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Abstract

Wilson (1987) criticizes the existing literature of game theory as relying too much
on common-knowledge assumptions. In reaction to Wilson’s critique, the recent lit-
erature of mechanism design has started to employ stronger solution concepts such
as dominant strategy incentive compatibility, and restrict attention to simpler mech-
anisms such as dominant strategy mechanisms. However, there has been little theory
behind this approach. In particular, it has not been made clear why employing simpler
mechanisms, instead of more complicated ones, is the correct way to address Wilson’s
critique. This paper aims at filling this void. We propose a potential theory, known
as the maxmin theory, which postulates that a cautious mechanism designer, facing
uncertainty over which (common-knowledge) assumptions are valid and which are not,
would indeed rationally choose simpler mechanisms such as dominant strategy mecha-
nisms. In this paper, we summarize our progress in proving this theory, explore other
possible theories, and discuss related theoretical questions that will be of interest in
other areas.

∗Support from the National Science Foundation under grant #SES 99-85462 is gratefully acknowledged.
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1 Introduction

In the recent literature of mechanism design, there is a research agenda which is moti-
vated by the so-called Wilson Doctrine. Roughly speaking, the Wilson Doctrine refers to
Wilson’s (1987) vision that a good theory of mechanism design should not rely too heavily
on assumptions of common knowledge:

“Game theory has a great advantage in explicitly analying the consequences of
trading rules that presumably are really common knowledge; it is deficient to the
extent it assumes other features to be common knowledge, such as one agent’s
probability assessment about another’s preferences or information. [...] I foresee
the progress of game theory as depending on succesive reduction in the base of
common knowledge required to conduct useful analyses of practical problems.
Only by repeated weakening of common knowledge assumptions will the theory
approximate reality.”

Although there is no clear prescription from Wilson (1987) on how exactly to achieve
such an ideal of “successive reduction” in the dependence on common knowledge assump-
tions, recent researches have converged to the idea that the appropriate way to implement
the Wilson Doctrine is to use stronger solution concepts. For example, when Dasgupta and
Maskin (2000) and Perry and Reny (2002) design efficient auctions in interdependent-value
settings, they insist that their designs are ex post incentive compatible. Similarly, when Segal
(2002) designs optimal auctions in private-value settings, he also insists that his designs are
dominant strategy incentive compatible. Both ex post incentive compatibility and dominant
strategy incentive compatibility are stronger solution concepts compared with Bayesian in-
centive compatibility, which in turn is the solution concept used in the traditional literature
on mechanism design. In private-value settings, ex post incentive compatibility boils down
to dominant strategy incentive compatibility.

In this paper, we ask the question of in what sense using these stronger solution concepts
is an appropriate way to implement Wilson Doctrine. In particular, we focus on private-
value settings, and ask whether or not there is a foundation for using dominant strategy
mechanisms.

There are two reasons why this is an important question. At a shallower level, it is
easier to be destructive but more difficult to be constructive. It is easier to dismiss the
previous literature as “deficient,” but more difficult to establish a particular new approach
as the correct approach among many other possible alternatives. Whenever a particular new
approach is suggested, we should insist that there is a theory behind the suggestion.

At a deeper level, it is not apparent at all why, when a mechanism design is not willing
to make strong common knowledge assumptions, she would then use simpler mechanisms
such as dominant strategy mechanisms, instead of using mechanisms that are even more
complicated. In principle, a mechanism designer can ask her agents anything that she does
not know, and she should do so if the answers are potentially useful. For example, if she is not
sure whether a certain common knowledge assumption is true or not, she can (and probably
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should) add to her original mechanism an additional question concerning the validity of this
common knowledge assumption. The fewer assumptions the mechanism designer is willing
to make, the more questions she should ask, and hence the more complicated her mechanism
should be. Pushing this logic to its extreme, if we were ever to achieve Wilson’s ideal
of “successive reduction” in the dependence of common knowledge assumptions, we would
envision mechanisms that are so complicated that they ask agents to report everything. At
the limit, mechanisms would become so complicated that they ask agents to report their
whole infinite hierarchies of beliefs and higher-order beliefs, or in other words to report their
universal types. It seems that the suggestion of using simpler mechanisms such as dominant
strategy mechanisms is squarely at odd with this established intuition in the literature of
mechanism design.

In this paper, we shall provide a rationale for using dominant strategy mechanisms that
would also reconcile the above intuition. Our theory can be loosely explained with the follow-
ing story. Imagine the mechanism designer as an auctioneer. She may have confidence in her
estimate of the distribution ν of the bidders’ valuations, perhaps based on data from similar
auctions in the past. But she does not have reliable information about the bidders’ beliefs
(including their beliefs about one another’s valuations, their beliefs about these beliefs, etc.),
as these are arguably never observed. She can choose to use a dominant strategy mechanism,
or she can alternatively choose to use some Bayesian incentive compatible mechanism that
will perform much better under certain common knowledge assumptions. It is well known
that the performance (which means the auctioneer’s profit in this auction example) of a
dominant strategy mechanism is insensitive to the bidders’ beliefs, on which the auctioneer
does not have reliable information anyway. On the other hand, a Bayesian incentive com-
patible mechanism that performs well under certain common knowledge assumptions may
perform horribly if those assumptions turn out to be false. Thus, the auctioneer, faced with
uncertainty about the bidders’ beliefs, may optimally choose to play safe and use a dominant
strategy mechanism.

Note that this story by itself does not “assume away” the availability of complicated
mechanisms that ask bidders to report their universal types. These complicated mechanisms
are still available. However, in order to guarantee that bidders will be honest, these mech-
anisms have to be at least Bayesian incentive compatible. In general, the performance of a
Bayesian incentive compatible mechanism sensitively depends on which assumptions (about
bidders’ beliefs) are true and which are false, unless it is also a dominant strategy mechanism.
Therefore a cautious auctioneer’s voluntarily chooses to use a dominant strategy mechanism.

We call this story the maxmin foundation of dominant strategy mechanisms, because
the auctioneer chooses among mechanisms according to their worst scenerio performance.
Pictorially, what we need to prove is a theorem that takes the form of Figure 1. In Figure 1,
we plot the performance of an arbitrary Bayesian incentive compatible mechanism against
different assumptions about (or distributions of) bidders’ beliefs. The graph of any dominant
strategy mechanism—and in particular the graph of the best one among all dominant strategy
mechanisms—will be a horizontal line. What we need to prove is that the graph of any
(potentially very complicated) Bayesian incentive compatible mechanism must dip below
the graph of the best dominant strategy mechanism at some point.
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the best dominant strategy mechanism

Figure 1: the graph of any mechanism dips below the graph of the best dominant strategy
mechanism at some point.

Figure 1, although we believe captures the imagination of many advocates of dominant
strategy mechanisms, turns out being very difficult to prove. The set of mechanisms is simply
too rich, especially when we allow for complicated mechanisms, and at this stage we still do
not know how to systematically characterize the “dip” of the graph of every mechanism.

Instead, in this paper, we prove a slightly different figure. We introduce a sufficient
condition called Condition M , which is a condition on the distribution of bidders’ valuations
(recall that the auctioneer has confidence in the distribution of bidders’ valuations although
not in the distribution of bidders’ beliefs). We prove that, under Condition M , Figure 2 will
be true: there will be a particular assumption about (or distribution of) bidders’ beliefs, at
which point the graph of every (potentially very complicated) Bayesian incentive compatible
mechanism must dip below the graph of the best dominant strategy mechanism.

As we will see, Condition M is simply a generalization of what Myerson (1981) calls the
“regular case” in his classical paper on optimal auctions. It is a familiar condition in the
literature of mechanism design and comfortably assumed in many applications. Hence we
consider proving Figure 2 under Condition M as a substantial progress towards the ultimate
goal of proving Figure 1.

Section 2 presents the model and formalizes the problem. Section 3 then uses a two-bidder
two-valuation example to illustrate our proof of Figure 2. In any two-bidder two-valuation
example, Condition M will be satisfied as long as there is no unambiguous strong bidder;
i.e., bidder 1’s low valuation is lower than bidder 2’s high valuation, and vice versa. Our
main result will be presented and proved in Section 4. In Section 5, we shall make some
remarks on the common prior assumption.
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another (potentially very complicated) mechanism

a (potentially very complicated) mechanism

the best dominant strategy mechanism

an assumption about (or distribution of)
bidders’ beliefs at which every other

best dominant strategy mechanism

Figure 2: there is a particular point at which the graph of every mechanism dips below the
graph of the best dominant strategy mechanism.

This paper is not the first one trying to offer a foundation for dominant strategy mecha-
nisms. Bergemann and Morris (2002) offers an alternative foundation for ex post incentive
compatible mechanisms, which in private-value settings are equivalent to dominant strategy
mechanisms. It will be easier to compare this paper with Bergemann and Morris (2002) after
we present the model. Therefore we shall defer the discussion to Section 7.

