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Abstract

Macroeconomic or financial data are often modelled with cointegration
and GARCH. Noticeable examples include those studies of price discovery,
in which stock prices of the same underlying asset are cointegrated and they
exhibit multivariate GARCH. Modifying the asymptotic theories developed
in Li, Ling and Wong (2001) and Sin and Ling (2004), this paper proposes a
WLS (weighted least squares) for the parameters of an ECM (error-correction
model). Apart from its computational simplicity, by construction, the consis-
tency of WLS is insensitive to possible mis-specification in conditional vari-
ance. Further, asymmetrically distributed deflated error is allowed, at the
expense of more deliberate estimation procedures. Efficiency loss relative to
QMLE (quasi-maximum likelihood estimator) is discussed within the class
of LABF (locally asymptotically Brownian functional) models. The insensi-
tivity and efficiency of WLS in finite samples are examined through Monte
Carlo experiments. We also apply the WLS to an empirical example of HSI
(Hang Seng Index), HSIF (Hang Seng Index Futures) and TraHK (Hong Kong
Tracker Fund).
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1 Introduction

Throughout this paper, we consider an m−dimensional autoregressive (AR) process

{Yt}, which is generated by

Yt = Φ1Yt−1 + · · · + ΦsYt−s + εt, (1.1)

E(εt | It−1) = 0, (1.2)

where Φj’s are constant matrices, and It = σ{εs, s = t, t− 1, . . .}.

Assuming the εt’s are i.i.d., under further conditions on Φj’s (See Assumptions

2.1 and 2.2 below), Ahn and Reinsel (1990) (see also Johansen, 1996) show that,

although some component series of {Yt} exhibit nonstationary/I(1) behaviour, there

are r linear combinations of {Yt} that are stationary/I(0). This phenomenon,

which is called cointegration in the literature of economics, was first investigated

by Granger (1983) (see also Engle and Granger, 1987). The partially nonstationary

multivariate AR model or cointegrating time series models without GARCH have

been extensively discussed over the past twenty years. Other noticeable examples

include Phillips and Durlauf (1986) and Stock and Watson (1993).

Economic time series related to financial markets often exhibit time-varying vari-

ances. As far as we know, Li, Ling and Wong (2001) first investigate multivariate

time series that exhibit both cointegration and time-varying variances, where the

heteroskedasticity part is the random coefficient AR model and the scope of appli-

cations is thus restricted. Extending Li et al. (2001)’s estimation results, Sin and

Ling (2004) construct a likelihood ratio (LR) test for reduced rank; and modify their

model. They consider a multivariate GARCH with constant correlations, which was

first suggested by Bollerslev (1990) and widely used in many papers in the economics

and finance literature. More precisely, the conditional variance-covariance matrix,

denoted as Ṽt−1, is modelled as D̃t−1Γ̃D̃t−1, where D̃t−1 = diag(
√
h̃1t−1, . . . ,

√
h̃mt−1)
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and:

h̃it−1 = ãi0 +
q∑

j=1

ãijε
2
it−j +

p∑

k=1

b̃ikh̃it−1−k, (1.3)

Γ̃ ≡ (γ̃ij)m×m, a symmetric positive definite matrix with γ̃ii = 1. (1.4)

This paper assumes the existence of some pseudo true parameters of this multivariate

GARCH model (1.3)-(1.4), which satisfy Assumption 2.4 below. However, in view

of the possible mis-specification in variance (see, for instance, the GJR model first

suggested in Glosten, Jagannathan and Runkle, 1993, the extended model first

suggested in Jeantheau, 1998, and the time-varying correlation model first suggested

in Tse and Tsui, 2002), instead of a QMLE (quasi-maximum likelihood estimator),

we consider a WLS (weighted least squares), which is computationally simpler on

the one hand, and is insensitive to possible mis-specification of variance on the other

hand. See Section 2 of Sin (2003) for a related study in the purely stationary case.

Further, we also allow asymmetrically distributed deflated errors, at the expense of

(i) a more involved estimation procedure; and/or (ii) a more involved asymptotic

distribution. Efficiency loss relative to the QMLE is discussed within the class of

LABF (locally asymptotically Brownian functional) models.

This paper proceeds as follows. Section 2 discusses the structure of the DGP

(data generating process) or the model (1.1)-(1.4). Assuming a symmetric distri-

bution, Section 3 derives the asymptotic distributions of the full rank estimator,

the reduced rank estimator, and a test for reduced rank. Relaxing the symme-

try assumption, Section 4 considers a modified weighting matrix (modified upon

the original one Ṽ −1
t−1) and thus the efficiency of the estimators may be altered. In

Section 5, we maintain the original weighting matrix and consider an alternative

estimation. Section 6 contains a brief discussion on the estimation procedures as

well as their efficiency of the estimators discussed so far. Monte Carlo experiments

and an illustrative empirical example are discussed in the subsequent sections. We

conclude in the last section.
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Readers who are much interested in the algorithms may jump to (3.7) for the full

rank estimation, to (3.14)-(3.15) for the reduced rank estimation, (3.17) (or (3.19)

for a robust version) for the test statistics for reduced rank. In Section 4, the coun-

terparts can be found in (4.5), (4.6)-(4.7) and (4.8) (a robust version) respectively.

In Section 5, they are found in (5.1), (5.3)-(5.4), and (5.5) (or (5.11) for a robust

version) respectively. Throughout, −→L denotes convergence in distribution, −→p

denotes convergence in probability, Op(1) denotes a series of random numbers that

are bounded in probability, and op(1) denotes a series of random numbers converging

to zero in probability. θ̃ denotes a generic version of the (pseudo) true parameter

θ, while θ̂ denotes an initial estimator and θ̇ denotes a full rank or reduced rank

estimator.

2 Basic Properties of the Models

Denote L as the lag operator. Refer to (1.1)-(1.2) and define Φ(L) = Im−∑s
j=1 ΦjL

j.

We first make the following assumption:

Assumption 2.1. | Φ(z) |= 0 implies that either | z |> 1 or z = 1. 2

Define Wt = Yt − Yt−1, Πj = −∑s
k=j+1 Φk and C = −Φ(1) = −(Im −∑s

j=1 Φj). By

a Taylor’s formula, Φ(L) can be decomposed as:

Φ(z) = (1 − z)Im − Cz −
s−1∑

j=1

Πj(1 − z)zj . (2.1)

Thus, we can reparameterize process (1.1) as:

Wt = CYt−1 +
s−1∑

j=1

ΠjWt−j + εt. (2.2)

Following Ahn and Reinsel (1990) and Johansen (1996), we can decompose C = AB,

where A and B are respectively m×r and r×m matrices of rank r. Define d = m−r.

Denote B⊥ as a d×m matrix of full rank such that BB′
⊥ = 0r×d, B̄ = (BB′)−1B and

B̄⊥ = (B⊥B
′
⊥)−1B⊥, and A⊥ as an m×d matrix of full rank such that A′A⊥ = 0r×d,

Ā = A(A′A)−1 and Ā⊥ = A⊥(A′
⊥A⊥)−1. We impose the following conditions:
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Assumption 2.2. | A′
⊥(Im −∑s−1

j=1 Πj)B
′
⊥ |6= 0. 2

Assumption 2.3. {εt} is a stationary process, E(vec[εtε
′
t]vec[εtε

′
t]
′) <∞. 2

Unlike Ahn and Reinsel (1990), we do not assume the existence of their Jordan

canonical form and include some DGPs such as that in Exercise 4.3, pp.62-63 of

Johansen (1996), which approach is essentially adopted here. Given Assumptions

2.1-2.2, by the proof of Theorem (4.2) in Johansen (1996),

Ψ(L)

[
(1 − L)B⊥Yt

BYt

]
= (Ā⊥, Ā)′εt, (2.3)

where Ψ(z) = (Ā⊥, Ā)′Φ(z)(B̄′
⊥, B̄

′(1 − z)−1) is invertible for | z |< 1 + ρ for some

ρ > 0. In other words, similar to Ahn and Reinsel (1990), we can consider the

following transformation:

Z1t = B⊥Yt = Z1t−1 + u1t, and Z2t = BYt = u2t, (2.4)

where ut = (u′1t, u
′
2t)

′ = ψ(L)at, ψ(L) ≡ Ψ−1(L) and at ≡ (Ā⊥, Ā)′εt. Note in

Assumption 2.3, the i.i.d assumption in Johansen (1996) is replaced by a stationarity

assumption. Given this, by (2.3)-(2.4), Z1t is I(1) while Z2t is I(0).

Further, we make the following assumptions on (1.3)-(1.4).

Assumption 2.4. For i = 1, . . . , m, the pseudo true parameters ai0 > 0,

ai1, . . . , aiq, bi1, . . . , bip ≥ 0,
∑q

j=1 aij +
∑p

k=1 bik < 1; and {ηit ≡ εit/
√
hit−1} is a

stationary process. 2

Assumption 2.5. ηt ≡ (η1t, . . . , ηmt)
′ is symmetrically distributed. 2

The stationarity assumption in Assumptions 2.3-2.4 can be weakened to hetero-

geneous and mixing process assumption, as in Phillips and Durlauf (1986). We keep

this for simplicity. (1.2) and Assumption 2.4 imply that although E(ηt | It−1) = 0,

in general E(ηt | It−1) 6= Γ. In view of this possible mis-specification, we do not

make primitive assumptions that render stationarity and finite fourth moments in

Assumption 2.3. We will come back to this point in a subsequent section.

The symmetry assumption in Assumption 2.5 will be used in the next section.

It will be relaxed in Sections 4 and 5.
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We close this section with a basic lemma, which is found useful in proving the

results in the subsequent sections. Let (W ′
m(u), W ∗′

m(u))′ be a 2m−dimensional

Brownian motion (BM) with the covariance matrix:

uΩ ≡ u

(
V ∗ E(εtε

′
tV

−1
t−1)

E(V −1
t−1εtε

′
t) Ω∗

1

)
,

where V ∗ = Eεtε
′
t, and Ω∗

1 = E(V −1
t−1εtε

′
tV

−1
t−1). LetBd(u) = Ω−1/2

a1
[Id, 0dxr] Ω1/2

a V ∗−1/2Wm(u),

where Ωa = E(ata
′
t) and Ωa1 = [Id, 0dxr]Ωa[Id, 0dxr]

′.

