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Abstract

The standard model of a Bayesian game used in most applications assumes
that players’ beliefs are derived from a common knowledge prior on preference
parameters. We analyze the robustness of equilibria of such games to pertur-
bations in the information structure. In a type space environment (Harsanyi,
1967-68), we embed types corresponding to this information structure into an
appropriately defined larger type space. We then perturb the embedded set
using the notion of common p -belief (Monderer and Samet, 1989) by consider-
ing all types for which it is common p -belief that all players derive their beliefs
about preference parameters from similar priors. For types in the perturbed
set, we define an ε-equilibrium in which every player’s strategy is an equilib-
rium strategy for the game where his individual prior is a common knowledge
prior. Hence, this strategy is only a function of such a player’s prior and pri-
vate information, and does not depend on the exact form of his higher order
beliefs. Based on this definition, we propose a notion of robustness that is
independent of the specification of the underlying type space. This indepen-
dence significantly simplifies the characterization of robust equilibria. The set
of robust equilibria includes the set of ex post equilibria as a proper subset.
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1 Introduction

A long-standing critique of the standard model of a Bayesian game is that beliefs
about players’ preferences are usually assumed to be derived from a common knowl-
edge prior (CKP) on preference parameters, and are therefore common knowledge.
One of the most prominent accounts of this critique is given by Wilson (1987), who
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stresses that “game theory ... is deficient to the extent it assumes ... features to
be common knowledge, such as one agent’s probability assessment about another’s
preferences or information”, and points out that “only by repeated weakening of
common knowledge assumptions will the theory approximate reality”. Although
the model that assumes a common knowledge prior on preference parameters is less
general than the original model of a Bayesian game introduced by Harsanyi (1967-
68), it is used in most applications and textbook presentations. We will therefore
refer to this model as the “textbook model”, and to corresponding equilibria as
“textbook equilibria”.

It is sometimes argued that even though the assumption of a common knowledge
prior almost never holds, the predictions of the textbook model would still be
valid if the actual information structure is in some way “close” to the information
structure of the textbook model. Our paper investigates this intuitive argument
formally, by introducing a notion of robustness of textbook equilibria with respect
to a precisely defined perturbation of the CKP assumption. To define robustness,
we perturb beliefs while keeping equilibrium strategies fixed. One component of
our definition of robustness is that the potential payoff gains from deviating from
a robust equilibrium strategy are uniformly bounded by a small number whenever
beliefs are “close” to CKP beliefs, and that this bound converges to zero as beliefs
“approach” CKP beliefs. The intuition for this requirement is that a player who
believes that the actual information structure is close to a CKP, does not make a
big mistake as long as he plays according to a robust strategy. Hence, it may be
rational for such a player to assume a CKP if the losses are small and if the cost
of alternative modelling is large.

We use type spaces as a modelling framework, as suggested recently by Berge-
mann and Morris (2003) in the context of a robustness analysis of optimal mech-
anisms. The notion of a type space, introduced in the seminal work of Harsanyi
(1967-68), provides an elegant solution to the problem of having to consider players’
beliefs about other players’ beliefs when analyzing games of incomplete informa-
tion. Harsanyi’s insight was to define a player’s type to capture both his beliefs
about all the specific characteristics of the game to be played, including all players’
preferences, and his beliefs about other players’ types. This formulation provides
a mathematically tractable way to model beliefs about beliefs, and also allows for
a very general definition of what a type can be. In fact, Mertens and Zamir (1985)
showed that there exists a “universal type space”, where types can be defined by
any infinite hierarchy of beliefs about beliefs about preferences, as long as this hi-
erarchy satisfies a simple consistency property.1 Although the general definition of

1See Heifetz and Samet (1998) for a lucid review of the concept of a type space and an extension

of Mertens and Zamir (1985).
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a type space allows for great flexibility in defining a Bayesian game, for tractability
reasons most of the literature in Economics employs the much narrower set of type
spaces derived from a common knowledge prior on preference parameters. Because
of this widespread reliance on textbook equilibria, it is important to determine to
what extent the corresponding strategies are optimal if the CKP assumption is
relaxed. This is the question that our notion of robustness attempts to answer.

The fact that a player’s type captures all the characteristics of his beliefs in
a type space model, suggests type spaces as the proper environment in which to
relax the CKP assumption. To do this, we show how types corresponding to the
textbook model can be embedded into an appropriately defined larger type space,
in which a player’s type is characterized by (1) a preference parameter which is
private information, (2) an individual prior on all players’ preference parameters,
and (3) a probability measure characterizing his beliefs about the types of his
opponents. We then define a perturbation of the embedded set by considering types
whose beliefs are “close” to the beliefs of CKP types. To define such a closeness
of belief structures, we use the notion common p -belief, which was introduced by
Monderer and Samet (1989), and is generally recognized as an appropriate notion
of approximate common knowledge. Thus, we consider those types whose beliefs
are close to a CKP in the sense that they believe that their opponents’ priors are
close to their own prior with high probability, they believe with high probability
that their opponents believe this with high probability, and so on ad infinitum.
This approach allows us to examine the effects of relaxing the CKP assumption by
looking at those types that belong to this perturbed set.2 The construction of the
perturbed set follows an idea of Kajii and Morris (1998), who show that a similar
notion of approximate common knowledge is crucial for the lower hemicontinuity of
the interim ε-equilibrium3 correspondence. We discuss the relation between their
paper and our work in the concluding section.

An advantage of using type spaces as a framework to define such a perturbation,
is that we don’t need to model explicitly the belief hierarchies involved in the
definition. This is because in a type space, higher order beliefs are implicitly defined
by the probability measures representing players’ beliefs about their opponents’
types. As a consequence, the perturbed set can be characterized by specifying
necessary properties of such probability measures, without actually writing down
the corresponding belief hierarchies.

2Note that we relax both the assumption that the players have a common prior on preference

parameters and the assumption that the players’ priors are common knowledge. However, this

does not preclude the possibility that there is a common knowledge prior on the larger type space.
3A player’s strategy is an ε-best response to the strategies of his opponents if the gains from

deviating from this strategy are bounded by ε. A list of strategies such that each player’s strategy

is an ε-best response to his opponents’ strategies, defines an ε-equilibrium.
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We characterize robust equilibrium strategies by defining an ε-equilibrium for
the type space game, such that each player with type/beliefs in the perturbed set
described above plays an equilibrium strategy for the textbook game defined by
his individual prior. If such an ε-equilibrium exists, the corresponding equilibrium
strategies will satisfy the requirements for robustness mentioned above. To define
the ε-equilibrium, we first introduce a topology on the set of all pairs of priors
on preference parameters and corresponding textbook equilibria. Intuitively, this
topology captures strategic closeness between textbook equilibria corresponding to
various priors, in the sense that two equilibria are close if there is a bound on the
gains from deviating from the strategies prescribed by one of the equilibria, as long
as a player’s opponents play according to the other equilibrium. Since these payoff
incentives to deviate decrease with the magnitude of this bound, we can construct
a neighborhood base for this “strategic topology” by varying the bound. We then
introduce an “equilibrium map” as a map from priors to corresponding textbook
equilibria that is uniformly continuous according to this topology, and show that
such maps define the ε-equilibrium.

A player’s strategy as specified by such an ε-equilibrium is an equilibrium strat-
egy for the textbook equilibrium corresponding to his individual prior, as deter-
mined by the equilibrium map. Such a strategy only depends on a player’s prior
and his private information preference parameter, and is independent of the exact
functional form of the player’s higher order beliefs. The only restrictions on the
players’ higher order beliefs we make is that it is common p -belief that all players’
priors are not too different, i.e., that the players’ types belong to the perturbed
set defined above. Thus, as long as this assumption is satisfied, these strategies
are independent of variations in second and higher order beliefs. Intuitively, such a
property is desirable, since it is conceivable that players may not be very confident
about their beliefs about other players’ beliefs, the beliefs about other players’
beliefs about their own beliefs, and so on. This invariance to changes in higher
order beliefs introduces an element of max-min decision theory into our definition
of equilibrium, since the prescribed strategies constitute an ε-best response for all
higher order beliefs corresponding to some type in the perturbed set.

We believe that this invariance to small changes in higher order beliefs, together
with the bound on the gains from deviating, are both essential for a characterization
of robustness. Since both these properties are satisfied if an equilibrium lies on an
equilibrium map, we can define a robust textbook equilibrium as an equilibrium
that lies on some equilibrium map.

The motivation for this approach is that players may be confident that the
common knowledge assumption is approximately satisfied, but may otherwise be
uncertain about the exact distribution of their opponents’ beliefs. For such players,
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it may not be worth considering complicated type spaces when calculating their
strategies, if the gains from doing this are bounded by a small number.

An additional benefit of this formulation is that the independence of the pre-
scribed strategies from higher order beliefs greatly simplifies the identification of
robust equilibria. Since equilibrium maps are only defined in terms of priors and
corresponding textbook equilibria, they can be characterized without use of the
specific type space postulated in the analysis.

Given any textbook equilibrium corresponding to some prior, there need not
exist an equilibrium map such that the given equilibrium lies on this map. In
this case, there may exist types in the perturbed set defined above, for which the
gains from deviating from a strategy prescribed by this equilibrium would yield
gains exceeding ε. Whether this is the case would depend on the exact form
of this type’s higher order beliefs. Nonetheless, such strategies cannot possess the
robustness properties described above. Thus, not all textbook equilibria are robust,
and therefore our notion of robustness yields a proper refinement for textbook
equilibria.

After showing how robust equilibria can be defined in relation to an equilibrium
map for a general model of a Bayesian game, we consider the case of finite games.
For such games, we derive a precise characterization of equilibrium maps in terms of
the Euclidean topology on strategies. Specifically, this characterization implies that
equilibrium maps can be discontinuous and do not require lower hemicontinuity of
the equilibrium correspondence for existence.

The paper is structured as follows: Section 2 presents an example and uses it
to illustrate some problems that arise if the CKP assumption is relaxed. Section
3 reviews some background material on Bayesian games, type spaces and common
p -belief. Section 4 derives our characterization of robustness. Properties of robust
equilibria are collected in section 5. Section 6 presents additional examples illus-
trating various properties of equilibrium maps. Section 7 relates our approach to
the literature and discusses possible extensions and applications.

2 An Example

The following example helps illustrate the main ideas of the paper and some prob-
lems that can arise if the common knowledge assumption is relaxed. The analysis
of the general model can be followed without reading this section, if one is willing
to ignore some references to the example.

Example 1: The example is taken from Engl (1995), who attributes it to Ru-
binstein (1989). We modify Engl’s version by considering a simpler information
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structure. Because the textbook equilibria based on common knowledge of beliefs
are a main ingredient of our analysis, we start by characterizing all such equilibria.

Two players, denoted by 1 and 2, are playing one of two coordination games, A

or B. The set of available actions, {a, b}, is the same for both players and in both
games. The payoffs depend on the players’ choices and the game that is played, as
shown in Figure 1.