Nor would this paper and Bergemann and Morris (2002) be the last ones trying to offer
foundations for dominant strategy mechanism. We consider different foundations not as
competitors, but instead as complements in building our collective confidence in a particular
approach to implement the Wilson Doctrine. Indeed, in Section 6, we investigate yet another
possible foundation called the Bayesian foundation. The Bayesian foundation can be loosely
explained with the following story. Imagine the auctioneer as a Bayesian decision maker.
When she needs to choose a mechanism under uncertainty of bidders’ beliefs, she forms a
subjective belief about bidders’ beliefs, and compares different mechanisms by calculating the
expected performance with respect to that subjective belief. When we as outside observers
observe that this auctioneer chooses a particular mechanism, we can ask whether or not such
a choice is consistent with Bayesian rationality; i.e., whether or not such a choice is optimal
with respect to some subjective beliefs. If the answer is affirmative, then we say that such a
choice is rationalizable. We can say that dominant strategy mechanisms are rationalizable
if they are optimal with respect to some subjective beliefs.
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The difference between the Bayesian and the maxmin foundations is hence whether the
auctioneer is a Bayesian or a maxmin decision maker. Given the predominant role of Bayesian
rationality in the literature of mechanism design, it seems even more natural to pursue the
Bayesian foundation. However, in Section 6, we show that such a foundation is impossible.
Indeed, it is not difficult to find examples where dominant strategy mechanisms cannot be
rationalized by any subjective beliefs.

Section 7 then concludes the paper.

2 Preliminaries

2.1 Types

A single unit of an indivisible object is up for sale. There are N risk-neutral bidders with
privately known valuations competing for the object. Each bidder has M possible valuations
and for notational simplicity, we suppose that the set Vi of possible valuations is the same
for each bidder i and that Vi = {v

1, v2, . . . , vM} where vm−vm−1 = ∆ for each m.1 A bidder
i with valuation vi receives expected utility pivi − ti if pi is the probability with which he
will be awarded the object and if his expected monetary payment is ti.

A typical element of V := ×iVi is v, and a typical element of V−i := ×j 6=iVj is v−i.

To characterize the (equilibrium) behavior of the bidders who compete in some given
auction mechanism, it is not enough to specify the bidders’ possible payoff-relevant types
or even the probability distribution from which they are drawn. In addition, we must also
specify their beliefs about the valuations of their opponents (called the first-order beliefs),
their beliefs about one another’s’ first-order beliefs (second-order beliefs), etc.

We wish to consider a formulation of the optimal auction problem which avoids implicit
assumptions on higher-order beliefs. The way to do this is to first consider the universal
belief space in which for every conceivable (coherent) hierarchy of higher-order beliefs there
is a representative “belief type.” This prevents the modeler from implicitly building in any
assumptions about the connections between beliefs among bidders and across orders. Then
a “type” consists of a payoff-relevant type together with a belief type. The universal type
space is the set of all such types. Finally, we model any assumption about bidders’ types
(including any possible common knowledge assumption) as a probability measure over the
universal type space.

Specifically, we construct the universal belief space from the basic payoff-relevant data
as follows (the construction is standard, see Mertens and Zamir (1985) for the details and
Brandenburger and Dekel (1993) for an alternative derivation). To begin with, whenever X
is a metric space, we treat X as a measurable space with the Borel σ-algebra and let ∆X

1These notational conventions simplify the statements of results and notation, but are entirely innocuous.
Assumptions of asymmetry in the bidders’ valuation sets, or differing gaps between valuations, can be built
into the distribution of valuations by assuming that certain valuation profiles have zero probability.
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be the space of all Borel probability measures on X endowed with the weak topology.

The set of possible first-order beliefs for bidder i is

T
1
i := ∆V−i,

and the set of all possible kth-order beliefs is

T
k
i := ∆(V−i × T

k−1
−i ).

Because the set ∆X is compact metric whenever X is, by induction each Tk
i is a com-

pact metric space. The projections φk
i : Tk

i → T
k−1
i , defined inductively by φ2i (τ

2
i )(v−i) =

τ 2i ({v−i} × T1−i), and for each measurable subset {v−i} ×B ⊂ V−i × T
k−2
−i ,

φki (τ
k
i )({v−i} ×B) = τ ki ({v−i} ×

[

φk−1−i

]−1
(B)),

demonstrate that each kth-order belief for i implicitly defines beliefs at lower orders as well.

A universal belief type for bidder i is a sequence (or hierarchy) τi = (τ 1i , τ
2
i , . . .) satisfying

τ ki ∈ Tk
i and the coherency condition that φk

i (τ
k
i ) = τ k−1i . The universal belief space for bidder

i is then the set T∗
i ⊂

∞
∏

k=1

Tk
i of all such coherent hierarchies. This product space endowed

with the product topology is compact. Since the set of coherent hierarchies is closed, the
universal belief space is compact. By Mertens and Zamir (1985) and Brandenburger and
Dekel (1993), there is a homeomorphism between T∗

i and ∆(V−i × T∗
−i) and thus the latter

is compact. Let gi : T∗
i → ∆(V−i × T∗

−i) be such a mapping.

A type is a pair ωi = (vi, τi). Let fi(ωi) = vi be the projection from bidder i’s type to
bidder i’s valuation. A type space is a set Ω =

∏N

i=1Ωi, where Ωi ⊂ Vi × T∗
i . In this paper,

we will mainly deal with two varieties of type spaces.

The universal type space Ω∗ is the type space where each Ω∗
i = Vi×T∗

i . Notice that every
type space is a subset of the universal type space. Let T∗ =

∏N

i=1 T∗
i . For any v ∈ V , we

shall write Ω∗(v) for the open subset {v} × T∗ ⊂ Ω∗.

Another kind of type space, used almost without exception in the literature of mechanism
design, is the naive type space Ων generated from some distribution ν over the set of payoff-
relevant types V . Specifically, this means that bidder i’s first-order belief is a function of
his valuation vi and is given by the conditional distribution τ 1i (vi)(·) = ν(·|vi). Furthermore,
since for each j 6= i, bidder j’s first-order belief is τ 1j (vj)(·) = ν(·|vj), bidder i’s second-order
beliefs can be computed from ν as well. In particular, bidder i believes that with probability

τ 2i (vi)(γ) := ν(
[

τ 1−i

]−1
(γ)|vi),

bidders −i have first-order beliefs γ. Similarly, all higher-order beliefs can be inductively
derived from ν.
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2.2 Mechanisms

We consider direct revelation mechanisms.2 A direct revelation auction mechanism for
type space Ω is a game form in which the bidders simultaneously announce their types from
the corresponding set Ωi, and the object is allocated and monetary transfers enforced as
a function of their announcements. Formally, an auction mechanism Γ = (p, t) is defined
by two functions, p : Ω → [0, 1]N and t : Ω → RN . The allocation rule p specifies the
probabilities pi(ω) with which each bidder i will receive the object. The allocation rule is
restricted to be feasible:

∑N

i=1 pi(ω) ≤ 1. The transfer rule t defines payments ti(ω) made

from bidder i to the auctioneer. Denote by t̄(ω) the sum
∑N

i=1 ti(ω).

We want to show that a cautious auctioneer will choose a simple, dominant strategy
incentive compatible auction over more complicated, Bayesian incentive compatible auctions
that ask bidders to report their universal types. So we shall define these two notions of
incentive compatibility now. Note that, to avoid being too mouthful, we slightly abuse
commonly used terminology below.

Definition 1 An auction mechanism Γ is dominant strategy incentive compatible with re-
spect to the naive type space Ων (or simply dsIC) if for each bidder i and type profile ω ∈ Ων,

pi(ω)vi − ti(ω) ≥ 0, and

pi(ω)vi − ti(ω) ≥ pi(ω̂i, ω−i)vi − ti(ω̂i, ω−i),

for any alternative type ω̂i ∈ Ων
i .

Since |Ων
i | = |Vi|, and since the incentive compatibility constraints for dsIC depend only

on valuations, an auction mechanism is dsIC with respect to a naive type space Ων if and
only if it is dsIC with respect to any other naive type space Ων′ . So we can always discuss
whether an auction mechanism is dsIC with respect to the naive type space without referring
to the specific distribution ν from which the naive type space is generated.

Definition 2 An auction mechanism Γ is Bayesian incentive compatible with respect to the
universal type space Ω∗ (or simply BIC) if for each bidder i and type ωi ∈ Ω∗

i ,

∫

Ω∗−i

[pi(ω)vi − ti(ω)]gi(τi)(dω−i) ≥ 0, and

∫

Ω∗−i

[pi(ω)vi − ti(ω)] gi(τi)(dω−i) ≥

∫

Ω∗−i

[pi(ω̂i, ω−i)vi − ti(ω̂i, ω−i)] gi(τi)(dω−i),

for any alternative type ω̂i ∈ Ω∗
i .

2The revelation principle can be shown by standard arguments to hold for all type spaces and all definitions
of incentive compatibility considered here. It is thus without loss of generality to restrict attention to direct
revelation mechanisms.
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Note that any auction mechanism Γ that is dominant strategy incentive compatible with
respect to the naive type space (i.e., dsIC) can be extended naturally into an auction mech-
anism that is Bayesian incentive compatible with respect to the universal type space (i.e.,
BIC) in a straightforward manner. We shall abuse notation and use Γ to denote this natural
extension as well.

2.3 Digression: Why Do We Treat IR and IC “Equally?”

We want to make an important remark on why we treat individual rationality (IR) and
incentive compatibility (IC) “equally.” In particular, we incorporate the ex post IR constraint
into our definition of dominant strategy incentive compatibility, and incorporate the interim
IR constraint into our definition of Bayesian incentive compatibility. Is it appropriate to
ignore other possible combinations?

In any study on foundations, such as this paper, it is important to reflect on the origins of
these IR and IC constraints; i.e., what are the primitive constraints on available mechanisms
that are translated into these IC and IR constraints?