Lemma 2.1. Suppose Assumptions 2.1-2.4 hold. Then

(a) n−2
n∑

t=1

Z1t−1Z
′
1t−1 ⊗ V −1

t−1 −→L (ψ11Ω
1/2
a1

∫ 1

0
Bd(u)Bd(u)

′Ω1/2
a1
ψ′

11) ⊗ Ω1,

(b) n−3/2
n∑

t=1

Z1t−1U
′
t−1 ⊗ V −1

t−1 −→L (ψ11Ω
1/2
a1

∫ 1

0
Bd(u)du⊗ Im)E(U ′

t−1 ⊗ V −1
t−1),

(c) If in addition, Assumption 2.5 holds,

n−3/2
n∑

t=1

Z1t−1U
′
t−1 ⊗ V −1

t−1 = op(1),

(d) n−1
n∑

t=1

Ut−1U
′
t−1 ⊗ V −1

t−1 −→p Ω2,

(e) n−1
n∑

t=1

Z1t−1 ⊗ V −1
t−1εt −→L vec[(

∫ 1

0
Bd(u)dW

∗
m(u)′)′Ω1/2

a1
ψ11],

(f) n−1/2
n∑

t=1

Ut−1 ⊗ V −1
t−1εt −→L Ω

∗1/2
2 Φ,

where Φ ∼ N(0, Irm+(s−1)m2), ψ11 ≡ [Id, 0](
∑∞

k=1 ψk)[Id, 0]′, Ω1 ≡ E(V −1
t−1), Ω2 ≡

E(Ut−1U
′
t−1⊗V −1

t−1), Ω∗
2 ≡ E(Ut−1U

′
t−1⊗V −1

t−1εtε
′
tV

−1
t−1), and Ut−1 = [(BYt−1)

′,W ′
t−1, · · · ,W ′

t−s+1]
′.

3 Assuming Symmetric Distribution

In this section, we follow the lines in Sin and Ling (2004) and assume a symmetric

distribution of the deflated error ηt. See Assumption 2.5 above. The procedures of

the full rank estimator, the reduced rank estimator, and a test for reduced rank as

well as their asymptotic distributions resemble those in Sections 3-5 in Sin and Ling

(2004).
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3.1 Full Rank Estimation

Refer to Process (2.2). In this section, we consider the full rank estimator for

ϕ ≡ vec[C,Π1, . . . ,Πs−1], given some initial estimator for the pseudo true parameter

of the conditional variance (see Model (1.3)-(1-4) and Assumption (2.4) above).

Similar to above, the generic ”variance parameter” is denoted as δ̃ while the pseudo

true ”variance parameter” is simply denoted as δ.

Given {Yt : t = 1, · · · , n}, conditional on the initial values Ys = 0 for s ≤ 0, the

log-likelihood function (LF) (with a constant ignored) can be written as:

l(ϕ̃, δ̃) =
n∑

t=1

lt(ϕ̃, δ̃) and lt(ϕ̃, δ̃) = −1

2
ε̃′tṼ

−1
t−1ε̃t −

1

2
ln |Ṽt−1|, (3.1)

where Ṽt−1 = D̃t−1Γ̃D̃t−1, D̃t−1 = diag(
√
h̃1t−1, . . . ,

√
h̃mt−1). ε̃t, Ṽt−1, D̃t−1 and

h̃it−1’s are functions of the generic parameter (ϕ̃, δ̃). Further denote h̃t−1 = (h̃1t−1, . . . , h̃mt−1)
′

and H̃t−1 = (h̃−1
1t−1, . . . , h̃

−1
mt−1)

′. Define Xt−1 ≡ [Y ′
t−1,W

′
t−1, . . . ,W

′
t−s+1]

′. The score

function w.r.t. ϕ can be written as:

∇ϕl̃t = −1

2
∇ϕh̃t−1(ι− w(ε̃tε̃

′
tṼ

−1
t−1)) � H̃t−1 + (Xt−1 ⊗ Im)Ṽ −1

t−1ε̃t, (3.2)

where ι = (1, 1, . . . , 1)′m×1 and w(.) is a vector containing the diagonal elements of

a square matrix. In Sin and Ling (2004), the score function (3.2) is used. As one

can see in that paper, the algorithm for the one-step estimator is quite involved.

More importantly, if the multivariate GARCH is mis-specified and for all (ϕ̃, δ̃),

Prob{E[∇ϕh̃t−1(ι − w(ε̃tε̃
′
tṼ

−1
t−1)) � H̃t−1 | It−1] = 0} < 1, it is unclear what the

asymptotic properties of the one-step estimator carries. In view of that, for our

WLS, we only consider the second part of the score function:

f̃t ≡ (Xt−1 ⊗ Im)Ṽ −1
t−1ε̃t. (3.3)

Denote Q∗ = diag([B′
⊥, B

′]′⊗ Im, I(s−1)m2) and D∗ = diag(nIdm,
√
nIrm+(s−1)m2).

For any fixed positive constant K, let Θn ≡ {(ϕ̃, δ̃) : ‖D∗Q∗′−1(ϕ̃− ϕ)‖ ≤ K

and ‖
√
n(δ̃ − δ)‖ ≤ K}, where (ϕ, δ) is the true parameter. Using Assumptions
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2.1-2.5 and a similar method as in Ling and Li (1998), the derivative of f̃t on Θn

can be simplified as follows:

D∗−1Q∗(
n∑

t=1

∇ϕ′ f̃t)Q
∗′D∗−1 =

n∑

t=1

D∗−1Q∗F̃tQ
∗′D∗−1 + op(1), (3.4)

where F̃t ≡ −(Xt−1X
′
t−1 ⊗ Ṽ −1

t−1).

Moreover, we can show the following results hold uniformly in Θn:

n∑

t=1

D∗−1Q∗(F̃t − Ft)Q
∗′D∗−1 = op(1), (3.5)

n∑

t=1

D∗−1Q∗(f̃t − ft) =
n∑

t=1

D∗−1Q∗Ft(ϕ̃− ϕ) + op(1), (3.6)

where Ft = −(Xt−1X
′
t−1 ⊗ V −1

t−1) and ft = (Xt−1 ⊗ Im)V −1
t−1εt. In view of (3.4)-(3.6),

we first find an initial estimator (ϕ̂, δ̂) ∈ Θn. For instance, ϕ̂ can be the least

squares (LS) estimator while δ̂ may be the QMLE with the true εt replaced by the

LS residual ε̂t ≡ Wt − ĈYt−1 −
∑s−1

j=1 Π̂jWt−j. See Section 2 of Ling, Li and McAleer

(2003). Given (ϕ̂, δ̂), we perform one iteration of the WLS:

ϕ̇ = ϕ̂− [
n∑

t=1

Ft(ϕ̂, δ̂)]
−1[

n∑

t=1

ft(ϕ̂, δ̂)], (3.7)

where F̂t = Xt−1X
′
t−1⊗ V̂ −1

t−1, V̂t−1 is the Ṽt−1 in Model (1.3)-(1.4) evaluated at (ϕ̂, δ̂).

The following is proved in the Appendix.

Theorem 3.1. Suppose Assumptions 2.1-2.5 hold. Then

(a) n(Ċ − C)B̄′
⊥ −→L Ω−1

1 M∗,

(b)
√
nvec[(Ċ − C)B̄′, (Π̇1 − Π1), . . . , (Π̇s−1 − Πs−1)] −→L N(0,Ω−1

2 Ω∗
2Ω

−1
2 ),

where M∗ = (
∫ 1
0 Bd(u)dW

∗
m(u)′)′(

∫ 1
0 Bd(u)Bd(u)

′du)−1Ω−1/2
a1

ψ−1
11 , and the remaining

variables are defined as in Lemma 2.1. 2

When E(εtε
′
t | It−1) = Vt−1, Ω∗

1 = Ω1 and Ω∗
2 = Ω2. On the other hand, the

asymptotic distribution of the nonstationary component argument in (a) is indepen-

dent of that of the stationary component argument in (b). As one can see in the
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proof, this suffices to have:

n−3/2
n∑

t=1

(Z1t−1 ⊗ Im)(U ′
t−1 ⊗ V −1

t−1) = op(1),

which by Lemma 2.1(c), is implied by E[U ′
t−1 ⊗V −1

t−1] = 0, a result depending on the

variance model (1.3)-(1.4) and the symmetry assumption.

3.2 Reduced Rank Estimation

We first rewrite (2.2) in a reduced rank form:

Wt = ABYt−1 +
s−1∑

j=1

ΠjWt−j + εt, (3.8)

where A and B are defined as in Section 2. Denote α = [α′
1, α

′
2]

′ with α1 ≡ vec[B]

and α2 ≡ vec[A,Π1, . . . ,Πs−1]. The LF based on the error-correction form (3.9) is

the same as that in (3.1), but now it is a function of the generic parameters α̃ and

δ̃. Denote U∗
t−1 ≡ [(Yt−1⊗A′)′, (Ut−1⊗Im)′]′, where we recall from Theorem 3.1 that

Ut−1 = [(BYt−1)
′,W ′

t−1, . . . ,W
′
t−s+1]

′. Similar to (3.2),

∇αl̃t = ∇αlt(α̃, δ̃) = −1

2
(∇αh̃t−1)(ι− w(ε̃tε̃

′
tṼ

−1
t−1)) � H̃t−1 + Ũ∗

t−1Ṽ
−1
t−1ε̃t. (3.9)

Our WLS only considers the second term in (3.9), that is:

r̃t = rt(α̃, δ̃) = (r̃′1t, r̃
′
2t)

′, (3.10)

where r̃1t ≡ (Yt−1 ⊗ Ã′)Ṽ −1
t−1ε̃t and r̃2t ≡ (Ũt−1 ⊗ Im)Ṽ −1

t−1ε̃t.

