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Abstract:

Does the Pareto criterion discriminate among policy choices when the policymaker
does not know the correct model of the economy?  If the policymaker specifies ex
ante preferences for each agent, there will typically be some policy change that
improves the welfare of each agent relative to a status quo that suffers from a
preexisting distortion.  And if there are at least as many commodities as states, the
second welfare theorem applies: for almost every Pareto optimum, there is a policy
that attains this allocation.  Moreover, agents must trade under these policies; optimal
allocations cannot be instituted by government fiat as they can be in the standard
formulation of the second welfare theorem.  The drawback is that ex ante preferences
impose interpersonal welfare comparisons.  If we instead require that policy changes
increase all possible social welfare functions, and we are allowed to perturb a base
model with additional states, then all policies including the distorted status quo are
optimal.  The methodology of perturbations is problematic, however, and robust
cases exist where at least some policies are suboptimal.  Finally, the set of policies
that maximize some welfare function is open; consequently, small changes in the
environment usually do not call for any policy response.
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1.  Introduction

A well-known puzzle about the second welfare theorem states that if a policymaker knows

the preferences and endowments of all agents, then it might as well act like a central planner and

just assign agents the Pareto optimal allocation that it wants them to consume.  If on the other hand

the policymaker is uncertain about the economy’s primitives it will be unable even to identify

Pareto optima, let alone design transfers that achieve them.  So in what sense does the second

welfare theorem recommend markets as an allocation mechanism?  This puzzle gives support to

the common suspicion that the Pareto criterion is an impractical tool for policymaking.  To address

both the puzzle and this suspicion, we make explicit policymakers’ lack of information about

primitives and ask when policymakers can recommend policies that correct a preexisting

distortion, namely taxes on net trades.  We will see that if a policymaker can posit a hypothetical

ex ante stage at which agents share the policymaker’s uncertainty and can make interpersonal

comparisons between the potential preferences agents might have, then in some cases almost any

first-best ex ante Pareto optimum can be achieved, and with policies that are just as sweeping as

second welfare theorem policies: all tax distortions should be removed.  Furthermore, because of

the policymaker’s uncertainty (and in contrast to the puzzle) a policy of directly dictating

allocations cannot be used to achieve these optima; markets have to be utilized.  In the remaining

cases where the first best cannot be achieved, then generically policymakers can still recommend at

least some policy change that achieves an ex ante Pareto improvement, and again markets are

indispensable.  So there is a framework that makes rigorous the second welfare theorem’s

endorsement of markets.

We examine the scope for policy adjustment in a general equilibrium model that is standard

except that net commodity purchases are taxed.  A distortion is included to ensure that the status

quo appears to call for policy intervention; other distortions, say an externality, could serve just as

well, but taxes are analytically tractable and have a long theoretical history.  When policymakers

know the primitives of the model, the welfare theorems imply that any policy (which is a tax rate

for each good and an endowment redistribution) that collects positive tax revenue is Pareto

dominated by some zero-tax policy.  We suppose instead that although each agent knows his or her
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own characteristics, the policymaker has only a probability distribution over the primitives of the

economy, and say that policymaking uncertainty then obtains.

If a policymaker can posit ex ante preferences for agents, then a policy x is defined to be an

ex ante improvement over y if x Pareto dominates y in terms of these ex ante preferences.  The

policies recommended by such a rule are similar to second welfare theorem recommendations if

the number of states is no larger than the number of goods: almost any first-best allocation can then

be reached by some policy (Theorem 1).  In contrast to the standard presentation of the second

welfare theorem, in which the government knows the model and could therefore institute optima

by direct fiat, under policymaking uncertainty individuals and markets have an indispensable role

to play.  Agents collectively know which state has occurred, and markets utilize that information. 

When the number of states is larger than the number of goods, then generically at least some policy

response to the preexisting distortion that achieves an ex ante Pareto improvement is feasible

(Theorem 2).  Thus, despite the suspicion with which the Pareto criterion is regarded as a policy

tool, there are models that both recognize a policymaker’s uncertainty and decree active policy

intervention.

But valid criticisms of the Pareto criterion remain.  The ex ante approach suffers from the

drawback that the hypothesized ex ante preferences must weight the potential utility functions that

an agent might have.  Since the agents themselves never face any uncertainty about what their

preferences are, the ex ante preferences must invoke the policymaker’s judgments about how to

interpersonally compare welfare.  To stay free from interpersonal comparisons, we define a policy

x to be utility-independent superior to y if, for all sum-of-expected-utilities welfare functions, x is

recommended over y.  We also label a policy x to be maximization-optimal if there are utility

functions for the potential agents such that x maximizes the resulting sum-of-expected-utilities

welfare function.  This leeway to choose utility representations means that utility-independence

and maximization optimality are agnostic about how to compare the welfare of different

preferences.  We will see that utility-independence or maximization optimality can lead to very

large numbers of policies to be deemed optimal, in which case we say that policy paralysis occurs. 

We thus identify agnosticism about interpersonal comparisons as the source of the impracticality of
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the Pareto criterion.  Our first policy paralysis result states that if a sufficient number of states

(which can have arbitrarily small probability) are added to a base model, then any policy is utility-

independent optimal (Theorem 3).  We allow the added states to have agents with utilities that do

not arise in the base model however; and if in contrast the distribution of agent characteristics

(taking into account all states) is sufficiently symmetric, then some utility-independent policy

recommendations can be made.  So some policy discrimination remains possible without invoking

problematic interpersonal comparisons of utility.  Our second policy paralysis result shows that

policies that are maximization optimal form an open set (Theorem 4).  Consequently, if some

policy of taxes and endowment transfers is maximization optimal and the parameters of the model

change slightly, that policy will remain optimal: a local form of policy paralysis obtains.  The fact

that some nonzero tax vector can be optimal is hardly news (see, e.g., Mirrlees (1986)); our point is

that a rule that says policymakers should maximize some welfare function lead a very large number

of tax vectors to be optimal.

One caveat to the paralysis conclusion deserves advance mention.  As our model stands, a

policymaker can achieve ex post optimality by simply setting taxes equal to zero.  But this is an

artifact of using taxes as a distortion; if some externality were present, for example, even ex post

optimality would not be attainable.

The ex ante and utility-independent approaches rely on distinct rationales.  The ex ante

ordering appeals to the principle that ex ante no individual should be made worse off by a policy

change.  The utility-independence ordering (or maximization optimality) relies on the argument

that no particular way of making interpersonal welfare comparisons should be granted privileged

status.1  Our purpose is not to judge which approach is the right one: they are geared to different

purposes.  Rather our aim is to identify the vantage points from which the Pareto criterion can be

defended or criticized.

To summarize, the Pareto criterion is a workable policy guide if policymakers posit an ex
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ante stage at which agents experience the policymaker’s lack information; without ex ante

preferences, policy adjustment is problematic.  And since this ex ante stage is hypothetical, the

preferences that hold at this stage impose interpersonal comparisons of welfare.  The role played

by a hypothetical ex ante stage recalls the literature on Bayesian games (cf. Aumann (1998) and

Gul (1998)), in which agents play correlated equilibrium actions only if there is a hypothetical

point at which agents have symmetric information and common priors.  Here, it is the usefulness of

the Pareto criterion that depends on an ex ante stage of symmetric information though not on

common priors.

We take the policymaker’s information to be fixed in this paper; the implementation and

mechanism design literatures in contrast consider policies that induce agents to reveal their private

information.  Our modeling strategy is partly guided by our aim of evaluating the traditional policy

tools of competitive markets.  But the view that there is an unbridgeable gulf between the two

approaches is misleading.  Our model confronts each agent with the same choice set of net trades;

outside of some details that stem from the absence of production, these are the net trades that arise

with Diamond-Mirrlees taxes.  As Hammond (1979) pointed out, if a large number of agents play

an anonymous revelation game in which agents announce their characteristics, each agent could

equivalently be confronted with a common choice set of net trades: each agent who announces his

characteristics in a revelation game will be assigned some net trade vector and so we can instead

let the agent choose from the set of all net trade vectors selected by some agent in the distribution

of possible characteristics.  Anonymity, moreover, will be a necessary feature of any

implementation scheme if the policymaker’s information about agents’ characteristics is symmetric

across agents.  Finally if agents anticipate that, following the play of the revelation game, they will

have the opportunity to trade further on competitive markets, the only final allocations that can

occur in equilibrium are those that could arise if agents chose from Diamond-Mirrlees choice sets

of net trades.  Thus, with a large number of agents, our setting is similar to an implementation

setting.  Hammond used dominant strategies in his paper, but see Guesnerie (1995) and the

references cited there for similar arguments cast in a Bayesian setting.  Notice that our policy

paralysis conclusions complement the result in the “limits to redistribution” literature that any
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dominant-strategy mechanism that implements efficient allocations in a large economy must lead

to an undistorted Walrasian equilibrium with no transfers (see Champsaur and Laroque (1981), and

earlier Varian (1976), Hammond (1979)).  If only Walrasian outcomes are possible, we cannot

require additionally that outcomes are Pareto-improving relative to an arbitrary status quo: first-

best efficiency and Pareto improvement will usually be inconsistent.  Our paralysis results

similarly assert that a preexisting distortion that blocks first-best efficiency cannot be removed if

policy changes must be utility-independent improving.  Given Hammond’s work on the connection

between implementation and tax equilibria, this parallelism makes sense.

The contrast between the present paper and the implementation approach is misleading in a

second and perhaps more important respect.  We reach policy paralysis conclusions even when a

policymaker is virtually certain about agent characteristics.  Hence these results apply to any

mechanism that does not reveal agent characteristics with complete certainty.  When choosing

economy-wide policy instruments, such as tax rates, governments inevitably have to come to

policy decisions in the presence of at least some residual uncertainty about agents’ characteristics,

and our model applies to that setting.

The ex ante approach specifies ex ante preferences for agents and is therefore formally a

model of incomplete markets in which there happens to be no assets with state-dependent payoffs. 

Since we suppose that each agent knows his or her own preferences but not the preferences of

other agents, information is asymmetric, and this fact blocks the existence of markets for assets

with state-dependent payoffs.  Still, the formal parallels allow us to use the analytical machinery of

the incomplete markets literature (see Geanakoplos (1990) and Magill and Quinzii (1996) for

overviews); it is a pleasant surprise that the techniques of that literature are so well-suited to

explaining seemingly distant social choice issues.  Conversely, we argue in the conclusion that our

results shed light on the dilemmas of policy design that have appeared in the incomplete markets

literature, and on the theory of the second best as well.

