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Abstract

Competitive agents extract in continuous time from a commons. Capital
market access allows them to both save and borrow against their extraction
stream. When the commons asset grows more quickly than the privately
stored one, multiple equilibria are found for intermediate commons endow-
ments. One of these has the extinction date and welfare decrease in the
endowment, a resource curse. When the commons asset grows less quickly
than the privately stored one, there is a unique extinction date for each en-
dowment level. In the limit, as marginal extraction costs become constant,
‘jump extinctions’ occur. In cases with multiple equilibria: welfare is in-
creased for low initial stock levels when agents do not have access to capital
markets, but decreased otherwise; and an extraction tax reduces welfare in
the ‘cursed’ equilibrium, increases it in the other finite extinction equilibrium
and expands the set of commons stocks that are never extinguished.
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1 Introduction

In almost any contemporary common access problem, those drawing on the
resource also have access to capital markets. Thus, the proceeds of their
extraction need not be immediately consumed; they may be saved, or even
borrowed against. In spite of this, relatively little attention has been paid
to the effects of capital market access on commons problems. This paper
and a companion (Dutta and Rowat, 2003) seek to redress this. A particular
interest of the present paper is effect of access to capital markets on the
‘extinction’ of the commons.

The simplest commons analyses, dating to Gordon (1954), are static:
free entry allows the rents associated with a natural resource to be competed
away - the ‘tragedy of the commons’. The free entry assumption motivates
competitive rather than strategic solution concepts. The static framework
obviates questions of capital market access.

This is, however, a large dynamic commons literature which concerns
itself with intertemporal issues. To date, the bulk of this has not allowed
capital market access, forcing each agent into intertemporal autarky. See
Mirman (1979); Levhari and Mirman (1980); Benhabib and Radner (1992);
Dutta and Sundaram (1993); Dockner and Sorger (1996); Sorger (1998) for
examples of this literature.! Thus, subject to Inada conditions, it is never
in anybody’s interest to ransack to the point of extinction. Of course, the
commons are often overfished or overgrazed relative to what a benevolent
planner would ordain.?

More recently, the possibility of relating consumption and extraction
through a intertemporal constraint, rather than constraints in each period,
has been explored. As we outline, this has been done in a number of ways,
from simple storage technologies to access to capital markets. The present
paper focusses on this latter possibility. We argue that the possibility of
private storage can remove Inada’s prohibition, thereby allowing extinction,
and possibly even greater inefficiency.

One of the earliest examples of this literature is Sinn (1984). In this,

"Houba, Sneek, and Vardy (2000) present an interesting twist on this literature in their
alternating offers model played concurrently with a fishing game to determine the size of
the pie.

ZExceptions to this result exist. Dutta and Sundaram (1993) present a discrete time
example in which under-exploitation of the commons can occur when trigger strategies
are defined on the state variable; they note that this idea is also found in Fudenberg
and Tirole (1983). Their equilibria remain inefficient. In continuous time, Benhabib
and Radner (1992) find ranges of initial conditions that allow trigger strategies yielding
efficient equilibria. Dockner and Sorger (1996) and Sorger (1998) also derive conditions
under which equilibria are efficient.



oligopolistic firms extract oil from underground reserves, either to sell im-
mediately or store above ground. As firms own private oil fields, which only
interact through seepage, is a problem of oligopolistic competition in the
product market rather than extraction from a commons.

Kremer and Morcom (2000) consider a model with genuine storage. Com-
petitive poachers may kill elephants (an open access resource) and store their
ivory tusks at the opportunity cost. In contrast to the preceding literature
that they cite, they argue that there may be

multiple equilibria for open-access renewable resources used in
the production of storable goods, because if others poach, the
animal will become scarce, and this will increase the price of the
good, making poaching more attractive.

In our model, there is an interval of initial commons stock levels within which
multiple equilibria are found. In particular, there are three, two involving
extinction in finite time; extinction does not occur in the remaining one.

Homans and Wilen (2001) also explore competitive equilibria. A fixed
cost of fishing restricts the number of agents to be finite. Further, access to
the commons is regulated, a framework that they regard as more consistent
with existing fisheries than open-access. Their attention is focussed on the
market for caught fish: fish caught during the fishing season must satisfy a
year’s consumer demand; that sold immediately is sold as fresh, and therefore
at a higher price than that sold after being frozen. They argue that increased
rents in the fishing industry both induce entry and shorten the fishing season,
thus causing more fish to be sold on the inferior market.?

The most recent paper in this literature is Gaudet, Moreaux, and Salant
(2002), which also considers competitive equilibria in a commons environ-
ment with private storage.? Its motivating examples are powerful: very rapid
depletion of underground oil reserves, annual fishing quotas and groundwa-
ter. As average extraction costs become constant, their model captures these
‘jump extinctions’, which are similar to speculative attacks. We also obtain
this result as a limit case of our model: generically, the road to extinction is
smooth in our model.

Two earlier, related papers address considered the possibility not of costly
storage, but of full access to capital markets: yield-bearing storage and costly
borrowing. Tornell and Velasco (1992) ask why capital flows from poor coun-
tries to rich countries. They interpret poor countries as having not just high

3Fish raised in farms are often fed fish pellets (Weiss, 2002). Such farms may therefore
be a way of converting cheaper (frozen) fish into more expensive fresh fish.