Denote Q∗∗ ≡ diag((B⊥⊗Ir), Irm+(s−1)m2) and D∗∗ ≡ diag(nIrd,
√
nIrm+(s−1)m2).

For any fixed positive constant K, let Ξn ≡ {(α̃, δ̃) : ‖D∗∗Q∗∗′−1(α̃ − α)‖ ≤

K and ‖
√
n(δ̃ − δ)‖ ≤ K}. Given Assumptions (2.1)-(2.5), similar to (3.4), on

Ξn, the derivative of r̃t can be simplified as follows:

D∗∗−1Q∗∗
n∑

t=1

∇α′ r̃tQ
∗∗′D∗∗−1 = D∗∗−1Q∗∗

n∑

t=1

R̃tQ
∗∗′D∗∗−1 + op(1), (3.11)

where R̃t = diag{R̃1t, R̃2t}, R̃1t = −(Yt−1Y
′
t−1⊗Ã′Ṽ −1

t−1Ã), R̃2t = −(Ũt−1Ũ
′
t−1⊗ Ṽ −1

t−1).
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Similar to (3.5)-(3.6), the following results hold uniformly in Ξn:

D∗∗−1Q∗∗
n∑

t=1

(R̃t −Rt)Q
∗∗′D∗∗−1 = op(1), (3.12)

D∗∗−1Q∗∗
n∑

t=1

(r̃t − rt) = D∗∗−1Q∗∗
n∑

t=1

Rt(α̃− α) + op(1), (3.13)

where Rt and rt are R̃t and r̃t evaluated at the (pseudo) true parameters α and

δ. Given (3.12)-(3.14), we first find an initial estimator (α̂, δ̂) which, after certain

normalization, belongs to Ξn. For instance, α̂ = [α̂′
1, α̂

′
2]
′ may be that from Johansen

(1996) (see for instance, Chapter 13 there) while δ̂ may be that from Sub-section 3.1.

Given (α̂, δ̂), we first perform one iteration of the WLS for α1:

α̇1 = α̂1 − [
n∑

t=1

R1t(α̂1, α̂2, δ̂)]
−1[

n∑

t=1

r1t(α̂1, α̂2, δ̂)]. (3.14)

Once we obtain the reduced rank estimator for α1 which incorporates the possible

heteroskedasticity, we perform one iteration of the WLS for α2:

α̇2 = α̂2 − [
n∑

t=1

R2t(α̇1, α̂2, δ̂)]
−1[

n∑

t=1

r2t(α̇1, α̂2, δ̂)]. (3.15)

In view of (3.12)-(3.14), the asymptotic distributions of the normalized estimators

for α1 and α2 are given as follows.

Theorem 3.2. Suppose Assumptions 2.1-2.5 hold. Then

(a) n((ḂB̄′)−1Ḃ −B)B̄′
⊥ −→L (A′Ω1A)−1A′M∗,

(b)
√
nvec[(Ȧ(ḂB̄′) − A), (Π̇1 − Π1), . . . , (Π̇s−1 − Πs−1)] −→L N(0,Ω−1

2 Ω∗
2Ω

−1
2 ),

where the remaining variables are defined as in Lemma 2.1. 2

From Theorem 3.2 above, the asymptotic distribution of the nonstationary com-

ponent argument in (a) is independent of that of the stationary component argument

in (b). Similar to the arguments at the end of the last sub-section, this result de-

pends on the variance model (1.3)-(1.4) and the symmetry assumption.
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3.3 Testing for Reduced Rank

This section applies the asymptotic distributions in Theorems 3.1 and 3.2 to con-

struct tests for reduced rank. The null and the alternative hypotheses are:

H0 : rank(C) = r < m vs Ha : rank(C) = m. (3.16)

We first consider the Likelihood Ratio-Type (LRT) test statistic:

LRTG ≡ vec(Ċ − ȦḂ)′(−
n∑

t=1

F̂11t)vec(Ċ − ȦḂ), (3.17)

where we recall that Ċ is the full rank estimator defined in Sub-section 3.1, Ȧ

and Ḃ are the reduced rank estimators defined in Sub-section 3.2, while F̂11t =

−(Yt−1Y
′
t−1⊗V̂ −1

t−1). The following lemma gives the asymptotic distribution of LRTG.

Lemma 3.3. Suppose Assumptions 2.1-2.5 hold. Then under H0 in (3.16), the

LRT test statistic for rank,

LRTG −→L tr[(
∫ 1

0
Bd(u)dV

∗
d (u)′)′(

∫ 1

0
Bd(u)Bd(u)

′du)−1(
∫ 1

0
Bd(u)dV

∗
d (u)′)],

where V ∗
d (u) = ΥBd(u)+[(A′

⊥Ω−1
1 A⊥)−1/2A′

⊥Ω−1
1 Ω∗

1Ω
−1
1 A⊥(A′

⊥Ω−1
1 A⊥)−1/2−Υ∗∗Υ∗∗′ ]1/2

Vd(u), Υ∗∗ = (A′
⊥Ω−1

1 A⊥)−1/2(A′
⊥Ω−1

1 E(V −1
t−1εtε

′
t)A⊥)(A′

⊥V
∗A⊥)−1/2, and (B′

d(u), V
′
d(u))

′

is a 2d−dimensional standard Brownian motion. 2

When the εt’s are conditional homoskedastic, E(V −1
t−1εtε

′
t) = Im, Ω∗

1 = Ω1 = V ∗−1,

and hence Υ = Id and V ∗
d (u) = Bd(u). The distribution of LRTG is exactly the same

as that in Reinsel and Ahn (1992) and Johansen (1996). When E(εtε
′
t | It−1) = Vt−1

and Vt−1 may or may not equal to V ∗, the distribution of LRTG can be simplified

as follows.

Theorem 3.3. Suppose the assumptions in Lemma 3.3 hold. If E(εtε
′
t | It−1) =

Vt−1, then

LRTG −→L tr{[ζ(Id − Λd)
1/2 + ΦΛ

1/2
d ]′[ζ(Id − Λd)

1/2 + ΦΛ
1/2
d ]}, (3.18)

where Λd is a diagonal matrix containing the d eigenvalues of (Id−ΥΥ′), where Υ =

(A′
⊥Ω−1

1 A⊥)1/2(A′
⊥V

∗A⊥)−1/2, Φ ∼ N(0, Id) and is independent of ζ = (
∫ 1
0 Bd(u)Bd(u)

′du)−1/2

· (
∫ 1
0 Bd(u)dBd(u)

′). 2
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On the other hand, when E(εtε
′
t | It−1) 6= Vt−1, we may define a modified LRT

test statistic:

LRT ∗
G ≡ [vec(Ċ∗) − vec(ȦḂ∗)]′[−

n∑

t=1

F̂ ∗
11t][vec(Ċ

∗) − vec(ȦḂ∗)], (3.19)

where vec(Ċ∗) = (−∑n
t=1 F̂

∗
11t)

−1(−∑n
t=1 F̂11t)vec(Ċ), Ḃ∗ = (Ȧ′Ω̇∗

1Ȧ)−1(Ȧ′Ω̇1Ȧ)Ḃ,

and F̂ ∗
11t = −(Yt−1Y

′
t−1 ⊗ V̂ −1

t−1ε̂tε̂
′
tV̂

−1
t−1), F̂11t = −(Yt−1Y

′
t−1 ⊗ V̂ −1

t−1), where we recall

from Sub-section 3.1 that ε̂t ≡ Wt−ĈYt−1−
∑s−1

j=1 Π̂jWt−j, and V̂t−1 is defined around

(3.7). The following corollary gives the asymptotic distribution of LRT ∗
G.

Corollary 3.3. Suppose the assumptions in Lemma 3.3 hold.

LRT ∗
G −→L tr{[ζ(Id − Λ∗

d)
1/2 + ΦΛ

∗1/2
d ]′[ζ(Id − Λ∗

d)
1/2 + ΦΛ

∗1/2
d ]}, (3.20)

where Λ∗
d is a diagonal matrix containing the d eigenvalues of (Id − Υ∗Υ∗′), where

Υ∗ = (A′
⊥Ω∗−1

1 A⊥)−1/2(A′
⊥Ω∗−1

1 E(V −1
t−1εtε

′
t)A⊥)(A′

⊥V
∗A⊥)−1/2, and the remaining

variables are defined as in Theorem 3.3. 2

Some of the critical values for the distributions in (3.18) or (3.20) are tabulated in

Section 5 and Appendix B of Sin and Ling (2004). Refer to Theorem 3.3 and Corol-

lary 3.3. In actual empirical applications, one needs to estimate the d eigenvalues of

either Id − ΥΥ′ or those of Id − Υ∗Υ∗, which involves V ∗, A⊥, E(V −1
t−1εtε

′
tV

−1
t−1),

E(V −1
t−1εtε

′
t), and E(V −1

t−1). V ∗ (see around (3.7) above) can be consistently es-

timated by n−1∑n
t=1 ε̂tε̂

′
t. Similarly, A⊥ (see around (2.2) above) can be consis-

tently estimated by (Im − c(Ȧ′c)−1Ȧ′)c⊥, where c = (Ir, 0rxd)
′ and c⊥ = (0dxr, Id)

′.

See p.48 of Johansen (1996) for details. Further, E(V −1
t−1εtε

′
tV

−1
t−1), E(V −1

t−1εtε
′
t) and

E(V −1
t−1) can be consistently estimated by n−1∑n

t=1 V̂
−1
t−1ε̂tε̂

′
tV̂

−1
t−1, n

−1∑n
t=1 V̂

−1
t−1ε̂tε̂

′
t,

and n−1∑n
t=1 V̂

−1
t−1 respectively, where .