2.  A benchmark model with policymaking certainty

To begin, we construct a benchmark model that we assume is known to the policymaker. 
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There are L commodities and J agents.  Each agent j has an endowment e j 0  and a utilityR L
%%

function ū j defined on consumption bundles x j 0 .  Let e / (e1, ..., e J ) and let xij and eij refer,R L
%

respectively, to agent j’s consumption and endowment of good i.  We assume that each ū j is twice

continuously differentiable, differentiably strictly concave, and differentiably strictly increasing,

and that the indifference curves of ū j that intersect  do not also intersect the coordinate axes.2 R L
%%

An economy is a (e j , ū j  and an allocation is a x / (x1, ..., x J ) 0  such that)J
j'1 R LJ

%

(x j!e j ) = 0.'
J
j'1

The economy begins with arbitrary ad valorem taxes τ = (τ1, ..., τL ) $ 0 that (to ensure that

the taxes are in fact distorting) are imposed only on the value of net purchases.  The revenue that

results is for simplicity distributed in equal parts to the J individuals.  Letting p 0  indicateRL
%
({0}

the before-tax price vector and t $ 0 the government’s tax revenue, the budget set facing agent j is:

B j (p, τ, e j, t ) = {x j : ((1 + τ i) pi max [0, xij!eij ] + pi min [0, xij!e ij]) # (1'J ) t}.'
L
i'1

Definition 1.  An equilibrium with taxes τ is a (p, x) such that (1) x is an allocation, (2) for each

agent j, x j 0 B j (p, τ, e j, t ), where t = τ i pi max [0, x ij!eij ], and (3) x jN 0 B j (p, τ, e j, t )'
J
j'1 '

L
i'1

Y ū j (x j ) $ ū j (x jN).

Under our assumptions, an equilibrium for the model exists for any τ.3  Observe that if τ is

sufficiently high in all coordinates, agents do not trade, they consume their endowment.

In addition to setting τ, the government can also transfer endowments by choosing a ∆e /

(∆e1, ..., ∆e J ) 0 RLJ such that ∆e j = 0.  We require that ∆e be chosen so that an equilibrium'
J
j'1

still exists, e.g., by supposing e + ∆e >> 0.  Multiple equilibria may arise for a given (τ, ∆e), but
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since we want to give the policymaker as much latitude as possible we assume that the

policymaker can choose which equilibrium price vector and allocation obtains with (τ, ∆e). 

Letting f / ( f 1, ..., f J ) indicate an equilibrium allocation that can occur with (τ, ∆e), call (τ, ∆e, f )

a policy.  Also, (τ, ∆e) are policy instruments, and we say that a policy (τ, ∆e, f ) reaches the

allocation f.  Beginning at a status quo equilibrium ( p̄, x̄ ) with taxes τ̄ , the policy of maintaining

the status quo is simply ( τ̄ , ∆e = 0, f  = x̄ ).

The Pareto ordering may be characterized in two different ways under policymaking

certainty.  First, define an allocation x to be ex ante or agent-based superior to xN if for all agents j,

ū j (x j ) $ ū j (x jN), and for some j, ū j (x j ) > ū j (x jN).  (The use of the term “ex ante” will become

clear in section 4 when we extend this definition to policymaking uncertainty.)  Second, we may

characterize the Pareto ordering using social welfare functions.  Before doing so, we first restrict

which utility functions are admissible in welfare functions by requiring, for each j, that any two

admissible utility representations for j differ only by an increasing affine transformation.  This

restriction can be justified by supposing that the goods in the model are contingent commodities

and that agents’ preferences obey the von Neumann-Morgenstern (vNM) assumptions; Harsanyi

(1955) then implies that every vNM social welfare function that is increasing in agent utilities can

be represented as a sum of increasing linear transformations of the ū j.  We also require that agents

with identical sets of cardinal utility functions are represented by the same utility function.  As we

explain later, the policy paralysis results in section 5 are stronger insofar as we incorporate as many

defensible restrictions on welfare functions as possible.

Definition 2.  For each j, let U j denote the set of all increasing affine transformations of ū j.  A

utility assignment is a u = (u1, ..., uJ ) such that for all j, u j 0 U j, and for any pair of agents ( j, h ),

if U j = U h then u j = uh.

The allocation x is utility-independent superior to xN if, for all assignments u,  u j (x j ) >'
J
j'1

 u j (x jN).  Here and subsequently, we define a policy (τ, ∆e, f ) to be superior to (τ, ∆e, f )N in'
J
j'1

either an ex ante/agent-based or utility-independent sense if f is superior to f N by the corresponding

ordering of allocations.  But the distinction between policies and allocations has no bite in the
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certainty model: any allocation x can be reached by a policy that sets ∆e = x !e and sets τ high

enough to induce agents not to trade.

The ex ante/agent-based and utility-independent orderings usually coincide under

policymaking certainty, but there are exceptions.  If x is agent-based superior to xN then x is also

superior to xN by the utility-independent definition, but the reverse implication need not hold.  For

instance, if J = 2, U 1 = U 2, and U 1 contains only strictly concave functions, then an allocation x

such that u1(x1) > u1(x2) is utility-independent inferior to a xN with x1N = x2N = (1'2)x1 +

(1'2)x2.  Yet clearly xN is not superior to x by the agent-based ordering.  If we put aside what is

here a minor wrinkle, say by imposing a diversity condition that no pair of agents has the same set

of cardinal utilities, then the agent-based and utility-independent orderings rank allocations in the

same way.  As we will see, a comparable diversity condition would be inappropriate with

policymaking uncertainty.

The agent-based and utility-independent orderings automatically generate definitions of

optimality by the requirement that there is no dominating allocations.  In addition, we define an

allocation x to be maximization optimal if there is an assignment u such that u j (x j ) $'
J
j'1

u j (x jN) for all other allocations xN.  A maximization-optimal allocation must also be utility-'
J
j'1

independent and agent-based optimal, but the reverse implications need not hold.  Thus, as well as

being more important in the welfare economics literature, maximization optimality is in principle

more restrictive.  But given our convexity assumptions the three definitions of optimality do

coincide at interior optima if the diversity condition holds.

These orderings and optimality concepts give familiar and decisive advice.  If the economy

begins at a status quo equilibrium ( , ) with tax vector  such that for some good i and agent j,p̄ x̄ τ̄

x̄ij! ēij > 0 and τ̄ i > 0, there must then be some other agent h … j with x̄ih ! ēih < 0 and h must be a

net purchaser of some good, say k.  Hence h’s marginal rate of substitution between i and k must

equal  while j’s marginal rate of substitution between i and k must be greater than or equal to
p̄i

p̄k% τ̄k

.  The marginal rates of substitution of the two agents therefore differ and the equilibrium
p̄i% τ̄i

p̄k% τ̄k

allocation will be neither agent-based or utility-independent optimal.  Under either ordering, there

exist allocations x( that are both optimal and superior to x̄ and there are policies (τ, ∆e, f ) such
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that x( = f , e.g., set ∆e = x( ! e and let τ be arbitrary.  The welfare theorems thus give strong

advice when the policymaker knows the model of the economy.

3.  Policymaking uncertainty

A policymaker who is uncertain about the model faces a state space Ω = {ω1, ..., ωS}, S $

2, with associated probabilities π = (π1, ..., πS ) 0 .  Each state ωs specifies an ex post utility∆
S&1
%%

function and endowment for each agent j, denoted ū j ( @ , ωs) and e j (ωs) respectively, that satisfies

the assumptions of the certainty model of section 2.  A model is a pair (Ω, π).  Consumption by

agent j at ωs is denoted x j (ωs ).  Let U j (ωs ) denote the set of increasing affine transformations of

ū j ( @ , ωs ), p(ωs) an equilibrium price vector at state ωs, and P the S × L matrix whose sth row is

p(ωs).  We also set the following notation for the remainder of the paper:

u j = (u j ( @ , ω1), ..., u j ( @ , ωS )),

x j = (x j (ω1), ..., x j (ωS )),

e j = (e j (ω1), ..., e j (ωS )),

x(ωs) = (x1(ωs), ..., x J (ωs)),

e(ωs) = (e1(ωs), ..., e J (ωs)),

x = (x(ω1), ..., (x(ωS )).

An allocation under policymaking uncertainty is a x such that each x(ωs) is an allocation at

ωs.  An equilibrium with taxes τ $ 0 is now a (P, x ) such that, for each ωs, (p(ωs), x(ωs)) is an

equilibrium for the economy that occurs at ωs when taxes are τ.  A policy is a (τ, ∆e, f ) 0

 ×  ×  such that each f (ωs) is an equilibrium allocation at ωs when endowments equalRL
%

RLJ RSLJ
%

e(ωs) + ∆e and taxes are τ.  Since the policymaker chooses a policy before agents interact on the

market, τ and ∆e are not state-contingent and therefore retain their previous dimensionality but f

now specifies consumption at each ωs.  Let f j now denote ( f j (ω1), ..., f j (ω S )).  Given an

allocation x and taxes τ, the tax revenue at ωs, τi pi (ωs) max [0, xij (ωs)  ! eij (ωs)], is'
J
j'1 '

L
i'1

t (ωs).

After the policymaker selects (τ, ∆e, f ), market equilibration occurs and p(ωs), x(ωs), and

t (ωs) are simultaneously determined.  If the function p is invertible, the state could be inferred
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from the equilibrium price vector.  But since agents already know their own preferences, this

information has no value to agents; they simply choose utility-maximizing trades given the

observed price vector.  The policymaker does care what the true state is, but (τ, ∆e, f ) is set before

p(ωs) is observed.  We suppose implicitly that each agent knows only his or her own preferences. 

Information is therefore asymmetric, thus preventing trade in assets with state-dependent payoffs.

We define a parameter space of economies Q by letting e 0  be parameters, and byR SLJ
%%

assuming for any agent j that if h is any small quadratic utility that is additively separable across

states, then ū j + h is a possible ex ante utility function for j.  More precisely, h must have the form

(as @ x j (ωs) + x j (ωs)
T As x j (ωs)), where as 0 R L and As  0  and we assume for some ε > 0'

S
s'1 R L 2

that *h (x j )* < ε for all x j 0  such that 2x j2 # 1.  We choose ε to be small enough that ourR SL

assumptions on utilities continue to hold on a rectangle in R LS that contains 0 and e j.  The set'
J
j'1

Q has a finite number of dimensions and we denote a typical element of Q as (e, h).  For any

finite-dimensional set A (such as Q) let a generic subset be an open subset of A whose complement

has Lebesgue measure 0.

