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ABSTRACT

We propose a new model for the variance between multiple time series, the Regime Switch-
ing Dynamic Correlation. We decompose the covariances into correlations and standard de-
viations and the correlation matrix follows a regime switching model; it is constant within a
regime but different across regimes. The transitions between the regimes are governed by a
Markov chain. This model does not suffer from a curse of dimensionality and it allows ana-
lytic computation of multi-step ahead conditional expectations of the variance matrix when
combined with the ARMACH model [Taylor (1986) and Schwert (1989)] for the standard
deviations. We also present an empirical application which illustrates that our model can
have a better fit of the data than the Dynamic Conditional Correlation model proposed by
Engle (2002).
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1. Introduction
It is a well known fact that the variance and covariance of most financial time series are
time-varying. Modeling time-varying variance is not just a statistical exercise where some-
one tries to increase the value of the likelihood; it has important impacts in terms of asset
allocation, asset pricing, computation of Value-at-Risk (VaR). A lot of work has been done
to model univariate financial time series since the introduction of the ARCH model by
Engle (1982). However, we face additional problems when we try to write a multivariate
model of volatility. Not only must the variances be positive, the variance matrix must also
be positive semi-definite (PSD) at every point in time. Another important problem is the
curse of dimensionality. We want models that can be applied to more than a few time series.
This rules out the direct generalizations of univariate GARCH models such as the BEKK
model of Engle and Kroner (1995).

The most popular multivariate volatility model so far is certainly the Constant Con-
ditional Correlation (CCC) model of Bollerslev (1990) [a survey of multivariate GARCH
model is given by Bauwens, Laurent, and Rombouts (2003)]. In this model, the covariances
of a vector of returns are decomposed into standard deviations and correlations. The ma-
jor hypothesis in this model is that the conditional correlations are constant through time.
With this hypothesis, it is easy to get PSD variance matrices because we only have to en-
sure that the correlation matrix is PSD and that the standard deviations are non-negative.
It also breaks the curse of dimensionality because the likelihood can be seen as a set of
SURE equations, i.e. a two-step estimation procedure where univariate volatility models
are estimated in a first step that will yield consistent estimates. However, the hypothesis of
constant correlations is not always supported by the data [e.g. Engle and Sheppard (2001)].

In this work, we present a new multivariate volatility model, the Regime Switching
Dynamic Correlation (RSDC) model. We also decompose the covariances into standard
deviations and correlations, but these correlations are dynamic. The correlation matrix fol-
lows a regime switching model; it is constant within a regime but different across regimes.
The transitions between the regimes are governed by a Markov chain. The CCC model is a
special case of ours where we take the number of regimes to be one.

The RSDC model has many interesting properties. First, it is easy to impose that the
variance matrices are PSD. Second, it does not suffer from a curse of dimensionality be-
cause it can be estimated with a two-step procedure1. Third, when combined with the
ARMACH model [see Taylor (1986) and Schwert (1989)] for the standard deviations, this
correlation model allows analytic computation of multi-step ahead conditional expectations
of the whole variance matrix. Fourth, it can produce smooth patterns for the correlations.
We also present an empirical application to exchange rate time series which illustrates that
it can have a better fit of the data than the Dynamic Conditional Correlation (DCC) model
recently proposed in Engle (2002).

1We say that a model does not suffer from a curse of dimensionality if it is possible to obtain consistent
estimates of the parameters even when the number of time series is large. These estimates may not be efficient.
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The model of Engle (2002) and the model proposed in Tse and Tsui (2002) use the
same decomposition for the variance matrix as in Bollerslev (1990), but instead of taking
constant correlations they propose a GARCH-type dynamic. Because a correlation must
lie between -1 and 1, these models must include a rescaling that introduces non-linearities.
One side effect of this rescaling is that we can’t analytically compute multi-step ahead con-
ditional expectations of the correlation and variance matrices. We can also ask ourselves if
a GARCH-type model is appropriate for the correlations because the dynamic of a corre-
lation can be intrinsically different than the behavior of a covariance, e.g. a correlation is
bounded from below and above while a covariance is not.

Another approach for breaking the curse of dimensionality of the multivariate GARCH
is Ledoit, Santa Clara, and Wolf (2003)’s that proposes a flexible estimation procedure for
the Diagonal-Vech model of Bollerslev, Engle, and Wooldridge (1988). The maximization
of the likelihood of this model is not computationally feasible if the number of time series is
greater than five [see Ding and Engle (2001)]. They propose a way to combine the estimates
from univariate and bivariate model so as to get consistent estimates of the parameters of the
full multivariate Diagonal-Vech and insure that the variance matrices are PSD. Although
their results are very interesting, this estimation procedure is only valid for the Diagonal-
Vech model.

The paper is organized as follows. The second section presents the RSDC model and
its properties. Section three describes the estimation of this model and the theoretical prop-
erties of the estimates. Section four outlines the computation of one-step and multi-step
ahead conditional expectations of the variance matrix. Section five presents an applica-
tion of the model to multiple exchange rates series. Section six contains a few concluding
remarks. Finally, proofs are in the appendix.

2. The RSDC model
In this section we present the Regime Switching Dynamic Correlation (RSDC) model.
Assume that the K-variate process Yt has the form:

Yt = H
1/2
t Ut (2.1)

where Ut is an i.i.d. (0, IK) process. The time varying covariance matrix Ht can be decom-
posed into:

Ht ≡ StΓtSt (2.2)

where St is a diagonal matrix composed of the standard deviations sk,t, k = 1, . . . , K and
the matrix Γt contains the correlations. Both St and Γt are time varying. This decomposi-
tion of the covariance matrix has previously been used by Bollerslev (1990), Tse and Tsui
(2002), Engle (2002) and Barnard, McCulloch, and Meng (2000). The series Yt could be a

2



filtered process.
With this decomposition the log-likelihood can be written

L = −1

2

T∑

t=1

(
K log(2π) + log(|Ht|) + Y ′tH

−1
t Yt

)

= −1

2

T∑

t=1

(
K log(2π) + log(|StΓtSt|) + Y ′t S

−1
t ΓtS

−1
t Yt

)

= −1

2

T∑

t=1

(
K log(2π) + 2 log(|St|) + log(|Γt|) + Ũ ′tΓ

−1
T Ũt

)
(2.3)

where Ũt = [ũ1,t, . . . , ũK,t]
′ is a zero-mean process with covariance matrix Γt and |Ht| =

det(Ht). This is the first building block of our RSDC model: to model the full covariance
matrix we model the variances and the correlations separately.

2.1. Regime switching for the correlations
In this work we will argue for a regime switching model for the correlations. This can
be seen as a midpoint between the CCC model of Bollerslev (1990) and models such as
the DCC of Engle (2002) where the correlations change every period. This model will
have the appealing property of constant correlations within a regime but will still have
dynamic correlations because of the regime switching. More specifically, the time-varying
correlation matrix Γt follows:

Γt =
N∑

n=1

�
{∆t=n}Γn (2.4)

with∆t an unobserved Markov chain process independent of Ut which can takeN possible
values (∆t = 1, 2, . . . , N ). The symbol

�
is the indicator function. The K × K matrices

Γn are correlation matrices (symmetric, PSD, ones on the diagonal, off-diagonal elements
between -1 and 1) with Γn 6= Γn′ for n 6= n′. The probability law governing ∆t is defined
by its transition probability matrix, denoted by Π . The probability of going from regime
i in period t to regime j in period t + 1 is denoted by πi,j and the limiting probability of
being in regime n is πn. The element on row j and column i of Π is πi,j . We make the
standard assumptions on the Markov chain [aperiodic, irreducible and ergodic. See Ross
(1993, Chapter 4)]2.