4 Allowing Asymmetric Distribution: With A Mod-

ified Weighting Matrix

In this section, we relax the symmetry assumption and consider the full rank es-

timation, the reduced rank estimation, as well as the test for reduced rank, par-

12



allel to those in Section 3. In Section 3, the only place we need symmetry is

E[U ′
t−1 ⊗ V −1

t−1] = 0. In view of this, we consider a modified weighting matrix,

which is denoted as Gt−1 when it is evaluated at the pseudo true parameters (α, δ).

Gt−1 is defined such that:

ν(Gt−1) ≡ ν(V −1
t−1) − E[ν(V −1

t−1)U
′
t−1][EUt−1U

′
t−1]

−1Ut−1, (4.1)

where ν(.) is obtained from vec(.) by eliminating all supradiagonal elements of a

square matrix (see Magnus, 1988, p.27). It should be noted that by construction,

E[ν(Gt−1)U
′
t−1] = 0. Further, as E(Ut−1) = 0, E(Gt−1) = E(V −1

t−1).

Refer to Sub-sections 3.1 and 3.2. Given the initial estimators (ϕ̂, δ̂) ∈ Θn

and (α̂, δ̂) ∈ Ξn, denote the sample analogue of V −1
t−1 and Ut−1 as V̂ −1

t−1 and Ût−1

respectively, where similar to that in (1.3)-(1.4) and Theorem 3.1:

V̂ −1
t−1 = V −1

t−1(ϕ̂, δ̂), (4.2)

Ût−1 = Ut−1(α̂, δ̂) = [(B̂Yt−1)
′,W ′

t−1, · · · ,W ′
t−s+1]

′. (4.3)

In fact, under the null that rank(C) = r, V −1
t−1(ϕ̂, δ̂) in (4.2) can be replaced by

V −1
t−1(α̂, δ̂). Given (4.2)-(4.3), we can form a sample analogue of Gt−1, denoted as

Ĝt−1, where:

ν(Ĝt−1) ≡ ν(V̂ −1
t−1) − [

n∑

t=1

ν(V̂ −1
t−1)Û

′
t−1][

n∑

t=1

Ût−1Û
′
t−1]

−1Ût−1. (4.4)

Given ϕ̂ and Ĝt−1 (see (4.4)), similar to (3.7) and abusing the notation, we

perform one iteration of the full rank estimator:

ϕ̇ = ϕ̂− [
n∑

t=1

F̂t]
−1[

n∑

t=1

f̂t], (4.5)

where F̂t = −(Xt−1X
′
t−1⊗Ĝt−1), f̂t = (Xt−1⊗Im)Ĝt−1ε̂t, where as in Sub-section 3.1,

ε̂t = Wt − ĈYt−1 −
∑s−1

j=1 Π̂jWt−j.

In order to derive the asymptotic distribution of ϕ̇, once again abusing the no-

tation, we let (W ′
m(u), W ∗′

m(u))′ be a 2m−dimensional Brownian motion (BM) with

13



the covariance matrix:

uΩ ≡ u

(
V ∗ E(εtε

′
tGt−1)

E(Gt−1εtε
′
t) Ω∗

1

)
,

where V ∗ = Eεtε
′
t, and Ω∗

1 = E(Gt−1εtε
′
tGt−1). LetBd(u) = Ω−1/2

a1
[Id, 0dxr] Ω1/2

a V ∗−1/2Wm(u),

where Ωa = E(ata
′
t) and Ωa1 = [Id, 0dxr]Ωa[Id, 0dxr]

′. The following is proved in the

Appendix.

Theorem 4.1. Suppose Assumptions 2.1-2.4 hold. Then

(a) n(Ċ − C)B̄′
⊥ −→L Ω−1

1 M∗,

(b)
√
nvec[(Ċ − C)B̄′, (Π̇1 − Π1), . . . , (Π̇s−1 − Πs−1)] −→L N(0,Ω−1

2 Ω∗
2Ω

−1
2 ),

where ψ11 ≡ [Id, 0](
∑∞

k=1 ψk)[Id, 0]′, Ω1 ≡ E(V −1
t−1), Ω2 ≡ E(Ut−1U

′
t−1 ⊗ Gt−1), Ω∗

2 ≡

E(Ut−1U
′
t−1 ⊗Gt−1εtε

′
tGt−1), Ut−1 = [(BYt−1)

′,W ′
t−1, · · · ,W ′

t−s+1]
′, and M∗ =

(
∫ 1
0 Bd(u)dW

∗
m(u)′)′(

∫ 1
0 Bd(u)Bd(u)

′du)−1Ω−1/2
a1

ψ−1
11 . 2

It should be noted that the definitions of Ω∗
1, Ω2 and Ω∗

2 are essentially the same

as those in Sub-section 3.1, with V −1
t−1 replaced by Gt−1. The definitions of other

variables (in particular that of Ω1) remain unchanged though.

Next we turn to the reduced rank estimation. Given α̂ and Ĝt−1 (see (4.4)),

similar to (3.14)-(3.15) and abusing the notation, we perform one iteration of the

reduced rank estimators:

α̇1 = α̂1 − [
n∑

t=1

R̂1t]
−1[

n∑

t=1

r̂1t], (4.6)

α̇2 = α̂2 − [
n∑

t=1

Ṙ2t]
−1[

n∑

t=1

ṙ2t], (4.7)

where R̂1t = −(Yt−1Y
′
t−1 ⊗ Â′Ĝt−1Â), Ṙ2t = −(U̇t−1U̇

′
t−1 ⊗ Ĝt−1);

r̂1t = (Yt−1 ⊗ Â′)Ĝt−1ε̂t, and ṙ2t = (U̇t−1 ⊗ Im)Ĝt−1ε̇t, where as in Sub-section 3.2,

U̇t−1 = [(ḂYt−1)
′,W ′

t−1, . . . ,W
′
t−s+1]

′ and ε̇t = Wt − ÂḂYt−1 −
∑s−1

j=1 Π̂jWt−j.

Refer to (4.6)-(4.7), the asymptotic distributions of the normalized estimators

for α1 and α2 are given as follows.
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Theorem 4.2. Suppose Assumptions 2.1-2.4 hold. Then

(a) n((ḂB̄′)−1Ḃ −B)B̄′
⊥ −→L (A′Ω1A)−1A′M∗,

(b)
√
nvec[(Ȧ(ḂB̄′) − A), (Π̇1 − Π1), . . . , (Π̇s−1 − Πs−1)] −→L N(0,Ω−1

2 Ω∗
2Ω

−1
2 ),

where the remaining variables are defined as in Theorem 4.1. 2

Given Theorems 4.1 and 4.2, parallel to Sub-section 3.3, we may define a modified

LRT test statistic for reduced rank, where abusing notation:

LRT ∗
G ≡ [vec(Ċ∗) − vec(ȦḂ∗)]′[−

n∑

t=1

F̂ ∗
11t][vec(Ċ

∗) − vec(ȦḂ∗)], (4.8)

where vec(Ċ∗) = (−∑n
t=1 F̂

∗
11t)

−1(−∑n
t=1 F̂11t)vec(Ċ), Ḃ∗ = (Ȧ′Ω̇∗

1Ȧ)−1(Ȧ′Ω̇1Ȧ)Ḃ,

F̂11t = −(Yt−1Y
′
t−1 ⊗ Ĝt−1), and F̂ ∗

11t = −(Yt−1Y
′
t−1 ⊗ Ĝt−1ε̂tε̂tĜt−1).

The following corollary gives the asymptotic distribution of LRT ∗
G.

Corollary 4.3. Suppose Assumptions 2.1-2.4 hold. Then under H0 in (3.16), the

modified LR test statistic for reduced rank,

LRT ∗
G −→L tr{[ζ(Id − Λ∗

d)
1/2 + ΦΛ

∗1/2
d ]′[ζ(Id − Λ∗

d)
1/2 + ΦΛ

∗1/2
d ]}, (4.9)

where Λ∗
d is a diagonal matrix containing the d eigenvalues of (Id − Υ∗Υ∗′), Υ∗ =

(A′
⊥Ω∗−1

1 A⊥)−1/2(A′
⊥Ω∗−1

1 E(Gt−1εtε
′
t)A⊥)(A′

⊥V
∗A⊥)−1/2, where we recall that Ω∗

1 =

E(Gt−1εtε
′
tGt−1) and the remaining variables are defined as in Theorem 4.1. 2

5 Allowing Asymmetric Distribution: Without Mod-

ifying the Weighting Matrix

Similar to the previous section, this section also relaxes the symmetry assumption

and consider the full rank estimation, the reduced rank estimation, as well as the test

for reduced rank, parallel to those in Section 3. Nevertheless, in order to maintain

the original the weighting matrix, we consider more involved procedures and more

elaborate asymptotic distributions.
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Consider the full rank estimation and refer to Sub-section 3.1. Given the initial

estimators (ϕ̂, δ̂) ∈ Θn, we perform a one-step iteration of the full rank estimator:

ϕ̇ = ϕ̂− [
n∑

t=1

Ft(ϕ̂, δ̂)]
−1[

n∑

t=1

ft(ϕ̂, δ̂)]. (5.1)

It should be noted that the procedure in (5.1) is exactly the same as that in (3.7).

Nevertheless, due to the possibly asymmetric distribution, the asymptotic distribu-

tion is different, as one can see in the next theorem.