4.  Policy effectiveness with the ex ante ordering

In the presence of policymaking uncertainty, the ex ante/agent-based approach begins with

an ex ante preference ordering for each agent j over the hypothetical choices j would make if he or

she faced the policymaker’s state space.  In principle, we should posit for each agent j a von

Neumann-Morgenstern preference relation šj defined on lotteries where the typical prize is a

consumption vector x j (ωs).  But since we will need to consider only lotteries in which the

probability of x j (ωs) is π s, we instead just directly suppose that šj induces preferences over state-

contingent commodity bundles x j that can be represented by an ex ante utility function Eu j : R
SL
%

÷ R where Eu j (x j ) / π s u j (x j (ωs), ωs), and each u j ( @ , ωs) is an element of U j (ωs) and'
S
s'1

therefore an affine transformation of ū j ( @ , ωs).

An allocation x is ex ante superior to xN if, for all j, Eu j (x j ) $ Eu j (x jN), and, for some j,

Eu j (x j ) > Eu j (x jN).  Since the ex ante/agent-based ordering of section 2 arises when S = 1, the

current ordering generalizes the previous definition.  Allocation x is strictly ex ante superior to xN if
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strict inequalities hold for all j.  Policies (τ, ∆e, f ) are ex ante ranked according to the ex ante

ordering of their allocations f.  In contrast to the certainty model, there can now be ex ante optimal

allocations that cannot be reached by any policy (since ∆e is constrained to be constant across

states).

Our conclusions in this section will hold only for typical configurations of the primitives of

the model.  By fluke it might happen that the status quo τ and ∆e = 0 lead to an ex ante optimal

allocation, in which case no policy adjustment would be called for.  Results on the scope for policy

adjustment can therefore at best hold only for a generic set of models or economies. 

The ex ante suboptimality of an economy beginning at a status quo equilibrium ( , x̄ ) withP̄

taxes τ̄  can be attributed to two factors.  First, if τ̄  is nonzero, x̄ (ωs) will normally be suboptimal

for the economy at ωs.  Second, no agent who actually trades possesses the ex ante utility Eu j; the

trading agents have the ex post utilities ū j ( @ , ωs).  Consequently, relative to the hypothetical

agents with the ex ante utilities, markets are incomplete and agents cannot insure themselves

against the uncertainty in Ω.  Allocations will therefore normally be ex ante suboptimal even when

τ = 0.  As we will now see, the policy instruments τ and ∆e will typically allow the policymaker to

engineer an ex ante improvement as a response to this suboptimality – that is, status quo policies

will typically be ex ante suboptimal relative to what can be reached by some policy.  Most

dramatically, if there are at least as many goods as states, the ex ante approach usually recommends

policy changes just as sweeping as the second welfare theorem: virtually any first best allocation

(including ex ante improvements on the status quo) can be reached and with taxes set to 0.

Theorem 1.  If L $ S, there is a generic subset of economies G such that for any economy in G

there is a generic subset of ex ante optimal allocations each of which can be reached by some

policy with τ = 0.

The logic underlying the proof of Theorem 1 (in the appendix along with all other proofs) is

simple.  Since each agent shares the same marginal rate of substitution at an ex ante optimal

allocation x, there are prices ( p(ω1), ..., p(ωS)) that support the allocation.  And typically, if L $

S, the price vectors p(ω1), ..., p(ωS) that rule at the S states will be linearly independent.  Thus, for
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each agent j, the equations

p(ωs) @ ∆e j = p(ωs) @ (x j (ωs) !e j (ωs)), s = 1, ..., S,

have a solution ∆e j, and so if the policymaker sets τ = 0 and each j’s transfer equal to this ∆e j then

j can exactly afford the bundle x j (ωs) at ωs when prices equal p(ωs).

The optimal allocations identified by Theorem 1 cannot be achieved by direct command

decision; the policymaker does not know which ωs obtains, and usually the target allocation x(ωs)

will differ by state.  Although Theorem 1 is akin to the second welfare theorem, it assigns markets

a more fundamental role.  In the standard presentation of the second welfare theorem, there is no

policymaking uncertainty (S = 1).  But then optimality could always be achieved instead with taxes

left at the status quo levels: ∆e can directly move agents’ endowments to an optimal allocation and

trading is unnecessary.  But when S $ 2 agents must generally trade at all states since the post-

transfer endowments e j (ωs) + ∆e j typically will not equal the target x j (ωs) at any ωs.  Markets

and trade therefore have an indispensable function in the presence of policymaking uncertainty:

unlike the policymaker, agents collectively know which state obtains and trading allows the

economy to utilize this information.  Moreover, since agents are trading, reaching a first best

allocation requires that tax rates be set to zero.

What can be said when the number of states is greater than the number of goods, S > L? 

Generically at least some policy adjustment relative to an arbitrary status quo is possible:

Theorem 2.  If S $ 2, then for any τ there is a generic subset of economies G such that for each

equilibrium allocation x with taxes τ of each economy in G there is a policy that reaches an

allocation that is a strict ex ante improvement over x.4

Thus, typically an arbitrary status quo policy will not be ex ante optimal.  And although

there may not be a policy with τ = 0 that is ex ante superior to the status quo, it follows from the

proof of Theorem 2 there will be at least some policy in which τ differs from the status quo τ that is

ex ante superior to the status quo: policymakers can adjust arbitrarily given tax rates.
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Policies that achieve strict ex ante improvements are also robust to the addition of a small

amount of uncertainty.  Suppose, in the S = 1 certainty model, that we begin with a status quo

equilibrium ( , x̄ ) with taxes τ̄  and find a (τ N, ∆eN, f N) that leads to a strict ex ante Paretop̄

improvement.  We can add a small amount of uncertainty by introducing an arbitrary number, say

σ, of new states and collectively assigning the new states small probability.  The entire model is

then (Ω, π), where we assign the initial certainty model’s economy to ω1.  If we are given ex ante

utilities Eu1, ..., Eu J for (Ω, π), then, for π1 sufficiently near 1, a policy (τ N, ∆eN, f NN) such that

f NN(ω1) = f N and where the f NN(ωs), s = 2, ..., σ + 1, are set arbitrarily will be is strictly ex ante

superior to any status quo policy ( , ∆e = 0, f ) with f (ω1) = .  So if a policymaker has access toτ̄ x̄

ex ante utilities, then the addition of a sufficiently small amount of uncertainty will not lead to the

reversal of a proposed policy change.  Observe though that the probabilities for the uncertainty

perturbation that will preserve policy recommendations are a function of the ex ante utilities.  For a

given (Ω, π) – even if π1 is near 1 – there may well be ex ante utilities such that (τ N, ∆eN, f NN) does

not lead to an ex ante improvement over a status quo policy ( τ̄ , 0, f ) at which f (ω1) = x̄ and

where, say, f (ωs) = f NN(ωs) for s = 2, ..., σ + 1.  All that is necessary is that at some ωs some j is

worse off with (τ N, ∆eN, f NN) than with ( τ̄ , 0, f ) and that u j ( @ , ωs) is a sufficiently large multiple of

ū j ( @ , ωs).

5.  Policy recommendations without interpersonal comparisons of utility

The ex ante approach to social decision-making prescribes for each agent j an ex ante utility

Eu j.  Each Eu j imposes a weighting of ex post utilities: given a base set of utilities, ū j ( @ , ω1 ), ...,

ū j ( @ , ωS ), each u j ( @ , ωs ) in Eu j is an affine transformation of ū j ( @ , ωs ).  Since the

policymaker’s uncertainty about agents’ potential preferences does not correspond to any

uncertainty experienced by the agents themselves, the weights on the ū j must reflect the

policymaker’s judgments about which potential preferences experience the greater satisfaction and

deserve greater priority.  As long as j’s ex post preferences differ, there will be x j and x jN such that

x j is preferred to x jN by one of j’s ex post preference relations but where the reverse judgment is

held by another of j’s ex post preference relations.  But the policymaker must specify a preference



     5  Optimality in the utility-independent sense is similar to but does not coincide with interim (or
ex post) Pareto optimality (see Holmström and Myerson (1983)).  The difference hinges on our
specification of utility assignments: a change in allocations that harms some potential agent j (ωs)
and therefore cannot be an interim Pareto improvement can still be a utility-independent
improvement if some other potential agent with the same set of cardinal utility functions as j (ωs)
enjoys sufficient utility gains.  Since utility-independent improvements are easier to achieve, fewer
allocations or policies are utility-independent optimal than are interim Pareto optimal.
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for j between x and xN.  If, say, Eu j (x j ) > Eu j (x jN), the policymaker is in effect claiming that those

of j’s ex post preferences that rank x ahead of xN gain more satisfaction than the utility lost by those

of j’s ex post preferences that hold the reverse preference.  Given that the actual agent j never

faced this uncertainty – the uncertainty is entirely the policymaker’s – this claim amounts to an

interpersonal comparison of welfare.  Since a main purpose of Paretian welfare economics is to

avoid precisely this sort of value judgment, we now consider decision-making criteria that avoid all

such comparisons.

The utility-independent approach ignores the link between ex post utilities and the identity

of agents.  It is instead governed by the principle that no set of weights on ex post utilities in social

welfare functions is more legitimate than another.  We begin by specifying the utilities that can be

admitted into social welfare functions in the presence of policymaking uncertainty.

Definition 5.  A utility assignment under policymaking uncertainty is a u = (u1, ..., u J ) such that

for all agents j and h and all states ωs and ωl, (1) u j ( @ , ωs ) 0 U j (ωs) and (2) U j (ωs) = U h (ωl )

implies u j ( @ , ωs ) = uh ( @ , ω l ).

Since a utility assignment u defines a welfare function Eu j :  ÷ R, the definition of'
J
j'1 R SLJ

%

utility-independence remains as in section 2: allocation x is utility-independent superior to xN if, for

all assignments u, Eu j (x j ) > Eu j (x jN).  An allocation x is utility-independent optimal if'
J
j'1 '

J
j'1

there is no utility-independent superior allocation, and is maximization optimal if there is an

assignment u such that, for all allocations xN, Eu j (x j ) $ Eu j (x jN).
5  Policies are again'

J
j'1 '

J
j'1

ranked or are optimal based on how the allocations they induce are ranked.  When S = 1, these

definitions coincide with those given in section 2.

As in section 2, welfare functions use the same utility function to represent all potential
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agents with the same set of cardinal utilities and are additively separable in agents’ ex post utilities. 

These restrictions on welfare functions are well justified, respectively, by the principle that

identical agents should be treated symmetrically and by the Harsanyi (1955) theorem on additive

social welfare functions.  Moreover, these restrictions make any policy paralysis conclusions

stronger: they limit the number of welfare functions and therefore allow fewer policies to be

labeled utility-independent or maximization optimal.