4Their suggestion that the earlier literature neglects storage uses an unfortunate ex-
ample given that cows are ruminants.



rates of return, but weak property rights so that domestic returns can be
appropriated by anyone with equal facility; thus, domestic investment is in-
vestment in a commons. Capital flight corresponds to private storage of
pillage from common property in a wealthy country, thus at lower rates of
return. With perfect international capital markets, borrowing and lending
may occur at the same rate.

As there is a small number of interest groups, their solution concept is a
stationary Markov perfect equilibrium.

A sequel, Tornell and Lane (1999), again imagines a country with weak
institutions. Now, the interest groups compete for control over government
revenues, raised by taxing the formal sector. Thus, the formal (high return)
sector becomes a commons; the informal (low return) sector is the medium
for private storage.

These papers suggest a very different interpretation of the commons prob-
lem than the standard one, in which the tragedy is that of the rents’ dissipa-
tion. In their view, the commons is associated with poorly defined property
rights, weak institutions, and poverty.> From this point of view, the tragedy
of these commons may be their persistence, not their extinction. By con-
trast, richer countries have likely enclosed their commons at some point in
the past.

Thus, to the extent that extinction corresponds to enhanced property
rights, it may be a desirable outcome. The standard interpretation of the
tragedy reminds us, though, that this is not assured: the costs of enforcing
property rights may dissipate rents.®

Equilibrium extinction may therefore be seen as voluntary privatization:
a self-enforcing move from common to private property. FEnclosures, gold
rushes or, for that matter, the acquisition of Mesopotamian antiquities by
private collections are all pertinent examples: are such equilibrium alloca-
tions of property rights likely to lead to efficiency?” If so, might this provide
a mechanism for a ‘resource curse’, whereby societies better endowed with
resources may take longer to move to private property? (See Sala-i-Martin
and Subramanian (2003) for a review of this literature.)

A weakness of Tornell and Velasco (1992) and Tornell and Lane (1999) in
this context is that their models rule out the possibility of full extinction or
enclosure. As extraction is costless in their model, an extreme version of the
limit case of Gaudet et al. (2002), one might expect this to occur instantly.

°In the popular debate, this view has been argued forcefully by de Soto (2000).

6 A Washington lawyer advising on investment in Iraq “believes security costs could in
some cases total 25% of a contract’s value” (Richter, 2003).

"In a twist on the usual story, dogs, which allowed themselves to be enclosed by us, are
abundant while wolves, which did not, are not.



Even more counter-intuitively, Tornell and Velasco (1992) claim that the
possibility of foreign storage of pillage

puts a floor on the common-access asset’s rate of return and, thus,
a ceiling on the appropriation rate. If this constraint is binding,
interest groups will be forced to reduce their appropriation rate.
This will increase aggregate capital accumulation, ameliorate the
tragedy of the commons, and increase welfare.

To explore these questions further, this paper looks at perhaps the sim-
plest possible representation of the problem, close to the industry standard
on tragedy of the commons, but with capital market access. A model is pre-
sented in Section 2. This closely follows the structure of the models presented
in Tornell and Velasco (1992) and Tornell and Lane (1999), generalising in
two ways. First, extraction may be costly. Second, strategies are not required
to be shares of existing stocks. Without this latter generalisation, extinction
is not technically possible.

While our model is consistent with the interpretations given to high and
low rates of return in both Tornell and Velasco (1992) and Tornell and Lane
(1999), it is also consistent with a third variant: there is only one rate of
return, but the costs of enclosing resources to protect them against expropri-
ation reduce the net rate of return on privately held resources to the lower
rate. Thus, the difference between the high and low rates may be seen as re-
flecting the weakness of property rights. This interpretation is very general,
encompassing situations of both economic and biological growth.

The examples motivating Tornell and Velasco (1992) and Tornell and
Lane (1999) have an illicit flavour to them. While the ability to bank one’s
‘plunder’ seems relatively uncontentious, the possibility of borrowing against
future plunder does seem less plausible. The empirical support for this prac-
tice does seem specialised: Ross (2003, pp. 32-) discusses ‘booty futures’ in
the context of civil wars.

This illicit flavour is unnecessary: a refinery may borrow against its ex-
pected profits, calculated on the assumption that it will be able to discharge
combustion byproducts into the communal atmosphere.

Following Gaudet et al. (2002), Kremer and Morcom (2000) and Homans
and Wilen (2001), the solution concept is a rational expectations equilibrium:
there are no barriers to entry; individuals are small and do not take account
of the impact of their actions on the evolution of aggregate capital stock.
This is introduced in Section 3. (In the companion paper, Dutta and Rowat
(2003), we evaluate the extent to which strategic, subgame perfect equilibria
inherit these extinction properties. We find that they do, even for very small
numbers of agents.)



As noted, we find the Gaudet et al. (2002) ‘jump extinction’ as a special
case. More generally, low initial commons stocks correspond to unique solu-
tions, with extinction in finite time; an intermediate range of initial commons
stock produces the multiple equilibria already mentioned; initial stocks above
this level are never exhausted.

