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1 Introduction

Since the pioneering work of Tiebout (1956), economists have recognized that the quality

of public services, especially schools, influence house prices. Many empirical studies have

attempted to discern the extent to which the quality of public education affects house prices.

Initially, researchers estimated hedonic pricing equations (Rosen, 1974). In a simple hedonic

pricing model, a house’s value depends on its comparable neighborhood and school district

characteristics. A house’s comparable characteristics include aspects such as the number

of bedrooms, square feet, etc. Neighborhood characteristics typically include the distance

to the nearest major downtown area, racial composition, and median household income.

Education quality may be proxied by variables such as per-pupil spending, pupil/teacher

ratio, and property taxes, which are usually available at the school district level, or it may

be measured directly by state or local standardized tests scores, which are usually available

at the school level.1

In an influential study, Black (1999) argues that past research estimating hedonic pricing

functions may introduce an upward bias due to neighborhood quality effects that are unac-

counted for in the data. Specifically, she notes that better schools may be associated with

better neighborhoods, which could independently contribute to higher house prices. Black

circumvents this problem by estimating a linear hedonic pricing function using data only

from houses which border the school attendance zone boundaries.2 She rationalizes that,

while test scores make a discrete jump at attendance boundaries, changes in neighborhoods

are more smooth.

Black’s linear specification presupposes that the marginal valuation of worse-than-average

1A number of studies have demonstrated the influence of school quality on performance (e.g., Card and
Krueger, 1992; Betts, 1995). Hanushek (1996), however, argues that input proxies of school district quality
may be inappropriate.

2A school’s attendance zone delimits the geographic area around the school the residents’ children would
have to attend. In this text, we often refer interchangeably to a school’s attendance zone as the school, but
this term should not be confused with school district, which is an administration unit in the public-school
system often comprising several schools. Although schools within the same school district will often have
similar test scores on average, we measure scores at the individual school level.

2



schools is equal to the valuation of better-than-average schools and results in a constant

premium on school quality. Moreover, if school quality is normalized (i.e., expressed in terms

of deviations from the mean), the linear capitalization term implies a penalty (increasing

as quality decreases) for houses in attendance zones of schools performing below average.

Thus, a linear model implies there exists a substantive pecuniary penalty for a really bad

school compared to just a bad school. In this paper, we formulate a simple housing search

model that yields a theoretical nonlinear pricing function.

The nonlinearity in our model reflects two aspects of the market for public education

via housing. First, alternative schooling arrangements (e.g., private school, home schooling,

magnet schools, etc) can provide home buyers with high quality education even if they

choose to live in below average school districts. The existence of these options underlies

our belief that an increasing penalty for below average quality school attendance zones may

be theoretically unappealing. Second, if buyers have positive valuations for education,

they may concentrate their efforts among the highest quality attendance zones, yielding an

increasing market tightness as school quality increases. Thus, buyers may face increased

competition for the highest quality schools and a rapidly increasing premium for houses in

those attendance zones.

Motivated by our theoretical specification, we extend Black’s analysis and examine the

relationship between school quality and house prices in the St. Louis, Missouri, metropolitan

area.3 A previous study by Ridker and Henning (1967) found no evidence of education

capitalization in St. Louis house prices. While their main concern was to determine the

negative effect of air pollution on housing prices, they included a dummy variable which

indicated residents’ attitudes about the quality of the schools (above average, average, and

below average).4

3In this paper, we limit ourselves to school districts in St. Louis County, Missouri, as some variables were
not available for St. Louis City and a large number of schools in the city have programs that allow children
to cross school attendance boundaries.

4Ridker and Henning acknowledge that their study may suffer from a small sample bias that could explain
this seemingly contradictory finding.
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Our goal is to determine the degree of education capitalization in the St. Louis MSA.

We first measure education capitalization employing Black’s methodology of considering only

houses near attendance zone boundaries to control for neighborhood quality. This allows us

to determine the extent to which Black’s results extend to the St. Louis metro area. Then,

we advance Black’s methodology by considering the possibility that education capitalization

affects house prices nonlinearly, as indicated by our theoretical framework.

This paper is organized as follows. Section 2 provides a review of some of the extensive

literature on education capitalization and neighborhood quality effects. Section 3 offers

a motivating model of housing search. Section 4 describes the econometric methodology,

focusing on the differences between Black’s linear boundary fixed effects model and the

nonlinear boundary fixed effects model we propose. Section 5 reviews the data used to

calculate the school premium for real estate. Section 6 presents the results of each of

the econometric specifications. First, we compare the linear model’s estimate of the school

premium to that implied by the nonlinear model. Then, we conduct a number of specification

tests to ascertain which model is preferred. Section 7 concludes.

2 Recent Empirical Literature

Tiebout (1956) argued that people self-sort into a community which meets their public

spending preferences. Thus, unlike the federal government, local governments do not tend

to adapt their policies to current residents, but, rather, maintain set policy patterns. Based

on these policy patterns set by various communities, prospective residents may select the

area which best meets their needs and desires. Property values will, therefore, be determined

by the desired level of public services, particularly school quality, that are capitalized into

real estate prices.

