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Abstract:

Does the Pareto criterion discriminate among policy choices when the policymaker
does not know the correct model of the economy? If the policymaker specifies ex
ante preferences for each agent, there will typically be some policy change that
improves the welfare of each agent relative to a status quo that suffers from a
preexisting distortion. And if there are at least as many commaodities as states, the
second welfare theorem applies: for ailmost every Pareto optimum, thereisapolicy
that attainsthisallocation. Moreover, agents must trade under these policies; optimal
allocations cannot be instituted by government fiat as they can be in the standard
formulation of the second welfaretheorem. Thedrawback isthat ex ante preferences
imposeinterpersonal welfare comparisons. If weinstead requirethat policy changes
increase al possible social welfare functions, and we are allowed to perturb a base
model with additional states, then all policiesincluding the distorted status quo are
optimal. The methodology of perturbations is problematic, however, and robust
cases exist where at least some policies are suboptimal. Finally, the set of policies
that maximize some welfare function is open; consequently, small changes in the
environment usually do not call for any policy response.
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1. Introduction

A well-known puzzle about the second welfare theorem states that if a policymaker knows
the preferences and endowments of all agents, then it might as well act like a central planner and
just assign agents the Pareto optimal allocation that it wants them to consume. If on the other hand
the policymaker is uncertain about the economy’s primitives it will be unable even to identify
Pareto optima, et alone design transfers that achieve them. So in what sense does the second
welfare theorem recommend markets as an allocation mechanism? This puzzle gives support to
the common suspicion that the Pareto criterion is an impractical tool for policymaking. To address
both the puzzle and this suspicion, we make explicit policymakers' lack of information about
primitives and ask when policymakers can recommend policies that correct a preexisting
distortion, namely taxes on net trades. We will see that if a policymaker can posit a hypothetical
ex ante stage at which agents share the policymaker’ s uncertainty and can make interpersonal
comparisons between the potential preferences agents might have, then in some cases almost any
first-best ex ante Pareto optimum can be achieved, and with policies that are just as sweeping as
second welfare theorem policies: all tax distortions should be removed. Furthermore, because of
the policymaker’ s uncertainty (and in contrast to the puzzle) a policy of directly dictating
allocations cannot be used to achieve these optima; markets have to be utilized. In the remaining
cases where the first best cannot be achieved, then generically policymakers can still recommend at
least some policy change that achieves an ex ante Pareto improvement, and again markets are
indispensable. So thereisaframework that makes rigorous the second welfare theorem’s
endorsement of markets.

We examine the scope for policy adjustment in ageneral equilibrium model that is standard
except that net commodity purchases are taxed. A distortion isincluded to ensure that the status
guo appearsto call for policy intervention; other distortions, say an externality, could serve just as
well, but taxes are analytically tractable and have along theoretical history. When policymakers
know the primitives of the model, the welfare theorems imply that any policy (which isatax rate
for each good and an endowment redistribution) that collects positive tax revenue is Pareto

dominated by some zero-tax policy. We suppose instead that although each agent knows his or her



own characteristics, the policymaker has only a probability distribution over the primitives of the
economy, and say that policymaking uncertainty then obtains.

If apolicymaker can posit ex ante preferences for agents, then a policy x is defined to be an
ex ante improvement over y if x Pareto dominatesy in terms of these ex ante preferences. The
policies recommended by such arule are similar to second welfare theorem recommendations if
the number of statesisno larger than the number of goods. almost any first-best allocation can then
be reached by some policy (Theorem 1). In contrast to the standard presentation of the second
welfare theorem, in which the government knows the model and could therefore institute optima
by direct fiat, under policymaking uncertainty individuals and markets have an indispensable role
to play. Agents collectively know which state has occurred, and markets utilize that information.
When the number of statesis larger than the number of goods, then generically at least some policy
response to the preexisting distortion that achieves an ex ante Pareto improvement isfeasible
(Theorem 2). Thus, despite the suspicion with which the Pareto criterion is regarded as a policy
tool, there are models that both recognize a policymaker’ s uncertainty and decree active policy
intervention.

But valid criticisms of the Pareto criterion remain. The ex ante approach suffers from the
drawback that the hypothesized ex ante preferences must weight the potential utility functions that
an agent might have. Since the agents themselves never face any uncertainty about what their
preferences are, the ex ante preferences must invoke the policymaker’ s judgments about how to
interpersonally compare welfare. To stay free from interpersonal comparisons, we define a policy
X to be utility-independent superior toy if, for al sum-of-expected-utilities welfare functions, x is
recommended over y. We also label apolicy x to be maximization-optimal if there are utility
functions for the potential agents such that x maximizes the resulting sum-of-expected-utilities
welfare function. Thisleeway to choose utility representations means that utility-independence
and maximization optimality are agnostic about how to compare the welfare of different
preferences. We will see that utility-independence or maximization optimality can lead to very
large numbers of policiesto be deemed optimal, in which case we say that policy paralysis occurs.

We thus identify agnosticism about interpersonal comparisons as the source of the impracticality of



the Pareto criterion. Our first policy paralysis result states that if a sufficient number of states
(which can have arbitrarily small probability) are added to a base model, then any policy is utility-
independent optimal (Theorem 3). We alow the added states to have agents with utilities that do
not arise in the base model however; and if in contrast the distribution of agent characteristics
(taking into account all states) is sufficiently symmetric, then some utility-independent policy
recommendations can be made. So some policy discrimination remains possible without invoking
problematic interpersonal comparisons of utility. Our second policy paralysis result shows that
policies that are maximization optimal form an open set (Theorem 4). Consequently, if some
policy of taxes and endowment transfers is maximization optimal and the parameters of the model
change dlightly, that policy will remain optimal: alocal form of policy paraysisobtains. The fact
that some nonzero tax vector can be optimal is hardly news (see, e.g., Mirrlees (1986)); our point is
that arule that says policymakers should maximize some welfare function lead a very large number
of tax vectors to be optimal.

One caveat to the paralysis conclusion deserves advance mention. Asour model stands, a
policymaker can achieve ex post optimality by simply setting taxes equal to zero. But thisisan
artifact of using taxes as adistortion; if some externality were present, for example, even ex post
optimality would not be attainable.

The ex ante and utility-independent approaches rely on distinct rationales. The ex ante
ordering appeals to the principle that ex ante no individual should be made worse off by a policy
change. The utility-independence ordering (or maximization optimality) relies on the argument
that no particular way of making interpersona welfare comparisons should be granted privileged
status.* Our purpose is not to judge which approach is the right one: they are geared to different
purposes. Rather our aim isto identify the vantage points from which the Pareto criterion can be
defended or criticized.

To summarize, the Pareto criterion is aworkable policy guide if policymakers posit an ex

! The two approaches typically coincide when the policymaker knows the underlying model of
the economy. But they diverge when the policymaker does not know the underlying model of the
economy; neither definition of optimality then implies the other.

3



ante stage at which agents experience the policymaker’s lack information; without ex ante
preferences, policy adjustment is problematic. And since this ex ante stage is hypothetical, the
preferences that hold at this stage impose interpersonal comparisons of welfare. The role played
by a hypothetical ex ante stage recalls the literature on Bayesian games (cf. Aumann (1998) and
Gul (1998)), in which agents play correlated equilibrium actions only if there is a hypothetical
point at which agents have symmetric information and common priors. Here, it is the usefulness of
the Pareto criterion that depends on an ex ante stage of symmetric information though not on
common priors.

We take the policymaker’ s information to be fixed in this paper; the implementation and
mechanism design literatures in contrast consider policies that induce agents to reveal their private
information. Our modeling strategy is partly guided by our aim of evaluating the traditional policy
tools of competitive markets. But the view that there is an unbridgeable gulf between the two
approachesis misleading. Our model confronts each agent with the same choice set of net trades,
outside of some details that stem from the absence of production, these are the net trades that arise
with Diamond-Mirrlees taxes. As Hammond (1979) pointed out, if alarge number of agents play
an anonymous revelation game in which agents announce their characteristics, each agent could
equivalently be confronted with a common choice set of net trades: each agent who announces his
characteristics in arevelation game will be assigned some net trade vector and so we can instead
let the agent choose from the set of all net trade vectors selected by some agent in the distribution
of possible characteristics. Anonymity, moreover, will be a necessary feature of any
implementation scheme if the policymaker’ sinformation about agents characteristics is symmetric
across agents. Finally if agents anticipate that, following the play of the revelation game, they will
have the opportunity to trade further on competitive markets, the only final allocations that can
occur in equilibrium are those that could arise if agents chose from Diamond-Mirrlees choice sets
of net trades. Thus, with alarge number of agents, our setting is similar to an implementation
setting. Hammond used dominant strategies in his paper, but see Guesnerie (1995) and the
references cited there for similar arguments cast in a Bayesian setting. Notice that our policy

paralysis conclusions complement the result in the “limits to redistribution” literature that any
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dominant-strategy mechanism that implements efficient allocations in alarge economy must lead
to an undistorted Walrasian equilibrium with no transfers (see Champsaur and Laroque (1981), and
earlier Varian (1976), Hammond (1979)). If only Walrasian outcomes are possible, we cannot
require additionally that outcomes are Pareto-improving relative to an arbitrary status quo: first-
best efficiency and Pareto improvement will usually be inconsistent. Our paraysis results
similarly assert that a preexisting distortion that blocks first-best efficiency cannot be removed if
policy changes must be utility-independent improving. Given Hammond' s work on the connection
between implementation and tax equilibria, this parallelism makes sense.