Section 4 compares competitive outcomes with capital market access to
autarkic ones in which competitive agents do not have access to capital mar-
kets. In the example analysed, welfare under autarky is higher for low initial
stock levels. Once commons stocks are sufficient to support multiple extinc-
tion dates, superior welfare can be obtained with capital market access.

Section 5 considers the consequences of an extraction tax; it has the
effect of shrinking the interval of commons stock levels that lead to multiple
extinction dates. This shrinks the domain over which the ‘cursed’ equilibrium
can arise and expands the set of commons stocks that are never extinguished.
Its effect may be reversed, however, when the government imposing the tax
is strong.

Section 6 concludes.

2 The model

Time, indexed by ¢, passes continuously toward an infinite horizon. At every
point in time, a continuum of individuals, indexed by 7 and distributed on
the unit interval with cumulative distribution F', decides on extraction, z; =
{z;(t)}, and consumption, ¢; = {¢;(t)}.

There is a single consumption good, whose stock, k = {k(¢)}, is common
property. It grows at rate a. At each point in time, individuals extract,
in total, (t) = [ x;(t)dF (i) from the commons, storing it as their private
property.® Thus, z; (t) is the (finite) extraction rate at time ¢ of infinitesimal
agents dF (7).

The extraction path, z = {z(t)}, defines the initial value problem

ko (t) = ak (t) — 2 (), k(0) > 0 (1)

whose solution is the path of the capital stock whenever k(t) > 0.

An extinction date is the earliest T > 0, such that £(7") = 0. If lim; o k()
> 0, then T" = oo, which corresponds to non-extinction. Since k(T) = 0 =
z(T) = 0, the capital stock is absorbed at 0 and

k() = max {0, k (0) et — /0 -7 (1) dT} | @)

8This general specification is not generally taken advantage of. We often replace dF (i)
with the uniform dz.



Equation 2 describes the unique solution to initial value problem whenever
x (t) is continuous over [0,7") (Walter, 1998, p.28). Thus, aggregate extrac-
tion is admissible if x (t) is continuous over [0, 7).

It may be seen immediately that restricting extraction rates to be shares
of the commons stock, as in Tornell and Velasco (1992), precludes extinction.
Let x; (t) = o0;k(t) and x(t) = ok(t). Then the solution to equation of
motion 1 is

k (t) = max {0,k (0) e(“*”)t} .

Thus, the capital stock either grows to infinity or asymptotes to zero. This
argument applies regardless of whether the o; are derived competitively or
strategically.

Goods extracted from the commons are presented to capital markets.
If saved, they earn a return of » < a. Equally, future extraction may be
borrowed against, smoothing consumption, at the same rate.

Capital market access enables a decomposition of individuals’ optimiza-
tion problems: instantaneous feasibility constraints on consumption are re-
placed by a single intertemporal budget constraint:

/000 e e (t) —xy () dt <0. (3)

Thus, z;(t) < ¢;(t) implies borrowing against future extraction. The possi-
bility of default is not considered.

It may happen, for r high enough, that individuals’ chosen paths satisfy
z;i(t) > ¢;(t) up to some T. We do not impose this as a constraint on
individuals.

Individuals choose extraction and consumption paths to maximize utility
subject to their budget constraint, 3, and to a feasibility (or non-negativity)
constraint

E(t) =0 = z;(t) = 0. (4)

Their utilities are

i) = [T (U@m - S5 ) ar 5)

where utility and cost functions are

lea x1+'y
Ulc) = , >0 and C(z) = ;
© 20 and  Clo)= 1o

> 0.

9Dockner, Jgrgenson, Long, and Sorger (2000, p. 40, Definition 3.1) use ‘feasible’ in
place of ‘admissible’.



Utility from consumption is concave while extraction costs are convex: U~ <
0,C" > 0. Values of a > 1 yield utility function more concave than the log,
which corresponds to o = 1.

It may seem natural to set v = 0, linear extraction costs. This may
be interpreted as a situation in which there is a competitive market for the
inputs into a CRS extraction function. As we shall see, aggregate extraction
grows exponentially over time. Thus, insofar as this interpretation implies a
labour market, the wages of a fixed supply of labourers may be bid up. This
is consistent with v > 0.

It will be seen that v = 0 produces bang-bang style solutions. Thus, we
treat this case separately from the generic case, in which we assume vy > 0.
Similarly, although techniques can be developed to handle o = 0, we work
with a > 0.

To ensure finite valuations, we impose Uzawa-integrability conditions:

(1—a)yr<p<(l+5)r (U)

The origins of these will become clearer later.
Individuals differ in their costs of extraction or access to common prop-
erty. Thus, 6; > 0; implies ¢ has easier access. Alternatively, individuals may
also be regarded as being indexed by 6; > 0.
A rational expectations equilibrium is described by sequences {k > 0,¢; > 0,z; > 0}
and an extinction time, T, such that k(t) = 0 for all ¢ > T, where

1. individuals choose consumption and extraction paths to maximize util-
ities subject to their budget and feasibility constraints;

2. the evolution of the capital stock is determined by the aggregate ex-
traction path.