Empirical tests of this degree of capitalization of services into house prices has met dis-

parate levels of success. Although studies using hedonic pricing functions to estimate the
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value of school quality have shown a positive correlation between school quality and house

prices, these results may be biased upwards due to unobservable neighborhood characteris-

tics (see, for example, Bogart and Cromwell, 1997; and Hayes and Taylor, 1996). While

these studies focus on small areas (a county in Ohio or the city of Dallas, respectively),

it is debatable whether or not these areas are small enough to eliminate differences across

neighborhoods.5 Thus, we forgo further discussion of the previous empirical literature on

pure hedonic models of capitalization and, instead, focus on the recent studies attempting

to correct for neighborhood effects.

Black (1999) employed a model augmented with attendance zone boundary dummies,

which were included to disentangle education quality from neighborhood quality. Essen-

tially, these dummy variables account for fixed effects at attendance zone boundaries. We

will henceforth refer to the Black model as the linear boundary fixed effects model (LBFM).

These dummies take advantage of the discrete break in school quality across the attendance

zone boundary and rely on the hypothesis that neighborhoods change more smoothly. Ex-

amining house price and elementary school test score data for large Boston suburbs, Black

finds that controlling for neighborhood effects decreases the capitalization effect by about

half. She discovers that parents are willing to pay 2.5 percent more for a 5 percent increase

in test scores. For her sample, this computes to a $3948 premium at a median house price

of $188,000 (this is approximately half her estimate from the hedonic model of $9280 at the

same house price).

Recently, researchers have used Black’s methodology to control for neighborhood effects.

Figlio and Lucas (2000) find that both test scores and school “letter grades” are capitalized

into housing prices in Gainsville, Florida.6 They report that a letter grade assignment of

“A” has a market value of about seven percent over a “B” grade. They also find that

average test score data significantly affects house prices, in line with Black’s (1999) results.

5Bogart and Cromwell (2000) extended their previous analysis by examining the effect of changes in
school district quality caused by redistricting. They find that redistricting reduces house values by nearly
10 percent.

6Wiemer and Wolkoff (2001) perform a similar analysis for Monroe County, New York.
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Further, they test the short-run effects of changes in school accountability ratings and find

that such changes can significantly affect house prices. Downes and Zabel (2002) employ

an augmented dataset that includes information taken from the American Housing Survey

to further correct for neighborhood effects. Their intention is to uncover which elements

parents take into account in their decision process. Consistent with other studies, they find

that test scores are an important factor to prospective homeowners.

Kane, Staiger, and Samms (2003) use data from Mecklenburg county in North Carolina

and find that school test scores are strongly related to higher house prices. They employ a

version of Black’s identification that includes neighborhood fixed effects at a school district

level. They find that the impact of a school-level standard deviation is approximately 4 to 5

percentage points. They also test for stability of the education and real estate relationship

by examining the short term effect of changes in school accountability ratings. However,

unlike Figlio and Lucas (2000), they find no evidence that revisions to state accountability

ratings had any effect on house prices.

Finally, Bayer, Ferreira, and McMillan (2003) use Black’s method for the San Francisco

Bay Area to find that on average people are willing to pay an additional one percent in house

price when the school quality is increased by five percent. They also include interaction

effects between model variables to estimate the heterogeneous preferences. Their estimates

also indicate significant heterogeneity in preferences for school quality, as increased income

and education considerably increase a household’s willingness to pay more for better school

performance.

3 A Housing Search Model

Previously, models of education capitalization have been extrapolations of the Tiebout sort-

ing model briefly discussed above or heterogeneous utility models of the form proposed by

Bayer, Ferreira, and McMillan (2003). While we acknowledge the explanatory power of
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these types of models, we are interested in investigating a different aspect of the education

capitalization issue.7

The majority of the econometric specifications tested in the empirical literature include

linear capitalization terms and, thus, a linear demand for education. We propose an al-

ternative formulation motivated loosely from the search-theoretic framework of Mortensen

and Pissarides (1994) and Den Haan, Ramey, and Watson (2000). While expansion in

some cities is a possibility, for most MSAs the housing stock is, at least in the short-run,

fixed. Thus, prospective homeowners that have preferences for purchasing properties in high

quality school attendance zones may pay a higher percentage premium than those seeking

housing in lower quality school attendance zones. Moreover, our conjecture is that there

does not exist a penalty for low quality school and that house prices in attendance zones of

schools below a certain quality (perhaps the mean) are based solely on comparables.8

3.1 Setup

In our model, buyers and sellers are matched each period. The value of a matched buyer

and seller is determined by a stochastic housing productivity X drawn from a cumulative

distribution F (x|µ), conditional on school quality µ and the buyer’s preference for education

α ≥ 0.9 We interpret the stochastic housing productivity as the potential (matched) buyer’s

valuation over comparables. Buyers have heterogeneous preferences for education quality µ

reflected in α.