There are two kinds of primitive constraints. The first primitive constraint is concerned
of the following institutional question: does the mechanism designer have or have not the
power to force agents to play her mechanism? If the answer is no, then there will be a
constraint that says every mechanism must include an “opt out” option for every agent. If
the answer is yes, which may be the case if the mechanism designer is a mafia boss, then
there will be no such constraint.

The second primitive constraint is concerned of the solution concept used by the mech-
anism designer. Every mechanism induces an incomplete information game, and the mech-
anism designer needs some solution concept to predict the performance of the mechanism
and choose one mechanism out of many. Once a solution concept E is specified, there will
be a constraint that says every mechanism must possess an E-equilibrium.

The IR constraint comes from both the first and the second primitive constraints: if
the mechanism designer is not a mafia boss, and if she uses dominant strategy equilibrium
(respectively Bayesian Nash equilibrium) as her solution concept, then the corresponding IR
constraint will be ex post IR (respectively interim IR).

Note that the IC constraint also come from the same second primitive constraint. It
means the IR and IC constraints must be treated “equally.” Had we used a combination of,
say, interim IR and dominant strategy incentive compatibility, we would have difficulty in
backing out the second primitive constraint.

There is also a third kind of IR constraint, namely ex ante IR, which we do not consider
in this paper. Whether ex ante IR is relevant crucially depends on whether or not there
is indeed an ex ante stage. The existence of such a stage is a subject of debate (see, for
example, Gul (1998)). For some authors, we included, the existence of an intermediate stage
(somewhere in between the ex ante and the interim stages) at which agents receive “signals”
or “information” about their own beliefs is inconceivable.

9



2.4 The Auctioneer as a Maxmin Decision Maker

We model any assumption (including any common knowledge assumption) about bidders’
belief as a distribution over bidder’s universal type space. Specifically, let µ be a distribution
over Ω∗. For any BIC auction Γ, the performance of Γ under assumption µ, or the µ-expected
revenue, is defined as Rµ(Γ) =

∫

Ω∗
t̄ µ(dω).

We take the distribution ν over V as given. This represents the auctioneer’s estimate of
the bidders’ valuations. An assumption that is consistent with this estimate is a distribution
µ on the universal type space Ω∗ whose marginal on V is ν. Let M(ν) denote the compact
subset of such assumptions. Observe that there is a unique element ν∗ in this subset that
concentrates on the naive type space Ων generated by ν. This represents the (common
knowledge) assumption in the traditional literature that Wilson (1987) refers to. Unlike the
standard formulation of the optimal auction design problem, we do not assume that the
auctioneer has confidence in this particular assumption ν∗. Rather the auctioneer considers
other assumptions within the set M(ν) as possible as well.

A cautious auctioneer who chooses an auction that maximizes the worst-case performance
is hence solving the maxmin problem of

sup
Γ is BIC

inf
µ∈M(ν)

Rµ(Γ). (1)

Note that if an auction Γ is dominant strategy incentive compatible with respect to the
naive type space (i.e., dsIC), then for any assumption µ ∈ M(ν), the µ-expected revenue of
Γ—or, more precisely, Γ’s natural extension into the universal type space—depends only on
the distribution ν. Hence we can write Rµ(Γ) as Rν(Γ) without ambiguity.

Definition 3 Given any distribution ν over V , the optimal dsIC revenue is defined as

ΠD(ν) := sup
Γ is dsIC

Rν(Γ).

The maxmin foundation of dominant strategy mechanisms refers to the following equa-
tion:

ΠD(ν) = sup
Γ is BIC

inf
µ∈M(ν)

Rµ(Γ), (2)

for every distribution ν over valuations.

In this paper, instead of proving that equation (2) holds for every ν, we shall prove that
it hold for every ν satisfying a sufficient condition called Condition M (to be defined in
Section 4). Specifically, we shall prove that, whenever ν satisfies Condition M , there will
exist an assumption µ∗ ∈ M(ν) consistent with ν under which we will have

ΠD(ν) = sup
Γ is BIC

Rµ∗(Γ), (3)
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which implies

ΠD(ν) = sup
Γ is BIC

Rµ∗(Γ) ≥ inf
µ∈M(ν)

sup
Γ is BIC

Rµ(Γ) ≥ sup
Γ is BIC

inf
µ∈M(ν)

Rµ(Γ) ≥ inf
µ∈M(ν)

ΠD(ν) = ΠD(ν),

or simply
ΠD(ν) = sup

Γ is BIC
inf

µ∈M(ν)
Rµ(Γ),

which delivers the maxmin foundation as promised.

3 An Illustrative Example

In this section, we shall use a simple example to illustrate our main result as well as the
strategy of proof.

Consider an auction example with two bidders, and each bidders have two possible valu-
ations. Bidders’ valuations are correlated according to the distribution ν depicted in Figure
3.

v1 = 4 v1 = 9
v2 = 11 3/10 1/10
v2 = 5 3/10 3/10

Figure 3: The distribution ν of bidders’ valuations.

The optimal dsIC auction is depicted in Figure 4. In Figure 4, “α = i” is the shorthand
for “allocating the object to bidder i” (i.e., pi = 1 and p−i = 0), and “α = 0” means no sale.

v1 = 4 v1 = 9
v2 = 11 α = 2, t1 = 0, t2 = 11 α = 2, t1 = 0, t2 = 11
v2 = 5 α = 0, t1 = 0, t2 = 0 α = 1, t1 = 9, t2 = 0

Figure 4: The optimal dsIC auction Γ.

In any two-bidder two-valuation example, Condition M (to be formally defined in the
next section) will be satisfied as long as there is no unambiguous strong bidder; i.e., bidder
1’s low valuation is lower than bidder 2’s high valuation, and vice versa. Hence, according
to Theorem 1 (to be proved in the next section), there exists an assumption µ∗ consistent
with the distribution ν such that equation (3) holds.
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We construct one such assumption µ∗ below, but shall keep our exposition informal. Let
ai (bi) denote the first-order belief of a high-valuation (low-valuation) type of bidder i that
bidder −i has high valuation.

Consider an assumption µ∗ which has a 4-point support: for every bidder i, every possible
valuation is associated with only one possible belief type. The marginal distribution of µ∗

over bidders’ valuations and first-order beliefs is as depicted in Figure 5.

b1 = 2/5 a1 = 1/4
a2 = 1/4 3/10 1/10
b2 = 2/5 3/10 3/10

Figure 5: The auctioneer’s belief µ.

The bidders’ higher-order beliefs are derived from Figure 5 by induction. For example,
for a low-valuation type of bidder 1, his second-order belief assigns probability 2/5 (3/5)
to bidder 2 having high (low) valuation and holding first-order belief a2 = 1/4 (b2 = 2/5),
and a high-valuation (low-valuation) type of bidder 2 has a third-order belief that assigns
probability 3/4 (3/5) to bidder 1 having low valuation and having such a second-order belief,
and so on.

It is obvious that this assumption µ∗ is consistent with the distribution ν.

Under this assumption µ∗, there are at least two possible ways to improve upon the
optimal dominant strategy auction Γ in Figure 4. First, according to the assumption µ∗,
conditional on bidder 1 having low valuation, the conditional probability that bidder 2 has
high valuation is 1/2. This is different from the first order belief of the low-valuation type
of bidder 2, which is b1 = 2/5. So one possible way to improve upon Γ is to betting
against the low-valuation type of bidder 1 on bidder 2’s types. Second, since high- and low-
valuation types of bidder 1 hold different beliefs, another possible way to improve upon Γ
is to separate these two types by introducing Crémer-McLean-kind of lotteries and relaxing
incentive compatibility constraints. We shall see that either of these two ways fail to improve
upon Γ.

First, consider introducing any bet (x, y) on bidder 2’s type, where x and y are the
amount bidder 1 pays the auctioneer in the events bidder 2 has low and high valuations
respectively. If the bet is acceptable to both the auctioneer and the low-valuation type of
bidder 1, we must have

(1/2)x+ (1/2)y ≥ 0, and

(3/5)(−x) + (2/5)(−y) ≥ 0,

with at least one inequality strict unless x = y = 0. But then the high-valuation type of
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bidder 1 would find the bet acceptable as well, as

(3/4)(−x) + (1/4)(−y) = (5/2)[(3/5)(−x) + (2/5)(−y)] + (3/2)[(1/2)x+ (1/2)y],

which is strictly bigger then the zero rent for the high-valuation type of bidder 1 under the
auction Γ. With both high- and low-valuation types of bidder 1 accepting such a bet, such
a bet turns sour for the auctioneer, as

(3/5)(−x) + (2/5)(−y) ≤ 0,

and this explains why introducing the first kind of bets does not help.

Second, consider introducing any Crémer-McLean-kind of lottery to separate the high-
and low-valuation types of bidder 1 and relax the downward incentive compatibility con-
straint. Once again, let (x, y) be such a bet on bidder 2’s type. Suppose the bet is successful
in the sense that the auctioneer can now sell to the low-valuation type of bidder 1 without
the need to leave extra rent for the high-valuation type of bidder 1 (as she needed to before
the introduction of such a bet that relaxes the downward incentive compatibility constraint),
then we must have

(3/5)(4− x) + (2/5)(−y) ≥ 0, and

(3/4)(9− x) + (1/4)(−y) ≤ 0,

where the first (second) inequality follows from the individual rationality (incentive com-
patibility) constraint of the low-valuation (high-valuation) type of bidder 1. However, these
together imply that any bet like this is too good to be profitable for the auctioneer, as

(1/2)x+ (1/2)y = (2/3)[(3/4)(−x) + (1/4)(−y)]− (5/3)[(3/5)(−x) + (2/5)(−y)] ≤ −1,

and this explains why introducing the second kind of bets does not help either.