2The transition probabilities could be a function of weakly exogenous variables, as in by Diebold, Lee,
and Weinbach (1994). This could be an interesting extension but we do not pursue it in this work. It could
be one way of allowing the variances and correlations to move jointly. Feasibility of this extension will be
briefly discussed in Section 3.2.
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Beside its very intuitive interpretation, this model has many appealing properties. It
is easy to impose that Γt is a correlation matrix because we only have to impose it for
every Γn. Imposing that the diagonal elements are equal to one and that the off-diagonal
elements are in [−1, 1] does not guarantee that Γn is PSD. One way to impose that Γn will
be a correlation matrix is to take its Choleski decomposition, i.e. Γn = PnP

′
n where Pn

is a lower triangular matrix, and to impose constraints on Pn so that we get ones on the
diagonal. These constraints will automatically give off-diagonal elements between −1 and
1. Consider a trivariate example. In this case, the Choleski decomposition gives:

Γ =




p2
1,1 p1,1 p2,1 p1,1 p3,1

p1,1 p2,1 p2
2,1 + p2

2,2 p2,1 p3,1 + p2,2 p3,2

p1,1 p3,1 p2,1 p3,1 + p2,2 p3,2 p2
3,1 + p2

3,2 + p2
3,3


 .

Imposing the additional constraint that the elements on the diagonal Pn are positive, the
restrictions Γj,j = 1, for j = 1, . . . , K, becomes

pj,j =

√√√√1−
j−1∑

i=1

p2
j,i (j = 1, . . . , K) (2.5)

where the sum is zero for j = 1.
We could think that estimation of the RSDC model would be complicated by the possi-

bly high number of parameters coming from each Γn. Fortunately we will see later on that
we can use the EM algorithm [Dempster, Laird, and Rubin (1977)] as presented in Hamil-
ton (1994, chapter 22) so that increasing the number of time series, to which the model is
applied will not complicate the estimation.

This specification has three additional interesting properties. The first is that because
this model for the correlations is basically linear due to the Markov chain we are able
to compute multi-step ahead conditional expectations of the correlation matrix. Also, if
we use an appropriate model for the standard deviations, we will also be able to perform
these computations for the whole variance matrix. We present such a model in Section
2.3. This is in contrast to the models of Engle (2002) and Tse and Tsui (2002) where the
rescaling that is used to keep the correlations between -1 and 1 introduces non-linearities
that forbid the computation of multi-step ahead conditional expectations. It is unfortunate
because one reason why we study volatility is to be able to forecast it. The second property
comes from the Markov chain. If there is some general form of persistence in the chain
(high probability of staying in a given regime for more than one period), then this will
lead to smooth time-varying correlations. This could have important impacts namely for
the computation of VaR and dynamic portfolio allocation because the benefits of portfolio
diversification would be less volatile. The third is that by having a regime switching for the
correlations, the variances and covariances are not bounded which is the case when they
are the ones following a regime switching [e.g. see Geweke and Amisano (2001)]
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An alternative way of modelling dynamic correlations we mentioned above is the use
of multivariate GARCH models as in Engle (2002) and Tse and Tsui (2002). For example,
in Engle (2002), the conditional correlation matrix Γt follows

Γ̃t = (1−
q∑

i=1

ai −
p∑

j=1

bj)Γ +

q∑

i=1

ai(Ũt−iŨ
′
t−i) +

p∑

j=1

bjΓ̃t−j, (2.6)

Γt = D−1
t Γ̃tD

−1
t (2.7)

where Dt is a diagonal matrix with
√
Γ̃i,i,t on row i and column i, and ai and bj are scalars.

Since a correlation matrix must have ones on the diagonal and off-diagonal elements be-
tween -1 and 1, we must rescale the correlation matrix [equation (2.7)] because Ũt−iŨ ′t−i is
not constrained to have elements between -1 and 1. The matrix Γ gives the unconditional
value of the correlation matrix (the correlation matrix of the CCC model). The theoretical
and empirical properties of this model are developed in Engle and Sheppard (2001).

Regime switching has been often employed to model univariate heteroskedastic time
series. The most straightforward approach is to have constant variance (and mean) in each
regime, e.g. see Garcia and Perron (1996). This model can be generalized by combining
regime switching and GARCH models:

σ2
t = ω(∆t) + α(∆t)y

2
t−1 + β(∆t)σ

2
t−1.

Recursive substitution shows that σ2
t depends on the entire history of ∆t. For a sample

of length T , the evaluation of the likelihood would require the integration over all the
NT possible paths, which cannot be done for meaningful sample sizes. One solution to
this problem is to use an ARCH(p) model instead of a GARCH model [see Cai (1994),
Hamilton and Sumsel (1994)]. A second solution is to modify the GARCH dynamic by
assuming that σ2

t is a function of a weighted sum of the past variances over the possible
regimes:

σ2
t = ω(∆t) + α1(∆t)y

2
t−1 + β1(∆t)σ̃

2
t−1

where σ̃2
t−1 =

∑N
n=1 µt−1(n)σ2

t−1(∆t−1 = n). Different weights are given in Gray (1996),
Dueker (1997) and Klaassen (2002). A third solution proposed by Haas, Mittnik, and
Paolella (2003)) is to have N GARCH equations evolving in parallel according to different
sets of parameters. The regime switching is then over the possible N values of σ2

t . A final
solution is to use linear representations for powers of y2

t [see Francq and Zakoïan (2004)].
These models have been generalized to bivariate time series. In Edwards and Susmel

(2001, 2003), the authors uses the decomposition in (2.2) and assume that the variances are
following a regime switching ARCH model as in Hamilton and Sumsel (1994). The cor-
relation is constant within each regime associated to one of the variances. Two additional
multivariate generalization are presented in Ang and Chen (2002). The first is a mixture
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of multivariate Normal distribution, similar to the model employed in Garcia and Perron
(1996). The second is a direct generalization of Gray (1996) where the GARCH equation
has a BEKK representation.

We see that the model presented in this work is a combination of a mixture model for
the correlation matrix (instead of the variance) and the usual GARCH-type models to allow
interesting dynamics for the variances and covariances. An alternative way of introducing
a regime switching for the correlations which would be a generalization of Gray (1996)
would be to let the a, b and Γ parameters in DCC equation (2.6) be a function of the
regimes.

An interesting question is whether models with regime switching for the variances and
models with regime switching for the correlations can be distinguished? We should be
able to differentiate them. Since the correlation between yi,t and yi,t is always 1, a regime
switching model for the correlations will not introduce a regime switching for the vari-
ances. On the other hand, if the regime switching is only for the variances and we have the
decomposition in (2.2), then dividing the series by their standard deviations should wash
out the regime switching (we would not observe any regime switching dynamic across pairs
of series divided by their standard deviations). We could also envision a model where both
the standard deviations and the correlations are driven by a regime switching.

2.2. A parsimonious model
We next present a restricted version of the general regime switching model which will have
a reduced number of parameters and will remain easy to estimate. For the matrix Γt we
propose the following form:

Γt = Γλ(∆t) + IK(1− λ(∆t)) (2.8)

where Γ is a fixed correlation matrix, IK is a K × K identity matrix, λ(∆t) ∈ [0, 1] is a
univariate random process governed by an unobserved Markov chain process ∆t that can
take N possible values (∆t = 1, 2, . . . , N ) and is independent of Ut. The probability law
governing ∆t is defined by its transition probability matrix, denoted by Π .