The equilibrium is competitive in the standard sense: although individu-
als’ aggregate behaviour influences the economic environment, 7" in this case,
they disregard their individual effects on it. Thus, our agents are extinction
date takers.

In the following, we solve the model for equilibrium, and, in particular,
for extinction dates.

3 Rational equilibria

The assumption that individuals can borrow and lend at rate r allows the
decomposition of their problem of determining extraction and consumption
into two separate problems:



1. the consumption-smoothing problem: choose ¢;(t) given total wealth
Xi(r) = [;7 e a;(t)dt subject to constraint 3; and

2. the effort-smoothing problem: choose x;(t), given the extinction date
T and feasibility constraint, 4.

3.1 The consumption smoothing problem

Agents are viewed as first solving the consumption problem:
m?%(/ e "'U (c; (t)) dt subject to equation 3. (6)
ci(t 0

Defining

Xi(r) = / e "x; (t) dt;
0
facilitates writing the Lagrangian:
00 ; " l1-o 00
L= / e_ptLdt — A {/ e e (t) dt — Xy(r)
0 l-a 0
The ensuing Euler equation is standard:

p—r(1-a)
¢ (t) = - (7)
This is independent of a,~ and 6;. Its constant term is determined by the
constraint. Substitution into the objective function of equation 6 therefore
produces the maximized present value of utility from consumption

(Xz(r)) _a; (8)

11—«

T—py

XZ‘(T‘)B

Up (Xi(r)) =v

where

o= (i) e

The Uzawa finite valuation condition for consumption is p > r (1 — «).
This is trivially satisfied if & > 1 (U (¢) is more concave than log (c)). We
note that

c; (t) = c;(0)e%";

where
r—p
Je = ;
a
is the growth rate of consumption and ¢;(0) is chosen to satisfy (3):
¢i(0) = (r — go) Xi(r). 9)

The Uzawa condition may therefore be expressed as g. < r: consumption
growth is lower than the interest rate.

8



3.2 The effort smoothing problem

The agent’s problem is now to

max Up (/OOO e "y (1) dt) — 9%/000 e PC (z; (t)) dt; (10)

subject to feasibility constraint 4.
When t < T, the ensuing Euler equation yields

i (t) = egt—[

p—r

where g = and k is a positive constant. Evaluating this at ¢ = 0 produces
z; (0) = Kk so that

[ xi(0)est for t<T
xi(t)_{o for tZT}' (11)

This allows the term in z; (t) to be removed from the integral for
0;
Uy exp(=(r = g)t)dt)

Thus, extraction is smooth until the extinction date, T'. More significantly,
the problem of choosing an extraction path is reduced to a choice of z;(0).
Note also that the extraction plan is a function of a: thus, full Fisher sep-
aration of extraction (production) and consumptions plans does not occur.
This is a consequence of v > 0: extraction costs are borne as non-transferable
disutility.

The Uzawa condition for extraction is now ¢ < r. For now, we assume
that a > r as these situations might be expected to produce the most inter-
esting economic behaviour. (When a < r maintaining the commons offers
no benefits.) Thus, for expositional purposes, we concentrate on a > g at
present. Theorem 2 treats the complementary cases as well.

Notice that g = —%gc; thus, for r > p, individuals extract early but
consume late. The r = p case yields ¢ = g. = 0. This is a potentially
important special case (and ‘interest rate equals subjective rate of discount’
is well justified along equilibrium growth paths).

T (O>a+’Y —

V. (12)

9



Notice also that an expression for extraction as a function of capital stock
may now be written. By equations 2 and 11,

2(0)

k(t) = e k(O -

(e(g—a)t _ 1)

Thus, when g # a, extraction cannot be expressed as a linear function of
capital stock.!®

3.3 Characterising equilibrium

Define the function

O, (T) = /0 exp () dr — L= exRnT)

n

for n # 0 and T > 0. Notice that Q, (T) increases with 7" and decreases
with n. This allows simplification of equation 12 to
(Qr—y(T))o

Integrating over agents then produces the first fundamental equation:
the effect of anticipated extinction on extraction:

x(0) = %; A
W (Qr—g(T7)) > W

z;(0) = (13)

1
where p = yat [6777dF (7). This equation gives us a map A : T — z(0),
monotone decreasing.

We know that z(0) determines the entire path of extractions. We now
obtain the second fundamental equation: the impact of extraction
on the possible extinction date of common property. As extinction occurs at
the lowest 7" such that k(7') = 0, it represents a zero of equation 2:

T
k (0) e“T:/ e T (1) dr.
0

Thus, by equation 11 and integration over agents,

k(0) =z (0) /OT e~ @97 qr, (14)

19Tn Tornell and Velasco (1992), extraction is assumed to be a linear function of capital
stock; their equilibrium concept is different than that here.
UWhen n =0,Q, (T) =T.

10



The Uzawa extraction condition ensures that r > ¢; thus a > g follows.

Therefore T
k(0 1 —e 079 1
o S
z (0) a—g a—g
This expression reaches its upper bound as T" — oco. Therefore T" implicitly
solves,

(D

Qu_y(T) = min { k(0) 1 } |

2(0) a—g

This equation gives us a map I : z(0) — T, also monotone non-increasing.
Here a low level of initial z(0) guarantees the perpetuation of common prop-
erty but a level higher than (a — ¢)k(0) results in extinction in finite time.