In principle, there may still be other possible ways to improve upon the optimal dsIC
auction Γ. But actually there are no more (this requires a proof, which will be the content
of Theorem 1). Hence, under the assumption µ∗ equation (3) holds, which in turn implies
that equation (2) holds as well.

4 The Main Result

In this section, we shall first review the problem optimal dsIC auction design. We use
a version of a standard argument to show that the dominant strategy incentive constraints
can be replaced by a monotonicity constraint on the allocation rule. We then formally define
Condition M , which in effect says the monotonicity constraint is not binding in the optimal
dsIC auction design problem. We will relate Condition M to the more familiar condition
called “the regular case” in the optimal auctions literature after Myerson (1981), and show
in Proposition 1 sufficient conditions (analogous to the more familar “monotone hazard rate”
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condition) under which Condition M holds.

4.1 Review of Optimal dsIC Auctions

We can formulate the optimal dsIC auction design problem as follows:

max
p(·),t(·)

∑

vi∈V

ν(v)
N
∑

i=1

ti(v) (4)

subject to: ∀ i = 1, . . . , N , ∀ m, l = 1, . . . ,M , ∀ v−i ∈ V−i,

pi(v
m, v−i)v

m − ti(v
m, v−i) ≥ 0, 〈DIRm

i 〉

pi(v
m, v−i)v

m − ti(v
m, v−i) ≥ pi(v

l, v−i)v
m − ti(v

l, v−i). 〈DICm→l
i 〉

By some standard manipulations, we shall eliminate some constraints and rewrite the
problem in a form that will facilitate comparison with the optimal BIC auction. The following
result is standard.

Lemma 1 Say that an allocation rule p is dsIC if there exists a transfer rule t such that the
auction mechanism (p, t) satisfies the constraints in (4). A necessary and sufficient condition
for p to be dsIC is the following monotonicity condition:

pi(v
m, v−i) ≥ pi(v

m−1, v−i), ∀ m = 2, . . . ,M, ∀ v−i ∈ V−i. 〈Mi〉

It follows again from standard arguments that in an optimal dsIC auction, the constraints
〈DIR1i 〉 and 〈DIC

m→m−1
i 〉 are binding and (given that p is monotonic) all other constraints

can be ignored. Combining the resulting two equalities, we see that when the other bidders
report valuation profile v−i, bidder i’s net utility (“rent”) will be

Ui(v
1, v−i) = 0

for type v1 and

Ui(v
m, v−i) = pi(v

m−1, v−i)(v
m − vm−1) + Ui(v

m−1, v−i) = ∆
m−1
∑

m′=1

pi(v
m′

, v−i)

for type vm, m > 1. By definition, the total transfer received by the auctioneer is the total
surplus generated by any sale of the object less the rent received by the bidders. Thus, an
equivalent formulation of the problem is to choose a dsIC (i.e., monotonic) allocation rule
to maximize the expected value of this difference:
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max
p(·)

N
∑

i=1

M
∑

m=1

∑

v−i∈V−i

ν(vm, v−i)

[

pi(v
m, v−i)v

m −∆
m−1
∑

m′=1

pi(v
m′

, v−i)

]

(5)

subject to 〈Mi〉, i = 1, . . . , N.

In accordance with Lemma 1, the monotonicity constraint appears as an equivalent ex-
pression for dsIC. This constraint may or may not bind at the solution. The literature on
optimal auctions has developed various techniques for incorporating the constraint when it
does bind. Loosely speaking, one first ignore the monotonicity constraint and solves the
relaxed problem by pointwise optimization. If the resulting allocation rule is already mono-
tonic, then it is also a solution to the constrained problem. If the resulting allocation rule
is not monotonic, some extra “ironing” work will be needed. In many applications, the
“ironing” work is typically avoided by imposing certain conditions (such as “monotone haz-
ard rate”) on the distribution ν over valuations. The case where “ironing” is not needed is
generally referred to as “the regular case.”

Condition M We say that the distribution ν over bidders’ valuations satisfies Condition
M if the constraints 〈Mi〉 are not binding in problem (5).

Note for future use that the set of ν satisfying ConditionM is closed. Indeed, if ν satisfies
Condition M , the solution to problem (5) can be solved by pointwise optimization, which in
turn will be continuous in ν. That the set of ν is closed then follows from the fact that the
set of monotonic allocation rules is closed.

Before we prove that equation (2) holds for all ν satisfying Condition M , let us point
out conditions that are in turn sufficient for Condition M . We should emphasize that, in
the traditional literature, bidders’ valuations are typically assumed to be independently dis-
tributed. With independent types, sufficient conditions for Condition M are well-known. In
our setting, bidders’ valuations may be correlated, and this makes ConditionM slightly more
complicated. Let Fi(v

m, v−i) =
∑M

m′=m+1 ν(v
m′

, v−i) denote the de-cumulative distribution
function for bidder i’s valuation, given the valuations v−i of the other bidders. The inverse
hazard rate for bidder i is hi(v) = Fi(v)/ν(v).

Proposition 1 A distribution ν over bidders’ valuations will satisfy Condition M if, for
each i, j, and v−i, the difference hi(vi, v−i)− hj(vi, v−i) is decreasing in vi.

Note that in the case of independent ν, our condition reduces to the usual condition of
monotone hazard rate. For more general ν, our condition is neither weaker nor stronger
than monotone hazard rate. It is always satisfied when bidders’ valuations are sufficiently
positively correlated. Proposition 1 is proved in the appendix. We now turn to our main
result.
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4.2 The Possibility of Maxmin Foundation

Theorem 1 Equation (2) holds for all ν satisfying Condition M .

Proof: Let ν be given. Write νmi for the marginal probability of valuation vi = vm, and
write Fi(m) =

∑M

m′=m νm
′

i for the associated de-cumulative distribution function. Let σm
i =

ν(·|vm) be the conditional distribution over the valuations of bidders j 6= i conditional on
bidder i having valuation vm. We first analyze the case in which ν is regular ; i.e., νmi > 0 for
each m (so that these conditional distributions are well-defined) and the collection of vectors
{σm

i }
M
m=1 is linearly independent.

Our proof is constructive. Construct an assumption µ∗ which concentrates on M pos-
sible types for each bidder. Let Ω = ×iΩi be the support of µ∗, with Ωi = {ωm

i }
M
m=1 =

{(vm, τmi )}Mm=1 representing the set of possible types of bidder i under assumption µ. The
beliefs τmi of these types will be specified next. For each ωj ∈ Ωj, let fj(ωj) be the valuation
of ωj. Note that fj is a bijection for all j. For any belief τ over V−i, define a corresponding
belief πi(τ) over Ω−i in the straightforward way: πi(τ)(ω−i) = τ((fj(ωj))j 6=i). In what fol-
lows, we shall occasionally use the notation τ interchangeably for πi(τ), and the context will
prevent any confusion.

We construct the bidders’ beliefs as follows:

∀i,∀m, τmi =
1

Fi(m)

M
∑

m′=m

νm
′

i σm′

i .

Thus, conditional on having valuation vm, bidder i’s belief over opponents’ valuations (and
hence types) is a conditional expectation with respect to ν; in particular, it is the average ν-
probability conditional on i having valuation at least vm.3 Note that the collection {τmi }

M
m=1

is linearly independent. The following equivalent recursive definition of τmi is useful:

τMi = σM
i ,

τmi =
1

Fi(m)

(

νmi σ
m
i + Fi(m+ 1)τm+1i

)

, ∀m < M. (6)

Finally, we specify the assumption µ∗ about types: µ∗ = π(ν); i.e., µ∗(ω) = ν((fi(ωi)
N
i=1).

Obviously µ∗ ∈ M(ν). Under this assumption µ∗, the optimal BIC auction design problem

3Thus, each bidder type has beliefs which are a distortion of ν, except for the highest valuation type,
where there is “no distortion at the top.”
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is as follows:

max
p(·),t(·)

N
∑

i=1

∑

ω∈Ω

µ∗(ω)ti(ω) (7)

subject to: ∀ i = 1, . . . , N , ∀ m = 1, . . . ,M , ∀ l = 1, . . . ,M,

τmi · (p
m
i v

m − tmi ) ≥ 0, 〈IRm
i 〉

τmi · (p
m
i v

m − tmi ) ≥ τmi ·
(

pliv
m − tli

)

. 〈ICm→l
i 〉

We have used the shorthand notation pmi and tmi to refer to the vectors pi(ω
m
i , ·) and

ti(ω
m
i , ·) respectively in RMN−1

, and the inner product notation such as τmi · pmi for the
expectations of these vectors with respect to the belief τmi .

Say that an allocation rule p is BIC if there exists a transfer rule t such that the auction
mechanism (p, t) satisfies the constraints in (7). Because the beliefs of the types of each
bidder are linearly independent, every allocation rule is BIC. Indeed, by exploiting the dif-
ferences in beliefs, the incentive compatibility and individual rationality constraints can be
satisfied by building into the transfer rule lotteries which have positive expected value to the
intended type and arbitrarily large negative expected values to the other types. This kind
of construction is due to Crémer and McLean (1988), and we shall omit the details.