The correlation matrix at time t is a weighted average of two extreme states of the
world. In one state, the returns are uncorrelated [λ(∆t) = 0] and in the other the returns
are (highly) correlated [λ(∆t) = 1]. We then have regimes of generally higher or lower
correlations and the changes across correlations in a given regime are proportional. The
variable λ(∆t) can be related to the notion of common features and factor models [Engle
and Susmel (1993), Bollerslev and Engle (1993), King, Sentana, and Wadhwani (1994),
Diebold and Nerlove (1989), Engle, Ng, and Rothschild (1990), Ng, Engle, and Rothschild
(1992)] where the factor affects the variance matrix instead of the correlation matrix.

Note that for the off-diagonal elements only the product of Γ and λ can be identified
(by construction the diagonal elements of Γt are equal to 1). To solve this identification
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problem we can consider two natural sets of constraints. The first is:

λ(1) = 1, λ(1) > λ(2), . . . , λ(N − 1) > λ(N), (2.9)

In this case, fixing one of the λ(n) to be one identifies the product of Γ and λ. We also
restrict the λ(n)s to be a decreasing sequence to remove the possibility of relabelling regime
i as regime j and vice versa. An alternative identification assumption is:

max
i6=j
|Γi,j| = 1 with 1 > λ(1), λ(1) > λ(2), . . . , λ(N − 1) > λ(N). (2.10)

In this case, instead of fixing the highest value of λ(n) to be one, we impose this restriction
on an off-diagonal element of Γ . The second identification scheme does not impose that
one correlation is equal to 1 or -1 because we multiply Γ by λ(∆t). Depending on the
estimation scheme that we use, one of the two sets of constraints will be more appropriate.

The assumption λ(∆t) ∈ [0, 1] can be very restrictive. It is tempting to allow λ(∆t) to
take negative values to allow the correlations to change sign, which might happen in periods
of market distress for example. However we don’t have a result for a lower bound on λ(∆t)
that would guarantee that Γt is PSD. To understand the problem, consider the correlation
matrix of a trivariate time series. If all the correlations are 0.99 then the correlation matrix
is PSD; if all the correlations are −0.99, then it will not be PSD. We see that a lower bound
on λ(∆t) would depend on Γ . In empirical applications, negative values for λ(∆t) could
be allowed if we instead impose during the maximization that Γt is PSD.

2.3. Univariate volatility models
To complete the RSDC model we have to specify the dynamic for the standard deviations.
The most common one for the volatility of univariate processes is certainly the GARCH
model of Bollerslev (1986) where the conditional variance at time t, s2

t , is a linear function
of past squared innovations and past conditional variances:

s2
t = ω +

q∑

i=1

αiy
2
t−i +

p∑

j=1

βjs
2
t−j. (2.11)

We should notice that our RSDC model is not written in terms of variances but in terms
of standard deviations; a covariance is a correlation times the standard deviations. By using
a model such as the GARCH for the variance, the covariance becomes the product of a
correlation and the square-root of the product of two variances. The square-root introduces
non-linearities that will prohibit analytic computation of conditional expectations.

One model for the volatility of univariate time series that would not have this problem
is the GARCH in absolute innovations of Taylor (1986) and Schwert (1989). This class
of model is also referred to as ARMACH process in Taylor (1986). In these models the

7



conditional standard deviations follows:

st = ω +

q∑

i=1

α̃i|yt−i|+
p∑

j=1

βjst−j (2.12)

with α̃i = αi/E|ũt|. The conditional standard deviations (instead of the conditional vari-
ances) are a recursive function of absolute value of past innovations (instead of squared
innovations).

There are numerous reasons why a volatility model based on absolute values instead of
squared innovations could be a good thing. One reason can be linked to the least absolute
deviations versus least squares approach. As argued by Davidian and Carroll (1987), the
model could be more robust if we use the absolute value instead of the squared innovation.
However, we must reckon that the interpretation of an outlier in a volatility model is not
as straightforward as in a regression context. It could also be that the absolute return is
a better measure of risk than the squared return. This question is studied by Granger and
Ding (1993).

Using the ARMACH model for the volatility of univariate time series is not a prerequi-
site of our model. We consider this model because it allows the computation of multi-step
ahead conditional expectations of the variance matrix. If conditional expectations are not
a point of interest or if the ARMACH gives a clearly inferior fit of the data then another
model could be used.

3. Estimation
The estimation of the RSDC model can in theory be done in one step but if we have more
than a few time series the high number of parameters will prohibit us from doing so. For-
tunately, we can use a two-step estimation procedure as in Engle (2002). In a first step,
we can estimate the univariate volatility models and in a second step, we can estimate the
parameters in the correlation matrix conditional on the first step estimates.

In the first subsection we review the one-step estimation and explain how the likelihood
can be evaluated. In the following subsection we present estimation methods which can
greatly ease the estimation problem due to the high number of parameters.

3.1. One-step estimation
To maximize the likelihood we need to evaluate

QL(θ;Y ) =
T∑

t=1

log f(Yt|Yt−1), (3.1)
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where Yt−1 = {Yt−1, Yt−2, . . .} and θ is the vector of parameter values. To do this we
use Hamilton’s filter [Hamilton (1989), Hamilton (1994, chapter 22)] because the Markov
chain∆t is unobserved. Inference on the state of the Markov chain is given by the following
equations:

ξ̂t|t =
(ξ̂t|t−1 � ηt)

1′(ξ̂t|t−1 � ηt)
, (3.2)

ξ̂t+1|t = Πξ̂t|t, (3.3)

ηt =




f(Yt|Yt−1, ∆t = 1;θ)
...

f(Yt|Yt−1, ∆t = N ;θ)


 , (3.4)

where ξ̂t|t is an (N × 1) vector which contains the probability of being in each regime at
time t conditional on the observations up to time t. The (N × 1) vector ξ̂t+1|t gives these
probabilities at time t+ 1 conditional on observations up to time t. The n-th element of the
(N×1) vector ηt is the density of Yt conditional on past observations and being in regime n
at time t, 1 is an (N × 1) vector of 1s, and� denotes elements-by-elements multiplication.
Given a starting value ξ̂1|0 and parameter values θ, one can iterate over (3.2) and (3.3) for
t = 1, . . . , T . The likelihood is obtained as a by-product of this algorithm:

QL(θ) =
T∑

t=1

log
(
1′(ξ̂t|t−1 � ηt)

)
. (3.5)

Smoothing inference on the state of the Markov chain can also be computed using an algo-
rithm developed by Kim (1994). The probability of being in each regime at time t condi-
tional on observations up to time T is given by the following equation:

ξ̂t|T = ξ̂t|t �
{
Π ′
[
ξ̂t+1|T (÷) ξ̂t+1|t

]}
(3.6)

where (÷) denotes element-by-element division. One would start iterating over (3.6) with
t = T , where ξ̂T |T is given by (3.2).

What remains is deciding how to start up the algorithm, i.e. specifying ξ̂1|0. One
approach would be to add this vector to the parameter space and estimate these initial
probabilities. This would add N parameters, p1, . . . , pN ≥ 0 with p1 + · · · + pN = 1.
Another approach would be to use the limiting probabilities (π1, π2, . . . , πN ) of the Markov
process [Ross (1993, Chapter 4)]. These probabilities are the solution of the following
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system of equations:


π1
...
πN


 = Π



π1
...
πN


 ,

N∑

n=1

πn = 1.