The discussion above tells us the likely source of multiple equilibrium
in extinction times. Both maps are decreasing: individuals choose to ex-
tract more if they believe that the commons will disappear soon; and higher
extraction rates speed up extinction.

To formalise the preceding discussion, define

Qa—(t)
[Qr—g()] 77

and ¥, = limy_o, U(t), " = max; V().

w(t)

(15)

Theorem 1. There exist 0 < kp < kg < oo such that the following state-
ments are true. Given intervals Iy, = [0,kr), Iy = (kp,kg), and Iy =

(l{?H, OO) N
1. k(0) € I, implies unique equilibrium with finite extinction,

2. k(0) € I implies multiple equilibria, one with non-extinction and two
with finite extinction;

3. k(0) € Iy implies unique equilibrium without extinction,;
4. k(0) = kp = ky implies a unique equilibrium with non-extinction,

5. k(0) = either kr or ky, distinct, implies a unique equilibrium with
extinction, and a unique equilibrium with non-extinction.

The following lemmata are used to prove the theorem:

Lemma 1. lim; o ¥(¢) =0.

11



Proof. As Q,(0) = 0, assessing ¥(0) requires use of I'Hopital’s rule: dif-
ferentiating the numerator produces 1, while doing so to the denominator

produces

ol 1
r— O 7&+W _(T_g)o = —.
] I Rl :

«

]

Lemma 2. When the Uzawa extraction condition holds and a > ¢,0 < ¢, <
00.

Proof. By definition, lim; .., Q,(t) = % when n > 0.'2 Under the conditions
of the lemma,

(r—g)=
Y, = . (16)
a—4g
The Uzawa extraction condition ensures that the numerator is strictly posi-
tive. When a > g, the denominator is as well, ensuring the results. O
Lemma 3. An equilibrium with finite extinction time T satisfies W (T) =
k(0)
o
Proof. Equations A and I, with Q,_, (') = %, are satisfied in equilibrium.
The result follows by definition 15. O]
Lemma 4. An equilibrium with non-extinction exists iff
4 < MO

o
Proof. Assume that v, < @ corresponds to a T' = oo equilibrium. There-
fore, by definition,

@ > Qa—g (Oo)a
e [Qrg (00)]o
= Qq_y () xT) by equation A;

so that rearrangement produces

k (0) 1
— > Qa g (00) = ;
which satisfies equation I. Thus, the conditions for equilibrium are satisfied.
By contrast, if ¢, > @, the final inequality above does not satisfy
equation I. ]

12\When n < 0 the limit is infinite.

12



Lemma 5. For U (t) to be strictly quasiconcave, either of the following are
sufficient:

1. a#g;

2. o> 0 and the Uzawa extraction condition holds.

Proof. Define

dIn W (t) a—g a r—g
D(t) = = — . 1
=3 “di -1 aryerai-1 an
Therefore ) )
D/(t):— (a_g) o (T—g)

lela=0t — 1> a+7 [etr—at — 1>

By I'Hopital’s rule, when @ = g or r = g, the whole term in which it is
contained is zero. Thus, the stated conditions of the lemma suffice to ensure
that either the first or second term of D’ (t) is negative.

If either term is non-zero, the whole expression is strictly negative. This
suffices for In W (¢) to be strictly concave and, thus, for U (¢) to be strictly
quasiconcave. ]

Now prove the Theorem:

Proof. When k (0) € I, k(0) > 0 and v, > @. Lemmata 1 and 2 and the

continuity of W (¢) ensure that there is a single finite 7" such that ¥ (T") = @.
By Lemma 3, this implies a unique equilibrium with finite extinction date.
As the inequality in 1), is the reverse of the necessary and sufficient condition
in Lemma 4, there are no equilibria with infinite extinction dates.

Now consider k(0) € Iny = . < @ < 9*. The first of these ensures,
by Lemma 4, the existence of an equilibrium with an infinite extinction date.
For the second inequality to hold, it must be that ¢, < ¢*. By the continuity
of W (t) and the definition of ¢*, there are two finite 7" such that ¥ (7)) =

@ < 1*. By Lemma 3, these are equilibria with finite extinction times.

When £ (0) € Iy, @ > 1)*. Thus, by Lemma 3, there are no equilibria
with finite extinction times; by Lemma 4, there is one without extinction.

Now consider the degenerate cases. First, k (0) = ky = ky — 2% =
Y, = Y*. By Lemma 3, there is no equilibrium with finite extinction as 1,
is only reached as T' — oo. Lemma 4 is satisfied with equality, producing an
equilibrium without extinction.

Finally, when k; # kg, Lemma 4 is satisfied. Now a single finite T’
satisfies Lemma 3, tangentially when £ (0) = kg. O

13
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T = 00, no extinction

Two finite T"s, one infinite
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Figure 1: Extinction dates when a =~y =1,a =0.1,7 = 0.03

Figure 1 shows an example. Multiplying the horizontal axis by u allows
U (t) to be replaced by k (0), easing interpretation.