Player 1

Player 2
a b

a 1, 1 0,−1
b −1, 0 0, 0

A

Player 1

Player 2
a b

a 0, 0 0,−1
b −1, 0 1, 1

B

Figure 1: Player 2 believes that game A is played with probability π.

Only player 1 knows the true game; Player 2 believes that game A is played
with probability π and game B with probability 1−π. The assumption that beliefs
are common knowledge implies that 2 knows that 1 knows the true game, that 1
knows the value of π, that both players know they know, and so on.

In order to allow for mixed strategy equilibria, we characterize the players’
strategies using the probabilities with which they choose action a. For player 2, we
denote this probability by σ2. Since player 1 knows the true game, he can condition
his action on the actual game, so we let σ1(A) be the probability that 1 chooses
action a if the true game is A, and σ1(B) the probability that 1 chooses a if the
true game is B.

The (Bayesian) Nash equilibria for this game are as follows:

1. σ2 = σ1(A) = σ1(B) = 1, for π ∈ [0, 1];

2. σ2 = 0, σ1(A) ∈ [0, 1], σ1(B) = 0, for π ∈ [0, 1
3 ];

3. σ2 = 0, σ1(A) ∈
[
0, 1−π

2π

]
, σ1(B) = 0, for π ∈ [13 , 1];

4. σ2 = 1
2 , σ1(A) = 1, σ1(B) = 1

2 −
π

1−π , for π ∈ [0, 1
3 ];

5. σ2 ∈ [0, 1
2 ], σ1(A) = 1, σ1(B) = 0, for π = 1

3 .4

4The first equilibrium is straightforward: If player 2 chooses action a, player 1’s best response

in both games is to also choose a. If 1 chooses a in both games, 2’s best response is to also choose

a.

The second and third equilibria follow from the observation that if 2 chooses b, then 1 will choose

b in game B, and will be indifferent between a and b if the true game is A. If 1 plays action a

with probability σ1(A), then 2 will choose b only if σ1(A) ≤ 1−π
2π

. Note that this also implies that
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Since the set of equilibria varies as a function of π, we can look at the equilibrium
correspondence Γ : [0, 1] → 2[0,1]3 , π 7→ Γ(π), which maps π to the set of all
equilibria σ := (σ1(A), σ1(B), σ2) of the game in which it is common knowledge
that player 1 knows the true game and player 2 believes that game A is played with
probability π. It is well-known that the equilibrium correspondence need not be
lower hemicontinuous. This is illustrated in the example at π = 1/3 by considering
the equilibria of type 5 above, which belong to the set Γ′ := {σ ∈ [0, 1]3 | σ1(A) =
1, σ1(B) = 0, and σ2 ∈ (0, 1

2 ]}.5 We use these observations later, in our discussion
of robustness issues.

Relaxing the common knowledge assumption: To illustrate the difficulties
that arise if the common knowledge assumption does not hold, we maintain the
assumption that 1 knows the true game, but relax the assumption that 2’s beliefs
are common knowledge. One way to motivate this is to assume that before 1
receives his private information, both players have some historical data on the
basis of which they estimate the probability that game A will be played. If the
data or estimation procedures are not identical, the players’ estimates will most
likely differ. Denote 1’s estimate by π1 and 2’s estimate by π2. Given appropriate
assumptions on the differences in data and estimation procedures, π1 could also be
interpreted as 1’s assessment of 2’s beliefs π2.

If the difference between π1 and π2 is small, would a rational player who is aware
of this, but does not know the exact beliefs of his opponent, ever consider playing a
strategy as prescribed by one of the equilibria derived above, calculated by setting
π equal to his own estimate πi? Specifically, if we denote such an equilibrium by
σπi , would the strategy pairs (σπi

i , σ
π−i

−i ) constitute an ε-equilibrium for the game
where players are aware of differences in beliefs? More precisely, to determine
whether σπi is robust, we ask whether given any ε > 0, there exists a δ > 0, such
that whenever |πi − π−i| < δ, player i’s gains from changing his strategy relative

for all π ∈ [0, 1] there exists a pure strategy equilibrium with σ2 = σ1(A) = σ1(B) = 0.

In order to get the fourth equilibrium, assume 2 randomizes between the two actions, i.e. σ2 > 0.

If the true game is A, player 1 then picks action a. If the true game is B, player 1 picks a if

σ2 > 1/2, b if σ2 < 1/2, and is indifferent between a and b if σ2 = 1/2. Noting that player 2 is

indifferent between the two actions only if σ1(B) = 1
2
− π

1−π
gives the fourth equilibrium.

Note also that only for π = 1/3 does there exist an equilibrium where player 2 randomizes with

σ2 6= 1/2, for if σ2 > 1/2, player 1 would pick a in both games, in which case player 2 would also

choose a with probability 1; if instead σ2 < 1/2, player 1 picks a in game A and b in game B,

which implies that 2’s best response is to choose a if π ≥ 1/3 and b if π ≤ 1/3. Thus, only if

π = 1/3, is 2 indifferent between the two actions, whence we get the last equilibrium.
5To see this, note that for any sequence πn ↘ 1/3, there do not exist equilibria σn ∈ Γ(πn)

converging to an element of Γ′. If π = 1
3

+ ε and σ2 > 1/2, player 1 would choose a in game B, so

σ1(B) = 1, whereas if 0 < σ2 ≤ 1/2, we still have σ1(A) = 1 and σ1(B) = 0, but then player 2’s

best response would be to choose a (i.e. σ2 = 1), a contradiction.
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to σπi
i are bounded by ε.
To support such an ε-equilibrium, any player i would thus need to know that,

at least with a high probability, π−i is such that |πi − π−i| < δ, and that σπi
i is

an ε-best response to σ
π−i

−i . Therefore, in order for this player to play according to
the strategy σπi

i , the players must coordinate on a selection from the equilibrium
correspondence, i.e., a function mapping π to an equilibrium σπ, with the prop-
erty that (σπi

i , σ
π−i

−i ) constitutes an ε-equilibrium whenever |πi − π−i| < δ. This
observation motivates the definition of an “equilibrium map” as such a selection.
We want this map to define an ε-equilibrium for the game when beliefs are close
to common knowledge. However, for this to be the case, it is necessary not only
that both players believe that |πi − π−i| < δ with high probability, but also that
they know that their opponents know this, that their opponents know they know
and so on.

It thus seems that we either have to analyze an infinite hierarchy of beliefs or
impose common knowledge of second- or higher-order beliefs. Fortunately, the no-
tion of common p -belief allows us to only assume an approximate form of common
knowledge, which will be sufficient to deal with this problem. In addition, by ap-
plying common p -belief in the framework of a type space, we do not have to worry
about infinite belief hierarchies. We will formalize this approach in the context of
a general model.

Robustness issues: For now, suppose that an equilibrium map as defined above
does yield an ε-equilibrium for the common knowledge game. If this is the case, a
textbook equilibrium will be robust if it lies on some equilibrium map. What would
such a map look like in the example? The easiest choice would be a constant map
where players always choose action a or action b independent of their assessment of
π. Another example would be one where the probabilities (σ1(A), σ1(B), σ2) vary
continuously with π.

The key question becomes, for any given π, which equilibria can be included
in such a map? Since equilibria for which this is not the case do not satisfy
our robustness requirements, the answer to this question yields an equilibrium
refinement for the textbook model. In the example, an examination of the set of
equilibria shows that only the equilibria in the set Γ′ at which we have shown that
lower hemicontinuity of the equilibrium correspondence fails, cannot lie on any
continuous selection from the equilibrium correspondence. Hence, these equilibria
are the only candidates for equilibria that fail to be robust.

Interestingly, this not the case: All equilibria γ ∈ Γ′ are robust in the sense
that for all such γ there exists an equilibrium map with σ1/3 = γ. To see this, let

8



γ2 ∈ (0, 1
2 ], and define an equilibrium map σπ as follows:

σπ =


(1, 1

2 −
π

1−π , 1
2), if π < 1

3

(1, 0, γ2), if π = 1
3

(1−π
2π , 0, 0), if π > 1

3

. (1)

Note that there is a discontinuity in σ2, but that σ1(A) and σ1(B) are continuous
as a function of π. Since at π1 = 1

3 player 1’s best response is the same for all
σ2 ∈ [0, 1

2 ], he has no incentive to deviate from the strategy prescribed by σπ. For
π2 = 1

3 and π1 = 1
3 ± δ, player 2’s losses from playing according to σπ2 converge to

zero as δ → 0, as long as player 1 follows σπ1 . This implies that the map defined
above has the required properties of an equilibrium map.

Thus, in this example, all equilibria are robust. We will see later this is not the
case for all games.

3 Preliminaries

3.1 A Model of a Bayesian Game

Bayesian Games are commonly defined as a list {I, (Vi)i∈I , (Ai)i∈I , (ui)i∈I}, where:

• I is a finite set of players [i ∈ I, −i := I \ {i}]; and for all i

• Vi is a measurable set of player i’s payoff types [vi ∈ Vi, V :=
∏

i∈I Vi, v ∈ V ];

• Ai is a set of available actions for i [ai ∈ Ai, A :=
∏

i∈I Ai, a ∈ A]; and

• ui : V ×A → R is i’s utility function, such that (v, a) 7→ ui(v, a).

In order to simplify the exposition, we only consider two-player games, I = {1, 2}.
Nevertheless, the ideas and methods of the paper generalize easily to the case of
more players.

The usual way to proceed in defining a Bayesian game is to assume that each
player i knows his own payoff type and has beliefs about other players’ payoff
types given by a probability distribution over V−i. In most textbook expositions
and applications, these beliefs are derived from a prior distribution on V , which is
assumed to be both a common prior and common knowledge. If this is the case,
a player’s payoff type uniquely determines his beliefs. For example, if π ∈ ∆V is
the common knowledge prior, then player i’s beliefs are given by the conditional
of π given vi. Thus the “type” of a player in the textbook model, what we called a
player’s preference parameter in the introduction, corresponds to a player’s payoff
type in the current model.
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Harsanyi’s main insight was that without assuming a common knowledge distri-
bution on V , we can define a player’s type to include his private information about
both preferences and beliefs. In our model, players’ types will have both preference
and belief components. We therefore distinguish between a player’s payoff type,
which as a parameter may affect all players’ preferences or utilities, and his type,
which may include additional information.