In the two-regime case the solution is

π1 =
1− π2,2

(1− π1,1) + (1− π2,2)
; π2 =

1− π1,1

(1− π1,1) + (1− π2,2)
.

In this work both approaches will be used, depending on the estimation method. As we will
see below, when using the EM algorithm there is an advantage in treating ξ1|0 as unknown
parameters. If we are not using the EM algorithm then we will use the limiting probabilities
of the Markov chain because in this case these extra parameters would complicate the
estimation.

In the evaluation of the likelihood, notice that the correlation matrix can only take N
possible values in our model so we only have to invert N times a K × K matrix. When
the number of time series is large this can be a computational advantage over models such
as Engle (2002) and Tse and Tsui (2002) where a different correlation matrix has to be
inverted for every observation.

The (quasi) maximum likelihood estimators are consistent and have the usual asymp-
totic normal distribution. One-step estimation is not really practicable if the number of
time series is more than a few because of the high number of parameters. In this case, we
need an estimation method which does not require non-linear optimization of a number of
parameters which depends on the number of time series. This is what we present in the
next subsection.

3.2. Two-step estimation
We first begin by introducing elements of notation. The complete parameter space θ is split
into θ1 for the parameters in the univariate volatility model and θ2 for the parameters in
the correlation model. We denote by QL1 the likelihood where the correlation matrix is
taken to be an identity matrix:

QL1(θ1;Y ) = −1

2

T∑

t=1

(K log(2π) + 2 log(|St|) + U ′tUt) . (3.7)
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We denote by QL2 the likelihood given θ1 where we have concentrate out St:

QL2(θ2;Y ,θ1) = −1

2

T∑

t=1

(
K log(2π) + log(|Γt|) + U ′tΓ

−1
T Ut

)
. (3.8)

Notice two important features of QL1. Firstly, it is the sum of K univariate log-
likelihood so maximizing it is equivalent to maximizing each univariate log-likelihood sep-
arately. Secondly, the evaluation of these log-likelihood is straightforward since it does not
involve the use of Hamilton’s filter. To maximize QL2 we again have to use Hamilton’s
filter since ∆t is unobserved.

Because the number of parameters in the correlation model grows at a quadratic rate
with the number of time series, direct maximization of QL2 is not practicable if we analyze
more than a few series. To bypass this problem, we present two estimation methods, one
for the non-restricted model (2.4) and one for the restricted model (2.8), which do not rely
on the simultaneous non-linear maximization of all the parameters.

For the non-restricted model, it turns out that maximization of the likelihood QL2 for
the correlation model can be done with the EM algorithm. Using the results of Hamilton
(1994, chapter 22) we know that the MLE estimates of the transition probabilities and the
correlation matrices satisfy the following equations if the initial probabilities ξ̂1|0 are not a
function of Π and Γi:

π̂i,j =

∑T
t=2 P [∆t = j,∆t−1 = i|ÛT ; θ̂2]
∑T

t=2 P
[
∆t−1 = i|ÛT ; θ̂2

] , (3.9)

Γ̂n =

∑T
t=1(ÛtÛ

′
t)P [∆t = n|ÛT ; θ̂2]

∑T
t=1 P [∆t = n|ÛT ; θ̂2]

. (3.10)

Starting with an initial value θ̂
(0)

2 for the vector θ2, we can compute a new vector θ̂
(1)

2

using equations (3.9) and (3.10). We then continue the iteration until the difference between
successive vectors θ̂

(m)

2 and θ̂
(m+1)

2 is small. For the vector of initial probabilities ξ̂1|0, it
is also shown that their MLE estimates are given by the smoothed probabilities of the first
observation [see Hamilton (1994, p. 695)].

Notice that the dimension of Γn (i.e. the number of time series) does not affect the
complexity of the estimation because we only have to take sums in (3.9) and (3.10). We
should also mention that equation (3.10) cannot be used directly because typically it does
not provide correlation matrices, i.e. the elements on the diagonal of Γ̂n are not imposed to
be one. One should rescale these matrices as in equation (2.7) after each iteration so they
are correlation matrices. By doing this transformation, the estimates obtained with these
equations will not exactly be the numerical maximum of the likelihood, but very close to it.
From our experience, a limited number of Newton-type iterations are necessary to obtain
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the exact numerical maximum.
For the restricted model (2.8) we can estimate the matrix Γ , up to a scale factor, by do-

ing correlation targeting. This leaves a number of parameters to be non-linearly estimated
that does not depend on the number of time series. To see how it can be done, we first
compute the unconditional expectation of the correlation matrix:

E[Γt] = Γ
N∑

n=1

λ(n)πn + IK

N∑

n=1

(1− λ(n))πn.

Notice that the off-diagonal elements of E[Γt] are the product of Γ and the scalar∑N
n=1 λ(n)πn.
Therefore, a sample correlation matrix computed with the standardized residuals from

the first step estimation will provide an estimate Γ̂ of Γ up to the scale factor
∑N

n=1 λ(n)πn
for the off-diagonal elements. The scale indetermination can be solved by using the con-
straints on Γ and λ(n) described in equation (2.10): We would divide the off-diagonal
elements of Γ̂ by the highest in absolute value3, so as to get a 1 or −1 off the diagonal,
and we would take λ(1) > 1. This leaves a number of parameters to be non-linearly esti-
mated which increase with the number of regimes, not with the number of time series. The
properties of the two-step estimation are described in the following theorem.

Theorem 3.1 TWO-STEP MAXIMUM LIKELIHOOD ESTIMATION. If the usual assump-
tions for the validity of QMLE are satisfied, then the two-step estimates are consistent and
their asymptotic distribution is:

√
T

([
θ̂1

θ̂2

]
−
[
θ1

θ2

])
−→ N (0;V )

with

V =

[
G−1
θ1
−G−1

θ1
Gθ2M

−1

0 M−1

]
E

[
∂ ln f

∂θ

∂ ln f

∂θ′

] [
G−1
θ1
−G−1

θ1
Gθ2M

−1

0 M−1

]′

where

Gθ1 = E

[
∂g(Y,θ1,θ2)

∂θ1
′

]
; Gθ2 = E

[
∂g(Y,θ1,θ2)

∂θ2
′

]
; M = E

[
∂m(Y,θ2)

∂θ2
′

]

g(Y,θ1,θ2) =
∂ ln f(Yt|Yt−1)

∂θ1

; m(Y,θ2) =
∂ ln f(Yt|Yt−1)

∂θ2

3Consider the following trivariate example. Suppose the correlations computed from the standardized
residuals are Γ1,2 = 0.2, Γ1,3 = 0.4 and Γ2,3 = 0.5. The highest correlation being 0.5, we would take
Γ̂1,2 = 0.2/0.5 = 0.4, Γ̂1,3 = 0.4/0.5 = 0.8 and Γ̂2,3 = 0.5/0.5 = 1, then we would maximize the
likelihood over λ(1), λ(2), λ(3) and Π .
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The matrix V can be consistently estimated by its plug-in estimate.

The proof is in the appendix.
Using the general results summarized in Pagan (1986) on two-step estimation we can

compute efficient estimates from the two-step estimates by doing one step of a Newton-
Raphson estimation of the full likelihood using our two-step estimates as the starting point.
Notice that the computation of these estimates could be costly in computing time when
dealing with very large systems because of the need to compute the matrix of second
derivatives. We nonetheless say that this model does not have a curse of dimensional-
ity by opposition to models for which consistent estimates cannot be obtained in practice
when the number of series is large.