To this point, it has been assumed that a > r. While this presents
the most interesting class of cases, its complement contains some canonical
cases. Non-renewable resources, for which a = 0 are the most obvious. These
cases may be analysed using the objects already developed; in some cases,
particular terms will be modified if their arguments are negative instead of
positive.

Theorem 2. When the Uzawa extraction condition holds:
1. Iy, is always non-empty.
2. Iy is non-empty iff a > r.
3. Iy 1s empty when a < g.

Proof. 1. the continuity of ¥ (¢) and W (0) = 0 ensure the result if ¢, > 0.
When a > g, this has already been demonstrated in Lemma 2. When

14



a=g¢gandr>g,

_[orme 7
U(t)=t L — 6_(T_g)t} . (18)
Thus, the Uzawa extraction condition ensures that ¢, = oco. Finally,
when a < g,lim; oo Qu—y (1) = 00; as limy_oo Qr—g4 () , ¥ is again infi-
nite.

. Sufficient conditions for the existence of I, are that ¥ (¢t) = 0 for a
finite ¢ and that W (¢) be strictly quasiconcave. Consider all possible
cases.

Under the Uzawa extraction condition, a = g sets

o te_(r_g)t

, B 1
v= Qg (1)]5 {1 a0, 0

}>OVt>O.

Thus, r > a = g suffices for an empty I,.

Now consider a # g. Here

Iy e?! pmat _ @ Qa—g (1) ot
v = Qr_g (1) { a+7y Qg (t) } ' (19)

Thus, a stationary point sets the square bracketed term to zero. Equiv-
alently, it solves

I '} (20)
et —edt  a+vya—gyg

To simplify analysis, define

rt t

et —ed
eat — egt'

(1) =

Thus, £ (t) is continuous for all ¢ > 0 and, by ’'Hopital’s rule, £ (0) =
~—9. As this is greater in absolute value than the right hand side of
equation 20 for all v > 0, a sufficient condition for an empty I, is that
(a— )€ (1) > OV

Calculation yields

¢ (1) = (r —a) et — (r — g) e +9t 4 (a — g) e(a+g)t' 1)

(eat _ egt)2

When r > a > g, this is positive.
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Now consider 7 > g > a. By Lemma 5, ¥ (¢) is strictly quasicon-
L Je

r—g
number. Its numerator, however, tends to infinity. This, by strict qua-
siconcavity, precludes a maximum in finite t. Thus, I, is empty under

these conditions.

cave. As t — 00, its denominator tends to ( )QM, a positive finite

Now consider a = r > ¢g. In this case, the square bracketed term in
equation 21 is identically zero, so that &' (¢t) = 0Vt. This suffices, from
above, for an empty I,,.

Finally, consider a > r > g, the case considered above. In this case, the
denominator of £ (t) grows more quickly than the numerator, so that
¢ (t) asymptotes to zero as t — co.

3. from the first steps in the proof, ¢, = co when a < g. With the Uzawa
extraction condition, this suffices for an infinite ¢*.
O

The non-extinction equilibrium may be explicitly eliminated by noting
that allowing for a < g replaces equation I with

SR LU SELY

Thus, the final inequality in Lemma 4 requires x (0) = 0. Equation A, in
turn, then requires p = 0, a contradiction by definition of x4 and v.

Now consider the limit case in which v — 0. This seems to correspond
to that studied in Gaudet et al. (2002). In this case, extraction costs reflect
only total extraction, rather than its rate. Thus, pulse extraction is no more
costly than smooth extraction. Thus, “the extraction contest is so fierce that

the common is drained in the instant storage is initiated” (Gaudet et al.,
2002).

Theorem 3 (Gaudet et al. (2002) ‘jump extinction’). The extinction
date, T', goes to zero with .

The first condition includes a = r, the costless storage of Gaudet et al.
(2002).

Proof. Assume that T is finite. Then, under the stated conditions, equations
A and I combine to yield

k(0) Qay(T)
0 Qr_g (T)a+7
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This may be rearranged and rewritten in terms of primitives for

EO) r+ay— pi o = [1 B 6J+aj—pT} [1 B 67(1+7V)T7PT} = ;
B gl

. J.
so that, as lim,_,oy =+,

—k ©) = lim [1 — G_WT] [1 _ e—WT} “aty '
M 70

If T remained positive as v — 0, then the right hand side of the equation
would converge to unity, a contradiction. Thus, T'— 0 as ~ does. Il

Thus, jump extinctions only require that extraction costs become linear.
Unlike Gaudet et al. (2002), there is no condition on the cost of storage. The
difference between these results does not seem reflect the difference between
storage alone and full capital market access: agents are not taking advantage
of their ability to borrow against future income here. Instead, they are
banking and saving it all initially.

4 The commons without capital markets

This section compares the RE equilibria with capital market access to those
without such access.

When individuals do not have access to capital markets, their consump-
tion and effort smoothing problems are addressed as a unit. Intertemporal
budget constraint 3 is replaced by ¢; (t) = z; (t); feasibility constraint 4 re-
mains the same. Thus, agents maximise

oo
0

Maximising produces

z; (t) _ 6’;‘+W for t<T _ (22)
0 for t>T

ZT; (t)l_a 1 ZT; (t)HJY

dt subject to constraint 4.
l—a 0, 1+~ ) '

Integrating over all agents yields aggregate extraction

__1
() — ) oty for t<T ' 923
() {o for t>T (23)
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The tilde distinguishes this solution from that with capital market access.
As agents are unable to intertemporally smooth, they maximise myopically,
extracting at the instantaneously optimal rate without consideration of the
stock consequences. Thus, extraction is also independent of the initial capital
stock.