We now show that policy paralysis obtains when any base model is perturbed through the

addition of further states.  Specifically, no policy is utility-independent superior to an arbitrary

status quo policy if L states can be added to the base model, thus contrasting sharply with the scope

for policy change allowed by the ex ante Pareto criterion.

Theorem 3.  For each base set of states Ω, there is a set of L states Ω N such that in any model with

state space Ω c ΩN, no policy ( τ, ∆e … 0, f ) is utility-independent superior to any status quo

policy ( τ̄ , 0, ).f̄

Since the probabilities of the states in Ω c ΩN can be set arbitrarily, the added states in ΩN can

have arbitrarily small probability.  Theorem 3 treats policy changes such that ∆e … 0, which arise,

for instance, when compensation for a change in τ is attempted. It is not difficult, by adding more

additional states, to cover policy changes that involve only a change in τ.

Theorem 3 suffers from the drawback that the added states can vary as a function of the

base model Ω and can therefore omit agents with the same utilities as agents in the base model. 

Consequently, to prove Theorem 3, it is sufficient to show that some agent at some added state is

harmed by any proposed policy change.  If some utility functions for agents at the added and base

states coincide, then even if some j at some additional state  were harmed by a change fromω̂

(τ, ∆e, f ) to (τ, ∆e, f )N, (τ, ∆e, f )N could still be ranked utility-independent superior: other

potential agents with identical utility representations might collectively gain more utility in

expectation from the policy change than j’s expected loss at .  It is therefore impossible to inferω̂

the overall consequences of policy changes from how the welfare of individuals changes at a

subset of states: it is the overall distribution of characteristics that matters.  It should be clear,



     6  In models of social choice, policy paralysis requires only that preference relations in certain
open sets are elements of the state space, regardless of the preferences that appear at other states
(see Mandler (1999), Theorem 4).  Since agents with identical preferences have the same
preferences over policies in pure social choice settings, a policy that harms one potential agent
harms all potential agents with the same utility function.

     7  It is worth noting, however, that a proof for Theorem 3 need not use additional states with
utility representations that do not occur at ωs 0 Ω.  What is necessary is that the probability of any

ωs 0 Ω that has one or more agents with utilities that appear in an additional state  is sufficientlyω̂

small.
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moreover, that for any set of additional states and any given policy change, there exists an

accompanying base model such that the policy change is a utility-independent improvement for the

model combining the base and additional states.6

In the certainty (S = 1) model as well, some agent can be made worse off by a policy

change even though the utility-independent ordering recommends the policy change.  But while in

the certainty case it is plausible to dismiss as irrelevant any example that does not obey the

diversity condition (i.e., an example where different agents have identical preferences or cardinal

utilities), it is the norm for the same potential utility functions to arise at multiple states and for

multiple agents.  If, for example, a base model specifies that agent j either has the ex post utility u j

or u jN, it is reasonable to allow j to have each of these utilities with non-negligible probability at

some of the additional states (e.g., when the probability of j having any given utility is independent

of what preferences the other agents have).  Similarly, if the policymaker has identical information

about a pair of agents, then the support of the distribution of those agents’ utility functions should

be the same.  Thus, the methodology permitted by Theorem 3 of adding idiosyncratic states to a

fixed base model can sometimes be suspect.7

Indeed, the following example indicates that a highly symmetric model can allow some

allocations and policies to be ranked by the utility-independent ordering.  The example illustrates

again that the utility-independent ordering can recommend policy changes that are rejected by any

ex ante ordering and therefore that the utility-independent ordering is neither weaker nor stronger

than any given ex ante ordering.
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Example.  Suppose that e j (ωs) does not vary as a function of the state ωs and that the'
J
j'1

policymaker has “ignorance” priors over the agents’ utilities.  That is, for each pair of agents i and j

and each state ωs, assume that the following symmetry condition holds:

(5.1)  = .'
ω l 0Ω :Ui (ωl )'Uj (ωs) πl '

ω l 0Ω :Uj (ωl )'Uj (ωs) πl

That is, the likelihood that agent i has a set of cardinal utility functions U is equal to the likelihood

that any other j has the same U.  Let ψ = e j (ωs) and x be an allocation such that x(ωs) does1
J
'

J
j'1

not vary as a function of ωs and that x j (ωs) … ψ for at least one j.  The symmetry condition implies

that any distinct utility u that appears in some Uk (ωs) consumes x j (ωs), j = 1, ..., J, each with

probability .  Since x j (ωs) = ψ, the strict concavity of u implies u(ψ) >1
J

'
J
j'1

1
J

u(x j (ωl )).   So, letting ψ also denote the allocation where every agent at'(ω l , j ) :Uj (ωl )'Uk (ωs) πl

every state consumes ψ, it follows that for any assignment u,

(5.2) Eu j (ψ) > Eu j (x j ).'
J
j'1 '

J
j'1

Hence the allocation giving each agent ψ is utility-independent superior to any x that is constant

across ωs.

If L = 1, there must be a j such that x j (ωs) > ψ for all ωs.  Such agents are worse off with ψ

at every state.  The allocation giving each agent ψ therefore cannot be superior to x according to

any of the possible ex ante orderings.  Once again we see that the utility-independent ordering can

endorse a change in allocations rejected by any ex ante ordering.

Some policies can be ranked as well.  Assume now in addition for each j that e j (ωs) also

does not vary across states.  If, for some j, e j (ωs) … ψ, then any policy (τ, (∆e j = ψ !e j (ωs) ,)J
j'1

f ) is utility-independent superior to any status quo policy ( τ̄ , 0, ) if τ and τ̄  are both high enoughf̄

to prevent trade from occurring at all ωs.

Since (5.2) is an inequality, the example is robust in the sense that small changes in the

primitives of the model – in U j (ωs), the e j (ωs), and π – will still allow some allocations and

policies to be ranked.  For the same reason, the τ and τ̄   in the policies do not have to be set so high



     8  For more recent formalizations of Lerner’s argument, see McManus et al. (1972), McCain
(1972), and Sen (1973), which also suppose that each agent’s utility is a function of one good.

     9  Other, more trifling policy recommendations can also be made.  For example, if τ̄  is high
enough to prevent trade at all ωs, then any (τ, ∆e = 0) such that τ allows some trade at some ωs is a
utility-independent improvement.
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as to prevent all trade, just high enough that only a small amount of trade occurs.

The above conclusions extend the Lerner (1944) argument that complete income equality

can be justified even when individuals derive utility from income at different rates – as long as the

policymaker is ignorant about which agents are the more efficient producers of utility.  In Lerner’s

model, the agents consume just one good (income) and thus all have the same ordinal preferences

if not the same cardinal utility, whereas (5.1) applies to disparate preferences over many

commodities.8

Our requirements that identical potential agents are represented by the same utility

function, that only increasing affine (rather than all monotonic) transformations of some strictly

concave utility function are elements of U j (ωs ), and the fact that the utility-independent ordering

does not insist that each agent is unharmed by policy changes are all crucial for the non-paralysis

conclusion.

The significance of the example is not that there can be allocations and policies that are

suboptimal according to the utility-independent or maximization definitions.  Even simpler

examples would suffice to show this (e.g., suppose that all agents in all states have the same

cardinal utility function).  What the example underscores is that even with no restriction on the

number and diversity of preference orderings, some nontrivial policy advice is possible under a

specification of the policymaker’s uncertainty that can sometimes be plausible.9  �

In the local policy paralysis result below, we do not assume that certain utilities appear with

non-negligible probability only at certain carefully constructed states.  We cast the result in terms

of the historically more important maximization definition of optimality.  Since maximization-

optimal policies are also utility-independent optimal but the converse need not hold, results that



     10  For any integer m, 1m denotes the vector of m 1’s.
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apply to the maximization definition are stronger.

We will say that a policy (τ, ∆e, f ) is differentiable if the allocation induced by the policy

is locally a continuously differentiable function of the policy instruments (τ, ∆e).  That is, there

must be a continuously differentiable function g from an open Π d ×  to allocationsR L
%

R L (J&1)

 such that g(τN, ∆eN) is an equilibrium allocation for any (τN, ∆eN) 0 Π, (τ, ∆e) 0 Π, and g(τ,RSLJ
%

∆e) = f.  Most policies are differentiable; the lemma in the proof of Theorem 2 in fact shows that

policies are generically differentiable.  But welfare maximization need not always select one of

these generic policies; sometimes a nongeneric policy at which the equilibrium allocation is not a

differentiable function of (τ, ∆e) may be dictated.  We nevertheless restrict ourselves to

maximization-optimal policies that are differentiable, thus incurring a small loss of generality.

If we ignore agents’ utility levels, one simple way to generate the welfare functions that can

arise with (Ω, π) is to pick an arbitrary assignment u and then multiply each ex post utility function

u j ( @ , ωs) by some positive weight b js where we require any pair of identical ex post utilities to be

multiplied by the same weight.  Let B denote this set of weights, {b 0 : U j (ωs) = U jN (ωsN) YR SJ
%%

b js = b jNsN}, which has dimension equal to the number of distinct utilities in Ω.  Given a

differentiable policy (τ, ∆e, f ) and an assignment u, and letting g be the function specified above,

we define the welfare functions parameterized by B, wu : B × Π ÷ R by setting wu (b, (τ, ∆e)) =

E (g j (τ, ∆e)), where  is the assignment  = b @ u.'
J
j'1 ûj û û

We put aside the question of whether equilibria exist at boundary policies by now requiring

that endowment redistributions are in the set ∆E = {∆e: e j (ωs) + ∆e j $ 0 for all j and ωs} and

assuming for all (∆e 0 ∆E, τ) that an equilibrium exists at each ωs.