School quality is ex ante observable but the stochastic productivity draw is unobserved

until a match is formed. Thus, buyers with different education valuations can concentrate

their efforts in particular school attendance zones but cannot observe comparables without

7We employ some characteristics of both the sorting model and the heterogenous utility model in our
specification.

8The model we present in this section is highly stylized. It is intended to demonstrate that, under some
conditions, the education premium is kinked. Of course, a more realistic model of housing search can be
developed. We direct the reader to Wheaton (1990) for an example of housing search with mismatched
agents.

9In the theoretical model, school quality µ reflects the deviation from the mean and is normalized
such that −1 ≤ µ ≤ 1.
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participating in the matching market. Buyers and sellers pay a cumulative per period cost

of searching c, regardless of the school attendance zone in which they search. Buyers of type

α choose γ(µ, α), the percentage of time spent searching in school attendance zone quality

µ to maximize their expected returns from search.

Agents are matched via a technology that depends on V (µ), the ratio of sellers in each

school attendance zone, U , the ratio of buyers in the market, and γ(µ, α). The quality-

dependent search technology defines the likelihood that the a prospective buyer is matched

with a house as

λ(µ, α) = F (V (µ), Uγ(µ, α)) , (1)

where
∑

µ γ(µ, α) = 1. The matching technology (1) has the property that an increase in

the number of vacancies increases the likelihood of a match. Conversely, an increase in the

number of searchers in a given school attendance zone (weakly) decreases the likelihood of

a match. This can be produced either by an increase in the overall number of searchers or

an increase in search time in a single attendance zone by individual searchers.

The buyer’s contemporaneous valuation W of a house in an attendance zone with quality

µ with drawn productivity X is

W = (1 + µ)αX, (2)

where α determines the buyer’s preferences for education quality. Education and house

productivity are, therefore, complementary. Agents with no preference for schooling (α = 0),

therefore, have valuation that reflects only their utility from the house’s comparables. The

value of searching in attendance zone µ (either because of entering or reentering the market)

is given by

Λ(µ, α) = β{λ(µ, α)
∫∞

R(µ,α)
[(1 + µ)α x+ Π(x, µ, α)] dF (x|µ)

+λ(µ, α)

[∑
µ

Λ(µ, α)− c

] ∫ R(µ,α)

0
dF (x|µ)

+ [1− λ(µ, α)]

[∑
µ

Λ(µ, α)− c

]
},

(3)
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which depends on the expected future value of a match Π(x, µ, α), the combined value of the

search costs c, and the acceptance threshold R(µ, α).10 The acceptance threshold reflects

the value at which all matches that yield house productivity above R(µ, α) are accepted and

all those below are not. The total value of remaining in the searching pool is simply the

sum of (3) over school qualities, µ.

The Bellman equation that defines the total value of the house conditional on its school

quality is

Π(X,µ, α) = β

{
(1− σ) [(1 + µ)αX + Π(X,µ, α)] + σ

[∑
µ

Λ(µ, α)− c

]}
, (4)

where σ is the probability that the new owner becomes mismatched in the future.11 Our

model differs from a standard labor-search model via the school quality µ that reflects the

education quality.12 The buyer and seller agree on a sale if the house productivity is

sufficiently high. The threshold at which this occurs is determined by (3) and (4) in the

following manner

R(µ, α) + Π(R(µ, α), µ, α) =
∑

µ

Λ(µ, α)− c, (5)

which states that at the acceptance threshold R(µ, α) agents are just indifferent between

completing the transaction and reentering the search pool.

We assume the agents Nash bargain over the match surplus, with the seller having bar-

10The value of searching is equivalent to the total outside option in standard labor-search models. Many
search-theoretic models include a contemporaneous outside option for agents in the search pool. This is
usually interpreted as unemployment benefits in labor search models. Without loss of generality, we forgo
inclusion of that term here.

11A mismatch could be produced by an exogenous life event (e.g., having children) which renders the
current house insufficient for future consumption. We assume that becoming mismatched implies the owner
must sell. A more realistic model might assume that σ forces a redraw of the house productivity. A draw
that is sufficiently low will induce a sale.

12This model is similar in flavor to but still fundamentally different from the segmented labor market
model of Mortenson and Pissarides (1999) in which workers are differentiated based on skill levels.
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gaining weight θ. The match surplus is

S(X,µ, α) = (1 + µ)αX + Π(X,µ, α)−

[∑
µ

Λ(µ, α)− c

]
(6)

and the school-quality conditional sale price is

P (X,µ, α) = θ [(1 + µ)αX + Π(X,µ, α)] . (7)

3.2 The Education Premium

Our primary interest is the premium associated with an increase in the school quality µ.