The contrast between the present paper and the implementation approach is misleading in a
second and perhaps more important respect. We reach policy paralysis conclusions even when a
policymaker is virtually certain about agent characteristics. Hence these results apply to any
mechanism that does not reveal agent characteristics with complete certainty. When choosing
economy-wide policy instruments, such as tax rates, governments inevitably have to come to
policy decisionsin the presence of at least some residual uncertainty about agents’ characteristics,
and our model applies to that setting.

The ex ante approach specifies ex ante preferences for agents and is therefore formally a
model of incomplete markets in which there happens to be no assets with state-dependent payoffs.
Since we suppose that each agent knows his or her own preferences but not the preferences of
other agents, information is asymmetric, and this fact blocks the existence of markets for assets
with state-dependent payoffs. Still, the formal parallels allow us to use the analytical machinery of
the incomplete markets literature (see Geanakoplos (1990) and Magill and Quinzii (1996) for
overviews); it is apleasant surprise that the techniques of that literature are so well-suited to
explaining seemingly distant social choiceissues. Conversely, we argue in the conclusion that our
results shed light on the dilemmas of policy design that have appeared in the incomplete markets

literature, and on the theory of the second best as well.

2. A benchmark model with policymaking certainty

To begin, we construct a benchmark model that we assume is known to the policymaker.



There are L commodities and J agents. Each agent j has an endowment e; € Rh and a utility
function u; defined on consumption bundlesx; € R'. Lete= (€1, ..., &5) and let x;; and g;; refer,
respectively, to agent |’ s consumption and endowment of good i. We assume that each Uj istwice
continuously differentiable, differentiably strictly concave, and differentiably strictly increasing,
and that the indifference curves of u  that intersect Rh do not also intersect the coordinate axes.?
An economy isa(e;, U )1-{1 and an allocationisax = (Xg, ..., Xj) € Rf‘] such that
Eli(x-g)=0.

The economy begins with arbitrary ad valorem taxest = (z4, ..., 7, ) > O that (to ensure that
the taxes arein fact distorting) are imposed only on the value of net purchases. The revenue that

resultsisfor ssimplicity distributed in equal partsto the Jindividuals. Lettingp € Rf\{ 0} indicate

the before-tax price vector and t > 0 the government’ s tax revenue, the budget set facing agent j is:

Definition 1. An equilibriumwith taxeszisa (p, X) such that (1) x isan allocation, (2) for each
agentj, x; € B;(p, 7, , t), wheret = Eleztlri p; max [0, x;; - g;], and (3) x;" € B;(p, 7, &, t)

= T;(x)) 2 Uj(x}")-

Under our assumptions, an equilibrium for the model exists for any 7.2 Observethat if 7 is
sufficiently high in all coordinates, agents do not trade, they consume their endowment.

In addition to setting 7, the government can also transfer endowments by choosing aAe =
(Aeq, ..., Aey) € R" such that EJ-J:1 Ae; = 0. Werequire that Ae be chosen so that an equilibrium

still exists, e.g., by supposing e + Ae>> 0. Multiple equilibriamay arise for agiven (z, Ae), but

> Weusethenotation: X > y = x; > y;, dl i; x>y e x>y, x#y;and x>y <X >y, ali.
Formaly, szbei ng differentiably strictly concave and differentiably strictly increasing means that,
foral x;, D Uj (X;) is negative definite and DUj (X;) >> 0. Theindifference curve conditionis
that, for all X; >0, {z€ Rf: uj(z) = uj(xj)} N (R+L \ Rh) = 0.

3 See Shafer and Sonnenschein (1976), particularly note 4.1, and observe that e; > Oisaways
an element of B;. Consequently, B, seen as a correspondence of x (via the effect of x ont) and p,
is, in addition to being convex-valued, also continuous and nonempty-val ued.
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since we want to give the policymaker as much latitude as possible we assume that the
policymaker can choose which equilibrium price vector and allocation obtains with (z, Ae).
Lettingf = (f, ..., f;) indicate an equilibrium allocation that can occur with (z, Ae), call (z, Ae, f)
apolicy. Also, (z, Ae) are policy instruments, and we say that apolicy (z, Ae, f) reachesthe
allocation f. Beginning at a status quo equilibrium (p, X) with taxes 7, the policy of maintaining
the status quo issimply (7, Ae=0, f = X).

The Pareto ordering may be characterized in two different ways under policymaking
certainty. First, define an allocation x to be ex ante or agent-based superior to x’ if for al agentsj,
Uj(X;) > Uj(x;), and for somej, uj(x;) > u;(X;"). (Theuseof the term “ex ante” will become
clear in section 4 when we extend this definition to policymaking uncertainty.) Second, we may
characterize the Pareto ordering using social welfare functions. Before doing so, we first restrict
which utility functions are admissible in welfare functions by requiring, for each j, that any two
admissible utility representations for j differ only by an increasing affine transformation. This
restriction can be justified by supposing that the goods in the model are contingent commodities
and that agents' preferences obey the von Neumann-Morgenstern (VNM) assumptions; Harsanyi
(1955) then impliesthat every vNM social welfare function that isincreasing in agent utilities can
be represented as a sum of increasing linear transformations of the Uj . Weadso require that agents
with identical sets of cardinal utility functions are represented by the same utility function. Aswe
explain later, the policy paralysis resultsin section 5 are stronger insofar as we incorporate as many

defensible restrictions on welfare functions as possible.

Definition 2. For eachj, let U; denote the set of all increasing affine transformations of u;. A
utility assignment isa u = (uy, ..., uy) such that for all j, u; € U;, and for any pair of agents (j, h),

|'|:LJJ :Uhthen Uj :uh.

The allocation x is utility-independent superior to x’ if, for all assignments u, EjJ:1 u; (x;) >
Ele u;(x;"). Here and subsequently, we define apolicy (z, Ae, f) to be superior to (z, Ae, f)" in
either an ex ante/agent-based or utility-independent senseiif f is superior to f * by the corresponding

ordering of allocations. But the distinction between policies and allocations has no bite in the
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certainty model: any allocation x can be reached by a policy that sets Ae = x -eand setst high
enough to induce agents not to trade.

The ex ante/agent-based and utility-independent orderings usually coincide under
policymaking certainty, but there are exceptions. If x is agent-based superior to x’ then x isaso
superior to X’ by the utility-independent definition, but the reverse implication need not hold. For
instance, if J=2, U, =U,, and U, contains only strictly concave functions, then an allocation x
such that u,;(x1) > u4(x,) is utility-independent inferior to ax’ with x;" = x," = (1/2)x; +
(1/2)x,. Yetclearly x’ isnot superior to x by the agent-based ordering. If we put aside what is
here a minor wrinkle, say by imposing a diversity condition that no pair of agents has the same set
of cardinal utilities, then the agent-based and utility-independent orderings rank allocationsin the
same way. Aswe will see, acomparable diversity condition would be inappropriate with
policymaking uncertainty.

The agent-based and utility-independent orderings automatically generate definitions of
optimality by the requirement that there is no dominating allocations. In addition, we define an
allocation x to be maximization optimal if there is an assignment u such that EJ-J:1 uj(X;) 2
Ej‘]:1 u; (x;) for al other alocations x. A maximization-optimal allocation must also be utility-
independent and agent-based optimal, but the reverse implications need not hold. Thus, aswell as
being more important in the welfare economics literature, maximization optimality isin principle
more restrictive. But given our convexity assumptions the three definitions of optimality do
coincide at interior optimaif the diversity condition holds.

These orderings and optimality concepts give familiar and decisive advice. If the economy
begins at a status quo equilibrium (p, x) with tax vector t such that for some good i and agent j,
Xj;~ €; > 0and 7; > 0, there must then be some other agent h # j with x;,, - &, <0 and hmust be a
net purchaser of some good, say k. Hence h’s marginal rate of substitution between i and k must

equal _p‘ — whilej’smarginal rate of substitution between i and k must be greater than or equal to
_ Pt T

PS5 The marginal rates of substitution of the two agents therefore differ and the equilibrium

Py * 7

allocation will be neither agent-based or utility-independent optimal. Under either ordering, there

exist allocations x” that are both optimal and superior to X and there are policies (r, Ae, f) such



that X" =f, eg., set Ae=x" - eand let 7 be arbitrary. The welfare theorems thus give strong

advice when the policymaker knows the model of the economy.

3. Policymaking uncertainty

A policymaker who is uncertain about the model faces a state space 2 ={ w1, ..., og}, S>
2, with associated probabilities z = (x, ..., 75) € A%'. Each state o specifies an ex post utility
function and endowment for each agent j, denoted Uj (-, o) and g;(w,) respectively, that satisfies
the assumptions of the certainty model of section 2. A model isapair (2, 7). Consumption by
agent j a o is denoted X; (ws). Let U;(w) denote the set of increasing affine transformations of
Ui (-, wg), p(wg) an equilibrium price vector at state w, and P the Sx L matrix whose sth row is

j
p(wg). We also set the following notation for the remainder of the paper:

uj = (U (+, @1), - Uy (-, 09)),
X; = (Xj(@1), ..., X (@g)),
e = (ej(®y), ..., &j(wg)),
X(@g) = (Xy(@g), ..., X3(@y)),
e(ws) = (1), ..., €5(@y)),
X=(X(@q), -y (X(@g))-
An allocation under policymaking uncertainty is ax such that each x(w) isan alocation at
. Anequilibrium with taxes 7 > 0isnow a (P, x) such that, for each o, (p(wg), X(w)) isan
equilibrium for the economy that occurs at o, when taxesarer. A policy isa(r, Ae, f) €
R" x R x R®™ such that each f (w,) is an equilibrium allocation at o when endowments equal
e(wg) + Aeand taxesare . Since the policymaker chooses a policy before agents interact on the
market, 7 and Ae are not state-contingent and therefore retain their previous dimensionality but f
now specifies consumption at each wg. Let f; now denote (f;(w,), ..., fj(@s)). Givenan
allocation x and taxes 7, the tax revenue at o, X,y £, 7; p; () max [0, X (wg) - €;(wg)], is
t(oy).
After the policymaker selects (z, Ae, f), market equilibration occurs and p(w,), X(w,), and

t(ws) are simultaneously determined. If the function p isinvertible, the state could be inferred



from the equilibrium price vector. But since agents already know their own preferences, this
information has no value to agents; they simply choose utility-maximizing trades given the
observed price vector. The policymaker does care what the true state is, but (7, Ae, f) is set before
p(w,) isobserved. We suppose implicitly that each agent knows only his or her own preferences.
Information is therefore asymmetric, thus preventing trade in assets with state-dependent payoffs.