While the above argument shows that any allocation rule is implementable by some
appropriate choice of transfer rule, we can further sharpen the conclusion and argue that
certain constraints in (7) can be manipulated or even ignored without cost to the auctioneer.
To begin with, each “upward” incentive constraint (i.e., 〈ICm→l

i 〉 for m < l) can be ignored.
Indeed, because bidder i’s beliefs are linearly independent, there exists a lottery λ ∈ RMN−1

such that τmi · λ = 0 for all m ≥ l and τmi · λ < 0 for all m < l. Since by (6) σl
i is a linear

combination of τ li and τ l+1i , we also have σl
i · λ = 0. By adding (some sufficiently large scale

of) λ to tli, each 〈IC
m→l
i 〉 for m < l can be relaxed. No other constraints are affected and

the resulting change in the auctioneer’s revenue is σl
i · λ = 0.

We next show that for any auction mechanism (p, t) that satisfies the remaining con-
straints, there exists an auction mechanism (p′, t′) which satisfies the constraints 〈IRm

i 〉, for
m = 1, . . . ,M , and 〈ICm→m−1

i 〉, for m = 2, . . . ,M , with equality, and achieves at least as
high an µ∗-expected revenue as (p, t) does.

To prove this, fix any auction mechanism (p, t) that satisfies the remaining constraints.
Suppose 〈ICm→m−1

i 〉 holds with strict inequality. Let τ denote the matrix whose M rows
are the vectors {τmi }

M
m=1, and let (τ−m, σm−1

i ) be the matrix obtained by replacing the mth
row of τ with the vector σm−1

i . Note that the matrix (τ−m, σm−1
i ) has rank M . We can thus

solve the following equation for λ:

(τ−m, σm−1
i ) · λ = em,

where em denotes the mth elementary basis vector in RM . Note that because τm−1
i · λ =

0 < σm−1
i · λ, and because τm−1

i is a convex combination of σm−1
i and τmi according to (6),

we have τmi · λ < 0.
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We will add the vector ελ to tm−1
i for some scalar ε > 0. Because τm

′

i · λ = 0 for
m′ 6= m, no constraints for types ωm′

i are affected. As for type ωm
i , the constraint 〈IRm

i 〉
is unaffected. The only incentive constraint of type ωm

i that is affected is 〈ICm→m−1
i 〉, and

this constraint was slack by assumption. Let Sm
i > 0 be the slack in 〈ICm→m−1

i 〉, and choose
ε = −Sm

i /(τ
m
i · λ) > 0. Then, with the resulting transfer rule, 〈ICm→m−1

i 〉 holds with
equality. Finally, because εσm−1

i · λ > 0, the auctioneer profits from this modification.

We next show that each 〈IRm
i 〉 can be treated as an equality without loss of generality.

Define Sm
i = τmi · (p

m
i v

m − tmi ) ≥ 0 to be the slack in 〈IRm
i 〉. Construct a lottery λ that

satisfies
τmi · λ = Sm

i , m = 1, . . . ,M.

By the full-rank arguments such a lottery λ can be found. We will add λ to each tmi . No
constraint of the form 〈ICm→l

i 〉 will be affected, but now each constraint of the form 〈IRm
i 〉

holds with equality. Finally, we check that the auctioneer profits from this modification.
Indeed, the auctioneer nets

M
∑

m=1

νmi (σm
i · λ) =

M−1
∑

m=1

(

Fi(m)τmi − Fi(m+ 1)τm+1i

)

· λ+ νMi τMi · λ

= Fi(1)τ
1
i · λ

= Fi(1)S
1
i

≥ 0.

The proof for the regular case is now concluded as follows. Based on the preceding
arguments, we consider the modified program in which the constraints 〈IRm

i 〉 and 〈IC
m→m−1
i 〉

are satisfied with equality. We will use these constraints to substitute out for the transfers in
the objective function and reduce the problem to an unconstrained optimization with the only
choice variable being the allocation rule (recall that any allocation rule is BIC). The resulting
objective function will be identical to the objective function (4) for the dsIC problem. Thus
the only difference between the two problems is the absence of any monotonicity constraint
in the BIC case. It then follows that (i) the modified problem and hence the original problem
(7) will have a solution, and (ii) this solution will be the same as the solution to the dsIC
problem given Condition M .

We rewrite the objective function in (7) as below, and impose the constraints as equalities:

max
p(·),t(·)

N
∑

i=1

M
∑

m=1

νmi σ
m
i · t

m
i (8)

subject to: ∀ i = 1, . . . , N , ∀ m = 1, . . . ,M,

τmi · (p
m
i v

m − tmi ) = 0, 〈IR
m

i 〉

τmi · (p
m
i v

m − tmi ) = τmi ·
(

pm−1
i vm − tm−1

i

)

. 〈IC
m→m−1

i 〉

We have substituted in the objective function using the definition µ∗(ω) = ν(f(ω)) =
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νi(fi(ωi))ν(f−i(ω−i)|fi(ωi)) = νmi σ
m
i for the appropriate m.

By definition, σM
i = τMi , so 〈IR

M

i 〉 becomes σM
i · tMi = vMσM

i · pMi . Now, for arbitrary
m < M ,

σm
i · t

m
i =

1

νmi

[

Fi(m)τmi − Fi(m+ 1)τm+1i

]

· tmi

=
1

νmi

{

Fi(m)vmτmi · p
m
i − Fi(m+ 1)

[

τm+1i · (pmi − pm+1i )vm+1 + τm+1i · tm+1i

]}

=
1

νmi

[

Fi(m)vmτmi · p
m
i − Fi(m+ 1)vm+1τm+1i · pmi

]

.

In the first line we used the recursive definition in (6), in the second line we used 〈IR
m

i 〉 and

〈IC
m+1→m

i 〉, and in the third line we used 〈IR
m+1

i 〉.

Substituting the constraints into the objective function, it becomes:

N
∑

i=1

{

vMνMi σM
i · p

M
i +

M−1
∑

m=1

[

vmFi(m)τmi · p
m
i − vm+1Fi(m+ 1)τm+1i · pmi

]

}

=
N
∑

i=1

{

vMνMi σM
i · p

M
i +

M−1
∑

m=1

[

vm
(

νmi σ
m
i + Fi(m+ 1)τm+1i

)

· pmi − vm+1Fi(m+ 1)τm+1i · pmi
]

}

=
N
∑

i=1

[

M
∑

m=1

vmνmi σ
m
i · p

m
i −

M
∑

m=2

(vm − vm−1)Fi(m)τmi · p
m−1
i

]

.

Applying the definition of τmi , the objective function becomes:

N
∑

i=1

[

M
∑

m=1

vmνmi σ
m
i · p

m
i −

M
∑

m=2

∆

(

M
∑

m′=m

νm
′

i σm′

i

)

· pm−1
i

]

=
N
∑

i=1

[

M
∑

m=1

vmνmi σ
m
i · p

m
i −∆

M
∑

m=2

m
∑

m′=2

νmi σ
m
i · p

m′−1
i

]

=
N
∑

i=1

M
∑

m=1

νmi σ
m
i ·

[

vmpmi −∆
m
∑

m′=2

pm
′−1

i

]

=
N
∑

i=1

M
∑

m=1

∑

v−i∈V−i

νi(v
m, v−i) ·

[

vmpi(v
m, v−i)−∆

m−1
∑

m′=1

pi(v
m′

, v−i)

]

.

This is identical to the objective function in (5). This establishes equation (3), and hence
also equation (2), for any regular ν that satisfies Condition M.

Now consider any arbitrary ν, which needs not be regular, that satisfies Condition M.
There exists a sequence νn converging to ν such that each νn is regular and satisfies Condition
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M. For each regular νn, construct the type space Ωn exactly as in the first half of the proof.
Let τmi (n) denote the belief of type ωm

i of bidder i in the type space Ωn
i . Passing to a

subsequence if necessary, take τmi (n)→ τmi for each i and m. Let Ω be the limit type space
with beliefs τmi , and let µ∗ = π(ν). Write µn = π(νn).

Note that each of these type spaces (Ωn or Ω) has the same property that there is a
one-to-one correspondence between types and valuations for each bidder i. Therefore, for
any auction mechanism (p, t) defined over any of these type spaces, we can also think of it as
mappings from V to probabilities and transfers. The following notations are hence defined
regardless of which of these type spaces the auction mechanism (p, t) is defined over:

En′ t̄ :=

∫

V

t̄(v)νn
′

(v),

Et̄ :=

∫

V

t̄(v)ν(v).

Consider any auction mechanism (p, t) that is Bayesian incentive compatible with respect
to type space Ω.4 Obviously Ent̄→ Et̄. We will show that there exists a sequence of auction
mechanisms (p, t(n)) such that each (p, t(n)) is Bayesian incentive compatible with respect
to type space Ωn, and such that Ent̄(n)− Ent̄→ 0.

For each i, m, and n, let

Sm
i (n) = max{0, τmi (n) · (tmi − pmi · v

m)}

be the amount by which the 〈IRm
i 〉 constraint is violated by the auction mechanism (p, t) for

type ωm
i (n). Because (p, t) is Bayesian incentive compatible with respect to Ω, Sm

i (n) → 0
for each i and m.

However, (p, t) may not be Bayesian incentive compatible with respect to Ωn. To modify
it into an auction mechanism that is Bayesian incentive compatible with respect to Ωn, we
first add the constant −Sm

i (n) to tmi to restore all 〈IRm
i 〉 constraints. The cost of this to the

auctioneer is the µn-expected value of Sm
i (n) which is converging to zero. Let t̃(n) be the

transfer rule that results from this first step of modification.