Therefore, we leave detailed discussion of the model dynamics to future research. For the

sake of discussion, we assume that the house productivity densities are invariant to school

quality (F (x|µ) = F (x) ∀ µ) and we restrict the model to two levels of education valuations

(α = 0 and α > 1), indicating that some agents have no preference for education.13 The

model, then, collapses into two segmented markets: buyers who value education (α > 1)

search only in above-mean school attendance zones, and buyers who do not value educa-

tion (α = 0) search in below-mean school attendance zones. The former occurs because

education-conscious buyers assign lower value to equivalent houses in below-mean school

attendance zones. The latter occurs because sellers have higher outside options in rejecting

offers from α = 0 consumers to wait for education-conscious buyers.14 Thus,

γ(α > 1, µ ≤ 0) = 0

γ(α = 0, µ > 0) = 0.

13Conditioning productivity on school quality allows for potential neighborhood effects that are often
discussed in the empirical literature. However, under certain parameterizations, neighborhood effects can
induce some education-indifferent consumers to concentrate search in high quality school attendance zones.
This leads to a lower but, potentially, unidentifiable education premia. For clarity, we exclude this possibility
without affecting the qualitative nature of the theoretical predictions.

14This assumes reasonable discount rates and search costs.
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In this case, the price paid for houses in below-mean (µ ≤ 0) schools is

P (X,µ, α|α=0) = θ [X + Π(X,µ , α|α=0)] , (8)

which now depends on the school quality only through the proportion of education indifferent

searchers.15 Similarly, the price paid for a house in an above-mean (µ > 0) school attendance

zone is

P (X,µ, α|α>1) = θ [(1 + µ)αX + Π(X,µ, α|α>1)] . (9)

[Figure 1 about here.]

The education premium ψ(X,µ, α) is the increase in price between two houses with the

same productivity draw that results from a change in school quality. We calculate ψ(X,µ, α)

as

ψ(X,µ, α) =
∂P (X,µ, α)

∂µ
. (10)

The restrictions outlined above indicate a clear partition for the range of the education

premium, yielding the following theoretical premium

ψ(X,µ, α) =

 θα (1 + µ)α−1X + ∂Π(X,µ,α)
∂µ

if µ > 0, α > 1

0 if µ ≤ 0, α = 0
. (11)

Since Π(X,µ, α > 1) is increasing in attendance zone quality, the premium for agents that

prefer education is also strictly increasing.

The education premium for a fixed value of X is illustrated in Figure 1. For houses in

better-than-average school attendance zones, increasing the house quality X increases the

magnitude of the nominal premium through the first term in (11). Note, in particular,

that the theoretical education premium is exactly zero for µ ≤ 0 but strictly increasing for

15We assert without proving formally that for µ ≤ 0 and for F (x|µ) = F (x) for all µ, the steady-state
search ratio γ(µ, α = 0) = γ is equal for all µ.

11



µ > 0. Essentially, the heterogeneity in preferences for education causes a jump in the

pricing function at the mean school quality.

In addition to the jump at the mean attendance zone, the model implies a strong theoret-

ical prediction about the nature of the education premium for houses associated with above

mean quality schools. Heterogeneity of preferences leads to strategic interaction between

agents that prefer quality education. This obtains because as more agents search in high

quality attendance zones, the rate at which matches occur decreases. We reflect this in a

decrease in the µ-specific match rate γ(µ, α > 1). However, increasing value of the school

quality also increases the percentage of time that agents search in that district. If the

increase in search rate dominates the strategic interaction, the education premium increases

at an increasing rate. This is reflected as an exponentially increasing premium in Figure 1.

In the next section, we examine whether these theoretical predictions are borne out in the

data.

4 Econometric Methodology

Our intention is to estimate the value added to house prices of higher school performance.

Specifically, we are interested in estimating the dollar value difference in home price a house-

hold pays for a quantified increase in school quality. Below, we discuss three alternative

specifications which include two different identification techniques employed to disentangle

neighborhood quality from school quality.

4.1 Pure Hedonic Pricing

As a benchmark, we introduce a hedonic pricing function in which the sale price is described

as a function of the characteristics of the house, its location, and the value associated with
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each characteristic. A basic hedonic function can be described as follows:

ln(piaj) = κ+X ′
iajβ + Z ′jδ + Y ′

ajψ
H + εiaj, (12)

where piaj is the price of house i in attendance zone a in school district j (within each school

district there are several individual schools which are assigned students by attendance zones).

The vector Xiaj represents the comparable aspects of house i (i.e., the number of bedrooms,

bathrooms, etc.) and Zj is a vector of neighborhood and school district characteristics. The

value Yaj is the quality of the school in attendance district a in school district j (measured

by average test scores). The quantity of interest ψH is the education capitalization premium

calculated with the hedonic pricing model.

While not all of these variables may be important to a buyer himself (someone without

children, for example, will not use the school district), a buyer usually takes into account all

variables which will be important to the resale value of the house. Therefore the house price

will reflect all relevant attributes (i.e., good qualities of the home are capitalized into the

house value even if they are not directly consumable to the current tenant). One potential

problem is that the comparable house characteristics do not indicate the quality of the house

(updates, condition, landscaping, layout, etc.), the quality of the surrounding neighborhood,

and various other factors. The hedonic pricing function attempts to correct for some of

these factors by incorporating the Zj vector.