We define a parameter space of economies Q by letting e € Riu

be parameters, and by
assuming for any agent j that if hisany small quadratic utility that is additively separable across
states, then u; + hisapossible ex ante utility function for j. More precisely, h must have the form
T2 1(ag % (09 + X (09 TAX; (), wherea € R and A, € RY" and we assume for some > 0
that \h(xj)\ <¢foral X; € R such that 1%l < 1. We choose ¢ to be small enough that our
assumptions on utilities continue to hold on arectangle in R-Sthat containsOand X ;. The set
Q has afinite number of dimensions and we denote atypical element of Q as (e, h). For any

finite-dimensional set A (such as Q) let ageneric subset be an open subset of A whose complement

has L ebesgue measure 0.

4. Policy effectivenesswith the ex ante ordering

In the presence of policymaking uncertainty, the ex ante/agent-based approach begins with
an ex ante preference ordering for each agent j over the hypothetical choicesj would make if he or
she faced the policymaker’ s state space. In principle, we should posit for each agent j avon
Neumann-Morgenstern preference relation > defined on lotteries where the typical prizeisa
consumption vector X; (wg). But since wewill need to consider only lotteries in which the
probability of X; (w) is7, weinstead just directly suppose that -; induces preferences over state-
contingent commodity bundles x; that can be represented by an ex ante utility function Eu;: R
—~ Rwhere Eu;(x;) = Zil msUj (Xj (), og), and ech u;( -, ) isan element of U; (w) and
therefore an affine transformation of Uj (+, o).

An allocation x is ex ante superior to X' if, for al j, Eu;(x;) > Eu;(x;"), and, for somej,
Eu;(x;) > Eu;(x;’). Since the ex ante/agent-based ordering of section 2 ariseswhen S=1, the

current ordering generalizes the previous definition. Allocation x is strictly ex ante superior to x’ if
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strict inequalities hold for all j. Policies (7, Ae, f) are ex ante ranked according to the ex ante
ordering of their allocationsf. In contrast to the certainty model, there can now be ex ante optimal
alocations that cannot be reached by any policy (since Aeis constrained to be constant across
states).

Our conclusionsin this section will hold only for typical configurations of the primitives of
the model. By fluke it might happen that the status quo r and Ae = 0 lead to an ex ante optimal
alocation, in which case no policy adjustment would be called for. Results on the scope for policy
adjustment can therefore at best hold only for a generic set of models or economies.

The ex ante suboptimality of an economy beginning at a status quo equilibrium ( P, X) with
taxes 7 can be attributed to two factors. First, if 7 isnonzero, X(w) will normally be suboptimal
for the economy at w¢. Second, no agent who actually trades possesses the ex ante utility Eu;; the
trading agents have the ex post utilities u; (-, w¢). Consequently, relative to the hypothetical
agents with the ex ante utilities, markets are incomplete and agents cannot insure themselves
against the uncertainty in 2. Allocations will therefore normally be ex ante suboptimal even when
7=0. Aswewill now see, the policy instruments r and Ae will typically allow the policymaker to
engineer an ex ante improvement as a response to this suboptimality — that is, status quo policies
will typically be ex ante suboptimal relative to what can be reached by some policy. Most
dramatically, if there are at least as many goods as states, the ex ante approach usually recommends
policy changes just as sweeping as the second welfare theorem: virtually any first best allocation

(including ex ante improvements on the status quo) can be reached and with taxes set to 0.

Theorem 1. IfL > S, thereisa generic subset of economies G such that for any economy in G
thereis a generic subset of ex ante optimal allocations each of which can be reached by some

policy withz = 0.

The logic underlying the proof of Theorem 1 (in the appendix along with all other proofs) is
simple. Since each agent shares the same marginal rate of substitution at an ex ante optimal
alocation x, there are prices ( p(w,), ..., P(wg)) that support the allocation. And typicaly, if L >

S, the price vectors p(w,), ..., p(wg) that rule at the Sstates will be linearly independent. Thus, for
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each agent |, the equations

p(wy) * Agj = p(wg) - (xj (wg) - € (0g),s=1,..,S
have asolution Ae;, and so if the policymaker sets 7 = 0 and each j’ s transfer equal to this Ae; then
j can exactly afford the bundle x; (o) at @ when prices equal p(w).

The optimal allocations identified by Theorem 1 cannot be achieved by direct command
decision; the policymaker does not know which o ¢ obtains, and usually the target allocation x(w)
will differ by state. Although Theorem 1 isakin to the second welfare theorem, it assigns markets
amore fundamental role. In the standard presentation of the second welfare theorem, thereis no
policymaking uncertainty (S=1). But then optimality could always be achieved instead with taxes
left at the status quo levels: Ae can directly move agents' endowments to an optimal allocation and
trading is unnecessary. But when S > 2 agents must generally trade at al states since the post-
transfer endowments e; (o) + Ae; typically will not equal the target x; (wg) at any ws. Markets
and trade therefore have an indispensable function in the presence of policymaking uncertainty:
unlike the policymaker, agents collectively know which state obtains and trading allows the
economy to utilize thisinformation. Moreover, since agents are trading, reaching afirst best
allocation requires that tax rates be set to zero.

What can be said when the number of statesis greater than the number of goods, S> L?

Generically at least some policy adjustment relative to an arbitrary status quo is possible:

Theorem 2. If S> 2, then for any t thereis a generic subset of economies G such that for each
equilibrium allocation x with taxes r of each economy in G thereis a policy that reaches an

allocation that is a strict ex ante improvement over x.*

Thus, typically an arbitrary status quo policy will not be ex ante optimal. And although
there may not be a policy with 7 = 0 that is ex ante superior to the status quo, it follows from the
proof of Theorem 2 there will be at least some policy in which z differs from the status quo 7 that is

ex ante superior to the status quo: policymakers can adjust arbitrarily given tax rates.

4 1f S= 1 and 7 > 0, the conclusion of the theorem continues to hold.
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Policiesthat achieve strict ex ante improvements are also robust to the addition of a small
amount of uncertainty. Suppose, in the S= 1 certainty model, that we begin with a status quo
equilibrium (p, x) withtaxesr and find a(z’, A€’, f ') that leads to a strict ex ante Pareto
improvement. We can add a small amount of uncertainty by introducing an arbitrary number, say
o, of new states and collectively assigning the new states small probability. The entire model is
then (2, =), where we assign the initial certainty model’s economy to w,. If we are given ex ante
utilitiesEug, ..., Eujfor (2, 7), then, for 7, sufficiently near 1, apolicy (z', Ae’, f '*) such that
f""(w,)=f"andwherethef '"(w,),s=2, ..., ¢ + 1, are set arbitrarily will beis strictly ex ante
superior to any status quo policy (7, Ae=0, f) withf(w,) = X. Soif apolicymaker has access to
ex ante utilities, then the addition of a sufficiently small amount of uncertainty will not lead to the
reversal of aproposed policy change. Observe though that the probabilities for the uncertainty
perturbation that will preserve policy recommendations are a function of the ex ante utilities. For a
given (2, =) —evenif =, isnear 1 —there may well be ex ante utilities such that (¢, Ae’, f ') does
not lead to an ex ante improvement over a status quo policy (7, 0, f) at which f (w;) = X and
where, say, f(w,) =f""(w) fors=2, ..., ¢ + 1. All that is necessary is that at some v, somej is
worse off with (', Ae’, f"*) than with (7, 0, f ) and that u; (- , ) is asufficiently large multiple of

UJ( * COS).

5. Policy recommendations without inter per sonal comparisons of utility

The ex ante approach to social decision-making prescribes for each agent j an ex ante utility
Eu;. Each Eu; imposes aweighting of ex post utilities: given abase set of utilities, Uj (", 09), -y
Uj(-, wg), eachu; (-, o) in Eu;isan affine transformation of u; (-, ). Sincethe
policymaker’ s uncertainty about agents’ potential preferences does not correspond to any
uncertainty experienced by the agents themselves, the weights on the u; must reflect the
policymaker’ s judgments about which potential preferences experience the greater satisfaction and
deserve greater priority. Aslongasj’sex post preferences differ, there will be x; and x;" such that
X; ispreferred to x;" by one of j’s ex post preference relations but where the reverse judgment is

held by another of j’s ex post preference relations. But the policymaker must specify a preference
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for j between x and x’. If, say, Eu; (xj) > Eu; (xj’), the policymaker isin effect claiming that those
of j’sex post preferences that rank x ahead of x’ gain more satisfaction than the utility lost by those
of j’s ex post preferences that hold the reverse preference. Given that the actual agent j never
faced this uncertainty — the uncertainty is entirely the policymaker’ s — this claim amounts to an
interpersonal comparison of welfare. Since amain purpose of Paretian welfare economicsisto
avoid precisely this sort of value judgment, we now consider decision-making criteriathat avoid all
such comparisons.