We allow for such types by augmenting our model of a Bayesian game with the
following definition of a type space, which is a variant of the definitions given in
Heifetz and Samet (1998) and Bergemann and Morris (2003):

Definition 1 A type space is a triple 〈T, ν, µ〉 ≡ 〈(Ti)i∈I , (νi)i∈I , (µi)i∈I〉, such
that for each player i

1. Ti is a measurable space with associated σ-algebra Ti;

2. νi is a measurable function νi : Ti → Vi;

3. µi is a measurable function µi : Ti → ∆T , where ∆T is equipped with the
σ-algebra generated by all sets of the form βp(E) = {µ′ ∈ ∆T |µ′(E) ≥ p},
with E ∈ F :=

∏
i∈I Ti and p ∈ [0, 1];

4. The marginal of µi(ti) on Ti is δti, the measure in ∆Ti concentrated at ti.

Ti is the set of all possible types of player i. Given a player’s type ti, we interpret
νi(ti) as his payoff type vi, and µi(ti) as his beliefs about the distribution of all
players’ types. Property 4 states that each player knows his own type.6 It also
implies that µi(ti) defines a probability measure on T−i, denoted by µc

i (ti), by
letting µc

i (ti)(E−i) = µi(ti)(Ti × E−i) for all E−i ∈ T−i.
Note that we do not assume that beliefs are derived from a common prior.

This would be the case if there exists a distribution function µ ∈ ∆T such that the
conditional of µ given ti is equal to µc

i (ti).
By including a type space, we get a complete characterization of a Bayesian

game as a list {I, (Vi)i∈I , (Ai)i∈I , (ui)i∈I , 〈T, ν, µ〉}, which is assumed to be com-
mon knowledge. This formulation includes the model in which beliefs are derived
from a common knowledge prior π ∈ ∆V as a special case, with Ti = Vi, νi the
identity map, and µi the conditional of π given vi.7

6Alternatively, we could define µi(ti) as a measure on T−i, but the current definition is more

convenient when working with common p -belief.
7For other examples of type spaces, including type spaces based on infinite hierarchies of beliefs,

see Bergemann and Morris (2003).
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3.2 Common p -Belief in a Type Space Environment

For an event to be common knowledge, it is necessary that both players know
that the event is true, that both player know that their opponents know this,
that both players know that their opponents know they know, and so on. The
intuition behind common p -belief is that even though the players may not know
something with complete certainty, they might still believe that it is true with high
probability. Hence, Monderer and Samet (1989) replace the infinite hierarchy of
statements about knowledge with an infinite hierarchy of statements about belief
with sufficiently high probability p. Thus, common p -belief of some event means
that both players believe it to be true with probability p, that both players believe
with probability p that their opponents believe that it is true with probability p

and so on.
In the context of our problem, we use common p -belief to relax the assumption

that beliefs about payoff types are common knowledge, by assuming instead that
it is common p -belief that players’ beliefs about the distribution of payoff types
are not too different. In Example 1, this would mean that it is common p -belief
that the difference between π1 and π2 does not exceed some small number δ.

Since a player’s type in a type space determines his beliefs about the distribution
of his opponent’s type, it implicitly determines his beliefs about the distribution
of his opponent’s beliefs. A type space therefore provides a natural framework in
which to define common p -belief. This section confirms that the definition and
characterization of common p -belief, which were originally formulated for a state
space model with a common prior, also hold for a type space without a common
prior. The proofs of the stated results are straightforward extensions of proofs in
Monderer and Samet (1989) and Kajii and Morris (1997), and can be found in the
appendix.

A p -belief operator for player i is a map Bp
i : F → 2T , such that for all E ∈ F :

Bp
i (E) := {(ti, t−i) ∈ T |µi(ti)(E) ≥ p}.

We interpret Bp
i (E) as the set of all type combinations for which player i believes

that the event E will occur with probability p or higher.
As noted by Heifetz and Samet (1998), Bp

i (E) = µ−1
i (βp(E)) × T−i, which

implies that Bp
i (E) ∈ F for any E ∈ F . Denote the σ-algebra on T generated by

µ−1
i by Fi: An element of Fi is therefore a set of the form µ−1

i (βp(E)) × T−i for
some E ∈ F , and so Bp

i (E) ∈ Fi.
The following proposition collects various properties of Bp

i :

Proposition 1 For every E,F ∈ F ,

(i) Bp
i (E) ∈ Fi;
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(ii) E ∈ Fi ⇒ E = Bp
i (E);

(iii) E ⊆ F ⇒ Bp
i (E) ⊆ Bp

i (F );

(iv) If {En}n ⊆ F is a decreasing sequence of events such that En+1 ⊆ En, then
Bp

i (
⋂

n En) =
⋂

n Bp
i (En);

(v) E ∈ Fi ⇒ Bp
i (E ∩ F ) = E ∩Bp

i (F ).

Now define Bp(E) :=
⋂

i∈I Bp
i (E). Bp(E) is the set of types t ∈ T for which

all players believe that E occurs with probability p or higher. Note that since I
is countable, Bp(E) ∈ F . We can apply Bp iteratively any number of times n to
get new sets [Bp]n(E) ∈ F . Let Cp(E) :=

⋂
n≥1[B

p]n(E), so Cp(E) ∈ F . This
is the set of all types such that all players believe that E occurs with probability
of at least p, all players believe that all other players believe that E occurs with
probability of at least p and so on.

In addition to defining p -belief operators and common p -beliefs, one of the
main contributions of Monderer and Samet (1989) was to show that the iterative
definition of common p -belief as formulated by the operator Cp is equivalent to
a fixed point definition using evident p -belief events, which are those events
E ∈ F for which E ⊆ Bp(E). Analogously to the well known fixed point definition
of common knowledge, evident p -belief events can be used to define common p -
belief:

Definition 2 An event E ∈ F is common p -belief at t ∈ T if there exists an
evident p -belief event F such that t ∈ F and F ⊆ Bp(E).

The following results imply that Cp(E) is exactly the set of types for which E

is common p -belief:

Lemma 1 For E ∈ F , Bp(Bp(E)) ⊆ Bp(E).

Lemma 2 For E ∈ F , Cp(E) ⊆ Bp(Cp(E)), i.e., Cp(E) is an evident p -belief
event.

Proposition 2 E ∈ F is common p -belief at t ⇔ t ∈ Cp(E).

The operator Cp allows us to define a perturbation of the common knowledge
prior assumption in a precise way, and thus plays a central role in our characteri-
zation of robustness.
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4 A Characterization of Robustness

4.1 Separable Type Spaces

In the previous section we gave a standard definition of a type space. To facili-
tate the comparison with the textbook model, we now introduce some additional
assumptions on the type spaces that will be considered in the subsequent analysis.

We start by augmenting our definition of a Bayesian game with a set of possible
states of the world Θ, and assume that the realized state θ ∈ Θ determines the true
distribution over V according to which the players’ payoff types are drawn. Hence,
for each θ, there exists a corresponding distribution F (θ) ∈ ∆V , so Θ represents
a parametrization of the distributions over V that are regarded as feasible by the
players, or respectively, by the modeler. For example, the set {F (θ)}θ∈Θ could be
chosen to only include distributions over V where the individual vi’s are indepen-
dently distributed. We let Θ be a measurable set, but do not make any additional
assumptions at this stage.

The players are not assumed to know the true state in Θ, so in order to make a
decision, they must form beliefs about the distribution of the states, beliefs about
their opponent’s beliefs and so on. In such an environment, the common knowledge
prior assumption of the textbook model would imply that, without taking into
account the private information about payoff types, it is common knowledge that all
players have identical beliefs about the distribution of the θ’s. Such an assumption
is obviously quite strong. Harsanyi (1967-68) provides a defense of the common
prior assumption in the context of a general type space. He argues that the prior
should only reflect information that is public and hence common to all players, and
that all differences in the players’ assessments of the distribution of states should
be regarded as resulting from differences in players’ interpretation of the public
information or any additional private information they might have. Therefore,
all such differences should be reflected in the players’ types, and all players should
share a common prior over such types. But for this argument to be valid, a player’s
type must include not only information about his payoff type, but also any private
information that this player might have about the state of nature, and any objective
or subjective beliefs he might have about the other player’s type. Hence, the
common prior assumption could be regarded as reasonable for a general type space,
but less so for a type space that only includes payoff types, as in the textbook model.

In extending the textbook model, we maintain the implicit assumption that the
only information the players have about the state of nature θ is public information.
We model this by assuming that there exists a public signal s ∈ S that is observed
by all players and is correlated with θ. Players are not assumed to have any
information about θ except for this signal and the private knowledge of their own

13



payoff type vi. The difference from the textbook model is that we allow players to
use different models or inference processes to interpret the public signal s, which
implies that different players may have different assessments about the distribution
of θ’s, and therefore about the distribution of payoff types. We do not require the
individual models to be common knowledge, so each player must form beliefs about
the model used by his opponent, about the opponent’s beliefs about the player’s
model, and so on.

We model this interconnected belief structure by introducing, for each player
i, a measurable set Bi of possible belief types bi ∈ Bi. Analogously to the type
space introduced in the previous section, a type bi captures both information about
the model used by player i to interpret the signal s, and his beliefs about the belief
types of his opponents. We thus assume that there exist measurable functions
πi : Bi×S → ∆V and ϕi : Bi → ∆B, with the property that the marginal of ϕi(bi)
on Bi is δbi

. Hence, ϕi(bi) is a probability measure on B concentrated at bi. We use
ϕc

i (bi) to denote the probability measure on B−i induced by ϕi(bi). We interpret
πi(bi, s) as type bi’s assessment of the distribution of payoff types for the whole
population, when he observes signal s. Note that while we do assume that ϕi(bi) is
such that each player knows his own belief type, we do not assume that the marginal
of πi(bi, s) is concentrated at vi. Thus, πi(bi, s) is this player’s prior distribution
over payoff types, before learning his own payoff type. We introduce these measures
as the counterpart of the common knowledge priors of the textbook model. Just
as with any prior on V , πi(bi, s) defines a player’s beliefs about his opponent’s
payoff type as the conditional of πi(bi, s) given vi, denoted by πi(bi, s)(·|vi). Note
also that the functions (ϕi)i∈{1,2} allow us to define common p -belief for subsets
of B = B1 ×B2.

A player’s private information now consists of his belief type bi and his payoff
type vi. We therefore introduce the notation ti := (bi, vi) for player i’s type, and
let Ti := Bi × Vi. Together with the observed public signal s, each player’s type
ti determines his beliefs about his opponent’s type t−i = (b−i, v−i), given by the
product measure ϕc

i (bi)× πi(bi, s)(·|vi) on B−i × V−i. An important implication of
this, is that from the perspective of each type ti of player i, the belief types and
payoff types of his opponent are independently distributed. This independence
stems from our assumption that players’ belief types contain no information about
the state of nature that determines the distribution of payoff types. Independence
is not crucial for our results, but it significantly simplifies the model and notation.
We will mention later how it could be relaxed without affecting our definition of
robustness.

Taking a parametrization {F (θ)}θ∈Θ of the feasible distributions over payoff
types as given, we can define a separable type space as a list 〈S, B, V, ϕ, π〉.

14



Note that in terms of the notation of the previous section, we have νi(ti) = vi and
µc

i (ti) = ϕc
i (bi)× πi(bi, s)(·|vi).