For the restricted model, estimation would not be substantially more complicated if
the transition probabilities are a function of an exogenous variable [see Diebold, Lee, and
Weinbach (1994)] because we could still do correlation targeting. This would not be the
case for the unrestricted model. The two-step estimation presented in equations (3.9) and
(3.10) could not applied if Π is not constant.

The remaining problem in this work is to specify the number of regimes in the Markov
chain. It is well known that testing for the number of regimes in a Markov chain is a hard
problem to tackle. We leave this problem for further work. The asymptotic theory of an
LR test of N + 1 versus N regimes is complicated by the fact that some parameters are
not identified under the null hypothesis and we are testing parameter values that are on
the boundary of the maintained hypothesis [see Andrews (1999, 2001)]. The asymptotic
properties of this test are unknown for the moment, although bounds are given by Davies
(1987). A solution could be the use of Monte Carlo test procedures [see Dufour (2002)].
An alternative procedure could be the specification tests presented in Hamilton (1996).

4. Multi-step ahead conditional expectations
In this section we study one-step and multi-step ahead conditional expectations of the vari-
ance matrix. To compute these we must take the conditional expectations of the product of
a correlation and two standard deviations. We begin by introducing a notation for the ma-
trix Γt that covers both the restricted and unrestricted model. We will denote by Γ (∆t = n)
the value taken by Γt when the chain is in regime n at time t. All the calculus will be pre-
sented for the case where the univariate volatility model is an ARMACH(1,1). Extension
to a more general ARMACH(p,q) would not introduce new difficulties.

One-step ahead conditional expectations are straightforward. Using the fact that tomor-
row’s conditional standard deviations are known, we get

Et[Ht+1] = St+1Γt+1|tSt+1
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where

Γt+1|t =
N∑

n=1

Γ (∆t+1 = n)ξn,t+1|t .

We next sketch how we can compute d-step ahead conditional expectations. To compute
Et[Ht+d] we have to compute elements of the following form, for i, j = 1, 2, . . . , K,

Et[si,t+dsj,t+dΓi,j(∆t+d)].

The ARMACH model described in equation (2.12) can be rewritten in an ARMA-type
representation and for an ARMACH(1,1) we get:

sk,t = ωk + (αk + βk)sk,t−1 + αksk,t−1ṽk,t−1 (4.1)

where

ṽk,t−1 =

( |ũk,t−1|
E|ũk,t−1|

− 1

)
(4.2)

is a martingale difference sequence. Using the fact that the Markov chain is independent of
the process Ut, we can first compute the expectation conditional on the Markov chain and
then integrate it out:

Et[si,t+dsj,t+dΓi,j(∆t+d)] = E∆
t

[
Γi,j(∆t+d)E

U
t [si,t+dsj,t+d|∆]

]

where EU
t [· · · |∆] is the expectation with respect to the innovations Ut conditional on the

present and future values of ∆t, and E∆
t [· · · ] is the expectation with respect to the process

∆t. We can now treat the correlations as known for the computation of EU
t [· · · |∆]. Doing

so, we get a recursive expression that we can solve:

EU
t

[
si,t+dsj,t+d|∆

]
=

d−1∑

l=1

ai,j,t+d−l

(
l−1∏

m=1

bi,j,t+d−m(nd−m)

)

+
d−1∏

m=1

bi,j,t+d−m(nd−m)si,t+1sj,t+1 (4.3)

where
∏l−1

m=1 bi,j,t+d−m(nd−m) is equal to one when l = 1 and where

ai,j,t+d−1 = ωiωj + ωi(αj + βj)aj,t+d−1 + ωj(αi + βi)ai,t+d−1 , (4.4)

ak,t+d = ωk
1− (αk + βk)

d−1

1− (αk + βk)
+ (αk + βk)

d−1sk,t+1 , (4.5)
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bi,j,t+d−1(nd−1) = (αi + βi)(αj + βj) + αiαjfi,j,t+d−1(nd−1) , (4.6)

fi,j,t+d(nd) =
1

(E|ũi,t|E|ũj,t|)
E
[
|ũi,t+d||ũj,t+d|

∣∣∆t+d = nd
]
− 1 . (4.7)

For the expectation in (4.7), if we assume that the Ut’s are jointly Gaussian then, it
has a closed-form solution which involves a hyper-geometric function with the correlation
between ũi,t+d and ũj,t+d, which is known, as an argument4:

fi,j,t+d(nd) =
2
(

(1− Γi,j(nd)2)2 + 2Γi,j(nd)
2HG

(
1
2
, 2, 3

2
,
−Γi,j(nd)2

1−Γi,j(nd)2

))

2
√

1− Γi,j(nd)2
− 1,

HG(a, b, c, z) =
∞∑

k=0

(a)k(b)kz
k

(c)k k!

where (x)k = x(x+ 1) · · · (x+ k).
In the case where Ut is not Gaussian and a closed-form solution cannot be found,

fi,j,t+d(nd) could be evaluated by numerical integration. However this would have to be
done only N times because nd can take only N possible values. In any case, for the form
of the distribution of Ut, a stronger stand must be taken than only saying that it has mean
zero and an identity matrix for the variance.

Keeping in mind that bi,j,t+d−m(nd−m) in equation (4.3) depends on the state of the
Markov chain at time t+ d−m we next integrate out the Markov chain. Doing so we get

Et[si,t+dsj,t+dΓi,j(∆t+d)]

=
d−1∑

l=1

ai,j,t+d−l

N∑

nd=1

Γi,j(nd)
N∑

nd−1=1

bi,j,t+d−1(nd−1)
�
{l>1}πnd−1,nd · · · ×

N∑

n1=1

bi,j,t+1(n1)
�
{l>d−1}πn1,n2 ξn0,t+1|t

+ si,t+1sj,t+1

N∑

nd=1

Γi,j(nd)
N∑

nd−1=1

bi,j,t+d−1(nd−1)πnd−1,nd · · · ×

N∑

n1=1

bi,j,t+1(n1)πn1,n2 ξn0,t+1|t . (4.8)

We are able to compute multi-step ahead conditional expectations of the whole variance
matrix for two reasons. The first is that the conditional expectations of the correlation ma-
trix are given by the summation of a constant times a probability which is linearly updated.

4Computed with Mathematica.
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The second is the use of a model for the conditional standard deviation (ARMACH) instead
of the variance. Note that the use of the ARMACH model is not required. If another uni-
variate model for the conditional volatility is obviously better and if analytic computation
of multi-step ahead conditional expectations are not of interest then this model should be
used.

5. Application to exchange rate data
In this section we apply the RSDC model to the exchange rate dataset used by Harvey,
Ruiz, and Shephard (1994) and Kim, Shephard, and Chib (1998). This dataset contains
four weekdays close exchange rates (Pound, Deutschmark, Yen, Swiss-Franc all against the
U.S. dollar) over the period 1/10/81 to 28/6/85. The number of observation is 946. We first
take 100 times the first difference of the logarithm of each series, minus the sample mean,
before applying directly our variance model (these are our filtered series). We employ
this dataset because Harvey, Ruiz, and Shephard (1994) use it to present a multivariate
stochastic volatility model where they assume that correlations are constant through time.
Using our model we can check if their assumption was reasonable.

To perform the out-of-sample analysis, we used the next 255 observations of the four
series (from 01/07/85 to 02/07/86). These data are taken from Weigend, Huberman, and
Rumelhart (1992). The augmented series are plotted in Figure 1.

The results are generated using Ox version 3.30 on Linux [see Doornik (1999)]. The
estimation results that we present in the various tables are for full one-step maximum like-
lihood estimation.