The utility-independent approach ignores the link between ex post utilities and the identity
of agents. It isinstead governed by the principle that no set of weights on ex post utilities in social
welfare functions is more legitimate than another. We begin by specifying the utilities that can be

admitted into social welfare functions in the presence of policymaking uncertainty.

Definition 5. A utility assignment under policymaking uncertainty isa u = (uy, ..., u;) such that
for all agentsj and h and all states wsand o), (1) u; (-, @) € U;j(w4) and (2) U; (o) = U (o))

impliesu; (-, wg) =u, (-, o).

SLJ

Since a utility assignment u defines a welfare function ¥ 1Eujr R

i — R, the definition of

utility-independence remains as in section 2: allocation x is utility-independent superior to x’ if, for

J

dl assignmentsu, X, Eu;(x;) > ¥

_1EU;(x;"). Andlocation x is utility-independent optimal if
there is no utility-independent superior allocation, and is maximization optimal if thereisan
assignment u such that, for all allocationsx’, &7 Eu;(x;) > X7, Eu;(x;).° Policies are again
ranked or are optimal based on how the allocations they induce are ranked. When S= 1, these
definitions coincide with those given in section 2.

Asin section 2, welfare functions use the same utility function to represent all potential

> Optimality in the utility-independent senseis similar to but does not coincide with interim (or
ex post) Pareto optimality (see Holmstrém and Myerson (1983)). The difference hinges on our
specification of utility assignments: a change in allocations that harms some potential agent j (o)
and therefore cannot be an interim Pareto improvement can still be a utility-independent
improvement if some other potential agent with the same set of cardinal utility functionsasj (o)
enjoys sufficient utility gains. Since utility-independent improvements are easier to achieve, fewer
allocations or policies are utility-independent optimal than are interim Pareto optimal.
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agents with the same set of cardinal utilities and are additively separable in agents' ex post utilities.
These restrictions on welfare functions are well justified, respectively, by the principle that
identical agents should be treated symmetrically and by the Harsanyi (1955) theorem on additive
socia welfare functions. Moreover, these restrictions make any policy paralysis conclusions
stronger: they limit the number of welfare functions and therefore allow fewer policiesto be
labeled utility-independent or maximization optimal.

We now show that policy paraysis obtains when any base model is perturbed through the
addition of further states. Specifically, no policy is utility-independent superior to an arbitrary
status quo policy if L states can be added to the base model, thus contrasting sharply with the scope

for policy change alowed by the ex ante Pareto criterion.

Theorem 3. For each base set of states 2, thereisa set of L states Q' such that in any model with
state space Q U Q', no policy (7, Ae # 0, f) is utility-independent superior to any status quo

policy (7, 0, f).

Since the probabilities of the statesin 2 U £’ can be set arbitrarily, the added statesin 2’ can
have arbitrarily small probability. Theorem 3 treats policy changes such that Ae # 0, which arise,
for instance, when compensation for achangein  is attempted. It is not difficult, by adding more
additional states, to cover policy changesthat involve only achangeint.

Theorem 3 suffers from the drawback that the added states can vary as afunction of the
base model 2 and can therefore omit agents with the same utilities as agents in the base model.
Consequently, to prove Theorem 3, it is sufficient to show that some agent at some added state is
harmed by any proposed policy change. If some utility functions for agents at the added and base
states coincide, then even if some | at some additional state & were harmed by a change from
(r, Ae f)to(z, Ae f)', (z, Ae )’ could still be ranked utility-independent superior: other
potential agents with identical utility representations might collectively gain more utility in
expectation from the policy change than j’s expected lossat @ . It istherefore impossible to infer
the overall consequences of policy changes from how the welfare of individuals changes at a

subset of states: it isthe overall distribution of characteristics that matters. 1t should be clear,

15



moreover, that for any set of additional states and any given policy change, there exists an
accompanying base model such that the policy change is a utility-independent improvement for the
model combining the base and additional states.®

In the certainty (S= 1) model as well, some agent can be made worse off by a policy
change even though the utility-independent ordering recommends the policy change. But whilein
the certainty caseit is plausible to dismiss asirrelevant any example that does not obey the
diversity condition (i.e., an example where different agents have identical preferences or cardina
utilities), it is the norm for the same potentia utility functions to arise at multiple states and for
multiple agents. If, for example, abase model specifies that agent j either has the ex post utility u j
or uj’, it isreasonable to allow j to have each of these utilities with non-negligible probability at
some of the additional states (e.g., when the probability of j having any given utility isindependent
of what preferences the other agents have). Similarly, if the policymaker has identical information
about a pair of agents, then the support of the distribution of those agents' utility functions should
be the same. Thus, the methodology permitted by Theorem 3 of adding idiosyncratic statesto a
fixed base model can sometimes be suspect.’

Indeed, the following example indicates that a highly symmetric model can alow some
alocations and policies to be ranked by the utility-independent ordering. The example illustrates
again that the utility-independent ordering can recommend policy changes that are rejected by any
ex ante ordering and therefore that the utility-independent ordering is neither weaker nor stronger

than any given ex ante ordering.

® In models of social choice, policy paralysis requires only that preference relationsin certain
open sets are elements of the state space, regardless of the preferences that appear at other states
(see Mandler (1999), Theorem 4). Since agents with identical preferences have the same
preferences over policiesin pure social choice settings, a policy that harms one potential agent
harms all potential agents with the same utility function.

" 1t isworth noting, however, that a proof for Theorem 3 need not use additional states with
utility representations that do not occur at ¢ € 2. What is necessary is that the probability of any

o € 2 that has one or more agents with utilities that appear in an additional state o is sufficiently
small.
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Example. Supposethat X;

_1€j(w) does not vary as afunction of the state w¢ and that the
policymaker has “ignorance” priors over the agents' utilities. That is, for each pair of agentsi and |

and each state o, assume that the following symmetry condition holds:

(5.1 )y )y

0,€2:U,(@) =U, (09 T T F,eQ:Uj(0)=Uj(0y) T -

That is, the likelihood that agent i has a set of cardinal utility functions U is equal to the likelihood
that any other j hasthesameU. Let y = %Eleej (wg) and x be an alocation such that x(w) does
not vary as afunction of o and that X; (ws) # y for at least onej. The symmetry condition implies
that any distinct utility u that appearsin some U, (o) consumes X; (wg),] =1, ..., 3, each with
probability % Since Ef:1 % Xj(wg) =y, the strict concavity of uimplies u(y) >

E(w,,j):uj(wl):uk(ws) m u(X;(w,)). So, letting y also denote the allocation where every agent at

every state consumes v, it follows that for any assignment u,

(5.2) S 1Eui(w) > I Euj (X))

Hence the allocation giving each agent v is utility-independent superior to any x that is constant
across ..

If L =1, there must be aj such that X| (wg) >y for all ws. Such agents are worse off with y
at every state. The allocation giving each agent y therefore cannot be superior to x according to
any of the possible ex ante orderings. Once again we see that the utility-independent ordering can
endorse a change in alocations rejected by any ex ante ordering.

Some policies can be ranked aswell. Assume now in addition for each j that e; (wg) also
does not vary across states. If, for somej, e;(ws) # w, then any policy (z, (Aej=y - € (a)s))szl,
f) is utility-independent superior to any status quo policy (7, 0, f) if z and 7 are both high enough
to prevent trade from occurring at al w..

Since (5.2) isan inequality, the example is robust in the sense that small changes in the
primitives of the model —in U; (), the g; (o), and = —will still allow some allocations and
policies to be ranked. For the same reason, the r and 7 in the policies do not have to be set so high
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asto prevent al trade, just high enough that only a small amount of trade occurs.

The above conclusions extend the Lerner (1944) argument that complete income equality
can be justified even when individual s derive utility from income at different rates — aslong as the
policymaker isignorant about which agents are the more efficient producers of utility. InLerner’'s
model, the agents consume just one good (income) and thus all have the same ordinal preferences
if not the same cardinal utility, whereas (5.1) appliesto disparate preferences over many
commodities.®

Our requirements that identical potential agents are represented by the same utility
function, that only increasing affine (rather than all monotonic) transformations of some strictly
concave utility function are elements of U; (w), and the fact that the utility-independent ordering
does not insist that each agent is unharmed by policy changes are all crucial for the non-paralysis
conclusion.

The significance of the exampleis not that there can be alocations and policies that are
suboptimal according to the utility-independent or maximization definitions. Even simpler
examples would suffice to show this (e.g., suppose that all agentsin all states have the same
cardinal utility function). What the example underscoresis that even with no restriction on the
number and diversity of preference orderings, some nontrivia policy advice is possible under a

specification of the policymaker’s uncertainty that can sometimes be plausible.® B

In the local policy paralysis result below, we do not assume that certain utilities appear with
non-negligible probability only at certain carefully constructed states. We cast the result in terms
of the historically more important maximization definition of optimality. Since maximization-

optimal policies are also utility-independent optimal but the converse need not hold, results that

8 For more recent formalizations of Lerner’s argument, see McManus et al. (1972), McCain
(1972), and Sen (1973), which aso suppose that each agent’ s utility is a function of one good.

® Other, more trifling policy recommendations can also be made. For example, if 7 ishigh
enough to prevent trade at all o, then any (7, Ae = 0) such that  allows some trade at some wgisa
utility-independent improvement.
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apply to the maximization definition are stronger.