Next, for each i, m, l, and n, let

Lm→l
i (n) = max{0, τ li (n) · (p

l
iv

m − t̃li(n))− τmi (n) · (pmi v
m − t̃mi (n))}

be the amount by which 〈ICm→l
i 〉 is violated by the auction mechanism (p, t̃(n)). Note that

Lm→m
i (n) = 0. Again, because (p, t) is Bayesian incentive compatible with respect to Ω, and

because t̃(n)→ t, we have Lm→l
i (n)→ 0 for each i, m, and l. For each n, we construct λl

i(n)
to solve the system

τmi (n) · λli(n) = Lm→l
i (n), ∀ i,m, l.

4This is similar to the definition of BIC mechanisms (Definition 2) except that Ω∗ is replaced with Ω.

20



We will add λli(n) to t̃li(n) to restore each 〈ICm→l
i 〉 constraint, without affecting 〈IRm

i 〉
constraints. The resulting auction mechanism (p, t(n)) is now Bayesian incentive compatible
with respect to Ωn. Since τmi (n) · λli(n) → 0 for each m and l, so by (6) we have σm

i (n) ·
λmi (n)→ 0 for each m, and thus,

En[t̄(n)− t̄]→ 0 (9)

as promised.

Finally, recall that ΠD(ν) denotes the optimal dsIC ν-expected revenue. Because the
constrained set in the optimal dsIC auction design problem (5) is compact, the maximum
theorem implies

ΠD(νn)→ ΠD(ν). (10)

We have already shown that ΠD(νn) ≥ Ent̄(n) because each νn is regular. This together
with (9) and (10) delivers

E(t̄) = lim
n
Ent̄ ≤ ΠD(ν).

Since (p, t) was an arbitrary auction mechanism that is Bayesian incentive compatible
with respect to Ω, this establishes equation (3), and hence also equation (2), for any ν that
satisfies Condition M.

5 Remarks on the Common Prior Assumption

In this section, we want to address a few concerns that may arise due to the observations
that the particular assumption µ∗ we used in the proof of Theorem 1 is an assumption that
is at odd with the common prior assumption (CPA).

Loosely speaking, the CPA says that there is a common probability measure (the common
prior) from which each bidder derives his belief by computing the conditional probability of
opponents’ types conditional on his own “signal” or “information.” In our current setting,
where any assumption about bidders’ types is already modelled as a probability distribution
over bidders’ types, we can relate any assumption µ to the CPA as follows. For any subset
A ∈ Ω∗

i , we shall write µ(A) as a short hand for µ(A×Ω∗
−i). In other words, we abuse notation

and use the same notation for a probability measure as well as its marginal distributions.
Recall that gi : T∗

i → ∆(V−i × T∗
−i) is the homeomorphism between bidder i’s belief types

and distributions over his opponents’ types.

Definition 4 We say that an assumption µ is an CPA-assumption if for any measurable
subsets A ⊂ Ω∗

i and B ⊂ Ω∗
−i,

∫

A

gi(τi)(B)µ(dωi) = µ(A×B).

It is apparent that the particular assumption µ∗ we used in the proof of Theorem 1 is
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not an CPA-assumption. Can we replace µ∗ with some CPA-assumption µ in the proof?
The answer is: sometimes, but not always. For some distribution ν over bidders’ valuations,
especially those that are close to being independent, it is indeed possible to use an CPA-
assumption in the proof of Theorem 1. But it is also not difficult to find an example of ν
such that no such CPA-assumption can be constructed. We will give one such an example
in the Appendix.

Do these observations cut back the appeal of Theorem 1? We believe the answer is: not
at all, for two reasons. First, whether the CPA is an appropriate assumption to make is itself
a subject of debate. Gul (1998) has explained why the CPA lacks appropriate motivations,
and Morris (1995) has also explained why many defenses of the CPA are flawed, and why
many interesting economic problems are better modelled without the CPA.

Second, recent studies on the CPA has uncovered the close relation between the CPA
and common knowledge assumptions (see, for example, Lipman (2003)). In any study on the
Wilson Doctrine, such as this paper, it can only seem self-inconsistent to pursue “successive
reduction” in the dependence on common knowledge assumptions on one hand, and continue
to be obsessed with the CPA on the other.

6 The Impossibility of Bayesian Foundation

In this section, we shall investigate yet another possible foundation of domiannt strategy
mechanisms, namely the Bayesian foundation. The Bayesian foundation can be loosely
explained with the following story. Imagine the auctioneer as a Bayesian decision maker.
When she needs to choose a mechanism under uncertainty of bidders’ beliefs, she forms a
subjective belief about bidders’ beliefs, and compares different mechanisms by calculating the
expected performance with respect to that subjective belief. When we as outside observers
observe that this auctioneer chooses a particular mechanism, we can ask whether or not such
a choice is consistent with Bayesian rationality; i.e., whether or not such a choice is optimal
with respect to some subjective belief. If the answer is yes, then we say that such a choice
is rationalizable. We can say that dominant strategy mechanisms are rationalizable if they
are optimal with respect to some subjective beliefs.

The difference between the Bayesian and the maxmin foundations is hence whether the
auctioneer is a Bayesian or a maxmin decision maker. Given the predominant role of Bayesian
rationality in the literature of mechanism design, it seems even more natural to pursue the
Bayesian foundation.

To investigate the possibility of the Bayesian foundation, we only need minimal changes
in our setting. Recall that we have already been modelling assumptions about bidders’ beliefs
as distributions over their types. So all we need to do now is to reinterpret an assumption
as a subjective belief of the auctioneer. Similarly, if the auctioneer’s estimate of the bidders’
valuations is described by ν, then her subjective belief about bidders’ beliefs must be a
distribution µ over bidders’ types that is consistent with ν.

It turns out that the Bayesian foundation is impossible. Indeed, it is not difficult to
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construct examples where dominant strategy mechanisms cannot be rationalized by any
subjective beliefs. We shall provide one such example below. As it will be clear from the
proof below, this example is robust to perturbations.

In this example, there are two bidders and each has two possible valuations. The distri-
bution of valuations ν is represented in Figure 6.

v1 = 5 v1 = 10
v2 = 4 1/6 0
v2 = 2 1/3 1/2

Figure 6: The distribution ν.

The optimal dsIC auction is depicted in Figure 7, where we follow the convention in
Section 3 and use “α = i” as the shorthand for “allocating the object to bidder i.”.

v1 = 5 v1 = 10
v2 = 4 α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
v2 = 2 α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

Figure 7: The optimal dsIC auction Γ.

It is helpful to pay attention to a few noteworthy aspects of this environment and the
optimal dsIC auction. Notice that the valuation of bidder 1 is always higher than that
of bidder 2. Nevertheless, the auctioneer chooses to sell to bidder 2 when bidder 1 has
low valuation. This is optimal because conditional on bidder 2 having low valuation, the
probability that bidder 1 has high valuation is greater than 1/2. This means that it is
optimal to exclude the low valuation type of bidder 1 to relax the incentive constraint and
sell to the high valuation type at his reservation price. Given this, the auctioneer may as well
sell to bidder 2 when bidder 1 has a low valuation. If monotonicity were not a constraint,
the auctioneer would choose to sell to bidder 1 when bidder 2 had high valuation. Thus, the
monotonicity constraint binds here, and in order to satisfy it, the object is sold to bidder 2
in this case.

Proposition 2 The optimal dsIC auction Γ depicted in Figure 7 cannot be rationalized by
any subjective belief µ of the auctioneer that is consistent with the distribution ν depicted in
Figure 6.

In the remainder of this section we will present the proof of Proposition 2. In Appendix
C we prove the following stronger result.
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Proposition 3 For the distribution ν depicted in Figure 6, the optimal BIC revenue is uni-
formly bounded away from the optimal dsIC revenue regardless of the auctioneer’s subjective
belief; i.e.,

inf
µ∈M(ν)

sup
Γ is BIC

Rµ(Γ) > V D(ν).

To prove Proposition 2, fix any subjective belief µ ∈ M(ν) that rationalizes the optimal
dsIC auction Γ, we shall prove that there exists an BIC auction that generates higher µ-
expected revenue than Γ does. This would contradict the assumption that µ rationalizes Γ
and complete the proof.

The proof proceeds by a sequence of lemmas. In each we derive conditions that must be
satisfied by a rationalizing subjective belief µ. Finally we show that no subjective belief µ
can satisfy them all.

For the purpose of this proof, it suffices to work only with bidder 2’s first-order beliefs
in order to arrive at a contradiction. So, for notational convenience, we shall summarize
bidder 2’s belief type τ2 by a single number: his first-order belief that bidder 1 has high
valuation. Specifically, for any type ω2 = (v2, τ2) of bidder 2, if v2 = 4, we shall use a to
denote g2(τ2)(v1 = 10); and if v2 = 2, we shall use b to denote g2(τ2)(v1 = 10). For any
(measurable) subset A ⊂ [0, 1], we shall use “a ∈ A” to denote the event {ω2 = (v2, τ2) :
v2 = 4, f2(τ2)(v1 = 10) ∈ A}; similarly for the notation “b ∈ B ⊂ [0, 1].”