From now on, we only consider separable type spaces. We also assume that the
sets Vi, Bi and Ai are separable metric spaces which admit a complete metric, and
that utility functions are bounded, in the sense that there exists a positive number
M such that |ui(v, a)− ui(v′, a′)| ≤ M , for all i ∈ I, v, v′ ∈ V and a, a′ ∈ A.

4.2 Definitions

We study interim equilibria in behavioral strategies, where interim means that
the players’ objective is to maximize their utilities conditional on their types. A
behavioral strategy for player i is defined as a map σi : Ai × Ti × S → [0, 1],
where Ai denotes the Borel σ-field of Ai, σi(·|ti, s) : Ai → [0, 1] is a probability
measure for all (ti, s) ∈ Ti×S, and σi(D|·) : Ti×S → [0, 1] is measurable for every
D ∈ Ai.8

We let

Ui(vi, v−i, σi(ti, s), σ−i(t−i, s)) :=
∫

A
ui(vi, v−i, ai, a−i)σi(dai|ti, s)σ−i(da−i|t−i, s),

(2)
and

Wi(s, vi, σi, σ−i) :=
∫

B−i

∫
V−i

Ui(vi, v−i, σi, σ−i(b−i, v−i, s))πi(bi, s)(dv−i|vi)ϕc
i (bi)(db−i).

(3)
Hence, Ui denotes player i’s expected utility given both players’ types and strate-
gies, and Wi denotes the expected value of Ui given i’s beliefs.

If the game is defined using some common knowledge prior π ∈ ∆V , we define
Ui(vi, v−i, σi(vi), σ−i(v−i)) as in (2), and

Wi(π, vi, σi, σ−i) :=
∫

V−i

Ui(vi, v−i, σi(vi), σ−i(v−i))π(dv−i|vi). (4)

We also use Wi(π, vi, ai, a−i) when the strategies are such that ai and a−i are played
with probability 1.

A Bayesian Nash equilibrium for the type space game is a strategy pair
(σ∗1, σ

∗
2), such that for all i, s, ti and σ′i,

Wi(s, vi, σ
∗
i , σ

∗
−i) ≥ Wi(s, vi, σ

′
i, σ

∗
−i).

To get the definition of an ε-equilibrium, the inequality is replaced by

Wi(s, vi, σ
∗
i , σ

∗
−i) ≥ Wi(s, vi, σ

′
i, σ

∗
−i)− ε.

8See Milgrom and Weber (1985) for additional details on the definition of behavioral strategies

and the relation between behavioral, mixed and distributional strategies in Bayesian games.
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For the textbook game defined by π, we denote a Bayesian Nash equilibrium by
(σπ

1 , σπ
2 ), so Wi(π, vi, σ

π
i , σπ

−i) ≥ Wi(π, vi, σ
′
i, σ

π
−i) for all i, vi and σ′i.

4.3 Types with Approximate Common Knowledge

Just as beliefs about payoff types are derived from the common prior in the text-
book model, they are derived from πi(bi, s) for any belief type bi in a separable type
space. We can thus embed types corresponding to a common knowledge game into
a separable type space using the functions (πi)i∈I . Since a player’s belief type bi

determines both his assessment of the distribution of payoff types, πi(bi, s), and his
beliefs about his opponent’s belief type b−i, this embedding will only depend on
his belief type and not on his payoff type vi. To be precise, we do not worry about
probability zero events, so the common knowledge types we consider are actually
all types for which common knowledge holds with probability 1.

An obvious requirement for such common knowledge types is that they believe
with probability 1 that their opponent’s belief type is such that π−i(b−i, s) =
πi(bi, s). Since the values of the πi’s are probability measures, we must specify what
it means for two measures to be equal. Which notion of equality is appropriate will
depend on the specification of the game. For example, if the sets Vi are finite, we
could use the Euclidean topology on the conditional probabilities of the π’s given
the players’ payoff types. If the utility functions are continuous in payoff types,
we could measure equality using the weak topology on the players’ conditional
distributions.9

To avoid making any additional assumptions at this stage, we introduce a
topology that seems appropriate for the general model considered so far. For any
π ∈ ∆V , we define a neighborhood base at π for this topology by the sets:

N (π, γ) =

{
π′ ∈ ∆V

∣∣∣ sup
i,vi,ai,σ−i

∣∣Wi(π, vi, ai, σ−i)−Wi(π′, vi, ai, σ−i)
∣∣ < γ

}
,

where γ > 0. Because this topology is defined in terms of the utility functions for
the game that is being analyzed, it yields convergence of expected utilities in the
sense that a sequence πn converges to π in this topology only if

de(πn, π) := sup
i,vi,ai,σ−i

|Wi(πn, vi, ai, σ−i)−Wi(π, vi, ai, σ−i)|

converges to zero. It is easy to see that de defines a metric on the set ∆V . Although
we use this metric for the remainder of this section, it is important to note that
none of the results depend on the specification of de, and that any alternative
notion of equality could have been used instead.

9See Chapter 3 of Stroock (1999) for an introduction to various topologies for sets of measures.
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Now define

A0 :=
{
(bi, b−i) ∈ B

∣∣ de(πi(bi, s), π−i(b−i, s)) = 0, ∀s
}

.

Thus, A0 is the set of all belief type pairs that have the same assessments of the
distribution of payoff types, independent of the observed public signal s. Consider
the belief operator B1

i applied to the set A0:

B1
i (A0) =

{
(bi, b−i) ∈ B |ϕi(bi)(A0) = 1

}
.

Note that the belief operator is now applied to subsets of B and not T . Since
the marginal of ϕi(bi) is concentrated at bi, a type bi ∈ projBi

B1
i (A0) puts prob-

ability 1 on types b−i with de(πi(bi, s), π−i(b−i, s)) = 0, ∀s. Recall that B1(A0) =⋂
i∈I B1

i (A0). Then the set C1(A0) =
⋂

n≥1[B
1]n(A0) ⊂ B of types for which A0 is

common 1-belief, is the set of those belief types that believe with probability 1 that
their opponents assessments is the same as their own, they believe with probability
1 that their opponents believe this with probability 1 and so on. Therefore, defining
P0 := C1(A0), we get those belief type pairs for which it is common knowledge that
both players have the same assessments, i.e., the set of belief types corresponding
to some common knowledge prior game.

The results of Heifetz and Samet (1998) on the existence of a universal type
space imply that we can always find a type space for which this embedding of
common knowledge prior types is not empty.

The definition of the perturbation of P0 parallels the definition of P0. Our
objective is to get a subset of B, the set of belief type pairs, which contains those
types for which the common knowledge prior assumption holds approximately.

Define, for any small δ > 0, the set of belief type pairs for which the difference
in assessments is bounded by δ:

Aδ :=
{
(bi, b−i) ∈ B

∣∣ de(πi(bi, s), π−i(b−i, s)) ≤ δ, ∀s
}

.

Instead of considering belief types for which Aδ is common knowledge, or equiva-
lently, common 1 -belief, we include in the perturbation those belief types for which
Aδ is common (1 − δ)-belief. Thus, we apply the belief operator B1−δ

i to the set
Aδ to get

B1−δ
i (Aδ) =

{
(bi, b−i) ∈ B |ϕi(bi)(Aδ) ≥ 1− δ

}
.

As before, we have B1−δ(Aδ) =
⋂

i∈I B1−δ
i (Aδ) and C1−δ(Aδ) =

⋂
n≥1[B

1−δ]n(Aδ).
To get the perturbation of P0, we just define Pδ := C1−δ(Aδ).

Let Pδ
i := projBi

Pδ. We use the following properties of Pδ in the proof of
our main result. These properties follow directly from the definition as a common
(1− δ) -belief event:
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(i) ∀bi ∈ Pδ
i , ϕi(bi)(Aδ) ≥ 1− δ;

(ii) ∀bi ∈ Pδ
i , ϕi(bi)(Pδ) ≥ 1− δ;

(iii) ∀bi ∈ Pδ
i , ϕi(bi)(Pδ ∩ Aδ) ≥ 1− 2δ.

Thus, if bi ∈ Pδ
i , no matter what signal s player i observes, he believes that

de(πi(bi, s), π−i(b−i, s)) ≤ δ with high probability, he believes that his opponent
also believes this to be true with high probability, and so on.

4.4 Equilibria with Approximate Common Knowledge

By definition, for each bi ∈ P0
i , an equilibrium strategy for the textbook game

defined by the prior πi(bi, s) is exactly optimal. In the game defined by a separable
type space, we now identify an ε-equilibrium for players with belief type bi ∈ Pδ

i ,
such that each player’s strategy is an equilibrium strategy for the textbook game
defined by the prior πi(bi, s). Note that any such prior must belong to the convex
hull of the set of distributions in ∆V defined by the set of states Θ. Denote the
convex hull by coΘ{F (θ)}.

Since payoffs are determined by both players’ strategies, and their assessments
πi and π−i are allowed to differ in our model, it is necessary to define an equilibrium
as a map π 7→ σ[π], which maps a probability measure π ∈ coΘ{F (θ)} to an
equilibrium of the textbook game defined by π. As seen in Example 1, not every
map will work. To characterize the requirements that we need to impose on such
maps, we define, for a given Bayesian game, a topology on the set

E := {σπ |π ∈ coΘ{F (θ)}∧σπ is an equilibrium of the textbook game defined by π}.

Intuitively, this topology measures strategic closeness between elements of E , so
we refer to it as the strategic topology. We define this strategic topology by
specifying a neighborhood base for any σπ ∈ E given by the following family of
sets:

S(σπ, ξ) := {σπ̄ ∈ E
∣∣ sup

i,vi,σ′i

[Wi(π, vi, σ
′
i, σ

π̄
−i)−Wi(π, vi, σ

π
i , σπ̄

−i)] < ξ},

where ξ > 0 and σ′i ∈ ∆Ai. Thus, σπ̄ ∈ S(σπ, ξ) if all players’ expected gains
from switching to a strategy different from σπ

i are bounded by ξ, given that their
opponents play strategy σπ̄

−i and the expected utilities are calculated using π.
The following definition of an equilibrium map is crucial in our characterization

of robustness:

Definition 3 A map π 7→ σ[π] is an equilibrium map if for all ξ > 0, there exists
a δ > 0, such that σ[π̄] ∈ S(σ[π], ξ) whenever de(π, π̄) < δ.
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To provide a better understanding of this definition, we use the idea behind the
construction of the sets S(σπ, ξ) to define a distance function on the set E . For any
σπ and σπ̄ in E , let

~d(σπ, σπ̄) := sup
i,vi,σ′i

[Wi(π, vi, σ
′
i, σ

π̄
−i)−Wi(π, vi, σ

π
i , σπ̄

−i)].