We will say that apolicy (z, Ae, f) isdifferentiableif the allocation induced by the policy
islocally a continuously differentiable function of the policy instruments (z, Ae). That is, there
must be a continuously differentiable function g from an open 77 ¢ R" x R0 to allocations
R®" such that g(¢/, A€’) is an equilibrium allocation for any (', A€') € 11, (z, A€) € 1, and g(z,
Ae) =f. Most policies are differentiable; the lemmain the proof of Theorem 2 in fact shows that
policies are generically differentiable. But welfare maximization need not always select one of
these generic policies, sometimes a nongeneric policy at which the equilibrium allocation is not a
differentiable function of (7, Ae) may be dictated. We nevertheless restrict ourselvesto
maximization-optimal policiesthat are differentiable, thusincurring asmall loss of generality.

If weignore agents’ utility levels, one smple way to generate the welfare functions that can
arise with (Q, x) isto pick an arbitrary assignment u and then multiply each ex post utility function
u; (-, wg) by some positive weight b; where we require any pair of identical ex post utilities to be
multiplied by the same weight. Let B denote this set of weights, {b € Rff: Uj(wg) =Uj (0g) =
b;s=bj.s}, which has dimension equal to the number of distinct utilitiesin Q. Givena
differentiable policy (z, Ae, f) and an assignment u, and letting g be the function specified above,
we define the welfare functions parameterized by B, w,,: B x I7 > R by setting w,, (b, (z, Ae)) =
EleE G;(9;(z, Ae)), where 0 isthe assignment G =b - u.

We put aside the question of whether equilibria exist at boundary policies by now requiring
that endowment redistributions are in the set AE = {Ae: e;(w,) + Ag; > Oforal j and o} and

assuming for all (Ae € AE, 7) that an equilibrium exists at each ..

Definition 6. A differentiable policy (z, Ae € AE, ) isaregular maximum for the assignment u if
(1) whenever (z, Ae, f)' hasf’ # fand Ae’ € AE, ¥ Eu;(f;)> X} | Eu;(f}), and (2)

DfAeWu(lJS, (r, Ae)) is negative definite.

Definition 7. A differentiable policy (7, Ae, f ) satisfies the rank condition for the assignment u if

9 For any integer m, 1™ denotes the vector of m1's.
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D(iAe),bWu(]-JS, (zr, Ae)) hasrank LJ.

Differentiability and regularity of a policy are the traditional conditions that guarantee a
maximum is well-behaved; they ensure that calculus can be applied, that a strict second order
condition obtains, and that two or more policies do not simultaneously maximize the same welfare
function. The assumptions are also “open” properties that continue to hold if the model is
smoothly perturbed. The rank condition is an open property as well since LJ is the maximal rank
of D(i A6, bWu(lJS, (7, Ae)). Buttherank condition is also substantive and its meaning is
important. It says that there are enough utility functions in the model so that for every policy
instrument we can find an independent combination of changes in welfare weights that will alter
the marginal social welfare of that instrument. This means that each policy instrument has a
distinctive effect on social welfarein that it affects the welfare of a different combination of ex
post utilities. For example, achange in some t; will have a different impact on intensive buyers
and sellers of good i compared to itsimpact on other potential agents. Following the policy
paralysis theorem, we show that we can add additional statesto a model to ensure that the rank
condition is satisfied; these states guarantee that the model is sufficiently rich in agents so that

precisely these distinctive effects of different policy instruments are present.

Theorem 4. The policy instruments (7, Ae) such that some differentiable (z, Ae, f) isaregular

maximum for some u and where w,, satisfies the rank condition form an open set.

Suppose that the entire uncertainty model is perturbed slightly — say by the addition of a
small consumption externality —in such away that the primitives of the model change smoothly as
afunction of the perturbation. If the status quo policy is differentiable and a regular maximum and
the corresponding rank condition is satisfied, it will remain so after a small enough perturbation.
Theorem 4 then indicates that if policymakers aim to maximize some welfare function, then a
small externality will induce no policy response.

A global version of Theorem 4, for either the utility-independent or maximization

definitions of optimality, faces difficulties. The Example aboveisasign that there is no general
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condition that rules out models in which many policies are suboptimal in the utility-independent
sense. And even if there were, aresult using the more stringent maximization definition of
optimality also faces the hurdle that the set of agent utilities reachable through some policy is not
convex. Consequently, utility-independent policies need not be maximization optimal.

The rank condition isweak in that if we add states with diverse ex post agents to a model,
the condition is necessarily satisfied; the added states moreover can have arbitrarily small relative
probability. Note that as we add more ex post agents to the model, more columns are added to
D(i A6, bWu(lJS, (z, Ae)) but not more rows; the number of rows always equals the number of

policy instruments LJ.

Theorem 5. For any differentiable policy (z, Ae, ) for (£, ) that isa regular maximum for some
u, there exists a (2, #) such that, for every 4 € [0, 1], themodel (Q U Q, (Ax, (1- 1)7)) hasa
differentiable policy that is a regular maximum for some U such that w, satisfies the rank

condition.

6. Discussion

Our results are both positive and negative. The ex ante Pareto criterion will recommend a
move from most status quo policies, but this criterion incorporates a system for making
interpersonal welfare comparisons. On the other hand, a thorough-going avoidance of
interpersonal comparisons can lead alarge number policies to be optimal.

We have not yet considered policies that achieve optimality ex post. A policy isex post
optimal (by the ex ante/agent-based, utility-independent or maximization definition) if, for each
o€ Q, thealocation x(w,) isoptimal (by the same definition) at the certainty model that occurs
at w. Sinceex post optimality does not make hypothetical comparisons between the different
preferences an agent might have, it does not make interpersonal comparisons of utility. Asour
framework now stands, a policymaker can achieve ex post optimality by any of our definitions by
setting t = O (provided that no two agents have the same cardinal utility functions a any single

state). Since any status quo policy with 7 >> 0 will not be ex post optimal (except in the fluke
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circumstance that agentsin all states are endowed with Pareto efficient allocations), policy
paralysis would seem to disappear. But this reasoning is unpersuasive. First, since the
policymaker must choose policies ex ante, ex post welfare criteria are of questionable relevance.
And just asimportantly, the ex post optimality of = 0 isan artifact of the way we have modeled
distortions. Had there been externalities, for instance, in addition to distorting taxes, and if the
policymaker were uncertain about the parameters of the externalities, there would usually be no tax
policy that is optimal ex post. Ex post optimality therefore does not provide a general resolution of
the policy paralysis problem.

Finally, we consider applications to other literatures. When markets are incomplete, it is
well-known that a policymaker can institute Pareto improvements by redistributing initial-period
asset holdings. The necessary transfers require detailed information, however, and so it istempting
to conclude that such policy interventions are impractical (see, e.g., Geanakoplos and
Polemarchakis (1990)). Similar observations were made in the wake of the theorem of the second
best (Lipsey and Lancaster (1956)): when there are distortions that the policymaker cannot correct,
optimal policies can be counter-intuitive and depend on unobtainable information about the
parameters of the model.

Our explicit modeling of policymaking uncertainty alows us to evaluate this type of
reasoning. Consider amodel of incomplete markets in which the policymaker is uncertain about
the attributes of the underlying economy. (If there were no policymaking uncertainty, policy
analysis would proceed asit does in the incomplete markets literature.) The policymaker then
faces two sources of uncertainty: the uncertainty that confronts the agents and an additional
uncertainty about the parameters of the model. If the policymaker can make interpersonal
comparisons of welfare and therefore construct an ex ante ordering, he or she could then devise
policies that are improving relative to the status quo policy of letting agents choose their asset
portfolios without government intervention. Pareto-improving reallocations of assets exist in the
incomplete markets model in the absence of policymaking uncertainty; the inclusion of
policymaking uncertainty simply adds new dimensions of market incompleteness for the

hypothetical ex ante agents. But section 4 shows that policymaking uncertainty alone, even when
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the ex post agents face no market incompleteness, is typically enough to guarantee that some
policy changes are called for. On the other hand, utility-independent or maximization welfare rules
argue against any change of policies and this conclusion does not hinge on market incompl eteness.
The set of optimal policies, as section 5 shows, is sizable even when the (ex post) agents face
complete markets. Thus, market incompleteness does not introduce any special problem of policy
paralysis: the difficulty liesin not knowing the model with certainty and simultaneously trying to
avoid interpersonal comparisons of welfare.

Analogous observations apply to the difficulty, described by the theorem of the second best,
of devising policy recommendations in the presence of multiple uncorrectable distortions in the
economy. If apolicymaker can formulate an explicit state space to describe his or her uncertainty
and can furnish ex ante preferences, the ex ante ordering will typically recommend that policy be
changed from an arbitrary status quo. In this paper, for example, one could suppose that some or
al of the taxes on net trades are uncorrectable; the proof of Theorem 2 indicates that the
endowment transfers can still engineer an ex ante improvement. On the other hand, if a utility-
independent or maximization welfare ruleisin effect, then policy paralysis will occur even when
the policymaker has the freedom to set all tax rates equal to zero. It isthe difficulty of specifying
ex ante preferences that makes policy adjustment problematic, not the presence of uncorrectable

distortions.

Appendix
Proof of Theorem 1.

