 200; and (d) n = 400
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Figure 16: Linear model: ERP plots using bootstrap critical val-
ues for k = 3 and (a) n = 50; (b) n = 100; (c) n = 200; and (d) n = 400
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Figure 17: Linear model: RP-Power plots for k = 2 and (a) n = 50;
(b) n = 100; (c) n = 200; and (d) n = 400
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Figure 18: Linear model: RP-Power plots for k = 3 and (a) n = 50;
(b) n = 100; (c) n = 200; and (d) n = 400
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