As explained above, ~d(σπ, σπ̄) measures how close σπ̄ is to σπ, but not vice versa.
This is because ~d(σπ, σπ̄) is not necessarily a symmetric function.10 We therefore
define

ds(σπ, σπ̄) := max{~d(σπ, σπ̄), ~d(σπ̄, σπ)}

as a measure of strategic closeness between σπ and σπ̄. Note that ds does not
constitute a metric on E because it does not satisfy the triangle inequality.11 In
addition, the topology defined by ds is not a Hausdorff topology and is therefore
not metrizable.12 The following lemma shows that the definition of an equilibrium
map can be rephrased using the function ds:

Lemma 3 A map π 7→ σ[π] is an equilibrium map if and only if for all ξ > 0, there
exists a δ > 0, such that ds(σ[π], σ[π̄]) < ξ whenever de(π, π̄) < δ.

Thus, an equilibrium map is a map which is uniformly continuous using the metric
de on coΘ{F (θ)} and the distance ds on E .

The following proposition shows that this kind of uniform continuity is sufficient
to define strategies that constitute an ε-best response for all belief types in Pδ:

Proposition 3 Given any equilibrium map π 7→ σ[π] and ξ > 0, let δ > 0 be
determined by Definition 3. For all i, let σ̂i be a behavioral strategy such that
σ̂i(·|bi, vi, s) = σ

[πi(bi,s)]
i (·|vi) for bi ∈ Pδ

i , and σ̂i(·|bi, vi, s) equal to some arbitrary
strategy for bi /∈ Pδ

i . Then for all players with belief type bi ∈ Pδ
i , all s, and all

σ′i ∈ ∆Ai, Wi(s, vi, σ̂i, σ̂−i) > Wi(s, vi, σ
′
i, σ̂−i)− (ξ + 4δM).

Proof: The idea of the proof is straightforward: We first bound the losses of
a player with bi ∈ Pδ

i from the fact that an opponent with b−i /∈ Pδ
−i plays an

10To see this, consider Example 1 and look at the equilibrium strategies (1, 0, 0)
1
3 and

(1, 1, 1)
1
3 , where the superscripts indicate that π = 1

3
. Then ~d((1, 0, 0)

1
3 , (1, 1, 1)

1
3 ) = 4

3
and

~d((1, 1, 1)
1
3 , (1, 0, 0)

1
3 ) = 1.

11This is again easily established by looking at Example 1 and the equilibria σI = (1, 0, 0)
1
3 ,

σII = (1, 0, 1
2
)

1
3 and σIII = (1, 1, 1)

1
3 . We have ds(σI , σII) = 0, ds(σII , σIII) = 2

3
and

ds(σI , σIII) = 4
3
.

12The constant sequence given by σI , as defined in the previous footnote, converges both to σI

and σII .
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unspecified strategy. We then bound the losses from the fact that an opponent
with b−i ∈ Pδ

−i may have an assessment π−i(b−i, s) which is different from πi(bi, s).
Combining the two bounds completes the proof.

For any E ⊆ B, denote the complement of E by E, i.e., E := T \ E.
For all bi ∈ Pδ

i and all σi,

Wi(s, vi, σi, σ̂−i) =
∫

B−i

∫
V−i

Ui(vi, v−i, σi, σ̂−i)πi(bi, s)(dv−i|vi)ϕc
i (bi)(db−i)

= ϕc
i (bi)(Pδ ∩ Aδ)

∫
B−i

{∫
V−i

Ui(v, σi, σ̂−i)πi(bi, s)(dv−i|vi)

}
ϕc

i (bi)(db−i|Pδ ∩ Aδ) +

+ϕc
i (bi)(Pδ ∩ Aδ)

∫
B−i

{∫
V−i

Ui(v, σi, σ̂−i)πi(bi, s)(dv−i|vi)

}
ϕc

i (bi)(db−i|Pδ ∩ Aδ) =

=
∫

B−i

∫
V−i

Ui(v, σi, σ̂−i)πi(bi, s)(dv−i|vi)ϕc
i (bi)(db−i|Pδ ∩ Aδ) +

+ϕc
i (bi)(Pδ ∩ Aδ)

[∫
B−i

{∫
V−i

Ui(v, σi, σ̂−i)πi(bi, s)(dv−i|vi)

}
ϕc

i (bi)(db−i|Pδ ∩ Aδ)−

−
∫

B−i

{∫
V−i

Ui(v, σi, σ̂−i)πi(bi, s)(dv−i|vi)

}
ϕc

i (bi)(db−i|Pδ ∩ Aδ)

]
.

It follows that∣∣∣∣∣Wi(s, vi, σi, σ̂−i)−
∫

B−i

∫
V−i

Ui(v, σi, σ̂−i)πi(bi, s)(dv−i|vi)ϕc
i (bi)(db−i|Pδ ∩ Aδ)

∣∣∣∣∣ ≤ 2δM,

(5)
where we have used the bound on utilities and property (iii) of Pδ.

For b−i ∈ Pδ
−i, we have defined σ̂−i = σ

[π−i(b−i,s)]
−i , which implies that we can

write ∫
V−i

Ui(v, σi, σ̂−i)πi(bi, s)(dv−i|vi) = Wi(πi(bi, s), vi, σi, σ
[π−i(b−i,s)]
−i ).

Since conditional on Pδ ∩ Aδ, we have de(πi(bi, s), π−i(b−i, s)) < δ, the fact that
σ[π] is an equilibrium map yields

Wi(πi(bi, s), vi, σ
[πi(bi,s)]
i , σ

[π−i(b−i,s)]
−i ) > Wi(πi(bi, s), vi, σ

′
i, σ

[π−i(b−i,s)]
−i )− ξ,

for all σ′i. Taking expectations on both sides of the previous equation using
ϕc

i (bi)(db−i|Pδ ∩ Aδ), we get∫
B−i

∫
V−i

Ui(v, σ̂i, σ̂−i)πi(bi, s)(dv−i|vi)ϕc
i (bi)(db−i|Pδ ∩ Aδ) >

>

∫
B−i

∫
V−i

Ui(v, σ′i, σ̂−i)πi(bi, s)(dv−i|vi)ϕc
i (bi)(db−i|Pδ ∩ Aδ)− ξ, (6)
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for all bi ∈ Pδ
i and all σ′i.

Finally, applying (5), (6), and (5) again, we have

Wi(s, vi, σ̂i, σ̂−i) ≥

≥
∫

B−i

∫
V−i

Ui(v, σ̂i, σ̂−i)πi(bi, s)(dv−i|vi)ϕc
i (bi)(db−i|Pδ ∩ Aδ)− 2δM >

>

∫
B−i

∫
V−i

Ui(v, σ′i, σ̂−i)πi(bi, s)(dv−i|vi)ϕc
i (bi)(db−i|Pδ ∩ Aδ)− ξ − 2δM ≥

≥ Wi(s, vi, σ
′
i, σ̂−i)− ξ − 4δM,

for all bi ∈ Pδ
i and all σ′i. J

Proposition 3 does not specify a strategy for belief types bi /∈ Pδ
i . We could have

instead required such types to choose a best response given their beliefs, or some
strategy constituting an ε-best response. Since our goal is to analyze the case where
the CKP is approximately satisfied, this is not relevant for the subsequent analysis.
Moreover, calculating a best response for beliefs defined by infinite hierarchies is a
non-trivial task, so a result that does not depend on players having to solve such
a problem seems preferable.

4.5 Defining Robustness

For belief types bi ∈ Pδ
i , Proposition 3 states that the strategies prescribed by

the equilibrium map are an ε-best response, with ε = ξ + 4δM . Thus, for these
types, the maximum potential loss from choosing such a strategy is bounded by ε,
independently of the actual prior πi(bi, s). In addition, the strategies only depend
on the priors, i.e., the players’ first order beliefs, and their payoff types vi. There-
fore, a player who believes that bi ∈ Pδ

i , i.e., who thinks that the CKP assumption
is approximately satisfied, does not need to worry about the details of his higher
order beliefs – the gains from deviating from the prescribed strategy cannot exceed
ε for any infinite belief hierarchy such that bi ∈ Pδ

i . All this is a consequence of
the definition of an equilibrium map, which requires that

Wi(πi(bi, s), vi, σ
[πi(bi,s)]
i , σ

[π−i(b−i,s)]
−i ) > Wi(πi(bi, s), vi, σ

′
i, σ

[π−i(b−i,s)]
−i )− ξ,

for all σ′i and all b−i such that de(πi(bi, s), π−i(b−i, s)) < δ. Examining the proof
of Proposition 3 shows that this requirement is stronger than necessary. For the
proof to work, it would be enough for the expectation of this inequality, using the
measure ϕc

i (bi)(db−i|Pδ ∩Aδ), to hold. By instead using the stronger formulation,
we implicitly require that the expectation holds for all distributions ϕc

i (bi)(db−i|Pδ∩
Aδ). This strengthens the conclusion of Proposition 3, since we don’t need any
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assumption on the distributions ϕi(bi) except for bi ∈ Pδ
i . Hence, the optimality of

the equilibrium strategies is robust to a wide range of higher order beliefs that a
player may have. Another important advantage of this formulation is that it allows
us to define equilibrium maps without reference to the type space used to analyze
the game. This independence from type space considerations greatly simplifies the
characterization of equilibrium maps and robust equilibria.

An alternative interpretation of this result is as follows: A player only knows
that it is common (1− δ)-belief that his opponent’s assessment of the distribution
of payoff types satisfies de(πi(bi, s), π−i(b−i, s)) < δ, but either has no additional
information about the exact distribution of his opponent’s belief type b−i, or is not
very confident in his own beliefs. The strategy prescribed by an equilibrium map
guarantees that if such a player considers the worst-case opponent belief π−i(b−i, s),
he will not lose more than ε relative to his optimal strategy. This is reminiscent
of a max-min decision rule, where players choose an action that maximizes the
worst-case outcome as a function of his opponent’s assessment π−i(b−i, s).

The actual choice of a δ would depend on a player’s degree of confidence in
the CKP assumption. It follows from the definition of an equilibrium map and
Proposition 3 that the maximum gains from deviating converge to zero as δ → 0,
i.e., that ε → 0 as δ → 0. Thus, a player only needs to know that δ is close to zero
– this continuity of the bound ε around CKP beliefs insures that he will not make
any big mistake by choosing the strategy prescribed by the equilibrium map.

The previous discussion shows that if a textbook equilibrium lies on some equi-
librium map, then the corresponding strategies satisfy the two robustness require-
ments discussed in the introduction. This motivates the following definition:

Definition 4 An equilibrium of a textbook game is a robust equilibrium if it
lies on some equilibrium map.

We will show later that many textbook equilibria are robust, but that there also
exist non-robust equilibria. Thus, robustness is a non-trivial refinement.

Defining robustness in terms of equilibrium maps has the advantage that in
order to determine whether a textbook equilibrium is robust, we only need to look
at the equilibrium correspondence that maps priors to corresponding textbook
equilibria. If the equilibrium lies on a selection from this correspondence that is
an equilibrium map, the equilibrium is robust. If such a selection does not exist, it
is not. The alternative of analyzing the equilibrium correspondence of the larger
type space game is obviously a much more arduous task.