The set of interior ex ante optimal allocationsis amanifold of dimension J - 1 (seeg, e.g.,
Mas-Colell (1985, Proposition 4.6.9)), which we denote Y, and thus, generic subsets of Y are well-
defined. For any ex ante optimal allocation x >> 0 (we can ignore boundary optima as nongeneric),
there is a supporting p(x) € RSL such that each DEu j (xj) Is proportional to p(x), and we
assemble p(x) asthe Sx L matrix P(x) with the sth row given by the coordinates of p(x) that are
proportional to ij () Eu,. We normalize p(x) and hence P(x) by requiring p(x) tolieintheLS

dimensional unit simplex.
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SinceL > S, we can define the square matrices P, s=1, ..., S by setting, for k < s, the kth
row of Pg equal to the first s coordinates of pwk(x). We now show that there is a generic subset of
Y x Q such that Pghasrank S. Sincefor any (x, (e, h)) € Y x Q, P, trivially hasrank 1, it is
sufficient to show that, for s=1, ..., S- 1, if thereis ageneric subset G, < Y x Q at which Pg with
rank s, then there is another generic subset G¢,; < Y x Q at which P, ; withrank s+1. Giventhe
induction assumption, we define the function g, ;: Gg = R by setting g¢., 1 (X, (e, h)) equal to the
determinant of P, ;. Calculating det P, by cofactor expansion along row s + 1, the derivative of
det P, ; with respect to the (s+1)st entry of p%l(x) must be nonzero given the induction
assumption that P¢ has rank s. Moreover, we can change this coordinate of p(x) without changing
any other coordinate by increasing D><s+1(ws+1) Eu, foralj. ThusDgg,; # O, and so by theimplicit
function theorem (for manifolds, sometimes known as the preimage theorem, see, e.g., Guillemin
and Pollack (1974)), the subset of G such that det P;+1 =0, say Z, ;, isamanifold of dimension
equal to dim (Y x Q) - 1 and hence a closed and measure-0 subset of Y x Q. Wetherefore set G, ;
=G\ Zg,1. Henceon Gg, P(x) hasrank S. Moreover, by Fubini’s theorem, there must be a
generic subset G < Q such that, for al (e, h) € G, P(x) hasrank Sfor al x in ageneric subset of
the ex ante optimal allocations of (e, h).

For any such x, definefor each j, c; = (pwl(x) X (@), -y pws(x) *Xj(wg)). Since P(x)
hasrank S, thereis for any j asolution Ae; to (pwl(x) (Mg +ej(wy)), ..y pws(x) (Mg +
ej(wg))) = ¢, that is, a Ae; such that
(A1) P(X)Ag;=C; ~ (P, (X) €(@1), . P, (X) "€ ().

Forj=2,...,J, st Ae; asasolutionto Al, and set Ae; = - EJ-J:2 Aey; it isreadily confirmed that
Ae; also solves (A1) for j = 1. Since, for each w, pws(x) isan equilibrium price vector for the
economy at o, when t =0 and Aeis specified as above, setting f = x reaches the ex ante optimal

dlocation x. W

Proof of Theorem 2.

We begin with a preliminary lemma.
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Lemma. For any 7, there is ageneric subset of economies G < Q such that for any (e, h) € G and
any equilibrium allocation x(w,) in state s of (e, h) there existsa C* function 9., from an open set
115 < R x R“U™D of policy instruments that contains (z, Ae = 0) to allocations such that

Q) gws(r, Ae=0) =x(wg) and (2) for any (7', A€’) € I, gws(r', Ae")) isalocally unique

equilibrium alocation of (e, h) in state swhen the policy instruments are (z’, Ae’).

Proof of Lemma.

We fix the state and omit any notation of it. Let alabeling be a pair of nonempty digoint
subsetsof {1, ..., L} x{1,...,J}, denoted Band S, such that (i, j) € B if and only if there existsaj’
# jsuchthat (i,j') € Sandif (i,]) € Sthenthereexistsai’ # i suchthat (i’,j) € B. Thatis,
some agent j buysagood i if and only if some other agent j’ sellsi, and if some agent sells some
good i then that agent buys some other good i’. Reset commodity indices so that the first 1 = #{i:
Jjsuchthat (i, J) € Bu S} goodsarethegoodsinBu S Let p = (1, p,, ..., p,), et X denote the
projection of a consumption profilex € R" onto the #(B U S)-dimensional coordinate subspace of
the consumption bundleslisted in B U S, let € denote the projection of the endowment profile e
onto the same subspace, and let k =#{ j: 3 i suchthat (i,j) € BU S}.

For any of the finite number of labelings, let F: Q x R-x R'* x R*®**®x R* x R >
R#*BvS) <+ denote the C* function given by F((e, h), 7, P, X, 4, 1) =({ [D)qjuj (x;) -
AiPiLi i pes [By Ui O6G) = 4P+ )] jyemr i ijyes (L7 Py (O - &) +
i yesPi 65 €) 7t/ 3} pepus T T pyenPiri(x - &), Xily (%5 €5),

EjJ:1 (ij—eLj)>, whereeach x;; = X;; if (i, ]) € BU § and x;; = g;; otherwise. If (p, X) isan
equilibrium for the economy (e, h) with taxes 7, there is a Lagrange multiplier 4; for each agent |
such that (x;, ;) solvesj’s maximization problem and F((e, h), 7, p,/py, -, P,/P1, X, 4,1) =0
for some labeling. Note that F setsany x;; such that (i, j) ¢ B U Sequal tog;;. WhenaOof F
describes an equilibrium, these are goods for which agents optimally consume exactly their
endowment; there is no condition setting the marginal utility of these goods equal to 4; p; or
4;(1 +7;) p; dueto the kinks in agents’ budget sets at endowment points. If

D F((eh),t,p, X 4,1) isnonsingular whenever F((e, h), 7, p, X, 4,t) =0, theinverse

B, % 4, t
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function theorem implies that, for each (e, h), the (p, X, 4, t) such that F((e, h), 7, p, X, 4,t) =0
arelocally isolated. Hence the equilibrium allocations such that every agent consumes
nonendowment bundles in the same coordinate subspace are also locally isolated. The
transversality theorem (see, e.g., Guillemin and Pollack (1974)) therefore implies that local
unigueness in this sense obtains for afull measure set of economiesif DF((e, h), 7, p, X, 4, t) has

full row rank whenever F((e, h), z, p, X, 4,t) =0. When F((e, h), 7, p, X, 4,t) =0, DF((e, h), 7,

p, X, 4, 1) =
X A X Aj €j €ij €| e
Dzuj -p(}) 0 0 0 0 0 0
p(i)t 0 0 0 “P(d+7) -p, 0 0
0 0 Dzuj, -p(j") 0 0 0 0
O 0 p(jn"T 0 0 0 P P (Lrg)
. 0 . 0 P Tk 0 0 Pr T;
. 0 . 0 0 0 -1 0

where for any agent |, p(1) € R**®&D=B-S denotes f, (1) = (1 + ) p when (k, 1) € Band p, (j)
=p,when(k,1) € S SinceF((e, h), 7, P, X, 4,t) =0and Sis nonempty, there must be at |east
one agent, say j, who is simultaneously a net buyer and a net seller. Above, we have assigned one
of the goods that agent j buys the index k and one of the goodsthat j sellstheindex i. Each of the
goodsi’ € {2, ..., 1} hassome seller, say |, and we assign one of the goodsthat " buys the index
i

We now confirm that DF((e, h), z, P, X, 4, t) hasfull row rank. Given the negative

definiteness of DZUJ- , the upper left square submatrix whose columns correspond to the variables X

and 4 isnonsingular. Performing an elementary column operation with the e;; column, we can
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replace the (1 + 7, ) p, entry in the e,; column with O without affecting the 0's in the rows
considered so far or the r inthet - E(i,j)eBTi P;i (X;; - &) row; hencethe#(B U S) +x + 1
dimensional upper left square submatrix that resultsis nonsingular. For those rows that correspond
to the market clearing conditions of goodsi’ € {2, ..., 1}\\i, we can, by adding appropriate
multiples of the St column and the (previously transformed) e,; column to the e; ;. column,
generatealinthei’ row and O elsewhere (see the DF above for thiscase). Wheni’ =i, we can
instead use the e; ;. column for some |’ where (i’, j') € B and the & columnwhere (i ,j’) € S
Adding appropriate multiples of the e column and the (previously transformed) e, ; column to the
g ;- column, we can again produce a1 inthei’ row and O elsewhere. Hence

DF((e, h), 7, p, X, 4, 1) hasfull row rank.