The first lemma says that, conditional on any µ-non-null subset of low-valuation types
of bidder 2, the µ-conditional-probability that bidder 1 having high valuation cannot be too
low, otherwise the auctioneer can improve upon Γ by selling to some low-valuation types of
bidder 1.5

Lemma 2 For any x ∈ (0, 1] such that µ(b = x) = 0, if µ(b < x) > 0, then µ(v1 = 10|b <
x) ≥ 3/8.

Proof: Suppose there exists x ∈ (0, 1] such that µ(b < x) = µ(b ≤ x) > 0, and yet
µ(v1 = 10|b < x) < 3/8. Consider the modified auction Γ(x) as depicted in Figure 8.

v1 = 5 v1 = 10
a ∈ [0, 1] α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

b ≥ x α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b < x α = 1, t1 = 5, t2 = 0 α = 1, t1 = 5, t2 = 0

Figure 8: The modified auction Γ(x).

5In Lemma 2 (and similarly in Lemmas 3-5), the seemingly redundant requirement of µ(b = x) = 0 is a
null-boundary property used only in the proof of Proposition 3.
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To see that Γ(x) continues to be BIC, note that (i) truth-telling continues to be a domi-
nant strategy of bidder 1, (ii) low-valuation types of bidder 2 always have zero rent regardless
of what they announce, and (iii) high-valuation types of bidder 2 would not announce the
(newly added) message “b < x” as that gives them zero rent.

The only difference between Γ(x) and Γ is in the (µ-non-null) event of b < x, in which
case Γ(x) generates µ-expected revenue of 5µ(v1 = 5|b < x) + 5µ(v1 = 10|b < x) = 5,
whereas Γ only generates µ-expected revenue of 2µ(v1 = 5|b < x) + 10µ(v1 = 10|b < x) <
2(5/8) + 10(3/8) = 5, contradicting the assumption that µ rationalizes Γ.

The second lemma says that for any low-valuation type of bidder 2 that the auctioneer
subjectively perceives as possible, his first-order belief b also cannot be too low, otherwise
his belief would be too different from the auctioneer’s belief, so much so that the auctioneer
can improve upon Γ by betting against him.

Lemma 3 µ(b < 3/13) = 0.

Proof: Suppose not. Then pick x < 3/13 such that µ(b < x) > 0 and µ(b = x) = 0,6 and
consider the modified auction Γ′(x) as depicted in Figure 9.

v1 = 5 v1 = 10
a ∈ [0, 1] α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

b ≥ x α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b < x α = 0, t1 = 0, t2 = −2 α = 1, t1 = 10, t2 = 2(1− x)/x

Figure 9: The modified auction Γ′(x).

To see that Γ′(x) continues to be BIC, note that (i) truth-telling continues to be a
dominant strategy of bidder 1, (ii) low-valuation types of bidder 2 would have strict incentive
to announce the (newly added) message “b < x” if and only if the resulting rent of 2(1 −
b) − [2(1 − x)/x]b = 2(1 − b/x) is positive, or equivalently if and only if b < x, and (iii)
high-valuation types of bidder 2 would not announce the (newly added) message “b < x” as
that gives them rent of 2(1− a)− [2(1− x)/x]a = 2(1− a/x), which is lower than the rent
of 2(1− a) if they tell the truth.

The only difference between Γ′(x) and Γ is in the (µ-non-null) event of b < x, in which

6It is always possible to pick such an x, as any distribution over [0, 1] can have at most countably many
mass points.
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case Γ′(x) collects from bidder 2 an µ-expected amount of

(−2)µ(v1 = 5|b < x) + [2(1− x)/x]µ(v1 = 10|b < x)

≥ (−2)(5/8) + [2(1− x)/x](3/8)

= 3/(4x)− 2

> [3/4(3/13)]− 2

= 5/4

(where the first inequality follows from Lemma 2), whereas Γ only collects from bidders 2
an µ-expected amount of 2µ(v1 = 5|b < x) ≤ 2(5/8) = 5/4, contradicting the assumption
that µ rationalizes Γ.

The third lemma says that the first-order belief a of high-valuation types of bidder 2
cannot be too low. Otherwise beliefs held by high- and low-valuation types of bidder 2
would be too different, and this would enable the auctioneer to improve upon Γ by introduc-
ing Crémer-McLean-kind of bets to separate these types and relax incentive compatibility
constraints.

Lemma 4 µ(a < 1/11) = 0.

Proof: If not then let y < 1/11 such that µ(a = y) = 0 and µ(a < y) > 0. Notice
that y < 1/11 implies y < 3y/(2y + 1) < 3/13, and hence we can also choose x between
3y/(2y + 1) and 3/13 such that µ(b = x) = 0. Consider the modified auction Γ(x, y) as
depicted in Figure 10.

v1 = 5 v1 = 10
a < y α = 1, t1 = 5, t2 = −2x(1− y)/(x− y) α = 1, t1 = 5, t2 = 2(1− x)(1− y)/(x− y)
a ≥ y α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b < x α = 1, t1 = 5, t2 = −2x(1− y)/(x− y) α = 1, t1 = 5, t2 = 2(1− x)(1− y)/(x− y)
b ≥ x α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

Figure 10: The modified auction Γ(x, y).

To see that Γ(x, y) continues to be BIC, note that (i) truth-telling continues to be a
dominant strategy of bidder 1, (ii) low-valuation types of bidder 2 would have strict incentive
to announce the (newly added) message “b < x” if and only if the resulting rent of [2x(1−
y)/(x − y)](1 − b) − [2(1 − x)(1 − y)/(x − y)]b = 2(1 − y)(x − b)/(x − y) is positive, or
equivalently if and only if b < x, and (iii) high-valuation types of bidder 2 would have strict
incentive to announce the (newly added) message “a < y” if and only if the resulting rent
of [2x(1− y)/(x− y)](1− a)− [2(1− x)(1− y)/(x− y)]a = 2(1− y)(x− a)/(x− y) is strictly
higher than the truth-telling rent of 2(1− a), or equivalently if and only if a < y.
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Since the event of b < x is a µ-null event by Lemma 3, the only real difference between
Γ(x, y) and Γ is in the (µ-non-null) event of a < y, in which case Γ(x, y) generates µ-expected
revenue of

5− 2x(1− y)/(x− y)

= 5− 2(x− y + y)(1− y)/(x− y)

= 5− 2(1− y)− 2y(1− y)/(x− y)

> 5− 2(1− y)− 2y(1− y)(2y + 1)/[3y − y(2y + 1)]

= 5− 2(1− y)− 2y(1− y)(2y + 1)/[2y(1− y)]

= 2,

whereas Γ only generates µ-expected revenue of 2, contradicting the assumption that µ
rationalizes Γ.

Finally, the fourth lemma says that the first-order belief a of high-valuation types of
bidder 2 cannot be too high. Otherwise the beliefs of such types would be too different from
the auctioneer’s subjective belief, and this would enable the auctioneer to profit by offering
an incentive compatible and individually rational bet. Obviously lemmas 4 and 5 deliver the
contradiction and thus prove Proposition 2.

Lemma 5 µ(a < 1/11) > 0.

Proof: Suppose µ(a < 1/11) = 0. Consider the modified auction Γ′ as depicted in Figure
11.

v1 = 5 v1 = 10
a ≥ 1/12 α = 2, t1 = 0, t2 = 123/61 α = 2, t1 = 0, t2 = 233/61
a < 1/12 α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b ∈ [0, 1] α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

Figure 11: The modified auction Γ′.

To see that Γ′ continues to be BIC, note that (i) truth-telling continues to be a dominant
strategy of bidder 1, (ii) low-valuation types of bidder 2 would not announce the (newly
added) message “a ≥ 1/12” as that gives them strictly negative rent regardless of what
bidder 1 announces, and (iii) high-valuation types of bidder 2 would have weak incentive
to announce the (newly added) message “a ≥ 1/12” if and only if the resulting rent of
(4− 123/61)(1− a) + (4− 233/61)a is weakly higher than their original rent of 2(1− a), or
equivalently if and only if a ≥ 1/12.

Since the event a < 1/12 < 1/11 is a µ-null event by assumption, the only real difference
between Γ′ and Γ is in the (µ-non-null) event of a ≥ 1/12, in which case Γ′ generates µ-
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expected revenue of 123/61 > 2, whereas Γ only generates µ-expected revenue of 2. This
proves that µ does not rationalize Γ.

7 Conclusion

To summarize: the origin of this study dated back to a paper by Wilson (1987), where he
called for “successive reduction” in dependence on common knowledge assumptions. Recent
literature responses to his call with the proposal of using stronger solution concepts such as
dominant strategy incentive compatibility. Suppose a student of mechanism design is consid-
ering following this proposed procedure, but is worried about whether it has any foundation
or not. Our suggestion to this student would be: “Follow the proposed procedure first,
and check whether the monotonicity constraint is binding or not.” If the constraint is not
binding, then: “Congratulations. The procedure you just followed does have a foundation.”

As we emphasized in the Introduction, we do not think there should be one and only one
foundation of dominant strategy mechanisms. Quite the contrary, we foresee the journey
of implementing the Wilson Doctrine as successive accumulation of various theories that
support the proposed procedure of using dominant strategy mechanisms.