Two properties of equilibrium maps need further motivation – the continuity
(using ds) at all points of the domain coΘ{F (θ)}, and specifically, the uniform
continuity. The necessity of continuity follows from the fact that we want the
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prescribed strategies to be an ε-best response for all higher order beliefs that satisfy
bi ∈ Pδ

i . For an example of what can happen if continuity is violated, consider
Example 1 and the map

σ̃π =

{
(1, 1, 1), if π ≤ 1

2

(0, 0, 0), if π > 1
2

.

σ̃π is continuous at all π 6= 1
2 , but if for example, player i always believes that

his opponent’s beliefs π−i are distributed uniformly on [πi, πi + δ], then for all
δ > 0 there is always a positive (Lebesgue) measure of πi’s that will deviate from
the prescribed strategy as long as ξ is small enough. Our limited assumptions on
higher order beliefs then imply that all players with πi ≤ 1

2 may have an incentive
to deviate.

The uniform continuity is important because it allows the conditions on the
required degree of common knowledge, measured in terms of δ, to be stated in-
dependently of a player’s prior πi. Without the uniformity, it would by possible
that the δ required for some ε-equilibrium converges to zero when πi approaches
some π∗. But this would imply that only common knowledge of π∗ can support a
textbook equilibrium for this prior.

As mentioned after the introduction of separable type spaces, it is possible
to relax the assumption of independence between belief types and payoff types,
without affecting our definition of equilibrium. This can be done by assuming
instead, that even though belief types may be correlated with the state of nature
that governs the distribution of payoff types, the effect on priors of such private
information is outweighed by the public information contained in the signal s.
Specifically, we can replace the independence assumption with a bound on the
difference between a player’s prior πi(bi, s) if he only knows his own belief type bi,
and his prior conditioned on any opponent’s belief type b−i such that (bi, b−i) ∈ Aδ.
As long as the bound is less than the ξ given in the statement of Proposition 3, the
original proof only needs an additional step to take care of this bound, in order to
carry over to the relaxed case.

A stronger notion of robust equilibria which has been analyzed extensively in
the recent literature in game theory and mechanism design, is that of an ex post
equilibrium.13 An ex post equilibrium is a strategy pair that represents a Nash
equilibrium for all possible realization of the vector of payoff types. Thus, a strategy
prescribed by an ex post equilibrium is optimal for all beliefs an agent might have
about the distribution of payoff types, which implies that

13See for example, Bergemann and Morris (2003) and Chung and Ely (2002).
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Proposition 4 Any ex post equilibrium σxp defines an equilibrium map by setting
σ[π] = σxp for all π.

An ex post equilibrium is therefore robust according to our definition. In fact,
the equilibrium map for Example 1 defined in equation (1) shows that there exist
equilibrium maps that are not defined by an ex post equilibrium, so the set of ex
post equilibria is a strict subset of the set of robust equilibria.

5 Properties of Equilibrium Maps

This section characterizes equilibrium maps. For this purpose, we assume that the
sets of payoff types and actions, Vi and Ai, are finite, and that coΘ{F (θ)} ≡ ∆V .
Although the results are derived for the finite case, we expect them to generalize
to games in which Vi and Ai are compact metric spaces.

The finiteness assumption and the fact that equilibrium maps are defined in
terms of textbook equilibria as π varies over ∆V , allow us to define a behavioral
strategy for player i as a map σi : Vi → ∆|Ai|, where ∆|Ai| ⊂ R|Ai| denotes the
(|Ai| − 1)-dimensional simplex. As before, we use σπ to denote an equilibrium
strategy for the game defined by a common knowledge prior π, and σπ

i (vi) to
denote the corresponding strategy of a player i of type vi.

For two vectors x, y ∈ Rl, we use the sum metric |x − y| =
∑l

j=1 |xj − yj |
to analyze convergence in the Euclidean topology. If π ∈ ∆V , we denote the
conditional of π given vi by π[vi], so π[vi] ∈ ∆|V−i|. Equality of two measures π and
π′ in ∆V can now be defined in terms of the convergence of the conditionals π[vi].
We thus substitute the metric de in the definition of an equilibrium map with the
following metric:

d(π, π′) := max
i,vi

|π[vi]− π′[vi]|. (7)

It is easy to see that convergence in d implies convergence in de for all utility
functions.

Since the topology defined by the strategic distance ds is not Hausdorff, we
start the characterization of equilibrium maps by relating the strategic closeness
of equilibria to the Euclidean convergence of strategies as measured by the metric

d(σ, σ′) := max
i,vi

|σi(vi)− σ′i(vi)|.

We use the same d as in (7) since both metrics are based on the sum metric in
Euclidean space.

For any map π 7→ σ[π] we can now consider two notions of continuity, one using
strategic closeness of strategies as defined by ds, and the other using closeness in
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the Euclidean topology as defined by the metric d. From now on we reserve the
term continuity for the latter notion and refer to the uniform continuity required
in the definition of an equilibrium map as strategic continuity. Similarly, by
convergence of a strategy profile we mean convergence in the metric d.

The following proposition shows that continuity of a map π 7→ σ[π] implies
strategic continuity. The converse does not hold, as seen from Example 1. Thus,
continuity is sufficient, but not necessary, for a map π 7→ σ[π] to be an equilibrium
map.

Proposition 5 Any continuous map π 7→ σ[π] is an equilibrium map.

Proof: First, note that since ∆V is compact, the continuity of σ[π] implies uniform
continuity. Thus, for each ε > 0 there exists a δ > 0 such that d(π, π′) < δ ⇒
d(σ[π], σ[π′]) < ε. Denote the δ corresponding to any ε by δ(ε). We can assume
w.l.o.g. that δ(ε) is non-decreasing in ε and that δ(ε) ≤ ε for all ε > 0.

Since σ[π′] is an equilibrium for the game defined by the common knowledge
prior π′, for each i, vi and σ̃i ∈ ∆|Ai|,

Wi(π′, vi, σ
[π′]
i , σ

[π′]
−i ) ≥ Wi(π′, vi, σ̃i, σ

[π′]
−i ).

Now given some ε > 0, d(σ[π], σ[π′]) < ε implies that |σ[π]
i (vi)− σ

[π′]
i (vi)| < ε, so

Wi(π′, vi, σ
[π]
i , σ

[π′]
−i ) > Wi(π′, vi, σ

[π′]
i , σ

[π′]
−i )− εM > Wi(π′, vi, σ̃i, σ

[π′]
−i )− εM.

Similarly, d(π, π′) < δ(ε) implies that

Wi(π, vi, σ
[π]
i , σ

[π′]
−i ) > Wi(π, vi, σ̃i, σ

[π′]
−i )− (ε + 2δ(ε))M.

Strategic continuity follows by letting ξ ≡ (ε + 2δ(ε))M for any ξ > 0. J

Recalling that the equilibrium correspondence is upper hemicontinuous (Milgrom
and Weber, 1985) gives the following corollary:

Corollary 1 If there exists a unique equilibrium for all π ∈ ∆V , then the equilib-
rium correspondence is an equilibrium map.

Although the equilibrium correspondence need not be lower hemicontinuous,
a well-known result about correspondences states that any upper hemicontinuous
correspondence with domain and range equal to some complete metric space is
continuous on a residual.14 A residual of a metric space is a countable intersection
of dense open subsets. Baire’s Category Theorem states that a residual is dense.15

14A formal statement and proof of this result can be found in Aubin and Frankowska (1990).
15This theorem is proved in most advanced real analysis textbooks, e.g. Folland (1999).
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In our model of a Bayesian game, this implies that the equilibrium correspondence
is continuous on a residual. It follows from the definition of continuity that the set of
continuity points of the equilibrium correspondence is a dense, open subset of ∆V .
This observation suggests a possible strategy for finding equilibrium maps: find a
piecewise continuous function that is strategically continuous at all discontinuity
points. The following proposition characterizes such points.

Proposition 6 Let BRπ
i (·) denote player i’s best response correspondence in the

game defined by the common knowledge prior π, and suppose that π 7→ σ[π] is
piecewise continuous. Then π 7→ σ[π] is an equilibrium map iff for all discontinuity
points π∗, all i, and all sequences πn and πm converging to π∗ such that the limits
limπn→π∗ σ

[πn]
i and limπm→π∗ σ

[πm]
i exist, we have

1. σ
[π∗]
i ∈ BRπ∗

i (limπn→π∗ σ
[πn]
−i ),

2. limπn→π∗ σ
[πn]
i ∈ BRπ∗

i (σ[π∗]
−i ), and

3. limπn→π∗ σ
[πn]
i ∈ BRπ∗

i (limπm→π∗ σ
[πm]
−i ).

Since Proposition 6 is a direct corollary of the next proposition, we do not give
a separate proof. Properties 1 and 2 are actually a consequence of property 3.
We only include them in the statement of the proposition since they emphasize
specific properties of discontinuous equilibrium maps. Note also that the upper
hemicontinuity of the equilibrium correspondence implies that limπn→π∗ σ[πn] is an
equilibrium for the game defined by the common knowledge prior π∗.

The idea behind Proposition 6 can be used to derive a necessary and sufficient
condition for a map to be an equilibrium map. This condition can be formulated
in terms of the Euclidean topology on strategies, without reference to the strategic
topology. In order to state this result, we first introduce additional definitions and
notation:

Given a map π 7→ σ[π], its graph G(σ) is the subset of ∆V ×
∏

i ∆
|Ai| defined

by

G(σ) :=

{
(π, σ′) ∈ ∆V ×

∏
i

∆|Ai|

∣∣∣∣∣ σ′ = σ[π]

}
.

The closure of this set, G(σ), defines a correspondence Σ : ∆V →
∏

i ∆
|Ai| by

letting G(Σ) ≡ G(σ). By definition, σ′ ∈ Σ(π) if and only if there exists a sequence
πn → π such that σ[πn] → σ′. As noted above, if Γ denotes the equilibrium
correspondence, then σ′ ∈ Σ(π) implies that σ′ ∈ Γ(π). Since

∏
i ∆

|Ai| is compact
and G(Σ) is closed, Σ is upper hemicontinuous.
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For any set Y ⊂
∏

i ∆
|Ai|, the upper inverse of Y by the correspondence Σ,

Σ+[Y ], is defined by

Σ+[Y ] := {π ∈ ∆V |Σ(π) ⊂ Y } .

We will use the fact that a compact-valued correspondence is upper hemicontinuous
if and only if the upper inverse of any open set is also open.16

We can now state our characterization of equilibrium maps:

Proposition 7 Given a map π 7→ σ[π], let Σ be defined by G(Σ) ≡ G(σ). Then
σ[·] is an equilibrium map iff for all π and any two equilibria σ′, σ′′ ∈ Σ(π), σ′i ∈
BRπ

i (σ′′−i) for all i.