4.2 Linear Boundary Fixed Effects

The methodology of adding the neighborhood vector Zj outlined in the previous section

may reduce but not entirely account for all of the variation that can be introduced on a

neighborhood level. Suppose that the neighborhood quality gradient is large in absolute

value. This implies that houses a few blocks away from each other can vary a great deal in

atmosphere, and, therefore, in price. This variation can come from distance to amenities,
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mass transit, and thoroughfares (i.e., highway access), proximity to commercial and indus-

trial zoning, single-family housing density, etc. Since the vector Zj is defined over a coarsely

defined area, it may be unable to account for the neighborhood variation that confounds the

estimate of the capitalization premium. As Black points out, many of these factors (though

admittedly not all) can be corrected for by analyzing houses that are geographically close.

Essentially, we identify education effects by weeding out the neighborhood-level variation.

While the hedonic pricing function can accomplish some of this at a school district level,

Black’s refinement is to consider only those houses that are geographically close to the school

district boundary. Therefore, we replace Zj with a full set of pairwise boundary dummies

which indicate whether or not houses share an attendance zone boundary. This yields

ln(piab) = κ+X ′
iabβ +K ′

bφ+ Y ′
aψ

L + εiab, (13)

where Kb is the vector of boundary dummies and ψL is the education premium calculated

with the LBFM. Equation (13), then, is equivalent to calculating differences in house prices

on opposite sides of attendance boundaries while controlling for house characteristics and

relating it to test score information. The boundary dummies allow us to account for any

unobserved neighborhood characteristics of houses on either side of an attendance boundary

because two homes next to each other generally have the same atmosphere.

4.3 Nonlinear Boundary Fixed Effects

As an alternative to the LBFM outlined in the previous section, we consider the possibility

that the capitalization premium is not a constant percentage over the range of school qual-

ities.16 This is accomplished by testing whether the education capitalization term enters

16The model in section 3 makes two predictions. First, there is a kink in the premium. Second,
heterogeneity in α may lead to a rapidly increasing premium for high quality schools. Based on the
illustrative version of the model we present in section 3, one might expect that estimating a kinked linear
premium is warranted. However, the nonlinear model we discuss in this section is more general and serves
as a good approximation to a kinked-linear model.
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nonlinearly. Consider the following pricing equation:

ln(piab) = κ+X ′
iabβ +K ′

bφ+ f(Ya) + εiab, (14)

where f(Ya) represents a potentially nonlinear function of school quality. Suppose the

function f(Ya) is composed of a linear and higher order polynomial terms in school quality.

That is,

f(Ya) = ψ1Ya + ψ2Y
2
a + ψ3Y

3
a (15)

where ψi are scalar parameters.17 We then rewrite (14) as

ln(piab) = κ+X ′
iabβ +K ′

bφ+ ψ1Ya + ψ2Y
2
a + ψ3Y

3
a + εiab. (16)

The specification (16) has a number of advantages over the linear form (13). First, the

rate at which the nominal premium increases is not fixed. This allows us to capture the

effects of increased search in high quality school attendance zones. Second, the linear model

penalizes houses in low quality school attendance zones by valuing them below what would

be predicted by their comparables. Moreover, the penalty increases as the school quality

worsens. This is theoretically unappealing in our framework since agents can choose not

to search in these school attendance zones. Our model implies houses in below threshold

attendance zones receive no premium (and thus no penalty), a possibility that is explicitly

excluded in the linear model.

5 Data

In this analysis we restrict our attention to single family residences and elementary school

attendance zones. Each house represents an observation and its described by variables

17Note that our specification requires that we depart from measuring school quality in terms of test score
points (as in Black, 1999, and others). We adopt the normalized measure of school quality discussed in the
following section.
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reflecting its physical characteristics, the quality of the elementary school that children in

the household would have to attend, and the characteristics of the neighborhood the house

is in.

5.1 Educational Data

We use test scores to assess the quality of schools. For this, we obtained tests scores data

from the Missouri Assessment Program (MAP) for the years 1998 through 2001. Our sample

consists of 121 elementary schools in 15 school districts in St. Louis county.

The MAP test includes a Mathematics section for grades 4, 8, and 10, a Communication

Arts section (which includes a Reading portion) for grades 3, 7, and 11, a Science section

for grades 3, 7, and 10, and a Social Studies section for grades 4, 8, and 11. We focus on

the Math section, but results for the Science and Reading sections are available from the

authors upon request.

Our dataset provides an overall score for each school and year in the sample, called the

MAP Index. The MAP Index is the weighted sum of the percentages of students in each of

five performance bins (Advanced, Proficient, Nearing Proficient, Progressing, and Step 1).18

In our analysis, we determined the MAP index score for each school by averaging the Math

scores available in the period 1998-2001 (although not all schools had a score available for

each year in the period). We then normalized each score in standard deviations from the

sample mean.19

[Table 1 about here.]