In line with this vision, we shall close this paper by briefly discuss other foundations of
dominant strategy mechanisms. Actually, to our knowledge, Bergemann and Morris (2002)
is the only other foundation for dominant strategy mechanisms so far. They provide a
foundations for ex post incentive compatibility in interdependent-value settings, which nest
as a special case dominant strategy incentive compatibility in private-value settings. Our
paper and theirs focus on two different subsets of mechanism design problems, and hence
these two papers do not overlap with each other. While we focus on optimal auction design
problems, they focus on implementation of social choice rules that are measurable with
respect to payoff-relevant types.

The reason why we were not able to extend their insight into optimal auction design
problems can be loosely explained as follows. In private-value auctions, payoff-relevant types
would correspond to bidders’ valuations, and social choice rules that are measurable with
respect to payoff-relevant types would correspond to allocation rules that are constant over
bidders’ beliefs. Since many conceivable auction mechanisms would have the property that
the way the object is allocated sensitively depends on how bidders’ choose among a menu
of lotteries, these auction mechanisms would all have allocation rules that are not constant
over bidders’ beliefs. Examples include the mechanisms depicted in Figures 8, 9, 10, 11,
12, and 13. Had we ruled out these auction mechanisms, we would have in effect “assumed
away” the availability of complicated auction mechanisms by brute force.
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Appendix A: An Example for Section 5

In Section 5, we claim that there exists a distribution ν that satisfies Condition M such
that there is no CPA-assumption µ for which equation 3 holds. We shall provide an example
of such a distribution here.

As the proof below would make it clear, this example of ν is a robust to perturbations.

Consider the same example as in Section 3, where there are bidders, and each bidder has
two possible valuations. The joint distribution of valuations is depicted in Figure 3, and the
corresponding optimal dsIC auction is depicted in Figure 4.

Suppose there exists an CPA-assumption µ ∈ M(ν) for which equation 3 holds. We shall
prove that there exists an BIC auction that generates higher µ-expected revenue than Γ
does. This would contradict the supposition that equation 3 holds.

It suffices to work only with bidder 2’s first order beliefs in order to complete this proof.
So, following the convention in Section 6, we shall continue to use a (b) to denote the
first-order belief of a high-valuation (low-valuation) type of bidder 2 that bidder 1 has high
valuation. Let b = sup{x ∈ [0, 1] : µ(b < x) = 0}.

First, observe that b ≥ 4/9. Suppose, on the contrary, b < 4/9. Then pick any number
z between b and 4/9, and consider the modified auction Γ(z) as depicted in Figure 12.

v1 = 4 v1 = 9
a ∈ [0, 1] α = 2, t1 = 0, t2 = 11 α = 2, t1 = 0, t2 = 11

b ≥ z α = 0, t1 = 0, t2 = 0 α = 1, t1 = 9, t2 = 0
b < z α = 1, t1 = 4, t2 = 0 α = 1, t1 = 4, t2 = 0

Figure 12: The modified auction Γ(z).

It is obvious that Γ(z) continues to be BIC. The only difference between Γ(z) and Γ is
in the (µ-non-null) event of b < z, in which case Γ(z) generates µ-expected revenue of 4,
whereas Γ only generates µ-expected revenue of 9µ(v1 = 9|b < z) < 9z < 9(4/9) = 4, where
the first inequality comes from the fact that µ is an CPA-assumption. Since this would have
contradicted the supposition that equation 3 holds, we must have b ≥ 4/9.

Then, consider the modified auction Γ′′ as depicted in Figure 13.

To see that Γ′′ continues to be BIC, it suffices to observe that, for low-valuation types
of bidder 2 with b ≥ 4/9, truth-telling gives them a non-negative rent of (5 − 11)(1 − b) +
(15/2)b ≥ (−6)(5/9) + (15/2)(4/9) = 0.

Since b < 4/9 is a µ-null event, Γ′′ generates µ-expected revenue of 9(4/10)+ 11(6/10)−
(15/2)(4/10) = 72/10, whereas Γ only generates µ-expected revenue of 9(3/10)+11(4/10) =
71/10. This prves that equation 3 does not hold, a contradiction.
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v1 = 4 v1 = 9
a ∈ [0, 1] α = 2, t1 = 0, t2 = 11 α = 1, t1 = 9, t2 = −15/2
b ≥ 4/9 α = 2, t1 = 0, t2 = 11 α = 1, t1 = 9, t2 = −15/2
b < 4/9 α = 0, t1 = 0, t2 = 0 α = 0, t1 = 0, t2 = 0

Figure 13: The modified auction Γ′′.

Appendix B: Proof of Proposition 1

Proof of Proposition 1 Let γi(v) denote the derivative of (5) with respect to pi(v)
multiplied by 1/ν(v). We have

γi(v) = vi −∆hi(v).

The value γi(v) is the dsIC-analogue of virtual utility for bidder i at the valuation profile
v. If the monotonicity constraint were not present, the objective function in (5) would
be maximized by assigning the object to any bidder with the highest non-negative virtual
utility and withholding the object when all virtual utilities were negative. Let p be such an
allocation rule. Condition M is satisfied if p is monotonic. Suppose hi(vi, v−i)−hj(vi, v−i) is
non-increasing in vi. We argue that in this case p is monotonic. For if pi(v

m, v−i) > 0, then i
has (among the) highest virtual utility at (vm, v−i). The non-decreasing inverse hazard-rate
condition implies that i must have the strictly highest virtual utility at (vm+1, v−i) and hence
that pi(v

m+1, v−i) = 1. It follows that p is monotonic.

Appendix C: Proof of Proposition 3

Lemma 6 Suppose K is a compact topological space and that F is a family of real-valued
functions on K such that, for each x ∈ K, there is some fx ∈ F which is continuous at x
and satisfies fx(x) > 0. Then we have infx∈K supf∈F f(z) > 0.

Proof: For each x ∈ K, there exists an open neighborhood Ux such that, for each y ∈ Ux,
we have fx(y) > fx(x)/2. The collection {Ux : x ∈ K} forms an open covering of the
compact space K, and hence there exists a finite subcovering. Let {Ux1

, . . . , Uxn
} be a finite

subcovering and let ε = min{fx1
(x1), . . . , fxk

(xn)} > 0. For each x ∈ K, we have x ∈ Uxl
for

some l = 1, . . . , n so that supf∈F f(x) ≥ fxl
(x) > fxl

(xl)/2 ≥ ε/2 > 0.

Lemma 7 Suppose O1, . . . ,On are disjoint open subsets of Ω
∗ such that µ(∪Ol) = 1, and

t : Ω∗ → R is a bounded real function that is constant on each Ol. Then the mapping

µ′ →

∫

Ω∗
t µ′(dω)
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is continuous at the point µ.

Proof: Fix any ε > 0. Let t̄ > 0 be an upper bound for |t|. The function µ′ → µ′(Oi) is
lower semi-continuous (see Aliprantis and Border (1999)), hence we can set

δ =
ε

t̄n2

and find a neighborhood U of µ such that, for all µ′ ∈ U , µ′(Ol) > µ(Ol)− δ for l = 1, . . . , n.
Since µ(∪Ol) = 1, it follows that µ′(Ol) < µ(Ol)+ (n− 1)δ and µ′(Ω∗ \∪Ol) < µ(Ω∗ \∪Ol)+
nδ = nδ.

We can write
∫

Ω∗
t dµ′ =

n
∑

l=1

µ′(Ol)t(Ol) +

∫

Ω∗\∪Ol

t(ω) dµ′,

so that

n
∑

l=1

µ′(Ol)t(Ol)− µ(Ω∗ \ ∪Ol)t̄ ≤

∫

Ω∗
t µ′(dω) ≤

n
∑

l=1

µ′(Ol)t(Ol) + µ′(Ω∗ \ ∪Ol)t̄

=⇒
n
∑

l=1

[µ(Ol)− δ]t(Ol)− nδt̄ <

∫

Ω∗
t µ′(dω) <

n
∑

l=1

[µ(Ol) + (n− 1)δ]t(Ol) + nδt̄

=⇒ −δ

n
∑

l=1

t(Ol)− nδt̄ <

∫

Ω∗
t µ′(dω)−

∫

Ω∗
t µ(dω) < (n− 1)δ

n
∑

l=1

t(Ol) + nδt̄

=⇒ −2nδt̄ <

∫

Ω∗
t µ′(dω)−

∫

Ω∗
t µ(dω) < n2δt̄.

This proves that
∣

∣

∫

Ω∗
t µ′(dω)−

∫

Ω∗
t µ(dω)

∣

∣ < max {2nδt̄, n2δt̄} = ε.

Proof of Proposition 3 Notice that, for each of the mechanisms used in the proof of
Proposition 2, the total transfer (t1+t2)(ω) satisfies the conditions of Lemma 7. For example,
consider the mechanism Γ(x) in Lemma 2. For any (v1, v2), the set of universal type profiles
in which the valuation pair is (v1, v2) is open in the product topology with µ-null boundary.
Moreover, since µ(b = x) = 0, the event b < x is also open in the product topology with
µ-null boundary. Therefore, we can take O1, . . . ,O6 to be the interiors of the sets represented
by the cells of the table in Figure 8. These open sets are disjoint, have µ-null boundaries,
and have total µ-measure equal to 1 as required.

Thus, for any auctioneer’s belief µ that is consistent with the distribution ν, there exists
an BIC auction Γ(µ) such that RµΓ(µ)−V

D(ν) > 0, and the mapping µ′ → Rµ′Γ(µ)−V
D(ν)

is continuous at the point µ′ = µ. We can hence apply Lemma 6, taking K = M(ν) and
F = {R(·)Γ− V D(ν) : Γ is BIC}.
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