Proof: If σ[·] is an equilibrium map and σ′, σ′′ ∈ Σ(π), there exist sequences πn and
πm converging to π, such that limπn→π∗ σ

[πn]
i = σ′ and limπm→π∗ σ

[πm]
i = σ′′. Since

πn and πm have the same limit, the definition of an equilibrium map implies that
for each ξ > 0, there exists a δ > 0 and indices N and M , such that d(πn, πm) < δ

for all n > N and m > M , and hence ds(σ[πn], σ[πm]) < ξ for all n > N and m > M .
Thus, ds(σ′, σ′′) = 0, which is equivalent to σ′i ∈ BRπ

i (σ′′−i) and σ′′i ∈ BRπ
i (σ′−i) for

all i.
Now assume that for all π and any two equilibria σ′, σ′′ ∈ Σ(π), σ′i ∈ BRπ

i (σ′′−i)
for all i. For any ε > 0 and π ∈ ∆V , let Bε(Σ(π)) ⊂

∏
i ∆

|Ai| denote the open
ε-ball around Σ(π). By the upper hemicontinuity of Σ, Σ+[Bε(Σ(π))] is open for all
π ∈ ∆V . Hence, π ∈ Σ+[Bε(Σ(π))] implies that there exists an open ball around
π contained in Σ+[Bε(Σ(π))]. For each π, define

δ(π) := sup{0 < δ′ < ε |Bδ′(π) ⊂ Σ+[Bε(Σ(π))]}.

Then the collection of sets
{
Bδ(π)(π)

}
π∈∆V

is an open cover of ∆V , so the Lebesgue
Number Lemma17 implies that there exists a δ > 0 such that for any two points
π′, π′′ ∈ ∆V with d(π′, π′′) < δ, there exists a Bδ(π)(π) containing both π′ and π′′.
Denote such a δ by δ(ε).

Thus, for any ε > 0, d(π′, π′′) < δ(ε) implies that there exists some π such
that π′, π′′ ∈ Bδ(π)(π) ⊂ Σ+[Bε(Σ(π))]. Therefore Σ(π′),Σ(π′′) ⊂ Bε(Σ(π)), and
hence σ[π′], σ[π′′] ∈ Bε(Σ(π)). This implies that there exist σ′, σ′′ ∈ Σ(π) ⊂ Γ(π)
such that d(σ[π′], σ′) < ε and d(σ[π′′], σ′′) < ε. The assumption that σ′i ∈ BRπ

i (σ′′−i)
implies that for all i, vi and σ̃i ∈ ∆|Ai|, Wi(π, vi, σ

′
i, σ

′′
−i) ≥ Wi(π, vi, σ̃i, σ

′′
−i). It

follows that

Wi(π, vi, σ
[π′]
i , σ′′−i) > Wi(π, vi, σ

′
i, σ

′′
−i)− εM > Wi(π, vi, σ̃i, σ

′′
−i)− εM

16See Berge (1997) for a proof.
17See Munkres (2000).
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because d(σ[π′], σ′) < ε;

Wi(π, vi, σ
[π′]
i , σ

[π′′]
−i ) > Wi(π, vi, σ̃i, σ

[π′′]
−i )− 3εM

because d(σ[π′′], σ′′) < ε; and

Wi(π′, vi, σ
[π′]
i , σ

[π′′]
−i ) > Wi(π′, vi, σ̃i, σ

[π′′]
−i )− 5εM

because π′ ∈ Bδ(π)(π) and δ(π) < ε. Letting ξ ≡ 5εM for any ξ > 0, we get that
ds(σ[π′], σ[π′′]) < ξ whenever d(π′, π′′) < δ(ε). J

Noting that the uniformity in the definition of an equilibrium map is not re-
quired for the first part of the proof, gives the following corollary:

Corollary 2 If the sets Vi and Ai are finite for all i, then a map π 7→ σ[π] is an
equilibrium map iff for each π ∈ ∆V and each ξ > 0, there exists a δ > 0, such
that ds(σ[π], σ[π̄]) < ξ whenever de(π, π̄) < δ.

The previous characterization results are very helpful to determine whether a
selection from the equilibrium correspondence represents an equilibrium map. We
use them in the next section, where we analyze some examples.

We conclude this section with some remarks on existence of equilibrium maps.
Unfortunately, the existence question cannot be answered affirmatively for the class
of finite Bayesian games analyzed in this section. As with other strong notions of
equilibrium, e.g., dominant strategy or ex post equilibrium, an equilibrium map
need not exist for all such games. We show this in the next section, where we
present an example for which an equilibrium map does not exist.

For a given game, an affirmative answer to the existence question would support
the use of models based on a common knowledge prior, with the caveat that only
robust equilibria should be selected. If the answer is negative, our results indicate
the necessity of a richer model, potentially based on an explicit analysis of higher
order beliefs, for the analysis of such a game. Another simpler solution would be to
restrict the set of feasible distributions coΘ{F (θ)} to a subset of ∆V . Whether such
a restriction is possible would have to be determined on a case by case basis. For the
case of finite games, it follows from the fact that the equilibrium correspondence
is a semi-algebraic set (see Blume and Zame, 1994), that there always exists a
non-trivial restriction for which an equilibrium map exists.

It is conceivable that existence results could be proved for more specific classes
of games, e.g., games with strategic complementarities or other monotonicity prop-
erties. We leave this question for future research.
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6 Examples

6.1 An Example where all Equilibrium Maps are Discontinuous

The following is a simple example for which all equilibrium maps exhibit a point
of discontinuity as described in Proposition 6.

Two players must choose between two actions, a or b. The payoffs are deter-
mined by player 2’s payoff type, vH

2 or vL
2 , as shown in Figure 2. It is common

knowledge that player 1’s payoff type is v1 and that player 1 believes that 2’s payoff
type is vH

2 with probability π.

v1

vH
2

a b

a 1, 1 −1, 1
b −1, 1 0, 0

vL
2

a b

a 0, 0 1,−1
b 1,−1 1, 1

Figure 2: Player 1 believes that player 2’s payoff is vH
2 with probability π.

We characterize strategies using the probabilities with which players choose
action a. Thus, σ1, σH

2 , and σL
2 will denote the probability with which player 1,

player 2 having payoff type vH
2 , and player 2 having payoff type vL

2 , respectively,
choose action a.

The equilibrium correspondence as a function of π is given by the following
equilibria:

1. σ1 ∈
[
0, 2

3

)
, σH

2 = 1, and σL
2 = 0, for π = 0;

2. σ1 = 2
3 , σH

2 = 1, and σL
2 = 2π

1−π , for π ∈
[
0, 1

3

]
;

3. σ1 ∈
(

2
3 , 1

)
, σH

2 = 1, and σL
2 = 1, for π = 1

3 ;

4. σ1 = 1, σH
2 ∈

[
1
3π , 1

]
, and σL

2 = 1, for π ∈
[

1
3 , 1

]
.

Any selection from this equilibrium correspondence will exhibit a discontinuity
in σ1 at π = 1

3 .18 Since at π = 1
3 , 2π

1−π = 1 and 1
3π = 1, we know that all σ1 ∈

[
2
3 , 1

]
are a best response to (σH

2 , σL
2 ) = (1, 1), and vice versa, at π = 1

3 . It therefore
follows from Proposition 6 that in order to get an equilibrium map, we can use the
equilibria of class 2 and 4 above to choose a selection that is continuous on the
intervals

[
0, 1

3

)
and

(
1
3 , 1

]
, and pick (σH

2 , σL
2 ) = (1, 1) together with any σ1 ∈

[
2
3 , 1

]
for π = 1

3 .
Thus, equilibrium maps exist for this game, but all such maps are discontinuous

at π = 1
3 .

18Note also that the equilibrium correspondence fails to be lower hemicontinuous at this point.
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6.2 A Modified Prisoner’s Dilemma

The next example shows that not all textbook equilibria are robust. It can be
interpreted as a modified Prisoner’s Dilemma, where players can be either rational,
with payoff type denoted by vrat

i , or naive, with payoff type denoted by vnaive
i .

Both players can either deny the accusation (action d), or confess (action c). The
players’ payoffs as a function of their types are illustrated in Figure 3.

vrat
1

vrat
2

d c

d 0, 0 −5, 1
c 1,−5 −2,−2

vnaive
2

d c

d 0, 2 −5, 1
c 1,−3 −2,−2

vnaive
1

d c

d 2, 0 −3, 1
c 1,−5 −2,−2

d c

d 2, 2 −3, 1
c 1,−3 −2,−2

Figure 3: The true game is determined by the agents’ types, vi ∈ {vrat
i , vnaive

i }.

A rational player has a dominant strategy to confess, as in the conventional
Prisoner’s Dilemma. A naive player gets additional utility from keeping his word
and denying the accusation. Thus, if it is common knowledge that both players
are naive, in addition to the Nash equilibrium where both players confess, there is
an additional Nash equilibrium where both players deny.

We assume that there is incomplete information about the players’ types, and
denote the probability that a player i is rational by πi. As noted before, it is a
dominant strategy for a rational player to confess. Since the strategy profile where
both players confess independently of their types is an ex post equilibrium, there
exists an equilibrium map for this game.

We now show that even though textbook equilibria in which naive types deny
with positive probability exist for some priors, such equilibria cannot lie on any
equilibrium map and are therefore not robust.

Denote the probability that a naive player denies the accusation by σi, and
denote a naive player’s expected utility from denying or confessing by ui(d) and
ui(c), respectively. Since rational players always confess, we have

ui(d) = −3π−i + (1− π−i)[2σ−i − 3(1− σ−i)], and

ui(c) = −2π−i + (1− π−i)[σ−i − 2(1− σ−i)].

If σ−i = 1, ui(d) ≥ ui(c) is equivalent to π−i ≤ 1
2 , so whenever π1 and π2 are

both less then or equal to 1
2 , there exist pure strategy textbook equilibria with
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σ1 = σ2 = 1, i.e., where both naive types deny. In addition to the pure strategy
equilibria, the game also admits the following mixed strategy equilibria:

1. σi = 1
2(1−πi)

, ∀i, for (π1, π2) ∈
[
0, 1

2

]
×

[
0, 1

2

]
;

2. σ1 = 1, σ2 ∈
[

1
2(1−πi)

, 1
]

for (π1, π2) ∈
{

1
2

}
×

[
0, 1

2

]
;

3. σ1 ∈
[

1
2(1−πi)

, 1
]
, σ2 = 1 for (π1, π2) ∈

[
0, 1

2

]
×

{
1
2

}
.

Whenever (π1, π2) /∈
[
0, 1

2

]
×

[
0, 1

2

]
, the only textbook equilibrium is such that

all types confess. Since at the boundary of
[
0, 1

2

]
×

[
0, 1

2

]
, none of the equilibrium

strategies described above with σi > 0 constitute a best response to σ−i = 0,
Proposition 6 implies that no such equilibrium can be part of an equilibrium map,
and therefore that such equilibria cannot be robust.