18MAP Index = (percent in Step1)*1 + (percent in Progressing)*1.5 + (percent in Nearing Proficient)*2
+ (percent in Proficient)*2.5 + (percent in Advanced)*3

19For the linear model we could have used the raw scores as the measure of quality to compare with other
studies. The nonlinear models, however, can only be reasonably estimated with the standardized school
quality measures.
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5.2 Discussion of summary statistics

5.2.1 Education Variables

Summary statistics for test scores and other education variables are described in Table 1.

The Math test score index, for example, has a mean value of 211.44 points. Essentially all

the schools in our sample have a Math score that lies within 2 standard deviations of the

mean. This table also reports the following school district variables: student/teacher ratio,

expenditures per pupil as of 1998, the fraction of students eligible for free or reduced-price

lunch, and the property tax rate as of 1998.

5.2.2 Real Estate Prices and Housing Comparables

We obtained house price and house characteristics data from First American Real Estate, Inc.

The observations selected correspond to single family residences sold during the 1998-2001

period. Summary statistics for these variables are reported in Table 2. We deflated house

prices to 1998 dollars with a median house price index for the entire St. Louis metropolitan

area.20 The resulting adjusted house price has a mean of $152,473 and a standard deviation of

$166,067; the median house price is $115,324. House characteristics include the total number

of rooms, the number of bedrooms, the number of bathrooms, the lot size, the internal square

footage, the age of the structure, and the number of stories in the house. We also include

the distance to downtown Clayton, MO, a major business area in the St. Louis metro area,

as an additional characteristic. After eliminating from the original dataset observations with

missing or outlier house prices (i.e., outside a bound of 3.5 standard deviations from the

mean unadjusted house price), our sample includes 38,676 single family residences.

For the boundary analysis, we determined the attendance zone for 121 schools in St.

Louis county. For every pair of adjacent schools, we coded a boundary dummy, as in Black

(1999). Finally, we assigned each house within a 0.1 mile buffer to the nearest (and therefore

unique) pairwise boundary dummy. In this restricted sample there are 10,190 single family

20These data were obtained from the National Association of Realtors.
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residences.21

[Table 2 about here.]

6 Empirical Results

6.1 Benchmark Linear Results

In order to provide a benchmark for comparison, we estimate the linear boundary fixed

effects model (13) and present the results in the first column of Table 3. We find that

housing comparables enter the house pricing equation with the expected sign. Increases

in living area, lot size, and the number of rooms increases the price of a house on average.

Conversely, the age of the building—perhaps an indicator of condition—adversely affects the

price.

The key result is the coefficient on the MAP score reported in the first line of Table 3.

We find that, in the LBFM, school quality is a statistically significant contributor to house

prices and enters with the expected sign. Moreover, our estimate of the education premium

implies that a 5 percent increase in the average test scores in a school attendance zone leads

to an increase of 3.5 percent or $5,383 in house prices at the sample median price. This

value is only slightly higher than that estimated by Black.22 We attribute moderate cross

study variation to differences in housing demand and preferences for education across MSAs.

6.2 The Nonlinear Model

[Table 3 about here.]

In addition to the LBFM, we estimate two specifications of the nonlinear boundary-fixed

effects model (14) intended to account for an increasing marginal valuation of school quality.

21Black considers a number of different boundary width ranges and finds no significant differences. Our
sample does not permit wider boundaries as these would encompass some attendance zones almost entirely.

22Black reports a 2.1 percent, or $3,948 at her sample mean, increase in house prices for a 5 percent
increase in test scores.
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We first consider only quadratic terms for school quality (QBFM); then, we examine the

model with cubic terms (CBFM). Results are reported in the second and third columns

of Table 3. In particular, note that the addition of the second order polynomial of school

quality has only a small impact on the linear term. Thus, around the mean, there is little

difference between the premium predicted by both models. However, when considering

school qualities more than one-half of one standard deviation from the mean, the difference

becomes more noticeable. These differences are summarized in Figure 2, where we plot the

estimated premium against school quality for the linear and both nonlinear models, including

the theoretical premium for comparison.

[Figure 2 about here.]

Figure 2 shows that the linear model predicts that houses in below-average quality school

attendance zones must be sold at a discounted price (i.e., below the price that would be

warranted by its comparables). However, this is not the case in the two models that include

higher order polynomial terms. Inclusion of the polynomial terms allows the econometric

model to approximate, in accordance with the model presented earlier, the nonlinearity in

the premium around the mean school quality. Both the square and cubic term models

predict that houses in below-average school zones are not penalized but, as predicted by the

model, sold at prices driven entirely by comparables.

[Table 4 about here.]

Moreover, the LBFM underestimates the premium for high-quality schools. Table 4

summarizes the implied school premium for all three models. For a 5 percent increase in

school quality from the mean, the quadratic and cubic BFMs predict a premium about 42.5

and 29.8 percent higher than the linear model, respectively. At the mean house price, this

is equivalent to $1,733.5 and $1,213.8 respectively.