We have considered only labelings that consist of nonempty sets of indices, thus excluding
the no-trade equilibria where each agent consumes a nonendowment bundle in no coordinate
subspace; but clearly for any economy there is at most one no-trade alocation. Hence, using the
intersection of the finite number of full measure sets defined above, one for each labeling, we
conclude that there is afull measure set of economies such that each equilibrium at which every
agent consumes nonendowment bundles in the same coordinate subspace is locally unique. We
next show that generically each equilibrium alocation x is also locally isolated from equilibrium
allocations in which nonendowment consumptions lie in adifferent coordinate subspace. If x = (X,
Xi; =& for (i,]) € BU S) isan equilibrium allocation for some economy (e, h) and x fails to be
locally isolated, there must be alabeling, a corresponding F, and a (i,j ) € B U Ssuch that F((e,
h), 7, p, X, 4,t)=0and X7 = €. To exclude this possibility, we add to the range of each F the
additional term X - e;7, where (i,]) € BU S, thus defining afunction F*. Consider the
columns of DF " that correspond to the x;’s, 4;’s, the &,; and €, ;. columns as earlier transformed in

our analysis of DF, and the e;- and e, columns:
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X
S
P )
~
@

{
':(D

1

D?u -p(j) 0 0 0 0 0 0
p(j))T O 0 0 0 0 0 0
0 0 D?u- () 0 0 0 0
o o0 Pt 0 0 0 -pr(l+ry) -p,(1+7))
y 0 y 0 Py Tk 0 [ Shich P17y
. 0 . 0 0 -1 -1 0
0 0 1 0 0 0 -1 0

Since we may use the final column to eliminate -p- (1+7;) in the penultimate column, and then
the two columns to the left of the penultimate column to eliminate al but the -1 in the bottom row,
DF " hasfull row rank, i.e., rank #(B U S) + x + 1 + 1. Hence, for afull measure set of economies,
if F*((e, h), 7, p, X, 4,t) =0then Ds z. F (&), 7,0, X4,t) hasrank #(B U S) + k + 1+ 1. But

since D, F*((e h),z,p, X 4,1t) hasonly #(B U S) + k + 1 columns, it must be that at this set of

p, X 4, t

~

economies there existsno (P, X, 4,t) such that F*((e, h), 7, p, X, 4, 1) =0. Constructing such a
full measure set for each (i, ) € B u S, and taking the intersection of all of the full-measure sets
of economies defined so far, we conclude that for a full-measure set of economies, equilibrium
alocations are generically locally unique. (Normalized equilibrium prices are not locally unique
since P does not specify prices for goods that no one buys or sells.) That these equilibrium
allocations are C* functions of (e, h) and t then follows from the implicit function theorem, and
the openness of the set of economies we have identified follows from the fact that for any F we
may place the endogenous variables (p, X, 4, t) inacompact set. When a0 of F specifies
equilibrium values for the variables, the specification of g is completed by setting x;; = e;; when (i,

j) ¢ Bu S. This concludes the proof of the lemma.
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Turning to the proof of the theorem itself, consider an arbitrary selection of Sof the

functions F defined above, F = (F_, ..., Fws)’ one F, chosen from each state. If we express G as

a)l’
the product G, x ... x G, , then F is defined on the Sfold product of the sets G,, x R-x R x

RfﬂB“S x R, x R_. Werestrict ourselves to an open subset of this domain, say Y, that contains all

0'sof F and such that each D[ﬁ(ws), R0, A (@) Fws(y) isnonsingular, wherey = (ywl, yws)

denotes atypical element of Y. Also, p(y, ), X(y, ), etc., will denote the indicated coordinates of

JSL

y, - Wenow extend the g given in the lemma by defining aleunction;(: Z—~> R, whereZis

an open subset of Y x R x R that contains (y, 7, Ae) whenever y € Y, 7 =(y, ) and Ae =
Ae(yws) and such that Dﬁ(ws),i(ws),/l(ws),t(ws)
Z(y,, ), t(y, )) isnonsingular for each ws. Given(y, 7', Ae) € Z, consider theimplicit function

F, evauated at (h(y, ), e(y, ) + Ae, 7, By, ), R(Y, ),

theorem solution values of (p(wg), X(wy), A(wy), t(w)) for the equation
F,(h(y, ). e(y,) +Ae, 7', Blog), (@), Aoy, ) = F,(¥,),

whereif Ae=0,7’ = r(yws), and Fws(yws) =0, then we set the solution (P(wy), X(wg), A(wy),
t(w,)) to equal the corresponding coordinates of Yo, To definey, set the X(w) coordinates of
;(ws(r’, Ae,y) to equa the X(w,) coordinates of this solution and the remaining coordinates, as
before, to equal agents' endowments. Notice that when Fws( yws) = 0 and equilibrium values of the
variables are specified, st(r’, Ae, y) will coincide with the 9., given by thelemma. If F(y) =0
and y specifies equilibrium valuesfor (p, X, 4, t), then y gives, asafunction of 7’ near r and Ae
near 0, the economy’ s unique nearby equilibrium consumption profile. Let p: REx R0 D x v
R’ denote the ex ante utilities of these consumption profiles, i.e, p;(z’, Ae,y) =
Eu;(x;(z’, Ae,y)) = Eilns u; (Xi,ws(fl' Ae,y)). The proof is complete if we can show for a
generic subset of economies that, for any 0 of any suchF, D_, .u(z, Ae =0, y) hasrank J: since
then the linear map D_, . H(z, Ae, y) isonto, thereisa(z', Ae’) such that
D, \cH(7, A€, ) (z', Ae’) > 0 and hence for ¢ > O sufficiently small, one of the allocations
reached by (z, Ae) +¢ (', A€’) increases each Eu;.

Letting &;; denote a transfer from agent 1 to agent j of good i, we will need to consider only

the derivatives of p with respect to ¢,,, €15, €13, ..., £13. Wedefinethe functionsF;,i =1, ..., J, by
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supplementing F with an additional term equal to the determinant of amatrix M; of derivatives of
K. For Fq, thematrix M, just consists of 1 x 1 matrix D, Hi EachM;,i > 2,isani x i matrix
whose columns consist of derivatives of coordinates of p with respect to thefirst i of the variables
€99, €12, €13+ -+ €1 AN Whose rows consists of the derivatives of thefirsti of the variablesp;, ...,
K. Thus, eachM;, i > 2,isM;_; with an additional row and column added. We now show that
there is a generic subset of economies for which each F; has no O; since we can repeat this
argument for any F, this showsthat any D_ , .l(z, Ae =0, y) hasrank J.

We can decompose the effects of changesin the &;; on [ into a sum of the direct utility
effects of the transfers, which depend on Du;, and the indirect effects via changesin the p(w) and
t, which depend on D2u ; but not on Du; (see Geanakoplos and Polemarchakis (1986) for more on

this point). The matrix of the direct effects of the pertinent ¢;; on 1 is given by DE =

€22 €12 €13 €13

7253:17[SDX2u1(X1 o ,C!)S) 725 17 D ul(Xl o ,C!)S) Z:S 17 D ul(Xl o] S) Z 17 D ul(){l o] S)
e 17D, Uy(x5,.,29) DN 217D, Uy, 009 0 0
S
0 0 ES= 1 77:5 DX1U3( X3, ws’a)s) 0
0 0 0 ES 17D, UJ(){J(O, J

The function F, therefore transverse to O (i.e., DF; has full row rank whenever F; = 0) since we
may simultaneously multiply ( Du, (EHONE /lms) for each j and some w ¢ by the same constant, thus
perturbing the upper left term of DE while leaving the value of F unchanged. It follows that for a
generic subset of economies F; = 0 has no solution: if it did then the matrix of derivatives of F;
with respect to the endogenous variables p(wy), X(wy), A(wy), t(wg), s=1, ..., S would have full
row rank at any solution, which isimpossible since this matrix has more rows than columns. We
henceforth remove the closed 0-measure set of parameters such that F, = 0 from the range of the

remaining F; To show that F, istransverse to O requires an initial step showing that

D, u(x, @) D, u(x, )

D, u(x,0) D, u(x, )
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isnot satisfied any O of F for a generic subset of economies. Thisisreadily established with an
separate transversality argument that shows that we can add this equation to an arbitrary pair of F’'s
for the economies at states 1 and 2, then the resulting function is transverse to O (perturb, at one of
the states, every j’smarginal utility for one of the goods and that good’ s price) and hence this
eguation is generically not satisfied at a0 of any F. Given that this equality is not satisfied, we
may by independently rescaling (Duj (r,0,), /lj‘wl) and (Duj (r,0,), /lj‘wz) perturb the row 2-
column 2 entry of the DE, without changing the other entries of DE or the value of F. If we
calculate det M, by expansion of cofactorsin the second row, and given our earlier restriction to
parameters such that F; # 0 and hence det M ; # O, we set that F,, istransverseto 0. Wethen
proceed by induction, restricting the domain of each F;, i = 3, ..., J, to exclude the points at which
F;_,; =0 hasasolution: simply by rescaling (Duj (r,o,), /lijl) for all j, each of theremaining F; is
seen to be transverse to 0, using the cofactor expansion of det F; along row i. Thus generically

D, \cH(7,Ae=0,y) hasrank J at any O of F, asdesired. B

Proof of Theorem 3. Choose Q' so that, for dl j and o', (1) U; (') # Uy (') for any agent h #
and U (') # Up(d) foranyhand & € QU Q' \ o', (2) the vectors Du; (g (w'), »'), 1 =
1, ..., L, arelinearly independent, and (3) e(w') >> 0 is a Pareto optimal allocation for the economy
(u( o')e@)),.

The strict concavity of theu; (-, ") and (3) imply that for any status quo policy (7, O, f ),
f_j(a)') =ej(w') foraljand »'. Given (1), itissufficient to show that at any (z, Ae # 0, f) there
existsaw' and j such that u; (g ('), »') > u;(f;(w"), »'). Suppose, to the contrary, that
u;(fj(0"), ') > uj(g ('), ®") foral »' andj, and hence (given strict concavity) that f;(w') =
ej(w') for al o' and j. Given the argumentsin section 2 on the suboptimality of equilibriawhere
traded goods have nonzero taxes, it followsthat if Ag;; # 0 for any agent j and any good i and J >
2andL > 2, thent; =0. Thereforet(w') = 0 which also holdswhen J= 1 or L = 1 since then
thereisno trade. From the definition of the budget constraint, p(') - (g(@') - (g(w') + Ag))) <
0, where p(') is an equilibrium price vector corresponding tof at »'. Hencep(w') -Ag; < O and,

since EleAej =0,p(w") *Ag;=0. Since, for al j and o', thereis some ij' >> 0 such that
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pi(@") =4/ D, u;(g(a'), ®') for al goodsi such that Ae;; # 0, 4; D, u; (e, ('), w') - Ag;= 0.
ij ]

Condition (2) then impliesthat Ae; = O for al j, acontradiction. W

Proof of Theorem4. Letting (7, A& f) be differentiable and aregular maximum for u and such

that D} 5, Wu(1” (£, A&)) hasrank LJ, there must be a L.J dimensional coordinate subspace of

2
(r,Ae),b*

of B". Label coordinates so that B" is spanned by the first LJ coordinates of R’. By the implicit

B,say B, suchthat D w, (175, (¥, A&)) isnonsingular, where b” denotes atypical element
function theorem, thereis a C* function, say b”, from some open subset 77’ < R"’ contai ning
(7, Aé) to B" such that b (7, Aé) = 1" and

D ae)Wu((b'((z, A€)), 15°1), (z, A€) = 0
for al (7, Ae)  IT'. Thefactthat (7, A&, f) isaregular maximum implies that there are open sets
Bo < B” and 77, = R containing 1-? and (7, A&), respectively, such that for b* € B, and
(z, A€) € ITo, D2, W, ((b" (7, A€)), 7% ), (¢, Ae)) is negative definite.