Theorem 5.1. Suppose Assumptions 2.1-2.4 hold. Then

D∗Q∗′−1(ϕ̇− ϕ) −→L

(
Z ⊗ Ω1 (L⊗ Im)Σ

Σ′(L′ ⊗ Im) Ω2

)−1 (
W ∗

Ω
∗1/2
2 Φ

)
,

where Z = ψ11Ω
1/2
a1

(
∫ 1
0 Bd(u)Bd(u)

′du)Ω1/2
a1
ψ′

11, L = ψ11Ω
1/2
a1

(
∫ 1
0 Bd(u)du), Σ = E(U ′

t−1⊗

V −1
t−1), W

∗ = (ψ11Ω
1/2
a1

⊗ Im)vec[(
∫ 1
0 BddW

∗
m(u)′)′], and the remaining variables are

defined as in Lemma 2.1. 2

Next we turn to the reduced rank estimation. Refer to the ECM in (3.8), as

BB′
⊥ = 0,

V
−1/2
t−1 Wt = V

−1/2
t−1 εt + V

−1/2
t−1 ABYt−1 +

s−1∑

j=1

V
−1/2
t−1 ΠjWt−j + V

−1/2
t−1 ABB̄′

⊥B⊥Yt−1

=⇒ V
−1/2
t−1 Wt = V

−1/2
t−1 εt + (B⊥Yt−1 ⊗ A′V

−1/2
t−1 )vec(BB̄′

⊥) + (Ut−1 ⊗ V
−1/2
t−1 )α2,

where we recall from Sections 2 and 3 that B̄′
⊥ = B′

⊥(B⊥B
′
⊥)−1 and

Ut−1 = [(BYt−1)
′,W ′

t−1, · · · ,W ′
t−s+1]

′.

However in deriving the LRT test for reduced rank, we need a n − consistent

estimator for B itself. Note vec(BB̄′
⊥) = [(B⊥B

′
⊥)−1B⊥ ⊗ Ir]vec(B). Define B̂⊥ ≡

c′⊥(Im−B̂′(c′B̂′)−1c′), where c = (Ir, 0rxd)
′ and c⊥ = (0dxr, Id)

′. See p.48 of Johansen

(1996) for details. B̂⊥ is an n− consistent estimator for B⊥. Abusing the notation,

a natural estimator for α is:

diag(B̂′
⊥ ⊗ Ir, Irm+(s−1)m2)(

n∑

t=1

P̂t)
−1(

n∑

t=1

φ̂t), (5.2)

where

P̂t =

(
B̂⊥Yt−1Y

′
t−1B̂

′
⊥ ⊗ Â′V̂ −1

t−1Â B̂⊥Yt−1Û
′
t−1 ⊗ Â′V̂ −1

t−1

Ût−1Y
′
t−1B̂

′
⊥ ⊗ V̂ −1

t−1Â Ût−1Û
′
t−1 ⊗ V̂ −1

t−1

)
,
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φ̂t =

(
B̂⊥Yt−1 ⊗ Â′V̂ −1

t−1Wt

Ût−1 ⊗ V̂ −1
t−1Wt

)
,

Following the lines in the previous sections and abusing the notation, as an

alternative to (5.2), we can estimate α1 and α2 separately, where:

α̇1 = α̂1 − [B̂′
⊥ ⊗ Ir, 0mrx(rm+(s−1)m2)][

n∑

t=1

Pt(α̂1, α̂2, δ̂)]
−1[

n∑

t=1

pt(α̂1, α̂2, δ̂)], (5.3)

α̇2 = α̂2 − [0(rm+(s−1)m2)xmd, Irm+(s−1)m2 ][
n∑

t=1

Pt(α̇1, α̂2, δ̂)]
−1[

n∑

t=1

pt(α̇1, α̂2, δ̂)], (5.4)

where for a generic (α̃, δ̃),

Pt(α̃, δ̃) =

(
B̃⊥Yt−1Y

′
t−1B̃

′
⊥ ⊗ Ã′Ṽ −1

t−1Ã B̃⊥Yt−1Ũ
′
t−1 ⊗ Ã′Ṽ −1

t−1

Ũt−1Y
′
t−1B̃

′
⊥ ⊗ Ṽ −1

t−1Ã Ũt−1Ũ
′
t−1 ⊗ Ṽ −1

t−1

)
,

pt(α̃, δ̃) =

(
B̃⊥Yt−1 ⊗ Ã′Ṽ −1

t−1ε̃t

Ũt−1 ⊗ Ṽ −1
t−1ε̃t

)
.

Theorem 5.2. Suppose Assumptions 2.1-2.4 hold. Then

D∗∗Q∗∗′−1(α̈− α) −→L

(
Z ⊗ A′Ω1A (L⊗ A′)Σ
Σ′(L′ ⊗ A) Ω2

)−1 (
(Id ⊗ A′)W ∗

Ω
∗1/2
2 Φ

)
,

where α̈ = (α̈′
1, α̈

′
2)

′, α̈1 = vec((ḂB̄′)−1Ḃ) and α̈2 = vec(Ȧ(ḂB̄′), Π̇1, . . . , Π̇s−1), and

the remaining variables are defined as in Lemma 2.1 or Theorem 5.1. 2

Refer to the null and the alternative hypotheses in (3.16). Similar to (3.17)

and abusing the notation, we first consider the Likelihood Ratio-Type (LRT) test

statistic:

LRTG ≡ [ϕ̇− diag(Im ⊗ Ȧ, I(s−1)m2)χ̇]′[−
n∑

t=1

F̂t][ϕ̇− diag(Im ⊗ Ȧ, I(s−1)m2)χ̇], (5.5)

where χ̇ ≡ (α̇′
1, α̇

′
22)

′, α̇22 is the reduced-rank estimator for α22 ≡ vec(Π1, . . . ,Πs−1).

Compare (3.17) with (5.5). The inclusion of parameters other than A and B is due

to the possible asymmetric distribution. Similar to the proof of Lemma 3.3, it can

be shown that:

D∗Q∗′−1[diag(Im ⊗ Ȧ, I(s−1)m2)χ̇− ϕ]

= D∗Q∗′−1[diag(Im ⊗ Ȧ(ḂB̄′), I(s−1)m2)(α̈′
1, α̇

′
22) − ϕ]

= diag(Id ⊗ A, I(s−1)m2)D∗∗Q∗∗′−1(α̈− α) + op(1).
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As a result,

[D∗Q∗′−1(diag(Im ⊗ Ȧ, I(s−1)m2)χ̇− ϕ)]′[−D∗−1Q∗
n∑

t=1

F̂tQ
∗′D∗−1]

·[D∗Q∗′−1(diag(Im ⊗ Ȧ, I(s−1)m2)χ̇− ϕ)]

= [D∗∗Q∗∗′−1(α̈− α)]′[−D∗∗−1Q∗∗
n∑

t=1

RtQ
∗∗′D∗∗−1][D∗∗Q∗∗′−1(α̈− α)] + op(1).(5.6)

In a similar token,

[D∗Q∗′−1(diag(Im ⊗ Ȧ, I(s−1)m2)χ̇− ϕ)]′[−D∗−1Q∗
n∑

t=1

F̂tQ
∗′D∗−1][D∗Q∗′−1(ϕ̇− ϕ)]

= [D∗∗Q∗∗′−1(α̈− α)]′[−D∗∗−1Q∗∗
n∑

t=1

RtQ
∗∗′D∗∗−1][D∗∗Q∗∗′−1(α̈− α)] + op(1). (5.7)

Therefore, by Theorems 5.1 and 5.2,

LRTG

= [D∗Q∗′−1(ϕ̇− ϕ)]′[−D∗−1Q∗
n∑

t=1

FtQ
∗′D∗−1][D∗Q∗′−1(ϕ̇− ϕ)]

−[D∗∗Q∗∗′−1(α̈− α)]′[−D∗∗−1Q∗∗
n∑

t=1

RtQ
∗∗′D∗∗−1][D∗∗Q∗∗′−1(α̈− α)] + op(1)

−→L

(
w∗

Φ

)′ (
z ⊗ Ω

∗−1/2
1 Ω1Ω

∗−1/2
1 (l ⊗ Ω

∗−1/2
1 )ΣΩ

∗−1/2
2

Ω
∗−1/2
2 Σ′(l′ ⊗ Ω

∗−1/2
1 ) Ω

∗−1/2
2 Ω2Ω

∗−1/2
2

)−1 (
w∗

Φ

)

−
(
w∗

Φ

)′

A∗[A∗′
(

z ⊗ Ω
∗−1/2
1 Ω1Ω

∗−1/2
1 (l ⊗ Ω

∗−1/2
1 )ΣΩ

∗−1/2
2

Ω
∗−1/2
2 Σ′(l′ ⊗ Ω

∗−1/2
1 ) Ω

∗−1/2
2 Ω2Ω

∗−1/2
2

)
A∗]−1

·A∗
(
w∗

Φ

)
, (5.8)

where w∗ = vec[(
∫ 1
0 Bddw

∗
m(u)′)′], w∗

m(u) = Ω
∗−1/2
1 W ∗

m(u), and A∗ = diag(Id ⊗

Ω
∗1/2
1 A,Ω

∗1/2
1 ), z =

∫ 1
0 Bd(u)Bd(u)

′du, and l =
∫ 1
0 Bd(u)du.

Denoting (
z ⊗ Ω

∗−1/2
1 Ω1Ω

∗−1/2
1 (l ⊗ Ω

∗−1/2
1 )ΣΩ

∗−1/2
2

Ω
∗−1/2
2 Σ′(l′ ⊗ Ω

∗−1/2
1 ) Ω

∗−1/2
2 Ω2Ω

∗−1/2
2

)

as Ω∗∗, the following lemma gives the asymptotic distribution of the LRTG in (5.5).

Lemma 5.3. Suppose Assumptions 2.1-2.4 hold. Then under H0 in (3.16), the

LRT test statistic for rank in (5.5),

LRTG −→L

(
w∗

Φ

)′

Ω∗∗−1A∗
⊥(A∗′

⊥Ω∗∗−1A∗
⊥)−1A∗′

⊥Ω∗∗−1

(
w∗

Φ

)
, (5.9)
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where A∗′
⊥ = (Id ⊗ A′

⊥Ω
∗−1/2
1 , 0d2x(rm+(s−1)m2)). 2

When the εt’s are conditional homoskedastic, E(V −1
t−1εtε

′
t) = Im, and Σ = 0, it

can be shown that the distribution of LRTG is exactly the same as that in Reinsel

and Ahn (1992) and Johansen (1996). When E(εtε
′
t | It−1) = Vt−1 and Vt−1 may or

may not equal to Im, the distribution of LRTG can be simplified as follows.