5.1. RSDC model with two regimes
We first present results for the models with two regimes. Models with three regimes are
studied in the following subsection. The results for the unrestricted and restricted models
are presented in Table 1. We only present the detailed results for the RSDC with ARMACH
since the results for the correlation models do not depend on the univariate model for the
standard deviations. It is an indication that we can replace the traditional GARCH by
the ARMACH or that the correlation models are robust to the specification of the standard
deviations. For the restricted RSDC model we present the correlation matrix in each regime
and their standard deviations computed with the Delta method instead of the matrix Γ and
the value of λ(2) [we use the identification scheme of equation (2.9) when doing the one-
step estimation] so that the results are directly comparable to those of the unrestricted
model.

The results for the univariate volatility models are not reported since they are similar
to the usual findings with this type of financial series. The impact on the log-likelihood of
replacing the ARMACH model by the GARCH model is an increase of about 15 points. An
information criterion such as the BIC would indicate that the GARCH model is much better
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than the ARMACH model. The value of the log-likelihood for all the models estimated in
this work are presented in Table 4.

Looking at the Table 1 and Figure 2 where we have plotted for the unrestricted model
the smoothed probabilities of being in regime one at each point in time, we see that the
correlations appear to be dynamic. Figure 2 shows that we frequently move between both
regimes and there is little uncertainty about the regime we are in at each point in time.
The process is spending more time in regime one and spells in regime two are shorter on
average than in regime one. This is explained by the estimate of the transition probability
matrix, which is very similar across the various models with two regimes. The probability
of being in regime one at time t + 1 conditional on being in regime one at time t, π1,1,
is around 0.93. That means a high level of persistence in the Markov chain because the
probability of spending the next five days in regime one is 0.935 = 0.70. In comparison,
for regime two this probability is 0.675 = 0.14. This illustrates that 0.93 and 0.67, although
both high probabilities, are very different.

As for the value of the correlations in each regime, the results for the restricted model
are similar to those of the unrestricted model. Under the unrestricted model, the magnitude
of all the correlations in regime two is smaller than in regime one. So the hypothesis of the
restricted version of the model that there is an ordering in the magnitude of the correlations
across the different regimes seems plausible. The hypothesis that they all decrease in the
same proportion is less supported by the data. The LR test for this hypothesis is 27.2 and
should follow a Chi-square distribution with five degrees of freedom. The 1 % critical value
being 15.09, we reject the restricted version of the model.

We mentioned at the end of Section 3 that a LR test of one regime versus two does
not asymptotically follow a Chi-square distribution with degrees of freedom equal to the
number of extra parameters. The increase in the likelihood by going from one regime
[which is the CCC model of Bollerslev (1990)] to two regimes is so high, more than 250
points, that we don’t need a formal test to reject the model with one regime. Using the
results of Davies (1987), as applied in Garcia and Perron (1996, Appendix A), we know
that the unknown p-value is less than 0.1%.

We also ran the following Monte Carlo simulation to gauge the loss of efficiency of the
two-step estimation procedure relative to the one-step estimation. We simulated samples of
size 1000 from the unrestricted RSDC model with ARMACH using the estimates in Table
1 as parameter values and estimated the model using the two-step and one-step estimation
methods. We repeated the experiment until we obtained 250 samples for which all the
likelihood maximizations converged.

The loss of efficiency differs across the “types” of parameters. The biggest loss of
efficiency occurs for the ARMACH parameters where the mean absolute deviation (MAD)
for the two-step estimates is 83 % higher than for the one-step estimates (the constant has a
positive bias and the parameter for the lagged standard deviation has a negative bias). The
MAD of the correlation matrix parameters are 45 % higher while the factor λ has a MAD
22 % higher. The MADs of the transition probabilities are almost equal (1.6 % higher).
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5.2. RSDC model with three regimes
We next allow a third regime in the Markov chain. The estimation results for the unre-
stricted and restricted models are presented in Table 2. The increase of the log-likelihood
is about 40 points for the unrestricted model and 50 points for the restricted model, while
the third regime adds respectively eleven and five parameters. Using Davies’ bound, we
know that the p-value of a LR test of two regimes versus three is less than 1% for both
models.

The addition of a third regime now allows the data to identify two regimes with high
correlations and one regime of very low correlations. Again, we have in general the same
ranking of the correlations across the regimes with the unrestricted model. The correlations
in regime one are larger than in regime two, which are larger than in regime three. We can
again test the restricted model versus the unrestricted. In this case, we compare twice the
difference of the likelihood, i.e. 8 for the ARMACH, to a Chi-square with ten degrees of
freedom and doing so we don’t reject the restricted model.

Looking at Figure 3, we see that the Markov chain is spending most of its time in
regimes of high correlations (regime one and two). Very rarely does the chain goes in the
regime of low correlation. Again, we see that most of the time we have a strong idea about
which regime we are in at every point in time as the smoothed probabilities are close to
either zero or one most of the time. Examining more closely the correlation matrix for each
regime, the smoothed probabilities and the smoothed correlations in Figure 4, we see that
with a third regime, the Markov chain is beginning to identify what could be outliers5. The
chain is going rarely in a regime which is very different from the others. This could be seen
as an indicator that three regimes is enough.

5.3. DCC model
To evaluate the relative performance of our model to fit the data we estimate the DCC
model of Engle (2002), as presented in Section 2.1, taking p = 1 and q = 1. The results for
the model with ARMACH models for the standard deviations are in Table 3 (the results are
again robust to the univariate volatility model). We report the results for the full one-step
maximum likelihood estimation.

What is interesting is to compare the log-likelihood of the different models (all the
results are in Table 4). There is a big difference in the level of the log-likelihood between
the RSDC model and the DCC model. For our restricted model with two regimes (and
GARCH model) the log-likelihood is 100 points higher than the DCC-GARCH while the
regime switching model has only one more parameter. The difference in the log-likelihood
is 114.5 points between the unrestricted RSDC model with two regimes and the DCC-
GARCH at the cost of seven additional parameters.

Because our regime switching model and the DCC model are not nested we cannot

5An event study cannot explain most of the periods when we are in the third regime of low correlations.
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perform a likelihood ratio test to verify if the increase in the likelihood is significant. One
valid test for testing non-nested models is proposed by Rivers and Vuong (2002, Section
4). With this test, we reject at the 10% level6 the hypothesis that the DCC model is as close
to the true model as the RSDC model. Another approach for choosing one model over the
other could be the use of information criteria. Ultimately, we are not interested in rejecting
a model. A better solution would be to combine the forecasts from these different models.

Another interesting comparison is the correlations extracted from both models. If we
compare the smoothed correlations from the unrestricted RSDC model (Figure 4) with the
correlations from the DCC (Figure 5), we see that the correlations are generally smoother
with the switching regime model. One interesting implication of smoother patterns for
the correlations is for the computation of VaR and portfolio allocation. If the time-varying
correlations are smoother, then the gain from portfolio diversification will also be smoother
which might imply a smoother pattern for the VaR and portfolio weights.

It might be intriguing that the regime switching gives a higher value for the likelihood
than the DCC because both models imply a VARMA dynamic for the outer-product of the
standardized innovations. The DCC equation (2.6) can be rewritten as

vech(ŨtŨ
′
t) = Γ̄1 +

max(p,q)∑

i=1

(ai + bi)vech(Ũt−iŨ
′
t−i) + Vt −

p∑

j=1

bjVt−j

where Vt = vech(ŨtŨ
′
t)− vech(Γ̃t). The operator vech stacks in a vector the elements on

and below the diagonal of each column of a matrix. From this equation we see that both
the AR and MA operators are scalar.