Definition 6.  A differentiable policy (τ, ∆e 0 ∆E, f ) is a regular maximum for the assignment u if

(1) whenever (τ, ∆e, f )N has f N … f and ∆eN 0 ∆E, Eu j ( f j ) > Eu j ( f jN), and (2)'
J
j'1 '

J
j'1

(1JS, (τ, ∆e)) is negative definite.10D 2
τ,∆ewu

Definition 7.  A differentiable policy (τ, ∆e, f ) satisfies the rank condition for the assignment u if
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wu(1JS, (τ, ∆e)) has rank LJ.D 2
(τ,∆e), b

Differentiability and regularity of a policy are the traditional conditions that guarantee a

maximum is well-behaved; they ensure that calculus can be applied, that a strict second order

condition obtains, and that two or more policies do not simultaneously maximize the same welfare

function.  The assumptions are also “open” properties that continue to hold if the model is

smoothly perturbed.  The rank condition is an open property as well since LJ is the maximal rank

of wu(1JS, (τ, ∆e)).  But the rank condition is also substantive and its meaning isD 2
(τ,∆e), b

important.  It says that there are enough utility functions in the model so that for every policy

instrument we can find an independent combination of changes in welfare weights that will alter

the marginal social welfare of that instrument.  This means that each policy instrument has a

distinctive effect on social welfare in that it affects the welfare of a different combination of ex

post utilities.  For example, a change in some τi will have a different impact on intensive buyers

and sellers of good i compared to its impact on other potential agents.  Following the policy

paralysis theorem, we show that we can add additional states to a model to ensure that the rank

condition is satisfied; these states guarantee that the model is sufficiently rich in agents so that

precisely these distinctive effects of different policy instruments are present.

Theorem 4.  The policy instruments (τ, ∆e) such that some differentiable (τ, ∆e, f ) is a regular

maximum for some u and where wu satisfies the rank condition form an open set.

Suppose that the entire uncertainty model is perturbed slightly – say by the addition of a

small consumption externality – in such a way that the primitives of the model change smoothly as

a function of the perturbation.  If the status quo policy is differentiable and a regular maximum and

the corresponding rank condition is satisfied, it will remain so after a small enough perturbation. 

Theorem 4 then indicates that if policymakers aim to maximize some welfare function, then a

small externality will induce no policy response.

A global version of Theorem 4, for either the utility-independent or maximization

definitions of optimality, faces difficulties.  The Example above is a sign that there is no general
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condition that rules out models in which many policies are suboptimal in the utility-independent

sense.  And even if there were, a result using the more stringent maximization definition of

optimality also faces the hurdle that the set of agent utilities reachable through some policy is not

convex.  Consequently, utility-independent policies need not be maximization optimal.

The rank condition is weak in that if we add states with diverse ex post agents to a model,

the condition is necessarily satisfied; the added states moreover can have arbitrarily small relative

probability.  Note that as we add more ex post agents to the model, more columns are added to

wu(1JS, (τ, ∆e)) but not more rows; the number of rows always equals the number ofD 2
(τ,∆e), b

policy instruments LJ.

Theorem 5.  For any differentiable policy (τ, ∆e, f ) for (Ω, π) that is a regular maximum for some

u, there exists a ( , ) such that, for every λ 0 [0, 1], the model (Ω c , (λπ, (1!λ) )) has aΩ̂ π̂ Ω̂ π̂

differentiable policy that is a regular maximum for some  such that  satisfies the rankû wû

condition.

6.  Discussion

Our results are both positive and negative.  The ex ante Pareto criterion will recommend a

move from most status quo policies, but this criterion incorporates a system for making

interpersonal welfare comparisons.  On the other hand, a thorough-going avoidance of

interpersonal comparisons can lead a large number policies to be optimal.

We have not yet considered policies that achieve optimality ex post.  A policy is ex post

optimal (by the ex ante/agent-based, utility-independent or maximization definition) if, for each

ωs 0 Ω, the allocation x (ωs ) is optimal (by the same definition) at the certainty model that occurs

at ωs.  Since ex post optimality does not make hypothetical comparisons between the different

preferences an agent might have, it does not make interpersonal comparisons of utility.  As our

framework now stands, a policymaker can achieve ex post optimality by any of our definitions by

setting τ = 0 (provided that no two agents have the same cardinal utility functions at any single

state).  Since any status quo policy with τ >> 0 will not be ex post optimal (except in the fluke
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circumstance that agents in all states are endowed with Pareto efficient allocations), policy

paralysis would seem to disappear.  But this reasoning is unpersuasive.  First, since the

policymaker must choose policies ex ante, ex post welfare criteria are of questionable relevance. 

And just as importantly, the ex post optimality of τ = 0 is an artifact of the way we have modeled

distortions.  Had there been externalities, for instance, in addition to distorting taxes, and if the

policymaker were uncertain about the parameters of the externalities, there would usually be no tax

policy that is optimal ex post.  Ex post optimality therefore does not provide a general resolution of

the policy paralysis problem.

Finally, we consider applications to other literatures.  When markets are incomplete, it is

well-known that a policymaker can institute Pareto improvements by redistributing initial-period

asset holdings.  The necessary transfers require detailed information, however, and so it is tempting

to conclude that such policy interventions are impractical (see, e.g., Geanakoplos and

Polemarchakis (1990)).  Similar observations were made in the wake of the theorem of the second

best (Lipsey and Lancaster (1956)): when there are distortions that the policymaker cannot correct,

optimal policies can be counter-intuitive and depend on unobtainable information about the

parameters of the model.

Our explicit modeling of policymaking uncertainty allows us to evaluate this type of

reasoning.  Consider a model of incomplete markets in which the policymaker is uncertain about

the attributes of the underlying economy.  (If there were no policymaking uncertainty, policy

analysis would proceed as it does in the incomplete markets literature.)  The policymaker then

faces two sources of uncertainty: the uncertainty that confronts the agents and an additional

uncertainty about the parameters of the model.  If the policymaker can make interpersonal

comparisons of welfare and therefore construct an ex ante ordering, he or she could then devise

policies that are improving relative to the status quo policy of letting agents choose their asset

portfolios without government intervention.  Pareto-improving reallocations of assets exist in the

incomplete markets model in the absence of policymaking uncertainty; the inclusion of

policymaking uncertainty simply adds new dimensions of market incompleteness for the

hypothetical ex ante agents.  But section 4 shows that policymaking uncertainty alone, even when
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the ex post agents face no market incompleteness, is typically enough to guarantee that some

policy changes are called for.  On the other hand, utility-independent or maximization welfare rules

argue against any change of policies and this conclusion does not hinge on market incompleteness. 

The set of optimal policies, as section 5 shows, is sizable even when the (ex post) agents face

complete markets.  Thus, market incompleteness does not introduce any special problem of policy

paralysis: the difficulty lies in not knowing the model with certainty and simultaneously trying to

avoid interpersonal comparisons of welfare.

Analogous observations apply to the difficulty, described by the theorem of the second best,

of devising policy recommendations in the presence of multiple uncorrectable distortions in the

economy.  If a policymaker can formulate an explicit state space to describe his or her uncertainty

and can furnish ex ante preferences, the ex ante ordering will typically recommend that policy be

changed from an arbitrary status quo.  In this paper, for example, one could suppose that some or

all of the taxes on net trades are uncorrectable; the proof of Theorem 2 indicates that the

endowment transfers can still engineer an ex ante improvement.  On the other hand, if a utility-

independent or maximization welfare rule is in effect, then policy paralysis will occur even when

the policymaker has the freedom to set all tax rates equal to zero.  It is the difficulty of specifying

ex ante preferences that makes policy adjustment problematic, not the presence of uncorrectable

distortions.

Appendix

Proof of Theorem 1.

The set of interior ex ante optimal allocations is a manifold of dimension J !1 (see, e.g.,

Mas-Colell (1985, Proposition 4.6.9)), which we denote Y, and thus, generic subsets of Y are well-

defined.  For any ex ante optimal allocation x >> 0 (we can ignore boundary optima as nongeneric),

there is a supporting p(x) 0  such that each DEu j (x j ) is proportional to p(x), and weR SL
%%

assemble p(x) as the S × L matrix P(x) with the sth row given by the coordinates of p(x) that are

proportional to .  We normalize p(x) and hence P(x) by requiring p(x) to lie in the LSDxj (ωs) Euj

dimensional unit simplex.
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Since L $ S, we can define the square matrices Ps, s = 1, ..., S, by setting, for k # s, the kth

row of Ps equal to the first s coordinates of   We now show that there is a generic subset ofp
ω k

(x ).

Y × Q such that PS has rank S.  Since for any (x, (e, h)) 0 Y × Q, P1 trivially has rank 1, it is

sufficient to show that, for s = 1, ..., S !1, if there is a generic subset Gs d Y × Q at which Ps with

rank s, then there is another generic subset Gs+1 d Y × Q at which Ps +1 with rank s +1.  Given the

induction assumption, we define the function g s +1: Gs ÷ R by setting gs+1(x, (e, h)) equal to the

determinant of Ps+1.  Calculating det Ps+1 by cofactor expansion along row s + 1, the derivative of

det Ps+1 with respect to the (s+1)st entry of   must be nonzero given the inductionp
ωs%1

(x )

assumption that Ps has rank s.  Moreover, we can change this coordinate of p(x) without changing

any other coordinate by increasing  for all j.  Thus Dgs+1 … 0, and so by the implicitDxs%1(ωs%1) Euj

function theorem (for manifolds, sometimes known as the preimage theorem, see, e.g., Guillemin

and Pollack (1974)), the subset of Gs such that det Ps+1 = 0, say Zs+1, is a manifold of dimension

equal to dim (Y × Q ) !1 and hence a closed and measure-0 subset of Y × Q.  We therefore set Gs+1

= Gs ( Zs+1.  Hence on GS, P(x) has rank S.  Moreover, by Fubini’s theorem, there must be a

generic subset G d Q such that, for all (e, h) 0 G, P(x) has rank S for all x in a generic subset of

the ex ante optimal allocations of (e, h).

For any such x, define for each j, c j = ( @ x j (ω1), ..., @ x j (ωS )).  Since P(x)p
ω1

(x ) p
ωS

(x )

has rank S, there is for any j a solution ∆e j to ( @ (∆e j + e j (ω1)), ..., @ (∆e j +p
ω1

(x ) p
ωS

(x )

e j (ωS ))) = c j, that is, a ∆e j such that

(A1) P(x)∆e j = c j ! ( @ e j (ω1), ..., @ e (ω S )).p
ω1

(x ) p
ωS

(x )

For j = 2, ..., J, set ∆e j as a solution to A1, and set ∆e1 = ! ∆e j; it is readily confirmed that'
J
j'2

∆e1 also solves (A1) for j = 1.  Since, for each ωs,  is an equilibrium price vector for thep
ωs

(x )

economy at ωs when τ = 0 and ∆e is specified as above, setting f = x reaches the ex ante optimal

allocation x.  �

Proof of Theorem 2.

We begin with a preliminary lemma.
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Lemma.  For any τ, there is a generic subset of economies G d Q such that for any (e, h) 0 G and

any equilibrium allocation x(ωs) in state s of (e, h) there exists a C 1 function  from an open setg
ωs

ΠO d R+
L × RL(J!1) of policy instruments that contains (τ, ∆e = 0) to allocations such that

(1) (τ, ∆e = 0) = x(ωs) and (2) for any (τN, ∆eN) 0 ΠO, (τN, ∆eN)) is a locally uniqueg
ωs

g
ωs

equilibrium allocation of (e, h) in state s when the policy instruments are (τN, ∆eN).