Theorem 5.3. Suppose the assumptions in Lemma 5.3 hold. If E(εtε
′
t | It−1) =

Vt−1, then

LRTG −→L

(
w
Φ

)′

Ω−1A⊥(A′
⊥Ω−1A⊥)−1A′

⊥Ω−1

(
w
Φ

)
, (5.10)

where Ω is defined as

(
z ⊗ Im (l ⊗ Ω

−1/2
1 )ΣΩ

−1/2
2

Ω
−1/2
2 Σ′(l′ ⊗ Ω

−1/2
1 ) Im

)
,

and A′
⊥ = (Id ⊗ A′

⊥Ω
−1/2
1 , 0d2x(rm+(s−1)m2)), w = vec[(

∫ 1
0 Bddwm(u)′)′], wm(u) =

Ω
−1/2
1 W ∗

m(u). 2

On the other hand, when E(εtε
′
t | It−1) 6= Vt−1, we may define a modified LRT

test statistic:

LRT ∗
G ≡ [ϕ̇− diag(Im ⊗ Ȧ, I(s−1)m2)χ̇]′[−

n∑

t=1

F̂t][−
n∑

t=1

F̂ ∗
t ]−1

·[−
n∑

t=1

F̂t][ϕ̇− diag(Im ⊗ Ȧ, I(s−1)m2)χ̇], (5.11)

where F̂ ∗
t = −(Xt−1X

′
t−1 ⊗ V̂ −1

t−1ε̂tε̂
′
tV̂

−1
t−1). The following corollary gives the asymp-

totic distribution of LRT ∗
G.

Corollary 5.3. Suppose the assumptions in Lemma 5.3 hold. Then

LRT ∗
G −→L

(
w∗

Φ

)′

Ω∗−1A∗
⊥(A∗′

⊥Ω∗−1A⊥)∗−1A∗′
⊥Ω∗−1

(
w∗

Φ

)
, (5.12)

where Ω∗ is defined as

(
z ⊗ Im (l ⊗ Ω

∗−1/2
1 )ΣΩ

∗−1/2
2

Ω
∗−1/2
2 Σ′(l′ ⊗ Ω

∗−1/2
1 ) Im

)
,

and all the other variables are defined above. 2
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6 WLS versus QMLE: Efficiency and Computa-

tional Matters

7 Monte Carlo Experiments

8 An Empirical Example

9 Conclusions

Macroeconomic or financial data are often modelled with cointegration and GARCH.

Noticeable examples include those studies of price discovery, in which stock prices of

the same underlying asset are cointegrated and they exhibit multivariate GARCH.

Modifying the asymptotic theories developed in Li, Ling and Wong (2001) and Sin

and Ling (2004), this paper proposes a WLS (weighted least squares) for the parame-

ters of an ECM (error-correction model). Apart from its computational simplicity,

by construction, the consistency of WLS is insensitive to possible mis-specification in

conditional variance. Further, asymmetrically distributed deflated error is allowed,

at the expense of more deliberate estimation procedures. Efficiency loss relative

to QMLE (quasi-maximum likelihood estimator) is discussed within the class of

LABF (locally asymptotically Brownian functional) models. The insensitivity and

efficiency of WLS in finite samples are examined through Monte Carlo experiments.

We also apply the WLS to an empirical example of HSI (Hang Seng Index), HSIF

(Hang Seng Index Futures) and TraHK (Hong Kong Tracker Fund).
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A Appendix: Critical Values

TABLE A.1

Quantiles of the Limiting Distribution (5.3) or (5.5)

d = 1, no Constant Term

α−th simulated quantiles
λ1 .500 .750 .800 .850 .900 .950 .975 .990

0.0 0.602 1.550 1.891 2.343 2.995 4.153 5.357 7.018
0.1 0.575 1.539 1.869 2.315 2.978 4.140 5.365 6.941
0.2 0.553 1.511 1.850 2.308 2.964 4.138 5.362 6.939
0.3 0.533 1.489 1.824 2.282 2.941 4.108 5.305 6.921
0.4 0.515 1.462 1.800 2.254 2.914 4.083 5.286 6.929
0.5 0.499 1.441 1.770 2.223 2.883 4.043 5.242 6.895
0.6 0.490 1.414 1.743 2.197 2.845 4.013 5.225 6.824
0.7 0.481 1.385 1.718 2.171 2.811 3.963 5.174 6.839
0.8 0.470 1.364 1.693 2.139 2.782 3.920 5.097 6.774
0.9 0.461 1.354 1.674 2.105 2.746 3.867 5.047 6.718
1.0 0.455 1.326 1.649 2.078 2.711 3.827 5.068 6.633
The table values were computed from 100, 000 simulations with n = 2, 000.
λ1 is the eigenvalue of Λ1 in (5.3) or Λ∗

1 in (5.5).
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TABLE A.2

Quantiles of the Limiting Distribution (5.3) or (5.5)

d = 2, no Constant Term

α−th simulated quantiles
λ1 λ2 .500 .750 .800 .850 .900 .950 .975 .990

0.0 0.0 5.508 7.844 8.522 9.365 10.479 12.286 14.065 16.278
0.0 0.1 5.405 7.739 8.413 9.267 10.386 12.237 13.971 16.144
0.0 0.2 5.298 7.645 8.313 9.159 10.312 12.158 13.886 16.041
0.0 0.3 5.189 7.541 8.210 9.062 10.234 12.073 13.793 15.986
0.0 0.4 5.068 7.440 8.112 8.959 10.119 11.987 13.722 15.895
0.0 0.5 4.952 7.330 8.008 8.865 10.003 11.887 13.659 15.802
0.0 0.6 4.839 7.216 7.909 8.744 9.906 11.789 13.542 15.716
0.0 0.7 4.726 7.112 7.783 8.647 9.796 11.676 13.440 15.623
0.0 0.8 4.619 6.981 7.668 8.525 9.680 11.559 13.354 15.530
0.0 0.9 4.504 6.867 7.542 8.410 9.551 11.446 13.230 15.435
0.0 1.0 4.393 6.745 7.417 8.268 9.443 11.306 13.172 15.450
0.1 0.1 5.287 7.635 8.325 9.172 10.295 12.140 13.885 16.105
0.1 0.2 5.178 7.534 8.229 9.079 10.217 12.071 13.817 15.991
0.1 0.3 5.058 7.440 8.123 8.979 10.125 11.987 13.736 15.920
0.1 0.4 4.945 7.341 8.023 8.865 10.018 11.902 13.612 15.806
0.1 0.5 4.832 7.224 7.920 8.750 9.919 11.818 13.539 15.643
0.1 0.6 4.718 7.108 7.791 8.643 9.808 11.692 13.422 15.552
0.1 0.7 4.605 6.987 7.677 8.533 9.679 11.578 13.296 15.482
0.1 0.8 4.498 6.856 7.559 8.413 9.561 11.434 13.179 15.337
0.1 0.9 4.382 6.749 7.430 8.290 9.455 11.284 13.064 15.247
0.1 1.0 4.278 6.627 7.307 8.157 9.307 11.147 12.950 15.229
0.2 0.2 5.070 7.445 8.137 8.987 10.116 11.973 13.707 15.898
0.2 0.3 4.945 7.336 8.037 8.881 10.028 11.879 13.601 15.812
0.2 0.4 4.828 7.225 7.916 8.761 9.916 11.791 13.501 15.647
0.2 0.5 4.711 7.111 7.807 8.658 9.819 11.691 13.383 15.556
0.2 0.6 4.596 6.998 7.682 8.532 9.691 11.566 13.298 15.405
0.2 0.7 4.488 6.881 7.560 8.415 9.579 11.433 13.191 15.319
0.2 0.8 4.383 6.753 7.435 8.288 9.453 11.293 13.027 15.191
0.2 0.9 4.266 6.621 7.309 8.165 9.322 11.141 12.902 15.023
0.2 1.0 4.160 6.502 7.190 8.031 9.182 10.985 12.768 15.020
0.3 0.3 4.830 7.232 7.929 8.781 9.931 11.752 13.491 15.702
0.3 0.4 4.717 7.118 7.809 8.657 9.816 11.669 13.411 15.609
0.3 0.5 4.598 7.001 7.688 8.540 9.693 11.570 13.285 15.471
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TABLE A.2 (Continued)