The VARMA representation of the regime switching model for the correlations pre-
sented in this work is derived in Dufour and Pelletier (2003):

N−1∏

n=1

(1− en L)vech(ŨtŨ
′
t) = Γ̄2 + Vt +

N−1∑

n=1

BnVt−n

with Vt a white noise process and the ens are the eigenvalues of the transition matrix differ-
ent than 1. The matrices of parameters Bn are function of the correlation matrices and the
transition matrix. From this, we see that one reason why the regime switching model can
be doing better is because the MA operator is not restricted to be scalar.

5.4. Out-of-sample
Out-of-sample evaluation of volatility models are complicated by the fact that the con-
ditional variance matrix is unobserved. We can still construct a proxy. A common and

6No parameter is treated as a nuisance parameter. We use the suggested Newey and West (1987) estimator
for the variance. We tried a wide range of values for the truncation lag in the computation of the variance.
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successful approach is to use cumulative cross-product of intraday returns over the fore-
cast horizon; e.g. see Andersen, Bollerslev, Diebold, and Labys (2001) and Andersen,
Bollerslev, and Lange (1999). Another approach presented in Brandt and Diebold (2004)
combines the daily range for the exchange rate between every pair of currencies and no-
arbitrage conditions. Unfortunately, we don’t have intra-day returns or information on the
range for the ten possible pairs of currencies for the period following our in-sample analy-
sis. The out-of-sample analysis will then be performed with daily returns.

We compute one-day and five-day ahead forecasts of the variance matrix. For the mod-
els which don’t have an analytic expression for the five-day ahead forecasts (DCC model
and models using GARCH for the variances), we assume that the innovations Ut have
a joint Gaussian distribution and compute the expectations using 5000 simulated sample
paths. We also assume a Gaussian distribution for the expectation in (4.7). The parameter
estimates of the different models are updated every 5 days to reduce computation time. We
performed the out-of-sample analysis over 250 days, starting five days after the end of the
in-sample so the first five-day ahead forecast does not overlap with the in-sample.

Denote by Ht+d|t the d-day ahead forecast of the variance matrix. As in Andersen,
Bollerslev, and Lange (1999), we use the following two criteria to compare the quality of
the volatility forecasts:

RMSEd =

(
1

K2

∑

i,j

E
[
(Hi,j,t+d|t − yi,t+dyj,t+d)2

]
)1/2

(5.1)

MADd =
1

K2

∑

i,j

E
∣∣Hi,j,t+d|t − yi,t+dyj,t+d

∣∣ (5.2)

Criteria based on absolute deviations are sometimes preferred because they are more robust
to outliers. To isolate the impact of the correlation model we only present results for models
with ARMACH for the standard deviations, with the exception of the CCC-GARCH so we
can compare the GARCH and ARMACH models.

Table 5 reports estimates of the two criteria for the two horizons. Comparing the results
for the CCC-ARMACH and CCC-GARCH model, we see that for out-of-sample forecasts
the ARMACH is performing better than the GARCH model. As for the correlation models,
according to MAD1, MAD5 and RMSE1 the four regime switching models are better
than the DCC model. For the RMSE5 criterion, all the dynamic correlation models are
about equal. Over this sample period, the model with constant correlations is performing
the best. One puzzling result is that the criteria for five-day ahead forecasts are lower than
for one-day ahead forecasts. This could be an indication that there are some uncaptured
dynamics in the first moment of the series.
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6. Conclusion
In this work we propose a new model for the variance between multiple time series, the
Regime Switching Dynamic Correlation (RSDC) model. We decompose the covariances
into correlations and standard deviations and both the correlations and the standard de-
viations are dynamic. For the correlation matrix, we propose a regime switching model.
It is constant within a regime but different across regimes. The transitions between the
regimes are governed by a Markov chain. This property of constant correlation could have
important impacts, namely for the computation of Value-at-Risk and for dynamic portfolio
allocation. We also present a restricted version of our model where the changes across cor-
relations in a given regime are proportional. This regime switching model can be seen as a
mid-point between the CCC model of Bollerslev (1990) where the correlations are constant
and models such as the DCC model of Engle (2002) where the correlation matrix change
at every point in time.

One appealing feature of this model for the correlations is that when combined with
the ARMACH model [Taylor (1986) and Schwert (1989)] for the conditional standard de-
viations, it allows analytic computation of multi-step ahead conditional expectations of the
whole variance matrix. The ARMACH model is a GARCH-type model for the conditional
standard deviations instead of the conditional variance.

The evaluation of the likelihood is done with Hamilton’s filter because of the unob-
served Markov chain. By decomposing the variance matrix into a diagonal matrix of stan-
dard deviations and a correlation matrix, we can use a two-step estimation procedure as in
Engle (2002). Combining this two-step estimation procedure with either correlation target-
ing (for the restricted model) or the EM algorithm (for the unrestricted model) breaks the
curse of dimensionality, i.e. the number of parameters in every non-linear estimation is not
a function of the number of time series.

An application of this model to four major exchange rate series illustrates its good
behavior. A comparison of our regime switching model with the DCC model of Engle
(2002) shows that our model has a better performance in and out-of-sample. An interesting
aspect of our regime switching model is that we find strong persistence in the Markov
chain, which produces smoother time-varying correlations than the DCC model.

Possible extensions in future work includes the addition of relations between corre-
lations and standard deviations as the work of Andersen, Bollerslev, Diebold, and Labys
(2001) seems to indicate. Identification of the number of regimes in the Markov chain is
also an ongoing research project.
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Appendix

A. Proofs
PROOF OF THEOREM 3.1

Scaling (3.7) by 1/T , the uniform strong law of large numbers implies that a.s. we get

L1 = −1

2
Eθ0

[
K∑

k=1

(
log 2π + 2 log sk,t +

y2
k,t

s2
k,t

)]
(A.1)

where Eθ0 is the expectation with respect to the true density. Similarly, scaling (2.3) by
1/T , a.s. we get

L = −1

2
Eθ0

[
K log 2π + log |Γt|+ 2

K∑

k=1

log sk,t + Ũ ′tΓ
−1
t Ũt

]
(A.2)

If we can show that both sets of first order conditions with respect to θ1 are satisfied
for the same vector of parameters then we can conclude that the estimates from (3.7) will
converge to their true value.

Denoting by θk,j one of the parameters in θ1 that appears in the expression of sk,t, we
can write the first order conditions for L1 as

∂L1

∂θk,j
= Eθ0

[
− 1

sk,t

∂sk,t
∂θk,j

+ ũ2
k,t

1

sk,t

∂sk,t
∂θk,j

]
= 0. (A.3)

While the first order conditions for L are

∂L
∂θk,j

= Eθ0



− 1

sk,t

∂sk,t
∂θk,j

+ Ũ ′tΓ
−1
t




0
...
ũk,t

...
0




1

sk,t

∂sk,t
∂θk,j




= 0 (A.4)

Using the trace operator we can easily see that Ũ ′tΓ
−1
t [0, . . . , ũk,t, . . . , 0]′ is a random

variable with unit mean, just like ũ2
k,t. From this we see that the value of θk,j that will

solve equation (A.4) will also solve equation (A.3). For the rest of the proof see Newey
and McFadden (1994).
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Figure 1: Exchange rate series
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This figure presents the four exchange rate series (Pound, Deutschmark, Yen, Swiss-Franc all
against the U.S. dollar) over the period October 1, 1981 to July 2, 1986. The source of the data
is described at the beginning of Section 5.
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Figure 2: Smoothed probabilities of the two-regime RSDC model
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This figure presents the smoothed probabilities of being in regime 1 (high correlations) for the
unrestricted RSDC model with two regimes and ARMACH models for the standard deviations.
This model is described in Section 2.1. The results are based on the in-sample data, i.e. from
October 1, 1981 to June 28, 1985.