Proof of Lemma.

We fix the state and omit any notation of it.  Let a labeling be a pair of nonempty disjoint

subsets of {1, ..., L} × {1, ..., J}, denoted B and S, such that (i, j ) 0 B if and only if there exists a jN

… j such that (i, jN) 0 S and if (i, j ) 0 S then there exists a iN … i such that (iN, j ) 0 B.  That is,

some agent j buys a good i if and only if some other agent jN sells i, and if some agent sells some

good i then that agent buys some other good iN.  Reset commodity indices so that the first ι = #{i :

› j such that (i, j) 0 B c S} goods are the goods in B c S.  Let  = (1, p2, ..., p
ι
), let  denote thep̂ x̂

projection of a consumption profile x 0 RLJ onto the #(B c S )-dimensional coordinate subspace of

the consumption bundles listed in B c S, let  denote the projection of the endowment profile eê

onto the same subspace, and let κ = #{ j: › i such that (i, j) 0 B c S}.

For any of the finite number of labelings, let F: Q × RL ×   ×  ×  × ÷R ι&1
%%

R #BcS
%%

R κ

%%
R
%

 denote the C 1 function given by F ((e, h), τ, , , λ, t ) = ¢{[ u j (x j ) !R #(BcS )%κ% ι p̂ x̂ Dxij

λ j pi , [ u j (x j ) ! λ j pi (1+ τi ) , (1 + τi )pi (xij ! e ij ) +] i: ( i, j )0S Dxij
] i: ( i, j )0B 'i: ( i, j )0B

p i (xij!eij ) !t'J ,  t ! pi τi (xij ! eij ), (x2j!e2j ), ...,' i: ( i, j )0S } j: (i, j)0BcS '(i, j )0B '
J
j'1

(xLj!eLj ) ¦, where each xij = ij if (i, j) 0 B c S, and xij = eij otherwise.  If ( p, x) is an'
J
j'1 x̂

equilibrium for the economy (e, h) with taxes τ, there is a Lagrange multiplier λ j for each agent j

such that (x j, λ j ) solves j’s maximization problem and F((e, h), τ, p2'p1, ..., p
ι
'p1, , λ, t ) = 0x̂

for some labeling.  Note that F sets any xij such that (i, j ) ó B c S equal to eij.  When a 0 of F

describes an equilibrium, these are goods for which agents optimally consume exactly their

endowment; there is no condition setting the marginal utility of these goods equal to λ j pi or

λ j (1 + τi )pi due to the kinks in agents’ budget sets at endowment points.  If

 is nonsingular whenever F((e, h), τ, , , λ, t ) = 0, the inverseDp̂, x̂, λ, t F ((e,h), τ, p̂, x̂, λ, t ) p̂ x̂
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function theorem implies that, for each (e, h), the ( , , λ, t ) such that F((e, h), τ, , , λ, t ) = 0p̂ x̂ p̂ x̂

are locally isolated.  Hence the equilibrium allocations such that every agent consumes

nonendowment bundles in the same coordinate subspace are also locally isolated.  The

transversality theorem (see, e.g., Guillemin and Pollack (1974)) therefore implies that local

uniqueness in this sense obtains for a full measure set of economies if DF((e, h), τ, , , λ, t ) hasp̂ x̂

full row rank whenever F((e, h), τ, , , λ, t ) = 0.  When F((e, h), τ, , , λ, t ) = 0, DF((e, h), τ,p̂ x̂ p̂ x̂

, , λ, t ) =p̂ x̂

            λ j                          λ jN     ekj         eij         eiNjN        x̂j x̂jN eĩ jN

"

D 2 uj &p̂ ( j) 0 0 0 0 0 0

p̂ ( j)T 0 0 0 &pk (1% τ k ) &pi 0 0

"

0 0 D 2 ujN &p̂ ( jN) 0 0 0 0

0 0 p̂ ( jN)T 0 0 0 &piN &pĩ (1% τĩ )

"

C 0 C 0 pk τ k 0 0 pĩ τĩ

"

C 0 C 0 0 0 &1 0

"

,

where for any agent l,  0 denotes  = (1 + τk )pk when (k, l ) 0 B and p̂ (l ) R #{k : (k, l )0BcS} p̂k (l ) p̂k ( j)

= pk when (k, l ) 0 S.  Since F((e, h), τ, , , λ, t ) = 0 and S is nonempty, there must be at leastp̂ x̂

one agent, say j, who is simultaneously a net buyer and a net seller.  Above, we have assigned one

of the goods that agent j buys the index k and one of the goods that j sells the index i.  Each of the

goods iN 0 {2, ..., ι} has some seller, say jN, and we assign one of the goods that jN buys the index

.ĩ

We now confirm that DF((e, h), τ, , , λ, t ) has full row rank.  Given the negativep̂ x̂

definiteness of D2 ū j, the upper left square submatrix whose columns correspond to the variables x̂

and λ is nonsingular.  Performing an elementary column operation with the e ij column, we can
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replace the (1 + τk )pk entry in the ek j column with 0 without affecting the 0’s in the rows

considered so far or the τk in the t ! τi pi (xij ! eij ) row; hence the #(B c S ) + κ + 1'(i, j )0B

dimensional upper left square submatrix that results is nonsingular.  For those rows that correspond

to the market clearing conditions of goods iN 0 {2, ..., ι}( i, we can, by adding appropriate

multiples of the  column and the (previously transformed) ek j column to the eiNjN column,eĩ jN

generate a 1 in the iN row and 0 elsewhere (see the DF above for this case).  When iN = i, we can

instead use the eiNjN column for some jN where (iN, jN) 0 B and the  column where ( , jN) 0 S. eĩ jN ĩ

Adding appropriate multiples of the  column and the (previously transformed) ek j column to theeĩ jN

eiNjN column, we can again produce a 1 in the iN row and 0 elsewhere.  Hence

DF((e, h), τ, , , λ, t ) has full row rank.  p̂ x̂

We have considered only labelings that consist of nonempty sets of indices, thus excluding

the no-trade equilibria where each agent consumes a nonendowment bundle in no coordinate

subspace; but clearly for any economy there is at most one no-trade allocation.  Hence, using the

intersection of the finite number of full measure sets defined above, one for each labeling, we

conclude that there is a full measure set of economies such that each equilibrium at which every

agent consumes nonendowment bundles in the same coordinate subspace is locally unique.  We

next show that generically each equilibrium allocation x is also locally isolated from equilibrium

allocations in which nonendowment consumptions lie in a different coordinate subspace.  If x = ( ,x̂

xij = eij for (i, j) ó B c S ) is an equilibrium allocation for some economy (e, h) and x fails to be

locally isolated, there must be a labeling, a corresponding F, and a  0 B c S such that F((e,( ĩ, j̃ )

h), τ, , λ, t ) = 0 and  = .  To exclude this possibility, we add to the range of each F thep̂, x̂ x ĩ j̃ e ĩ j̃

additional term  ! , where  0 B c S, thus defining a function F(.  Consider thexĩ j̃ e ĩ j̃ ( ĩ, j̃ )

columns of DF( that correspond to the x j’s, λ j’s, the ekj and eiNjN columns as earlier transformed in

our analysis of DF, and the  and  columns:eĩ j̃ e1 j̃
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         λ j                          λ jN               x̂j x̂jN eĩ j̃ e1 j̃

"

D 2 uj &p̂ ( j) 0 0 0 0 0 0

p̂ ( j)T 0 0 0 0 0 0 0

"

0 0 D 2 uj̃ &p̂ ( j̃ ) 0 0 0 0

0 0 p̂ ( j̃ )T 0 0 0 &pĩ (1% τ ĩ ) &p1 (1% τ1 )

"

C 0 C 0 pk τk 0 pĩ τ ĩ p1 τ1

"

C 0 C 0 0 &1 &1 0

"

0 0 1 0 0 0 &1 0

"

.

Since we may use the final column to eliminate  in the penultimate column, and then&pĩ (1% τ ĩ)

the two columns to the left of the penultimate column to eliminate all but the !1 in the bottom row,

DF( has full row rank, i.e., rank #(B c S ) + κ + ι + 1.  Hence, for a full measure set of economies,

if F(((e, h), τ, , , λ, t ) = 0 then  has rank #(B c S ) + κ + ι + 1.  Butp̂ x̂ Dp̂, x̂, λ, t F (((e, h), τ, p̂, x̂, λ, t )

since  has only #(B c S ) + κ + ι columns, it must be that at this set ofDp̂, x̂, λ, t F (((e, h), τ, p̂, x̂, λ, t )

economies there exists no ( , , λ, t ) such that F(((e, h), τ, , , λ, t ) = 0.  Constructing such ap̂ x̂ p̂ x̂

full measure set for each  0 B c S, and taking the intersection of all of the full-measure sets( ĩ, j̃ )

of economies defined so far, we conclude that for a full-measure set of economies, equilibrium

allocations are generically locally unique.  (Normalized equilibrium prices are not locally unique

since  does not specify prices for goods that no one buys or sells.)  That these equilibriump̂

allocations are C 1 functions of (e, h) and τ then follows from the implicit function theorem, and

the openness of the set of economies we have identified follows from the fact that for any F we

may place the endogenous variables ( , , λ, t ) in a compact set.  When a 0 of F specifiesp̂ x̂

equilibrium values for the variables, the specification of g is completed by setting xij = eij when (i,

j) ó B c S.  This concludes the proof of the lemma.
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Turning to the proof of the theorem itself, consider an arbitrary selection of S of the

functions F defined above, F = ( , ..., ), one  chosen from each state.  If we express G asF
ω1

F
ω S

F
ωs

the product × ... × , then F is defined on the S-fold product of the sets × RL ×   ×G
ω1

G
ωS

G
ωs

R ι&1
%%

 ×  × .  We restrict ourselves to an open subset of this domain, say Y, that contains allR #BcS
%%

R κ

%%
R
%

0’s of F and such that each ( y) is nonsingular, where y = ( , ..., )Dp̂ (ωs), x̂ (ωs), λ(ωs), t (ωs)
F

ωs
y
ω1

y
ω S

denotes a typical element of Y.  Also, ( ), ( ), etc., will denote the indicated coordinates ofp̂ y
ωs

x̂ y
ωs

.  We now extend the g given in the lemma by defining a C 1 function χ: Z ÷ RJSL, where Z isy
ωs

an open subset of Y × ×  that contains (y, τ, ∆e) whenever y 0 Y, τ = τ( ) and ∆e =R L
%