With equation of motion 2, direct solution for the extinction date allows

T= % {ln (1] —In [u —avaek (O)} } : (24)

Again, it is assumed that the Uzawa conditions derived earlier hold: the term
in v may not be real valued otherwise.
Thus, T increases in k (0), approaching infinity asymptotically as k (0)

E—. Stocks of k(0) above this level are never depleted. Further, T is

av oY
convex in k (0).

Lemma 6. A necessary condition for z (0) > x (0) is

=
(L+r—=p |lp—(1-a)r]
There are always values of k (0) such that T (0) < x (0).

Proof. By equations A and 23, & (0) > z (0) requires

[Qr—g (T)]" > v.

As the right hand side is constant in k& (0), consider the left hand side. Its
derivative in T is positive, so that a necessary condition for the inequality to
hold is that it hold at

1
r—g

kE(0)=00=>T=00= Q,_4(00) =

The condition follows from the definitions of ¢ and v.
The second part of the lemma follows from noting that

E(0)=0=T=0—Q,—,(0)=0<v;
when the Uzawa consumption condition holds. O

Figure 2 displays an example of the effect of capital market access on ex-
tinction dates.'® The curve referring to capital market access is that in Figure

13Maple code available from the authors upon request.
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Figure 2: Extinction dates varying in k (0) when o = v = 1,p = 0.05,6; =
1Vi,a =0.1,r = 0.03

1. Here, low levels of commons stock are preserved for longer by individuals
without access to capital markets. Above k (0) = p,, an intermediate zone
is entered. In this, the extinction date without capital market access lies
between the two finite extinction dates with capital market access. At the
same time, there is an equilibrium with no extinction when individuals have
access to capital markets.

Finally, above a higher level of k (0), the extinction date without capital
market access is greater than both of the finite dates with access. Again,
though, there is a non-extinction equilibrium with capital market access.

Extinction dates are poor proxies for welfare: late extinction dates are
obtained by low extraction rates. Consider a situation in which the commons
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is exhausted one period earlier under capital market access than it is without
it. In this case, one period of returns at rate a are lost, but the privately
stored extraction in that period then grows at rate r. By contrast, in the
situation without capital market access, the extra period of a growth is not
balanced by future r» growth. Thus, we now compare welfare directly.

The equilibrium welfare obtained by the infinitesimal agents di with ac-
cess to capital markets may be expressed in terms of initial extraction, z; (0)
by substitution with equations 8, 11 and 12:

(25)

SIS

Wl 01 v [QT*!J (T)] (1 . Oé) (1 4 '7) .
As T is not generally a function of & (0), this cannot be expressed as a function
of k£ (0) directly.

The welfare obtained by individuals di without access to capital markets
may also be calculated:

W, = E i «9;% [1—6_’0T]
p(l—a)(d+v)"
e
_ ! it} 0777 |1 — ,ul e al.
p(l—a)(l+7)" p — aveti k (0)

Figure 3 displays the results for the same parameter values as those used
above. The horizontal line extending across the whole domain corresponds
to welfare in the standard autarkic equilibrium. This this has a nice inter-
pretation - all rents are dissipated regardless of initial commons stock - it
here reflects « = 1 and 6, = 1.

The rising curve, becoming a horizontal line, represents welfare with ac-
cess to capital markets. The section of the curve that decreases in k (0)
may be thought of as a resource curse segment: here, the effect is driven by
the expectation that the ‘boon’ of additional & (0) will cause others to in-
crease their extraction of it sufficiently to reduce its extinction date. This, in
turn, causes individuals to increase their own extraction rates. This ‘curse’,
however, still yields higher welfare than does the upward sloping segment.

Comparing the levels of welfare under autarky and with capital market
access, it may be seen that the autarkic equilibrium dominates for all k (0) <
u,. Below that point, agents with capital market access expect such a
rapid extinction that they undertake very rapid, thus expensive, extraction
themselves, banking the proceeds.

Beyond that point, there are equilibria with capital market access that
dominate the autarkic. At the point at which the equilibrium with most
rapid extinction comes to dominate the autarkic, its extinction date is still
much shorter than the autarkic’s, justifying our earlier conjecture.
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Figure 3: Welfare varying in &k (0) when @ = v = 1,p = 0.05,0; = 1Vi,a =
0.1,7 = 0.03

5 Taxation

Suppose now that the government imposes an extraction tax, J, so that
infinitesimal agents di retain 20 = (1 — &) x; after having extracted quantity
X;.

In the case of literal commons, tax revenue earned might be spent pro-
viding public goods. We, however, follow the Tornell and Velasco (1992)
interpretation, and consider institutional commons. Tax revenue, dz, is re-
turned to the commons. Thus, taxes both reduce agents’ productivity from
0; and replenish the commons.