α−th simulated quantiles
λ1 λ2 .500 .750 .800 .850 .900 .950 .975 .990

0.3 0.6 4.489 6.877 7.570 8.415 9.565 11.432 13.179 15.318
0.3 0.7 4.369 6.758 7.442 8.281 9.442 11.296 13.051 15.202
0.3 0.8 4.263 6.636 7.302 8.160 9.310 11.158 12.897 15.021
0.3 0.9 4.152 6.505 7.187 8.042 9.163 11.010 12.743 14.870
0.3 1.0 4.052 6.374 7.045 7.882 9.046 10.819 12.592 14.853
0.4 0.4 4.600 7.006 7.695 8.549 9.707 11.557 13.290 15.510
0.4 0.5 4.486 6.877 7.577 8.420 9.576 11.438 13.180 15.374
0.4 0.6 4.373 6.760 7.444 8.287 9.440 11.310 13.061 15.231
0.4 0.7 4.255 6.631 7.318 8.148 9.313 11.171 12.881 15.087
0.4 0.8 4.150 6.506 7.179 8.012 9.176 11.024 12.733 14.928
0.4 0.9 4.040 6.378 7.050 7.883 9.018 10.847 12.567 14.747
0.4 1.0 3.941 6.233 6.911 7.735 8.875 10.678 12.395 14.651
0.5 0.5 4.376 6.751 7.437 8.298 9.444 11.322 13.053 15.298
0.5 0.6 4.261 6.625 7.299 8.171 9.310 11.176 12.919 15.115
0.5 0.7 4.151 6.497 7.178 8.016 9.177 11.049 12.759 14.954
0.5 0.8 4.036 6.362 7.039 7.870 9.030 10.854 12.567 14.820
0.5 0.9 3.937 6.235 6.907 7.727 8.866 10.693 12.398 14.612
0.5 1.0 3.836 6.098 6.758 7.588 8.685 10.541 12.202 14.486
0.6 0.6 4.152 6.495 7.161 8.015 9.153 11.035 12.781 14.993
0.6 0.7 4.045 6.356 7.027 7.874 9.015 10.894 12.580 14.809
0.6 0.8 3.930 6.214 6.890 7.719 8.857 10.713 12.401 14.622
0.6 0.9 3.828 6.086 6.749 7.577 8.698 10.529 12.218 14.480
0.6 1.0 3.733 5.959 6.612 7.428 8.512 10.358 12.002 14.298
0.7 0.7 3.936 6.213 6.885 7.721 8.847 10.719 12.432 14.668
0.7 0.8 3.827 6.082 6.738 7.564 8.688 10.555 12.247 14.435
0.7 0.9 3.724 5.933 6.598 7.413 8.520 10.353 12.036 14.259
0.7 1.0 3.630 5.811 6.464 7.251 8.347 10.151 11.794 14.091
0.8 0.8 3.728 5.934 6.586 7.400 8.526 10.342 12.053 14.255
0.8 0.9 3.626 5.791 6.434 7.240 8.345 10.144 11.857 14.064
0.8 1.0 3.528 5.666 6.303 7.084 8.154 9.952 11.588 13.825
0.9 0.9 3.531 5.655 6.286 7.071 8.166 9.932 11.656 13.770
0.9 1.0 3.446 5.521 6.142 6.913 7.972 9.703 11.390 13.553
1.0 1.0 3.359 5.378 5.977 6.734 7.777 9.471 11.120 13.264
The table values were computed from 100, 000 simulations with n = 2, 000.
λ1 ≤ λ2 are the eigenvalues of Λ2 in (5.3) or Λ∗

2 in (5.5).
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B Appendix: Technical Proofs

Lemma B.1. Under the assumptions in Theorem 4.2, it follows that

(a) (B̂B̄′)−1(Ḃ − B̂) = Op(n
−1/2),

(b) Â(ḂB̄′) = Â(B̂B̄′) +Op(n
−1/2) = A +Op(n

−1/2),

(c) (ḂB̄′)−1B̂P1 = (B̂B̄′)−1B̂P1 +Op(n
−3/2) = BP1 +Op(n

−1),

(d) (ḂB̄′)−1B̂P2 = (B̂B̄′)−1B̂P2 +Op(n
−1/2) = BP2 +Op(n

−1/2). 2

Proof. (a). We first denote Dα1 = diag(nIrd,
√
nIr2) and Q̂∗∗ = Q(Im⊗(B̂B̄′)′),

with Q = (Q⊗Ir). Also denote α̂1 = vec(B̂), α̌1 = vec((B̂B̄′)−1B̂) and α̇1 = vec(Ḃ).

α̂2, α̌2 and α̇2 are defined accordingly. α̂, α̌ and α̇ are also defined accordingly. Since

Q̂∗∗′−1 = (P ′ ⊗ Ir)(Im ⊗ (B̂B̄′)−1), we have

(Im ⊗ (B̂B̄′)−1)(α̇1 − α̂1) = Q′D−1
α1
Dα1(P

′ ⊗ Ir)(Im ⊗ (B̂B̄′)−1)(α̇1 − α̂1)

= Q′D−1
α1

[Dα1Q̂
∗∗′−1(α̇1 − α̂1)].

As Q′D−1
α1

= O(n−1/2), it suffices to show Dα1Q̂
∗∗′−1(α̇1 − α̂1) = Op(1). By (4.9),

Dα1Q̂
∗∗′−1(α̇1 − α̂1)

= −[
n∑

t=1

D−1
α1
Q̂∗∗(R1t|α̂,δ̇)Q̂

∗∗′D−1
α1

]−1[
n∑

t=1

D−1
α1
Q̂∗∗(r1t|α̂,δ̇)]

= −[
n∑

t=1

D−1
α1
Q(R1t|α̌,δ̇)Q

′D−1
α1

]−1[
n∑

t=1

D−1
α1
Q(r1t|α̌,δ̇)].

By Theorem 4.1 and Theorem 3.1(c), n(α̌1 − α1) = Op(1),
√
n(α̌2 − α2) = Op(1),

and
√
n(δ̇ − δ) = Op(1). Similar to the arguments for (4.7), it follows that:

n∑

t=1

D−1
α1
Q(R1t|α̌,δ̇)Q

′D−1
α1

=
n∑

t=1

D−1
α1
QR1tQ′D−1

α1
+ op(1). (B. 1)

On the other hand, by a Taylor’s expansion and (B.1), with R∗
1t and r∗1t being

evaluated at a mid-point of (α̌, δ̇) and (α, δ),

n∑

t=1

D−1
α1
Q(r1t|α̌,δ̇)
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=
n∑

t=1

D−1
α1
Qr1t +

n∑

t=1

D−1
α1
Q(R∗

1t)(α̌1 − α1) +
n∑

t=1

D−1
α1
Q(∇α′

2
r∗1t)(α̌2 − α2)

=
n∑

t=1

D−1
α1
Q1r1t + [

n∑

t=1

D−1
α1
QR1tQ′D−1

α1
+ op(1)]

1

n
Dα1(P

′ ⊗ Ir)[n(α̌1 − α1)]

+[
1√
n

n∑

t=1

D−1
α1
Q(∇α′

2
r∗1t)]

√
n(α̌2 − α2). (B. 2)

It is not difficult to show that 1√
n

∑n
t=1D

−1
α1
Q(∇α′

2
r∗1t) is Op(1). So is the RHS of

(B.2). By Lemmas 3.1(a)-(b), (B.1) and (B.2), (a) holds.

(b). By the
√
n-consistency of Â(B̂B̄′) for A, and (a) of this lemma,

Â(ḂB̄′) = Â(B̂B̄′) + Â(B̂B̄′)(B̂B̄′)−1(Ḃ − B̂)B̄′ = Â(B̂B̄′) +Op(1)Op(n
−1/2).

Thus, (b) holds.

(c) and (d). Denote B̌ = (B̂B̄′)−1B̂.

(ḂB̄′)−1B̂ = [(B̂B̄′)−1ḂB̄′]−1(B̂B̄′)−1B̂ = [(B̂B̄′)−1ḂB̄′]−1B̌. (B. 3)

Using the formula dF−1 = −F−1(dF )F−1 for the r×r matrix F with F (x) = [xB̄]−1,

and applying a Taylor’s expansion to [(B̂B̄′)−1ḂB̄′]−1 around B̌B̄′, we have

[(B̂B̄′)−1ḂB̄′]−1 = [B̌B̄′]−1 − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1,

where B∗ lies between (B̂B̄′)−1Ḃ and B̌. Therefore, the RHS of (B.3) equals:

[(B̂B̄′)−1B̂B̄′]−1(B̂B̄′)−1B̂ − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1B̌

= (B̂B̄′)−1B̂ − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1B̌. (B. 4)

By (a) of this lemma, (B̂B̄′)−1Ḃ − B̌ = Op(n
−1/2). From this, we can show that

[B∗B̄′]−1 = Op(1). B̄ and B̌ are also OP (1). By (B.4), (d) holds. By Theorem 4.1,

B̌P1 = Op(n
−1) because BP1 = 0. By (B.4),

[(B̂B̄′)−1B̂B̄′]−1(B̂B̄′)−1B̂P1 − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1B̌P1

= (B̂B̄′)−1B̂P1 +Op(n
−3/2).

Thus, (c) holds. This completes the proof. 2
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Proof of Theorem 4.2. Denote Q̇∗∗
1 = (Q′

1 ⊗ Ir)(Im ⊗ (ḂB̄′)′), Q̇∗∗
2 =

diag((ḂB̄′)−1 ⊗ Im, I(s−1)m2), ὰ1 = vec((ḂB̄′)−1B̂), ὰ2 = vec[Â(ḂB̄′), Φ̂∗
1, . . . , Φ̂

∗
s−1],

and ὰ = [ὰ′
1, ὰ

′
2]
′. By Lemmas B.1(b)-(c), (ὰ, δ̇) ∈ Ξn. Thus by (4.7),

n−2
n∑

t=1

Q̇∗∗
1 (R1t|α̂,δ̇)Q̇

∗∗′
1 = n−2

n∑

t=1

(Q′
1 ⊗ Ir)(R1t|ὰ,δ̇)(Q1 ⊗ Ir)

= n−2
n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir) + op(1), (B. 5)

n−1
n∑

t=1

Q̇∗∗
2 (R2t|α̂,δ̇)Q̇

∗∗′
2 = n−1

n∑

t=1

(R2t|ὰ,δ̇) = n−1
n∑

t=1

R2t + op(1). (B. 6)

Refer to (4.6). Due to the block-diagonality of R̃t, by (4.8),

1

n

n∑

t=1

Q̇∗∗
1 (r1t|α̂,δ̇) =

1

n

n∑

t=1

(Q′
1 ⊗ Ir)(r1t|ὰ,δ̇)

=
1

n

n∑

t=1

(Q′
1 ⊗ Ir)r1t + (

1

n

n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir))(P

′
1 ⊗ Ir)(ὰ1 − α1) + op(1), (B. 7)

1√
n

n∑

t=1

Q̇∗∗
2 (r2t|α̂,δ̇) =

1√
n

n∑

t=1

(r2t|ὰ,δ̇)

=
1√
n

n∑

t=1

r2t + (
1√
n

n∑

t=1

R2t)(ὰ2 − α2) + op(1). (B. 8)

(a). Recall that Q̇∗∗′−1
1 α̂1 = (P ′

1 ⊗ Ir)ὰ1. By (4.9), (B.5) and (B.7),

nQ̇∗∗′−1
1 α̇1 = nQ̇∗∗′−1

1 α̂1 − [n−2
n∑

t=1

Q̇∗∗
1 (R1t|α̂,δ̇)Q̇

∗∗′
1 ]−1[n−1

n∑

t=1

Q̇∗∗
1 (r1t|α̂,δ̇)]

= n(P ′
1 ⊗ Ir)ὰ1 − [n−2

n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir)]

−1[n−1
n∑

t=1

(Q′
1 ⊗ Ir)r1t]

−n(P ′
1 ⊗ Ir)(ὰ1 − α1) + op(1)

= n(P ′
1 ⊗ Ir)α1 − [

1

n2

n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir)]

−1[
1

n

n∑

t=1

(Q′
1 ⊗ Ir)r1t]

+op(1). (B. 9)

Note that Q̇∗∗′−1
1 α̇1−(P ′

1⊗Ir)α1 = vec[((ḂB̄′)−1Ḃ−B)P1]. By (B.9) and Lemma 3.1(a)-

(b), (a) holds.