The above establishes that all (7, Ae) € 11 are strict maxima of w, for someb € B, if we
constrain (z, Ae) to be an element of 175. We now show that there is an open 71" < 11, containing
(7, A&) such that for someb al (¢, Ae) € IT1" are unconstrained strict maxima of w,,. Supposg, to
the contrary, that there is a sequence {(z, Ae),}, where (7, Ae), # (7, Aé) for al t, such that (z,
Ae), — (z, Aé) and such that each (z, Ae), isnot astrict maximum of w,. Let{ (7, Aé),} bea
sequence such that, for al t, (7, A€), isa(possibly nonstrict) maximum of w,, when b = (b"((z,
Ae),), 175 LJ) and where A€ € AE. Since each (z, Ae), isnot a strict maximum, we may choose
{ (z, Aé),} sothat { (7, A€),} # (7, Ae),foralt. Sinceeach (7, Ae),isastrict maximum of w,,
whenb = (b"((z, Ae),) and (7, Ae) isrestricted to 11, (7, AE), ¢ Il for all t. We have already
restricted A€, to be an element of the compact set AE; we may also assumethat 7, liesina
compact subset of R} sinceif r issufficiently large, no trade and hence the same f occurs. Since
therefore we can restrict ourselves to a compact set of policy instruments, say 11, and 11 o Isopen,
there is a subsequence of { (7, A€),} convergingtoa (7, Ae) € 7\ I15. Given the continuity of
w and the fact that b’((z, Ae),) > 14, (z, Ae) isan unconstrained maximum of w, whenb =1,

contradicting (z, A€) being a strict maximum.

32



The openness of the policies that satisfy Definition 6 (2) is self-evident. In addition, since

LJ isthe maximal rank of D(i A6, bWu(lJS, (z, Ae)), the policies that satisfy the rank condition are

also open, which compl etes the proof. B

Proof of Theorem5. Includein Q aset of L states{ @, ..., @ } at which eache(®,) is Pareto
optimal for some set of J utility functions utilities Uj(- , @,),] =1, .., J, and the total resources
Eleej(cbi). Choose the Uj(- , ;) so that (i) Uj(- , ©;) # LTj,(-,w) but D

x (@) U (& (@), &) =

D u.(e(&;), @) foral pars(j,j)andal w € QU { &, ..., @ }, (i) the equilibrium

x @) Y
alocation at @, isaC! function g of (z, Ae), (iii) each Jj( *, @;) ° g; isdifferentiably strictly
concave, and (iv) the vectors Dxl(c?)l) U, (ey(dy), @), s Dxl(ah) u,(ey(@,), &) arelinearly
independent.

Next, for each of the L goods, construct a further set of statesin Q asfollows. Asa
preliminary, we first specify thestatesw',i =1, ...,L. Fori=1,..,L-1, define ' by letting each
| have a utility JJ.( -, w) that isthe sum of ac? differentiably strictly concave and differentiably
strictly increasing function of goodsi and L. Set e(coi) so that e, (wi) Isa constant function of j.
Choose the J utility functions on goodsi and L so that (1) for each distinct pair of agentsj and j’,
Jj( ., a)i) # Uj,( ., a)i), (2) for distinct pair of states ' and ' and any pair of agentsj andj’,

Uj(- , a)i) # UJ( , cui'), 3 o has a unique equilibrium aIIocationf(a)i) for (r, Ae) € Kgivenby a
c! function g of (r, Ae), and (4) letting Hi o denote the composition LTJ-( °, wi) ° gj, then, for every
(z, Ae) € K, DTi My i (7, Ae) >0, DTL My ,i(7, Ae) <0, DTi M, (7, Ae) <0, and DTL M, i (T, Ae) >
0, and (5) each M o isdifferentiably strictly concave. Define w" by letting all agents derive utility
only from goods L and L - 1, letting conditions (1) through (3) and (5) be satisfied, and by
requiring DTL Hy (7, A€) >0, DTH Hy (7, A€) <0, DTL H, (7, Ae) <0, and DTL*1 H, (7, Ae) >
0. Wenow use o’ ..., 0" to specify the statesin Q: for each o', let Q' denotethe J! states
constructed by taking all possible permutations of the agent indices of the utilitiesin o' and set O
={&, ., G YUQU . UQN Let S=#0,

Let v(b, (z, Ae)) denote EJ-J:1 Ewseé Thjsu; ( gj’ws(r, Ae), wg), whereg(z, Ae) givesthe

unique equilibrium allocation for (z, Ae) and the 7 can take any value such that 7, = 7, if wgand
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o are both elements of thesame Q'. Set rsforwg € Qandj=1,..,J sothat, for the
assignment u = (..., fjs U, , ...) for the utilities that appear in Q,D v(1JS (r, Ae)) =0for each
and DAe”v(lJS, (z, Ae)) = O for each Ae;; when evaluated at the (7, Ae) that are the policy
instruments of the regular maximum given by the assumptions of the Theorem. The ;s may be set
so that DTiv(lJé, (r, Ae)) =0sinceforeacht;,i =1, ..., L, the Hy and Hy defined in (4) above
are respectively increasing and decreasing in z;; hence for any values of the r; assigned to the
utility functions not owned by agents 1 and 2 at o', we can adjust either the rsassignedto u, (-,
a)i) or ther;sassigned to u,( -, a)i) to ensure that DTiv(ljé, (z, Ae)) = 0. Noticethat any change
inzwill not alter x(@) since x(@) is Pareto optimal and will not change x(w,) for any o derived
from w* for k # i since agents at these w4 neither buy nor sell i. To ensure that DAejv(lJé, (z, A€))
= 0, observe that our inclusion of all permutations of the agent indices and our restriction on 7
imply that EwSEQi 7T DAej oy (r, Ae) =0, where [ isthe composition u; (-, wg) ° gi'ws(T’ Ae)
and where, for any fixed utility G that appears at some win some Q' J'(w) denotes the agent that
has 0. So, if weset eachr;sfor wg € { @,, ..., @ } equal to 1, the (z, Ae) that are the policy
instruments of the given regular maximum must maximize v(lJé, (z, Ae)). Hence

DAejv(lJS, (7, Ae)) = 0.

Our differentiability assumptions implies that the policy instruments of the given regular
maximum (z, Ae, f) are differentiable policy instruments for (2, #), while the concavity
assumptions on the M o and our choices for ther;simply that (z, Ae), joined with the allocation
that (z, Ae) induces, isaregular maximum for ( ..., r;s u, . ..)inthemodel (2, 7). It follows that
(z, Ae, f), where f isf joined with the allocation that (z, Ae) induces at Q, isdifferentiable and a
regular maximum for the assignment U, where U isthe u given in the Theorem joined with ( ...,

s LTJ , ... ) for the utilitiesin Q, in the model (Qu Q, (Az, (1-2)7)) generated by any 4.

It remains to show that w,, satisfiesthe rank condition. Consider the columns of the matrix
D¢ sebV(1%S, (7, Ae)) that correspond, respectively, to the b’s assigned to agents 2 through J at
w

1 @ andtheb’sassignedto u, (-, a)i), i=1,..L. Givenourassumptionsonthe p, i and

the Pareto optimality of the allocations at the & states, these columns have the form



where I5j is the nonsingular square matrix whose ith column is ij @) UJ (¢(®;), @;) and +'sand
-’sindicate the signs of entries. Since the linear independence assumption (iv) implies that each
I5j isnonsingular, this matrix of columns hasrank LJ. Since the submatrix of
D(; a9, Wy (17, (, Ae€)) that consists of the columns that correspond to the same variables has the
same rank as the above matrix (each column merely being rescaled by (1- 1)),
D(iAe), b Wa(lJS, (z, Ae)) aso hasrank LJ.

The utility functions given in the definitions of the @ "areincreas ng only in goodsi and L.
To ensure that the utilitiesin £ meet the maintained assumptions of the model, perturb the utilities
given above by adding a small multiple of a C? differenti ably strictly concave and differentiably
strictly increasing function of the remaining L - 2 goods. Since D(iAe)‘ bv(lJé, (z, Ae)) having
rank LJ isafull rank condition, itsrank will persist for asmall perturbation. And given that
D(iAe), pV( 1Jé, (z, Ae)) hasrank LJ, the implicit function theorem implies that we may adjust the

b’s so as to maintain the equalities DT.v(ljé, (7, Ae)) =0 and DAe.v(ljé, (r,Ae))=0. &
i I
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