The equations in Section 3 may largely be rewritten in terms of 9 in-
stead of x;. The consumption smoothing problem is subject to the feasibility
constraint

X )= [ el e
0
which replaces X; in subsequent calculations. The consumption calculations

are otherwise unchanged.
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As to extraction, first order condition 12 becomes

5 oty Oiv _ s\l-a,
L (O) - [Qrfg (T5>]a (1 6) )

while the first fundamental equation, A, is now

20 (0) = B (1 — )
O o @E Y

The extraction rate relative to the situation without a tax therefore depends
on two factors: a direct effect, and an indirect effect through the extinction
date.

The second fundamental equation, I, becomes

1 k(0) 1
1—5m(0)7a—g}'

Qu_y (T°) = min {

Thus, for finite 7°, the effect of an extraction tax is to ‘inflate’ k (0). Whether

this increases or decreases the extinction date depends on the equilibrium

selected. -
Theorem 1 goes through when ky, and kj; are replaced by k$ = pa, (1 — )=+

1
and k%, = pp* (1 — 5)0%1 This, in turn, alters the conditions in Lemmata 3
and 4. Otherwise, the remaining results go through unchanged.

As (1 - 5)%;/ < 1 for all § > 0, the effect of an extraction tax is to
reduce toward zero the boundaries of the intervals defined in Theorem 1.
Some initial capital stocks that, without taxation, were in Iy, (resp. Iys) are,
with taxation, in Ip; (resp. Iy). Thus, taxation increases the set of k (0)
over which non-extinction is possible.

The welfare calculations in equation 25 may be altered for

e 1y 1 (1-a)? _l-a

wi—o s L a0 o, ()
-«

1 A=)+ loa

(1 =6) o™ (T 6. (26

P00 o, () )

The effect of taxation appears in both the consumption and extraction terms.

Figure 4 displays the welfare consequences of an extraction tax. This is

set at 0 = .5 for illustrative purposes; the other parameters are as they were

in earlier figures.
Without extinction, welfare is not altered by the tax in this example.
This is a consequence of & = 1: when this holds, the only difference between
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Figure 4: Welfare consequences of § = .5; other parameters as before

equation 26 and equation 25 owes to differing extinction dates. Without
extinction, this example leaves extraction rates unchanged.

The finite extinction equilibrium in which welfare increases in & (0) dom-
inates that without an extraction tax. In this case, the replenishment effect
of the extraction tax seems to dominate its reduced productivity effect.

Finally, in the cursed equilibrium, taxation worsens welfare. This effect
is mediated by hastened extinction. More positively, the domain over which
the cursed equilibrium is possible is reduced by taxation. In the extreme, at
0 =1, the I,; interval disappears, eliminating the cursed equilibrium.

A consumption tax may also be considered using similar techniques. Sup-
posing that the tax that reduces consumption to ¢ = (1 —¢)¢; modifies
equation 1 for '

k(t) =ak(t) —x (t) +ec(t),k(0) > 0.

All the steps taken above may be repeated. As the equation of motion is
now more complicated, so is the new version of equation I.

Savings taxes are more difficult to consider. These would reduce z; — ¢;
when this difference was positive, but not otherwise, introducing a kink into
agents’ problems. Such a tax corresponds most closely to capital controls.
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6 Discussion

We have analysed extraction from a commons when agents have access to
capital markets. Comparison to the standard in the literature, in which
agents do not have such access, shows that the results can differ significantly.
Qualitatively, the difference appears to be largest when the resource in the
commons grows quickly. A further comparison that may be of interest, given
the existing literature, would be to the situation with storage.

The extraction tax considered above may be thought of as decreasing
individuals’ #;, increasing their extraction costs. At the outset of the taxation
discussion, it was noted that a literal understanding of the commons might
not return tax revenue raised to the commons. Under this interpretation,
governments may spend it on public goods of various sorts. Within the
framework of this model, the one parameter that might be influenced by
such expenditures is individuals’ productivity, ;. If tax revenue increased
0;, then the welfare consequences of the tax might be the opposite of those
developed above.

Three generalisations seem fairly natural. First, the specification of the
constant a is, in general, an over-simplification. Biological models typically
allow the growth rates to be functions of the stock (q.v. Dockner and Sorger,
1996; Kremer and Morcom, 2000), a (k) in this case. Implications of this
generalisation are sketched here.

The equations underlying equation A are unchanged. Equation 2, how-
ever, becomes

t
k (t) = max {0, eJo alk(r))dr {k (0) — / e~ Jo alk(e))doy, (1) dT} } )

0

Thus, equation 14 becomes
£ t
k(0)=x (O)/ et~ Jo atk(m)dr gy
0

Integrability requires a new Uzawa extraction condition; the equivalent of
equation I will no longer be a clear expression of Q,—, (T').

A second generalisation involves analysis of strategic agents, as in Tornell
and Velasco (1992) and Tornell and Lane (1999). Strategic analysis requires
calculating optimal strategies for every combination of private savings and
commons stock that can be reached from the problem’s initial conditions.
Thus, the Hamilton-Jacobi-Bellman equation is a PDE in private savings
and commons stock.

A final generalisation involves considering the possibility of default by
borrowing agents.
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