6.3 An Example where No Equilibrium Map Exists

The following is an example for which no equilibrium map with domain ∆V exists.
The payoffs are determined by the players’ payoff types, vi ∈ {vH

i , vL
i }, as shown

in Figure 4. The bolded payoffs represent Nash equilibria for the individual games.
As can be seen by looking at these equilibria, no ex post equilibria exist for this
example.

vH
1

vH
2

a b

a 1, 1 −1, 1
b −1, 1 0, 0

vL
2

a b

a 1, 0 −1,−1
b −1,−1 0,−1

vL
1

a b

a 0, 1 1, 1
b 1, 1 −1, 0

a b

a 0, 0 1,−1
b 1,−1 1, 1

Figure 4: The true game is determined by the agents’ types, vi ∈ {vH
i , vL

i }.

We use notation introduced in previous examples, e.g., πi denotes the probabil-
ity that player i is of type vH

i , and σH
i denotes the probability of choosing action

a for a player of type vH
i .

The equilibrium correspondence is given by the following sets of equilibria:
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1. σH
1 = 1, σL

1 = 1, σH
2 ∈

[
max

{
0, 1− 2

3π2

}
, 1− 1

3π2

]
, σL

2 = 1, for (π1, π2) ∈
[0, 1]×

[
1
3 , 1

]
;

2. σH
1 = 1, σL

1 = 0, σH
2 = 1, and

σL
2


= 0, for (π1, π2) ∈

[
0, 2

3

)
×

[
1
3 , 1

]
∈

[
1−3π2

3(1−π2)
, 1

]
for (π1, π2) ∈

{
2
3

}
× [0, 1]

= 1, for (π1, π2) ∈
(

2
3 , 1

]
× [0, 1]

;

3. σH
1 = 0, σL

1 = 0, σH
2 = 1, σL

2 = 0, for (π1, π2) ∈ [0, 1]×
[
0, 1

3

]
;

4. σH
1 = 2(1−π1)

π1 ,σL
1 = 0, σH

2 = 1, σL
2 = 1−3π2

3(1−π2)
, for (π1, π2) ∈

[
2
3 , 1

]
×

[
0, 1

3

]
.

A rather tedious comparison of the previous classes of equilibria using Propo-
sition 6, shows that no equilibrium map exists for this example.

6.4 Cournot Duopoly with Incomplete Information

Our final example is a simple Cournot duopoly game with incomplete information.
It shows that non-constant equilibrium maps, defined by pure strategies only, can
exist when the set of available actions is a continuum.

Two firms, i ∈ {1, 2}, compete in quantities, qi, in a market with inverse demand
given by p(q) = a − q, where q = q1 + q2. There is incomplete information about
the firms’ marginal cost of production, which can be either high, cH

i , or low, cL
i .

We denote the probability that firm i’s marginal cost is high by πi.
Letting qi(ci) denote firm i’s supply as a function of its cost, we get the following

first-order conditions for any firm i’s profit maximization problem:

qi(cH
i ) =

1
2

{
π−i[a− q−i(cH

−i)− cH
i ] + (1− π−i)[a− q−i(cL

−i)− cH
i ]

}
,

qi(cL
i ) =

1
2

{
π−i[a− q−i(cH

−i)− cL
i ] + (1− π−i)[a− q−i(cL

−i)− cL
i ]

}
.

It is easy to see that if assumptions are made to guarantee a unique equilibrium
for each (π1, π2), the firms’ equilibrium supplies will be continuous in (π1, π2). In
this case, the equilibrium correspondence is continuous, not constant, and it defines
an equilibrium map for this game.

7 Concluding Remarks

7.1 Relation to the Literature

In the paper that introduced common p -belief, Monderer and Samet (1989) show
that the assumption that a given game is common knowledge can be successfully
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replaced with the assumption that the game is common p -belief, thereby showing
that common p -belief is an appropriate notion of approximate common knowledge.
Using a state space model in which the true state of nature determines which one
of a finite number of finite, normal form, complete information games is played,
they show that Nash equilibrium strategies for any game G can constitute an ε-best
response at states of nature at which it is common p -belief that game G is played.

We show that common p -belief can also be used to relax the assumption of a
common knowledge prior for Bayesian games. Unlike Monderer and Samet (1989),
where it is assumed that the exact game is common p -belief, we only assume that
it is common p -belief that players derive their beliefs from priors which are not
too different. This is important, since in our framework, the assumption used in
Monderer and Samet (1989) would imply that with high probability, all players have
exactly the same prior. Given that the set of priors is an infinite set, this would not
yield a realistic relaxation of the common prior assumption. The cost of weakening
this assumption is that we need to introduce the concept of an equilibrium map in
order to define an equilibrium.

As noted in the discussion of Example 1, the equilibrium correspondence that
maps common knowledge priors to the corresponding set of textbook equilibria,
need not be lower hemicontinuous. Kajii and Morris (1998) define a distance on
the set of common knowledge priors under which the ε-equilibrium correspondence
is lower hemicontinuous. Thus, their result shows that if all players coordinate
on an a textbook equilibrium derived for some common knowledge prior, such an
equilibrium is an ε-equilibrium if types are distributed according to a prior that is
close according to this distance. Note that players have to coordinate on a textbook
equilibrium for the same prior. Therefore, the result of Kajii and Morris (1998)
applies to the case where all players’ beliefs are derived from the same prior, which
may be incorrect, whereas our paper models the case where players’ beliefs may be
derived from different priors.

Since in the model of Kajii and Morris (1998), both utilities and strategies
are a function of the types over which the priors are defined, their distance can
be interpreted as providing a notion of closeness for information structures corre-
sponding to different common knowledge priors on payoff types. In contrast, the
perturbation we define models closeness of arbitrary belief structures to common
knowledge prior beliefs. Although the distance defined in Kajii and Morris (1998)
and the distance inherent in our definition of a perturbation are both based on the
notion of common p -belief, a direct comparison is problematic due to differences
in the modelling framework.

One significant difference is that Kajii and Morris (1998) do not allow for be-
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liefs that are not derived from a common knowledge prior, so the players in their
model can never believe that there is a possibility that their opponents beliefs are
not consistent with the given prior. We relax this assumption by introducing belief
types to model both differences in priors on payoff types, and beliefs about such
differences. By considering payoff types and belief types separately, we can distin-
guish between textbook games and games based on more complicated type spaces,
which is not possible in the framework of Kajii and Morris (1998).

A different notion of robustness, which is also based on properties of the equi-
librium correspondence, is that of an essential equilibrium (see Fudenberg and
Tirole, 1991, pp. 480-484). In our framework, a textbook equilibrium is essential if
for any common knowledge prior close to the one used to derive the equilibrium,
there exists a corresponding textbook equilibrium that is close to the original equi-
librium, where closeness is measured using the standard topologies on strategies.
It follows from the fact that the equilibrium correspondence is continuous on a
residual of ∆V , that for all priors in this residuals, all corresponding textbook
equilibria are essential.

The main conceptual difference between essential equilibria and our definition
of robustness is that higher order beliefs are not taken into account when defining
essential equilibria. Thus, essential equilibria can be interpreted as being robust
to a perturbation of the common prior which is identical across players, and which
maintains that the perturbed prior is common knowledge.

Note also that the continuity requirement in the definition of an essential equi-
librium is stronger then the strategic continuity used in our definition of an equi-
librium map. Hence, a textbook equilibrium could be robust according to our
definition without being an essential equilibrium.

7.2 Conclusion

This paper introduced a notion of robust equilibria for Bayesian games. We looked
at a perturbation of those beliefs defined by a common knowledge prior, a pertur-
bation that includes a large set of higher order beliefs. For beliefs in this perturbed
set, we showed how robust equilibria can be defined by a selection from the equi-
librium correspondence which is a function of priors on payoff types. Since such
a selection is independent of higher order beliefs, it can be characterized without
resorting to the use of complicated type spaces.

Our results can be applied as part of any analysis involving Bayesian games,
e.g., auctions, contracts, or any general mechanism design problem. In contrast
to the classical mechanism design literature, where optimal mechanisms can be
very dependent on the assumed common knowledge prior, our notion of robustness
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could potentially be used to derive mechanisms that are approximately optimal for
a variety of beliefs.

Appendix

Proof of Proposition 1: (ii) We can write E = Ei × T−i, for some Ei ∈ Ti. Property
4 of the definition of a type space implies that µi(ti)(E) = 1 if ti ∈ Ei, and 0 otherwise,
which implies (ii).

(iii) If E ⊆ F , then µi(ti)(E) ≥ p implies that µi(ti)(F ) ≥ p, so Bp
i (E) ⊆ Bp

i (F ).
(iv) This follows from (iii).
(v) Bp

i (E ∩ F ) ⊆ E ∩ Bp
i (F ) is an easy consequence of (iii) and (ii). For the other

direction, note that E ∈ Fi and (ti, t−i) ∈ E∩Bp
i (F ) = Bp

i (E)∩Bp
i (F ) implies µi(ti)(E) =

1 and µi(ti)(F ) ≥ p. Hence, µi(ti)(F \ E) = 0 and so µi(ti)(E ∩ F ) ≥ p. J

Proof of Lemma 1:

Bp(Bp(E)) =
⋂
i

Bp
i (Bp(E)) =

⋂
i

Bp
i

[⋂
i

Bp
i (E)

]

=
⋂
i

Bp
i (E) ∩Bp

i

⋂
j 6=i

Bp
j (E)


⊆

⋂
i

Bp
i (E) = Bp(E),

where the third equality follows from Proposition 1, (i), (ii) and (v). J

Proof of Lemma 2: ∀n ≥ 1, Cp(E) ⊆ [Bp]n+1(E) =
⋂

i Bp
i ([Bp]n(E)) ⊆ Bp

i ([Bp]n(E)).
Hence Cp(E) ⊆

⋂
n≥1 Bp

i ([Bp]n(E)) and the previous Lemma together with (iv) of Propo-
sition 1 imply that ∀i, Cp(E) ⊆ Bp

i (
⋂

n≥1[B
p]n(E)) = Bp

i (Cp(E)), so Cp(E) ⊆ Bp(Cp(E)).
J

Proof of Proposition 2: (⇐) Cp(E) is an evident p-belief event by Lemma 2, and since
Cp(E) ⊆ Bp(E) by definition, it follows that E ∈ F is common p -belief at every t ∈ Cp(E).

(⇒) By assumption, there exists an F ∈ F such that t ∈ F , F ⊆ Bp(F ) and F ⊆
Bp(E). We show by induction that F ⊆ [Bp]n(E) for all n ≥ 1: This holds by assumption
for n = 1, so assume that F ⊆ [Bp]n(E) for some n ≥ 1; Property (iii) from Proposition
1 implies that Bp(F ) ⊆ [Bp]n+1(E), so F ⊆ [Bp]n+1(E). Since t ∈ F , it follows that
t ∈ Cp(E) J
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