(b). By (4.10), (B.6) and (B.8),

√
nQ̇∗∗′−1

2 α̇2 =
√
nQ̇∗∗′−1

2 α̂2 − [n−1
n∑

t=1

Q̇∗∗
2 (R2t|α̂,δ̇)Q̇

∗∗′
2 ]−1[n−1/2

n∑

t=1

Q̇∗∗
2 (r2t|α̂,δ̇)]
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=
√
nὰ2 − [n−1

n∑

t=1

R2t]
−1[n−1/2

n∑

t=1

r2t] −
√
n(ὰ2 − α2) + op(1)

=
√
nα2 − [n−1

n∑

t=1

R2t]
−1[n−1/2

n∑

t=1

r2t] + op(1). (B. 10)

By (B.10) and Lemma 3.1(a)-(b), (b) holds. This completes the proof. 2

Proof of Lemma 5.1. Let ϕ̇∗ = vec[CP1, ĊP2, Φ̇
∗
1, · · · , Φ̇∗

s−1], and l∗(ϕ̇∗, δ̇) be

l(ϕ̇, δ̇) with ĊP1Z1t−1 replaced by CP1Z1t−1. By Lemma 3.1, Theorem 3.1 and a

Taylor’s expansion, we can show that

2[l(ϕ̇, δ̇) − l∗(ϕ̇∗, δ̇)] = vec[n(Ċ − C)P1]
′[

1

n2

n∑

t=1

L1t]vec[n(Ċ − C)P1] + op(1),(B. 11)

where L1t = (Z1t−1Z
′
1t−1⊗V −1

t )+
∑t−1

l=1[Z1t−l−1Z
′
1t−l−1⊗((Γ−1�Γ+Im)�νlν

′
l �Πlt)].

Denote Ä = Ȧ(ḂB̄′) and B̈ = (ḂB̄′)−1Ḃ. Note ȦḂ = ÄB̈. Moreover,

ÄB̈ − AB = (Ä− A)B + A(B̈ − B) + (Ä− A)(B̈ − B).

Recall that BP1 = 0. By Theorem 4.2, (B̈ − B)P1 = Op(n
−1) and (Ä − A) =

Op(n
−1/2) under H0. Hence,

n(ÄB̈ − AB)P1 = n(Ä− A)BP1 + nA(B̈ − B)P1 + (Ä− A)n(B̈ − B)P1

= nA(B̈ −B)P1 +Op(n
−1/2). (B. 12)

Let α̇∗ = vec[ABP1, ȦḂP2, Φ̇
∗
1, · · · , Φ̇∗

s−1], and l∗(α̇∗, δ̇) be l(α̇, δ̇) with ȦḂP1Z1t−1

replaced by ABP1Z1t−1 = CP1Z1t−1. By Lemma 3.1, Theorem 4.2, a Taylor’s

expansion and (A.12), we can show that:

2[l(α̇, δ̇) − l∗(α̇∗, δ̇)]

= vec[n(ÄB̈ − AB)P1]
′[n−2

n∑

t=1

L1t]vec[n(ÄB̈ − AB)P1] + op(1)

= vec[nA(B̈ −B)P1]
′[n−2

n∑

t=1

L1t]vec[nA(B̈ −B)P1] + op(1). (B. 13)

It is straightforward to show that l∗(ϕ̇∗, δ̇) − l∗(α̇∗, δ̇) = op(1). Furthermore, by

(A.11), (A.13) and Lemma 3.1, it follows that

LRG −→L vec[Ω−1
1 M∗]′[Z ⊗ Ω1]vec[Ω

−1
1 M∗] − vec[DM∗]′[Z ⊗ Ω1]vec[DM

∗]
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= vec[Ω−1
1 M∗]′vec[Ω1Ω

−1
1 M∗Z] − vec[DM∗]′vec[Ω1DM

∗Z]

= tr[M∗′Ω−1
1 M∗Z] − tr[M∗′DΩ1DM

∗Z]

= tr[(Ω−1
1 − A(A′Ω1A)−1A′)M∗ZM∗′]. (B. 14)

where D ≡ A(A′Ω1A)−1A′, Z ≡ ψ11Ω
1/2
a1

∫ 1
0 Bd(u)Bd(u)

′Ω1/2
a1
ψ′

11 and M∗ is defined

as in Theorem 3.1. Following the lines on p.359 of Reinsel and Ahn (1992), we can

rewrite Ω−1
1 − A(A′Ω1A)−1A′ as:

Ω−1
1 (Ω1 − Ω1A(A′Ω1A)−1A′Ω1)Ω

−1
1 = Ω−1

1 A⊥(A′
⊥Ω−1

1 A⊥)−1A′
⊥Ω−1

1 .

Therefore, we can rewrite the asymptotic distribution in (A.13) as:

tr[(
∫ 1

0
Bd(u)dV

∗
d (u)′)′(

∫ 1

0
Bd(u)Bd(u)

′du)−1(
∫ 1

0
Bd(u)dV

∗
d (u)′)],

where V ∗
d (u) ≡ (A′

⊥Ω−1
1 A⊥)−1/2A′

⊥Ω−1
1 W ∗

m(u). Note E[Bd(u)V
∗
d (u)′] =

uΩ
−1/2
a1 (A′

⊥Ω−1
1 A⊥)1/2 = uΥ′. Thus, we can rewrite V ∗

d (u) as a linear combination

of two independent d−dimensional standard BMs:

ΥBd(u) + [(A′
⊥Ω−1

1 A⊥)−1/2A′
⊥Ω−1

1 Ω∗
1Ω

−1
1 A⊥(A′

⊥Ω−1
1 A⊥)−1/2 − ΥΥ′]1/2Vd(u).(B. 15)

The proof is complete. 2

Proof of Theorem 5.1. When Ω∗
1 = Ω1, (A.15) in the proof of Lemma 5.1 can

be simplified as ΥBd(u)+ [Id−ΥΥ′]1/2Vd(u). Thus, the asymptotic distribution can

be simplified as:

tr{[
∫ 1

0
ΥBd(u)dBd(u)

′Υ′ +
∫ 1

0
ΥBd(u)dVd(u)

′(Id − ΥΥ′)1/2]′

·[
∫ 1

0
ΥBd(u)Bd(u)

′Υ′du]−1[
∫ 1

0
ΥBd(u)dBd(u)

′Υ′ +
∫ 1

0
ΥBd(u)dVd(u)

′(Id − ΥΥ′)1/2]}.

However, ΥBd(u) ∼ N(0,ΥΥ′). Abusing the notation, we write ΥBd(u) as (ΥΥ′)1/2

Bd(u), where Bd(u) is (another) d−dimensional standard BM independent of Vd(u).

Therefore, cancelling some of the (ΥΥ′)1/2 terms, the asymptotic distribution

can be expressed as:

tr{[
∫ 1
0 Bd(u)dBd(u)

′(ΥΥ′)1/2 +
∫ 1
0 Bd(u)dVd(u)

′(Id − ΥΥ′)1/2]′

[
∫ 1
0 Bd(u)Bd(u)

′du]−1[
∫ 1
0 Bd(u)dBd(u)

′(ΥΥ′)1/2 +
∫ 1
0 Bd(u)dVd(u)

′(Id − ΥΥ′)1/2]}.
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Since (Id−ΥΥ′) is a real symmetric matrix, we can decompose it as ΘΛdΘ
′, where Θ

is an orthogonal matrix such that Θ′Θ = Id. In view of (ΥΥ′)1/2 = Θ(Id − Λd)
1/2Θ′

and (Id − ΥΥ′)1/2 = ΘΛ
1/2
d Θ′ and due to the orthogonality of Θ, we can write the

asymptotic distribution as:

tr{[
∫ 1

0
Θ′Bd(u)dBd(u)

′Θ(Id − Λd)
1/2Θ′ +

∫ 1

0
Θ′Bd(u)dVd(u)

′ΘΛ
1/2
d Θ′]′

·[
∫ 1

0
Θ′Bd(u)Bd(u)

′duΘ]−1

·[
∫ 1

0
Θ′Bd(u)dBd(u)

′Θ(Id − Λd)
1/2Θ′ +

∫ 1

0
Θ′Bd(u)dVd(u)

′ΘΛ
1/2
d Θ′]}.

Since Θ′Bd(u) ∼ N(0,Θ′Θ) = N(0, Id), similar to the previous arguments, and abus-

ing the notation, we can write Θ′Bd(u) and Θ′Vd(u) as two independent standard

BMs Bd(u) and Vd(u) respectively. Cancelling the orthogonal Θ, we have:

tr{[
∫ 1

0
Bd(u)dBd(u)

′(Id − Λd)
1/2 +

∫ 1

0
Bd(u)dVd(u)

′Λ
1/2
d ]′

·[
∫ 1

0
Bd(u)Bd(u)

′du]−1[
∫ 1

0
Bd(u)dBd(u)

′(Id − Λd)
1/2 +

∫ 1

0
Bd(u)dVd(u)

′Λ
1/2
d ]}

= tr{[ζ(Id − Λd)
1/2 + ΦΛ

1/2
d ]′[ζ(Id − Λd)

1/2 + ΦΛ
1/2
d ]}.

This completes the proof. 2
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