R L (J&1) y
ωs

∆e( ) and such that  evaluated at (h( ), e( ) + ∆e, τ, ( ), ( ),y
ωs

Dp̂ (ωs), x̂ (ωs), λ(ωs), t (ωs)
F

ωs
y
ωs

y
ωs

p̂ y
ωs

x̂ y
ωs

λ( ), t( )) is nonsingular for each ωs.  Given (y, τN, ∆e) 0 Z, consider the implicit functiony
ωs

y
ωs

theorem solution values of ( (ωs), (ωs), λ(ωs), t (ωs)) for the equationp̂ x̂

(h( ), e( ) + ∆e, τN, (ωs), (ωs), λ(ωs), t (ωs)) = ( ),F
ωs

y
ωs

y
ωs

p̂ x̂ F
ωs

y
ωs

where if ∆e = 0, τN = τ( ), and ( ) = 0, then we set the solution ( (ωs), (ωs), λ(ωs),y
ωs

F
ωs

y
ωs

p̂ x̂

t (ωs)) to equal the corresponding coordinates of .  To define χ, set the (ωs) coordinates ofy
ωs

x̂

(τN, ∆e, y) to equal the (ωs) coordinates of this solution and the remaining coordinates, asχ
ωs

x̂

before, to equal agents’ endowments.  Notice that when ( ) = 0 and equilibrium values of theF
ωs

y
ωs

variables are specified, (τN, ∆e, y) will coincide with the  given by the lemma.  If F(y) = 0χ
ωs

g
ωs

and y specifies equilibrium values for ( , , λ, t ), then χ gives, as a function of τN near τ and ∆ep̂ x̂

near 0, the economy’s unique nearby equilibrium consumption profile.  Let µ : R L × R L (J!1) × Y ÷

RJ denote the ex ante utilities of these consumption profiles, i.e., µ j (τN, ∆e, y) =

Eu j (χ j (τN, ∆e, y)) = πs u j ( (τN, ∆e, y)).  The proof is complete if we can show for a'
S
s'1 χ j,ωs

generic subset of economies that, for any 0 of any such F, µ (τ, ∆e = 0, y) has rank J: sinceD
τ,∆e

then the linear map µ (τ, ∆e, y) is onto, there is a (τN, ∆eN) such that D
τ,∆e

µ (τ, ∆e, q) (τN, ∆eN) >> 0 and hence for ε  > 0 sufficiently small, one of the allocationsD
τ,∆e

reached by (τ, ∆e)  + ε (τN, ∆eN) increases each Eu j.

Letting εij denote a transfer from agent 1 to agent j of good i, we will need to consider only

the derivatives of µ  with respect to ε22, ε12, ε13, ..., ε1J.  We define the functions Fi, i = 1, ..., J, by
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supplementing F with an additional term equal to the determinant of a matrix Mi of derivatives of

µ .  For F1, the matrix M1 just consists of 1 × 1 matrix .  Each M i, i $ 2, is an i × i matrixD
ε22

µ1

whose columns consist of derivatives of coordinates of µ  with respect to the first i of the variables

ε22, ε12, ε13, ..., ε1J and whose rows consists of the derivatives of the first i of the variables µ 1, ...,

µ J.  Thus, each M i, i $ 2, is M i!1 with an additional row and column added.  We now show that

there is a generic subset of economies for which each Fi has no 0; since we can repeat this

argument for any F, this shows that any µ (τ, ∆e = 0, y) has rank J.D
τ,∆e

We can decompose the effects of changes in the εij on µ  into a sum of the direct utility

effects of the transfers, which depend on Du j, and the indirect effects via changes in the p(ωs) and

t, which depend on D2 u j but not on Du j (see Geanakoplos and Polemarchakis (1986) for more on

this point).  The matrix of the direct effects of the pertinent εij on µ  is given by DE =

      ε22        ε12                        ε13
     ε1Jþ

&'
S
s'1πs Dx2

u1( χ1,ωs
,ωs) &'

S
s'1πs Dx1

u1( χ1,ωs
,ωs) &'

S
s'1πs Dx1

u1( χ1,ωs
,ωs) þ &'

S
s'1πs Dx1

u1( χ1,ωs
,ωs)

'
S
s'1πs Dx2

u2( χ2,ωs
,ωs) '

S
s'1πs Dx1

u2( χ2 ,ωs
,ωs) 0 þ 0

0 0 '
S
s'1πs Dx1

u3( χ3,ωs
,ωs) 0

! " !

0 0 0 '
S
s'1πs Dx1

uJ( χJ,ωs
,ωs)

.

The function F1 therefore transverse to 0 (i.e., DFi has full row rank whenever Fi = 0) since we

may simultaneously multiply ( , ) for each j and some ωs by the same constant, thusDuj ( · ,ωs) λj,ωs

perturbing the upper left term of DE while leaving the value of F unchanged.  It follows that for a

generic subset of economies F1 = 0 has no solution: if it did then the matrix of derivatives of F1

with respect to the endogenous variables , , λ(ωs), t(ωs), s = 1, ..., S, would have fullp̂ (ωs) x̂ (ωs)

row rank at any solution, which is impossible since this matrix has more rows than columns.  We

henceforth remove the closed 0-measure set of parameters such that F1 = 0 from the range of the

remaining Fi .  To show that F2 is transverse to 0 requires an initial step showing that

 =  
Dx1

u1(x1,ω1)

Dx2
u1(x1,ω1)

Dx1
u1(x1,ω2)

Dx2
u1(x1,ω2)



31

is not satisfied any 0 of F for a generic subset of economies.  This is readily established with an

separate transversality argument that shows that we can add this equation to an arbitrary pair of F ’s

for the economies at states 1 and 2, then the resulting function is transverse to 0 (perturb, at one of

the states, every j’s marginal utility for one of the goods and that good’s price) and hence this

equation is generically not satisfied at a 0 of any F.  Given that this equality is not satisfied, we

may by independently rescaling ( , ) and ( , ) perturb the row 2-Duj ( · ,ω1) λj,ω1
Duj ( · ,ω2) λj,ω2

column 2 entry of the DE, without changing the other entries of DE or the value of F.  If we

calculate det M2 by expansion of cofactors in the second row, and given our earlier restriction to

parameters such that F1 … 0 and hence det M 1 … 0, we set that F2 is transverse to 0.  We then

proceed by induction, restricting the domain of each Fi, i = 3, ..., J, to exclude the points at which

Fi!1 = 0 has a solution: simply by rescaling ( , ) for all j, each of the remaining Fi isDuj ( · ,ω1) λj,ω1

seen to be transverse to 0, using the cofactor expansion of det Fi along row i.  Thus generically

µ (τ, ∆e = 0, y) has rank J at any 0 of F, as desired.  �D
τ,∆e

Proof of Theorem 3.  Choose ΩN so that, for all j and ω l, (1) U j (ω
l ) … U h (ω l ) for any agent h … j

and U j (ω
l ) … U h ( ) for any h and  0 Ω c ΩN ( ω l, (2) the vectors Du j (e j (ω

l ), ω l ), l =ω̂ ω̂

1, ..., L, are linearly independent, and (3) e(ω l ) >> 0 is a Pareto optimal allocation for the economy

.(uj ( @ , ω l ), ej (ω
l ) )J

j'1

The strict concavity of the u j ( @ , ω l ) and (3) imply that for any status quo policy ( τ̄ , 0, ), f̄

(ω l ) = e j(ω
l ) for all j and ω l.  Given (1), it is sufficient to show that at any (τ, ∆e … 0, f ) theref̄ j

exists a ω l and j such that u j (ej (ω
l ), ω l ) > u j ( f j (ω

l ), ω l ).  Suppose, to the contrary, that

u j ( f j (ω
l ), ω l ) $ u j (ej (ω

l ), ω l ) for all ω l and j, and hence (given strict concavity) that f j (ω
l ) =

ej (ω
l ) for all ω l and j.  Given the arguments in section 2 on the suboptimality of equilibria where

traded goods have nonzero taxes, it follows that if ∆eij … 0 for any agent j and any good i and J $

2 and L $ 2, then τ i = 0.  Therefore t (ω l ) = 0 which also holds when J = 1 or L = 1 since then

there is no trade.  From the definition of the budget constraint, p(ω l ) @ (ej (ω
l ) ! (ej (ω

l ) + ∆ej )) #

0, where p (ω l ) is an equilibrium price vector corresponding to f at ω l.  Hence p (ω l ) @∆ej # 0 and,

since ∆e j = 0, p (ω l ) @∆ej = 0.  Since, for all j and ω l, there is some  >> 0 such that'
J
j'1 λ

l
j
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pi (ω
l ) = u j (ej (ω

l ), ω l ) for all goods i such that ∆eij … 0, u j (ej (ω
l ), ω l ) @ ∆ej = 0. λ

l
j Dxij

λ
l
j Dxj

Condition (2) then implies that ∆ej = 0 for all j, a contradiction.  �

Proof of Theorem 4.  Letting  be differentiable and a regular maximum for u and such(τ̂, ∆ê, f̂ )

that wu(1JS, ( , )) has rank LJ, there must be a LJ dimensional coordinate subspace ofD 2
(τ,∆e), b τ̂ ∆ê

B, say B(, such that  wu(1JS, ( , )) is nonsingular, where b( denotes a typical elementD 2

(τ,∆e), b (
τ̂ ∆ê

of B(.  Label coordinates so that B( is spanned by the first LJ coordinates of RJS.  By the implicit

function theorem, there is a C 1 function, say b(, from some open subset ΠN d RLJ containing

 to B( such that b(  = 1LJ and(τ̂, ∆ê ) (τ̂, ∆ê )

D(τ ,∆e) wu ((b(((τ, ∆e)), 1JS!LJ ), (τ, ∆e)) = 0

for all (τ, ∆e) d ΠN.  The fact that  is a regular maximum implies that there are open sets(τ̂, ∆ê, f̂ )

BO d B( and ΠO d RLJ containing 1LJ and , respectively, such that for b( 
0 BO and(τ̂, ∆ê )

(τ, ∆e) 0 ΠO, wu ((b(((τ, ∆e)), 1JS!LJ ), (τ, ∆e)) is negative definite.D 2
τ,∆e

The above establishes that all (τ, ∆e) 0 ΠO are strict maxima of wu for some b 0 BO if we

constrain (τ, ∆e) to be an element of ΠO.  We now show that there is an open Π( d ΠO containing

 such that for some b all (τ, ∆e) 0 Π( are unconstrained strict maxima of wu.  Suppose, to(τ̂, ∆ê )

the contrary, that there is a sequence {(τ, ∆e)t}, where (τ, ∆e)t …  for all t, such that (τ,(τ̂, ∆ê )