For above-average schools, the discrepancy is more apparent. The linear model presup-

poses a constant premium of $4,078.4 at the median house price per 5 percent (of the mean
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score) increase in school quality. The nonlinear models, however, allow for an accelerating

premium. The premium for a 5 percent increase in quality at one standard deviation above

the mean school is $7,352.8 for the quadratic model and $7,611.2 for the cubic model.

Finally, Table 4 reports the magnitude of a change in quality for below-average schools.

Symmetry suggests that the linear model predicts a penalty of $4,078.4 at the median house

price per 5 percent decrease in school quality. However, the theoretical model predicts a zero

penalty. Consistent with this prediction, the quadratic and cubic models imply a $597.0

and $255.9 penalty for a 5 percent decrease in quality from one standard deviation below

mean schools.

6.3 Specification Testing

[Table 5 about here.]

We consider a number of specification tests to determine whether the nonlinear model is

preferred.23 As a prelude, we consider the adjusted R2 for the three specifications in Table

5. The explanatory power as computed by the adjusted R2 of each of the specifications is

nearly identical. We note that, while the cubic model generates the model with the highest

likelihood, the estimated parameter on the cubic term in the cubic BFM is not significant

at the 10 percent level.24

Therefore, we consider a battery of likelihood ratio tests to determine the optimal spec-

ification. Table 5 also includes these results. The tests we conduct assess the likelihood

that the zero restrictions on terms in the school premium (15) can be rejected. Tests of all

three models resoundingly reject the null hypothesis of a model with no education premium.

We find that the restriction of no included quadratic or cubic term (ψ2 = ψ3 = 0) is rejected

23We compare the two nonlinear specifications (quadratic and cubic) to the LBFM and a model with no
education effects.

24Surprisingly, for the science test scores (not reported here), tests of the linear model compared to the
null of a model with no school district quality premium, the restricted model cannot be rejected at any
reasonable significance level. This implies that the linear model may, in fact, not be preferable to a model
with no premium.
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at the 1 percent level. However, the restriction of no cubic term (ψ3 = 0) is rejected at only

the 60 percent level. Thus, we find evidence that the preferred model for the education

premium is quadratic.

7 Conclusion

Current empirical models of the value-added of education for house prices are computed with

linear contributions from school quality. Although the magnitude of the influence is arguable,

these models show that the quality of primary school education is positively correlated with

house prices. Recent use of linear boundary fixed effects models have shown that hedonic

pricing models tend to overpredict the premium. However, even these augmented models

have similar implications on the shape of the premium over school quality. Although the

nominal value of the premium rises with school quality, the rate at which the premium

increases is constant–even for houses in very good school attendance zones where the vacancy

rate is low and demand is high. Moreover, the linear model implies an increasing penalty

for increasingly bad schools, implying that homeowners are influenced by small changes in

school quality even if their school is well below the MSA median school quality.

We propose an alternative formulation that accounts for these two possibilities: that very

high quality schools demand an increasing premium and that below-mean schools are ex post

identical as far as calculation of the premium is concerned. We show that not only does the

nonlinear formulation match theoretical predictions from a housing search model, but that it

is preferred by the data over the baseline LBFM and a model with comparables only. This

leads to an underestimation of the education capitalization premium with the LBFM. We

thus conclude that, at least for the St. Louis MSA, the theoretical prediction that housing

prices for worse-than-average schools can be thought of as driven only by comparables while

houses in better-than-average schools garner an increasing premium.
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Figure 1: Theoretical House Price Premium Function
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Figure 2: Implied House Price Premium Function
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Table 1: Summary Statistics: Test Scores and School District variables

Variable Mean Std. Dev. Min. Max.
Math MAP score 211.44 19.44 168.15 250.18
Science MAP score 211.68 22.43 100.00 242.60
Reading MAP score 205.38 30.29 100.00 250.45
Student/Teacher Ratio 16.12 1.87 11.77 18.82
Total Expenditures per Pupil (1998: $1,000s) 8.07 3.08 5.89 18.52
Students with Free/Reduced-Price Lunch 0.29 0.24 0.00 0.74
Property Tax Rate (1998: $1/$1,000) 4.20 0.88 2.66 5.74

MAP scores are measured at 121 schools; other variables are measured at 15 school
Districts.
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Table 2: Summary Statistics: House and Neighborhood Characteristics

Full Sample: N=38676 Boundary Sample: N=10190
House Variables Mean Std. Dev. Mean Std. Dev.