Figure 3: Smoothed probabilities of the three-regime RSDC model

0 100 200 300 400 500 600 700 800 900

0.5

1.0

0 100 200 300 400 500 600 700 800 900

0.5

1.0

0 100 200 300 400 500 600 700 800 900

0.5

1.0

This figure presents the smoothed probabilities of being in each regime for the unrestricted RSDC
model with three regimes and ARMACH models for the standard deviations. This model is de-
scribed in Section 2.1. The results are based on the in-sample data, i.e. from October 1, 1981
to June 28, 1985. The probabilities of being in regime 1 (high correlations), regime 2 (medium
correlations) and regime 3 (low correlation) are respectively in the top, middle and bottom panel.
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Figure 4: Smoothed correlations of the three-regime RSDC model
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This figure presents the smoothed correlations for the restricted RSDC model with three regimes
and ARMACH models for the standard deviations. This model is described in Section 2.1. The
results are based on the in-sample data, i.e. from October 1, 1981 to June 28, 1985.
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Figure 5: Correlations of the DCC model
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This figure presents the correlations for the DCC model with ARMACH models for the standard
deviations. The DCC model is presented in Section 2.1. The results are based on the in-sample data,
i.e. from October 1, 1981 to June 28, 1985.
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Table 1: Parameters estimates of the two-regime RSDC models
Γ1,2 Γ1,3 Γ1,4 Γ2,3 Γ2,4 Γ3,4

Unrestricted
Regime 1 0.8754 0.7656 0.8569 0.8471 0.9510 0.8617

(0.0292) (0.0363) (0.0283) (0.0181) (0.0061) (0.0184)
Regime 2 0.4011 0.1859 0.3255 0.4739 0.5626 0.3250

(0.0958) (0.0996) (0.1275) (0.0843) (0.1871) (0.1666)
Restricted
Regime 1 0.8549 0.7274 0.8347 0.8334 0.9479 0.8477

(0.0233) (0.0400) (0.0241) (0.0227) (0.0069) (0.0221)
Regime 2 0.3362 0.2861 0.3283 0.3278 0.3728 0.3334

(0.1327) (0.1138) (0.1296) (0.1294) (0.1469) (0.1316)
π1,1 π2,2

Unrestricted 0.9291 0.6666
(0.0356) (0.0605)

Restricted 0.9473 0.6682
(0.0254) (0.0635)

This table presents the parameter estimates for the unrestricted and restricted RSDC models with
two regimes and ARMACH models for the standard deviations. The unrestricted model is described
in Section 2.1 while the restricted model is described in Section 2.2. The standard errors are in
parenthesis. The results are based on the in-sample data, i.e. from October 1, 1981 to June 28,
1985.
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Table 2: Parameters estimates of the three-regime RSDC models
Γ1,2 Γ1,3 Γ1,4 Γ2,3 Γ2,4 Γ3,4

Unrestricted
Regime 1 0.9491 0.8497 0.9298 0.8568 0.9251 0.8705

(0.0101) (0.0347) (0.0667) (0.0672) (0.2257) (0.0894)
Regime 2 0.6039 0.4189 0.5598 0.7222 0.8853 0.7238

(0.0697) (0.0831) (0.1307) (0.0381) (0.1341) (0.0590)
Regime 3 0.1850 0.0855 0.0730 0.2048 0.2199 0.0620

(0.2592) (0.0819) (0.1263) (0.0410) (0.0989) (0.0830)
Restricted
Regime 1 0.8775 0.7348 0.8567 0.8550 0.9723 0.8649

(0.0160) (0.0275) (0.0183) (0.0143) (0.0038) (0.0141)
Regime 2 0.7835 0.6561 0.7649 0.7634 0.8682 0.7723

(0.0225) (0.0285) (0.0236) (0.0212) (0.0195) (0.0172)
Regime 3 0.1508 0.1262 0.1472 0.1469 0.1670 0.1486

(0.0692) (0.0581) (0.0676) (0.0674) (0.0766) (0.0682)
π1,2 π1,3 π2,1 π2,3 π3,1 π3,2

Unrestricted 0.1248 0.0177 0.1153 0.0000 0.1271 0.2479
(0.1168) (0.0502) (0.0746) (0.0326) (0.2189) (0.2045)

Restricted 0.0686 0.0054 0.0797 0.0416 0.0305 0.4365
(0.0200) (0.0097) (0.0288) (0.0203) (0.1151) (0.1849)

This table presents the parameter estimates for the unrestricted and restricted RSDC models with
three regimes and ARMACH models for the standard deviations. The unrestricted model is de-
scribed in Section 2.1 while the restricted model is described in Section 2.2. The standard errors are
in parenthesis. The results are based on the in-sample data, i.e. from October 1, 1981 to June 28,
1985.

Table 3: Parameter estimates of the DCC model
Γ1,2 Γ1,3 Γ1,4 Γ2,3 Γ2,4 Γ3,4 a b

0.7554 0.6036 0.6849 0.7255 0.8682 0.6843 0.1088 0.8083
(0.0486) (0.0524) (0.0596) (0.0383) (0.0291) (0.0515) (0.0344) (0.0571)

This table presents the parameter estimates for the DCC model with ARMACH models for the
standard deviations. This model is described in Section 2.1. The standard errors are in parenthesis.
The results are based on the in-sample data, i.e. from October 1, 1981 to June 28, 1985.
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Table 4: Log-likelihood comparison of the various models
Log-likelihood Nb. par.

Unrestricted 3-regime GARCH -1955.3 38
Restricted 3-regime GARCH -1961.3 26
Unrestricted 3-regime ARMACH -1971.7 38
Restricted 3-regime ARMACH -1975.7 26
Unrestricted 2-regime GARCH -1994.7 27
Restricted 2-regime GARCH -2009.0 21
Unrestricted 2-regime ARMACH -2011.6 27
Restricted 2-regime ARMACH -2025.2 21
DCC-GARCH -2109.2 20
DCC-ARMACH -2137.8 20
CCC-GARCH -2272.1 18
CCC-ARMACH -2301.8 18

This table presents the value of the log-likelihood and the number of parameters for all the models
estimated in this work. The rows are sorted in descending order of the log-likelihood value.

Table 5: Forecast criteria for variance matrices
MAD1 MAD5 RMSE1 RMSE5

CCC-ARMACH 0.733 0.719 2.126 2.134
CCC-GARCH 0.756 0.730 2.140 2.136
DCC-ARMACH 0.787 0.785 2.128 2.123
2-regime restricted ARMACH 0.778 0.756 2.118 2.122
3-regime restricted ARMACH 0.776 0.754 2.116 2.122
2-regime unrestricted ARMACH 0.783 0.762 2.118 2.123
3-regime unrestricted ARMACH 0.758 0.741 2.119 2.129

This table presents the forecasted conditional variance matrices with the cross-product of the daily
returns that serve as a proxy for the unobservable true conditional variance matrix. The criteria
RMSE and MAD are described in equation (5.1) and (5.2). The results are based on the out-of-
sample data, i.e. July 8, 1985 to July 2, 1986.
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