∆e)t  ÷  and such that each (τ, ∆e)t  is not a strict maximum of wu.  Let { } be a(τ̂, ∆ê ) (τ̃, ∆ẽ )t

sequence such that, for all t,  is a (possibly nonstrict) maximum of wu when b = (b(((τ,(τ̃, ∆ẽ )t

∆e)t), 1
JS!LJ ) and where  0 ∆E.  Since each (τ, ∆e)t is not a strict maximum, we may choose∆ ẽt

{ } so that { } … (τ, ∆e)t for all t.  Since each (τ, ∆e)t is a strict maximum of wu(τ̃, ∆ẽ )t (τ̃, ∆ẽ )t

when b = (b(((τ, ∆e)t) and (τ, ∆e) is restricted to ΠO,  ó ΠO for all t.  We have already(τ̃, ∆ẽ )t

restricted  to be an element of the compact set ∆E; we may also assume that  lies in a∆ ẽt τ̃t

compact subset of  since if τ is sufficiently large, no trade and hence the same f occurs.  SinceR L
%

therefore we can restrict ourselves to a compact set of policy instruments, say , and ΠO is open,Π̄

there is a subsequence of { } converging to a  0  ( ΠO.  Given the continuity of(τ̃, ∆ẽ )t (τ̄, ∆ē ) Π̄

w and the fact that b*((τ, ∆e)t) ÷ 1LJ,  is an unconstrained maximum of wu when b = 1,(τ̄, ∆ē )

contradicting  being a strict maximum.(τ̂, ∆ê )
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The openness of the policies that satisfy Definition 6 (2) is self-evident.  In addition, since

LJ is the maximal rank of wu(1JS, (τ, ∆e)), the policies that satisfy the rank condition areD 2
(τ,∆e), b

also open, which completes the proof.  �

Proof of Theorem 5.  Include in  a set of L states { , ..., } at which each e( ) is ParetoΩ̂ ω̃1 ω̃L ω̃ i

optimal for some set of J utility functions utilities ( @ , ), j = 1, ..., J, and the total resourcesūj ω̃i

e j ( ).  Choose the ( @ , ) so that (i) ( @ , ) … ( @ , ω) but (e j ( ), ) ='
J
j'1 ω̃i ūj ω̃i ūj ω̃i ūjN Dxj (ω̃i )

ūj ω̃ i ω̃i

(e j N( ), ) for all pairs ( j, jN) and all ω 0 Ω c { , ..., }, (ii) the equilibriumDxjN (ω̃i )
ūjN ω̃ i ω̃i ω̃1 ω̃L

allocation at  is a C 1 function g of (τ, ∆e), (iii) each ( @ , ) B g j is differentiably strictlyω̃i ūj ω̃i

concave, and (iv) the vectors (e1( ), ), ..., (e1( ), ) are linearlyDx1(ω̃1) ū1 ω̃1 ω̃1 Dx1(ω̃L ) ū1 ω̃L ω̃L

independent.

Next, for each of the L goods, construct a further set of states in  as follows.  As aΩ̂

preliminary, we first specify the states ωi, i = 1, ..., L.  For i = 1, ..., L!1, define ωi by letting each

j have a utility ( @ , ω) that is the sum of a C 2 differentiably strictly concave and differentiablyūj

strictly increasing function of goods i and L.  Set e(ωi) so that e j (ω
i) is a constant function of j. 

Choose the J utility functions on goods i and L so that (1) for each distinct pair of agents j and jN,

( @ , ωi) … ( @ , ωi), (2) for distinct pair of states ωi and ωiN and any pair of agents j and jN,ūj ūjN

( @ , ωi) … ( @ , ωiN), (3) ωi has a unique equilibrium allocation f (ωi) for (τ, ∆e) 0 K given by aūj ūjN

C 1 function g of (τ, ∆e), and (4) letting  denote the composition ( @ , ωi) B g j, then, for everyµj,ωi ūj

(τ, ∆e) 0 K , (τ, ∆e) > 0, (τ, ∆e) < 0, (τ, ∆e) < 0, and (τ, ∆e) >D
τi

µ1,ωi D
τL

µ1,ωi D
τi

µ2,ωi D
τL

µ2,ωi

0, and (5) each  is differentiably strictly concave.  Define ωL by letting all agents derive utilityµj,ωi

only from goods L and L !1, letting conditions (1) through (3) and (5) be satisfied, and by

requiring (τ, ∆e) > 0, (τ, ∆e) < 0, (τ, ∆e) < 0, and (τ, ∆e) >D
τL

µ1,ωL D
τL&1

µ1,ωL D
τL

µ2,ωL D
τL&1

µ2,ωL

0.  We now use ω1, ..., ωL to specify the states in : for each ωi, let Ω i denote the J ! statesΩ̂

constructed by taking all possible permutations of the agent indices of the utilities in ωi and set Ω̂

= { , ..., } c Ω 1 c ... c ΩL.  Let  = # .ω̃1 ω̃L Ŝ Ω̂

Let v (b, (τ, ∆e)) denote b js u j ( (τ, ∆e), ωs ), where g(τ, ∆e) gives the'
J
j'1 'ωs0Ω̂

π̂s gj,ωs

unique equilibrium allocation for (τ, ∆e) and the  can take any value such that  =  if ωs andπ̂s π̂s π̂sN
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 are both elements of the same Ω i.  Set rjs for ωs 0  and j = 1, ..., J, so that, for theωsN Ω̂

assignment u = ( ..., rjs  ,  ... ) for the utilities that appear in , ( , (τ, ∆e)) = 0 for each τiūj Ω̂ D
τi
v 1J Ŝ

and ( , (τ, ∆e)) = 0 for each ∆eij when evaluated at the (τ, ∆e) that are the policyD
∆eij

v 1J Ŝ

instruments of the regular maximum given by the assumptions of the Theorem.  The rjs may be set

so that ( , (τ, ∆e)) = 0 since for each τi, i = 1, ..., L, the  and  defined in (4) aboveD
τi
v 1J Ŝ µ1,ωi µ2,ωi

are respectively increasing and decreasing in τi; hence for any values of the rjs assigned to the

utility functions not owned by agents 1 and 2 at ω i, we can adjust either the rjs assigned to ( @ ,ū1

ω
i) or the rjs assigned to ( @ , ω i) to ensure that ( , (τ, ∆e)) = 0.  Notice that any changeū2 D

τi
v 1J Ŝ

in τ will not alter x( ) since x( ) is Pareto optimal and will not change x(ωs) for any ωs derivedω̃ ω̃

from ωk for k … i since agents at these ωs neither buy nor sell i.  To ensure that ( , (τ, ∆e))D
∆ej

v 1J Ŝ

= 0, observe that our inclusion of all permutations of the agent indices and our restriction on π̂s

imply that (τ, ∆e) = 0, where µ j is the composition u j ( @ , ωs) B (τ, ∆e)'
ωs0Ω

i π̂s D
∆ej

µjN(ωs) gj,ωs

and where, for any fixed utility  that appears at some ωs in some Ω i, jN(ωs) denotes the agent thatû

has .  So, if we set each rjs for ωs 0 { , ..., } equal to 1, the (τ, ∆e) that are the policyû ω̃1 ω̃L

instruments of the given regular maximum must maximize v ( , (τ, ∆e)).  Hence1J Ŝ

( , (τ, ∆e)) = 0.D
∆ej

v 1J Ŝ

Our differentiability assumptions implies that the policy instruments of the given regular

maximum (τ, ∆e, f ) are differentiable policy instruments for ( , ), while the concavityΩ̂ π̂

assumptions on the and our choices for the rjs imply that (τ, ∆e), joined with the allocationµj,ωi

that (τ, ∆e) induces, is a regular maximum for ( ..., rjs  ,  ... ) in the model ( , ).  It follows thatūj Ω̂ π̂

(τ, ∆e, ), where  is f joined with the allocation that (τ, ∆e) induces at , is differentiable and af̂ f̂ Ω̂

regular maximum for the assignment , where  is the u given in the Theorem joined with ( ...,û û

rjs  ,  ... ) for the utilities in , in the model (Ω c , (λπ, (1!λ) )) generated by any λ. ūj Ω̂ Ω̂ π̂

It remains to show that  satisfies the rank condition.  Consider the columns of the matrixwû

v ( , (τ, ∆e)) that correspond, respectively, to the b’s assigned to agents 2 through J atD 2
(τ,∆e), b 1J Ŝ

, ...,  and the b’s assigned to ( @ , ωi), i = 1, ..., L.  Given our assumptions on the  andω̃1 ω̃L ū1 µ1,ωi

the Pareto optimality of the allocations at the  states, these columns have the formω̃
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∆e2

!

∆eJ

τ1

!

τL&1

τL

P̃2 0 0 þ 0 0

" ! ! !

0 P̃J 0 þ 0 0

0 0 % 0 0

! ! "

0 0 0 % &

0 0 & þ & %

where  is the nonsingular square matrix whose ith column is (e j ( ), ) and +’s andP̃j Dxj (ω̃i )
ūj ω̃ i ω̃i

!’s indicate the signs of entries.  Since the linear independence assumption (iv) implies that each

 is nonsingular, this matrix of columns has rank LJ.  Since the submatrix ofP̃j

(1JS, (τ, ∆e)) that consists of the columns that correspond to the same variables has theD 2
(τ,∆e), b wû

same rank as the above matrix (each column merely being rescaled by (1!λ)),

(1JS, (τ, ∆e)) also has rank LJ.D 2
(τ,∆e), b wû

The utility functions given in the definitions of the ω i are increasing only in goods i and L. 

To ensure that the utilities in  meet the maintained assumptions of the model, perturb the utilitiesΩ̂

given above by adding a small multiple of a C 2 differentiably strictly concave and differentiably

strictly increasing function of the remaining L!2 goods.  Since v ( , (τ, ∆e)) havingD 2
(τ,∆e), b 1J Ŝ

rank LJ is a full rank condition, its rank will persist for a small perturbation.  And given that

v ( , (τ, ∆e)) has rank LJ, the implicit function theorem implies that we may adjust theD 2
(τ,∆e), b 1J Ŝ

b’s so as to maintain the equalities ( , (τ, ∆e)) = 0 and ( , (τ, ∆e)) = 0.  �D
τi
v 1J Ŝ D

∆ej
v 1J Ŝ
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