Sale Price (1998) 152,472.46 166,067.13 146,256.43 180,642.80
log of Sale price (1998) 11.65 0.73 11.59 0.74
Number of Bedrooms 2.96 0.84 2.90 0.84
Number of Bathrooms 2.01 0.95 1.95 0.93
Number of Bathrooms (square) 4.97 5.05 4.66 5.04
Age of Building 38.91 20.63 40.72 21.27
Age of Building (square) 1,939.39 1,922.69 2,110.15 2,028.41
Lot Area (sq.ft) 14,752.24 38,342.73 13,610.24 39,203.83
Living Area (sq.ft) 1,160.22 435.07 1,128.93 424.78
Total Number of Rooms 6.38 1.60 6.26 1.57
Distance to Clayton (miles) 6.91 3.66 6.42 3.68
Distance to Clayton (squared mi.) 61.19 61.68 54.76 57.91
Number of Stories 1.24 0.42 1.23 0.41

Census Block Groups: N=674
Neighborhood Variables Mean Std. Dev.

Hispanic population 0.01 0.02
Non-Hispanic population: black 0.22 0.31
Population with less than high school completed 0.14 0.10
Population with a bachelor’s degree 0.20 0.12
Population with a graduate degree 0.13 0.11
Population between 0 and 9 years old 0.13 0.05
Population 65 and over 0.15 0.09
Female-headed households with children 0.12 0.11
Median Household Income (1999: $1,000s) 54.39 27.26
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Table 3: Math Scores: Regressions with Boundary Dummies

LBFM QBFM CBFM

Math MAP std. score 0.06503 0.06338 0.04820
(2.569)** (2.891)*** (1.688)*

Math MAP std. score (square) 0.02693 0.02932
(2.476)** (2.454)**

Math MAP std. score (cube) 0.00484
(0.680)

Number of Bedrooms 0.03732 0.03737 0.03754
(3.887)*** (3.900)*** (3.910)***

Number of Bathrooms 0.10978 0.10929 0.10935
(5.901)*** (5.930)*** (5.941)***

Number of Bathrooms (square) -0.00539 -0.00543 -0.00545
(1.724)* (1.743)* (1.750)*

Age of Building -0.00368 -0.00371 -0.00371
(2.465)** (2.490)** (2.497)**

Age of Building (square) 0.00004 0.00004 0.00004
(2.722)*** (2.743)*** (2.751)***

Lot Area (sq.ft) 0.00000 0.00000 0.00000
(2.433)** (2.436)** (2.433)**

Living Area (sq.ft) 0.00035 0.00035 0.00035
(15.476)*** (15.333)*** (15.334)***

Total Number of Rooms 0.05885 0.05863 0.05856
(7.295)*** (7.249)*** (7.232)***

Number of Stories 0.27659 0.27644 0.27643
(9.416)*** (9.415)*** (9.423)***

Constant 8.54855 8.45106 8.44670
(79.388)*** (83.626)*** (83.506)***

Observations 10190 10190 10190
Adjusted R-squared 0.762 0.763 0.763

Standard errors clustered by school attendance zone.
Robust t−statistics in parentheses; * significant at 10%; ** significant at
5%; *** significant at 1%.
Coefficients for boundary dummies not shown.
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Table 4: Implied House Price Premia from Math Test Scores

Mean house price $152,472.5
Median house price $115,323.8
Mean of Math Score 211.44
St. Dev of Math Score 19.44
∆Ya (5% of mean score) 10.57

LBFM QBFM CBFM
Standardized Scores

Linear Coefficient 0.06503 0.06338 0.04820
Quadratic Coefficient 0.02693 0.02932
Cubic Coefficient 0.00484
Increase score by ∆Ya at Y = 0.0 to: 222.01 222.01 222.01
Percent change in house price 3.54 5.04 4.59
Dollar value at mean house price 5,392.20 7,684.12 6,997.03
Dollar value at median house price 4,078.44 5,811.94 5,292.26
Increase score by ∆Ya at Y = +1.0 to: 241.45 241.45 241.45
Percent change in house price 3.54 6.38 6.60
Dollar value at mean house price 5,392.20 9,721.39 10,063.01
Dollar value at median house price 4,078.44 7,352.85 7,611.24
Decrease score by ∆Ya at Y = −1.0 to: 181.43 181.43 181.43
Percent change in house price -3.54 -0.52 -0.22
Dollar value at mean house price -5,392.20 -789.39 -338.31
Dollar value at median house price -4,078.44 -597.06 -255.88

The percent change in house price is computed as f ′(Y )∆Ya.
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Table 5: Specification Tests on Boundary Fixed Effects. Math
Scores

LBFM QBFM CBFM

Model f(Ya) ψ1Ya ψ1Ya + ψ2Y
2
a ψ1Ya + ψ2Y

2
a + ψ3Y

3
a

Log-Likelihood -4002.32 -3994.90 -3994.55
Adjusted R-squared 0.762 0.763 0.763

Null Hypothesis ψ1 = 0 ψ1 = ψ2 = 0 ψ1 = ψ2 = ψ3 = 0
LR test 22.929 37.783 38.480
Prob > χ2 (0.000) (0.000) (0.000)

Null Hypothesis ψ2 = 0 ψ2 = ψ3 = 0
LR test 14.854 15.551
Prob > χ2 (0.000) (0.000)

Null Hypothesis ψ3 = 0
LR test 0.697
Prob > χ2 (0.404)
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