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We consider log periodogram regression estimation of memory parameter d for non-

stationary long memory time series. Non-stationary long memory processes obtain co-

variance stationarity through wavelet transforms, then the spectral representation at zero

frequency is well de…ned. Thus, we can make use of the statistical inferences developed

in the stationary long memory context for non-stationary long memory time series.

We propose wavelet-based log periodogram regression estimator, which does not de-

pend on data di¤erencing or data tapering to obtain the consistency and asymptotic

normality for non-stationary long memory time series. Asymptotic property of wavelet-

based estimator is derived, in line with Robinson (1995), Hurbich, Deo and Brodsky (1998)

and Andrews and Guggenberger (2003). The convergence rate of mean squared error is

the same as in the stationary case. Simulation studies show that wavelet-based estimator

works reasonably well without using data di¤erencing or data tapering.

KEYWORDS: Non-stationary long memory time series, log periodogram regression,

wavelet transform.
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1. INTRODUCTION

WE CONSIDER LOG PERIODOGRAM (LP) regression estimation of memory param-

eter d for non-stationary long memory time series. While statistical inferences of LP

estimation have been well developed in the stationary case (Robinson (1995), Hurvich,

Deo and Brodsky (1998; HDB), for example), their direct extension to the non-stationary

case raises some problems. In the LP context, it is known that LP estimator is not consis-

tent for d > 1 (Hurbich and Ray (1995)). One can use data di¤erencing or data tapering

to achieve the consistency and asymptotic normality for non-stationary range of d: Such

methods, as mentioned in Shimotsu and Phillips (2002), expose some disadvantages. Data

di¤erencing requires a prior knowledge of the order of integration for the data. Data ta-

pering for LP estimator proposed by Hurbich and Ray (1995) and Velasco (1999) reduces

the bias, but in‡ates the variance. Thus, one can obtain the consistency of LP estimator

at the cost of e¢ciency loss. One way to overcome such problems is using local whittle

estimator by Shimotsu and Phillips (2002).

In this paper, we propose a new way of estimating non-stationary memory parameter

in the LP context. We consider wavelet transform and develop a regression estimator,

which does not depend on data di¤erencing or data tapering. Jensen (1997) also considers

wavelet transform of long memory time series, but in the stationary case, and studies

variance regression to estimate d; proposed by Masry (1993).

It is known that wavelet transform for non-stationary long memory time series obtains

covariance stationarity (Flandrin (1992), Masry (1993), and Kato and Masry (1999), etc.).

While non-stationary long memory processes do not admit valid spectral representation,

wavelet transform of such process has well de…ned spectral representation. Since LP re-

gression estimation sources on the spectral density at zero frequency proposed by Geweke

and Porter-Hudak (1983; GPH), wavelet methods motivate one to make use of the statis-

tical inferences developed in the stationary context for non-stationary long memory time

series.

We derive the asymptotic bias and the variance, in line with Robinson (1995), HDB

and Andrews and Guggenberger (2003; AG). Thus, we show the consistency of wavelet-

based LP regression estimator. We can also obtain the convergence rate of the mean

squared error, which is the same as in the stationary case.
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2. THE MODEL

We consider discrete time series fxt; t = 1;2; ¢ ¢ ¢; ng; observed from fractional Brow-

nian motion (fBm) with the memory parameter d for d 2 (0:5; 1:5): It is non-stationary

Gaussian process with stationary increment of mean-zero and variance ¾2 < 1; with

covariance function

E(XtXs) =
¾2

2
(t2d¡1 + s2d¡1 ¡ jt ¡ sj2d¡1):(1)

If d = 1; then fXtg returns to well known ordinary Brownian motion with variance equal

to ¾2t:

There has been a lot of literature which study wavelet transform for the fBm. (Flandrin

(1992), Masry (1993), and Kato and Masry (1999) to name a few). One interesting …nding

in their works is that the wavelet transform for fBM is covariance stationary. We brie‡y

summarize the known result. De…ne the wavelet transform for Xt

Wj(q) = 2
j=2

Z 1

¡1
XtÃ(2

jt ¡ q)dt;(2)

where j and q are integers. The function Ã is a wavelet, which is a well localized function.

Below, we explicitly introduce the properties of the wavelet functions.

If we consider the covariance between the wavelet transforms

Cov(¿) = E(Wj(q)Wj(q + ¿ ))(3)

= ¡¾
2

2
2¡j

Z 1

¡1

Z 1

¡1
j2¡j(u¡ v)¡ 2¡j¿ j2d¡1Ã(u)Ã(v)dudv;

then the covariance only depends on the distance ¿; since the …rst two terms which involve

non-stationarity in (1) equal to zero due to the mean zero property of the wavelet function.

Then, wavelet transform becomes covariance stationary process on the wavelet domain.

Further, it is noted that the covariance of wavelet transform (3) has the same expression

in the stationary case, since E(XtXs) behaves as jt ¡ sj2d¡1 for d 2 (¡0:5; 0:5) (Jensen

(1999)).

Now, we formally introduce the wavelet function.

ASSUMPTION 1(a) : Ã : R ! R forms an orthonormal basis for L2(R)such that
R1
¡1 Ã(x)dx = 0 ;

R 1
¡1 Ã(x)Ã(x¡ k)dx = 0 for all k 2 Z; k 6= 0;

R1
¡1 jÃ(x)jdx < 1; and

R1
¡1 Ã

2(x)dx = 1:

(b) : Ã has the v vanishing moments such that
R1
¡1 x

rÃ(x)dx = 0 for r = 0; 1; 2; ¢ ¢ ¢; v ¡ 1:
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The assumption 1(a) describes the wavelet function. See Hernandez and Weiss (1996)

and Daubechies (1992) for details. By Assumption 1(a), the doubly in…nite system

fÃj¿(¢)g is an orthonormal basis for L2(R); where Ãjq(x) = 2
j=2Ã(2jx¡ q); for j; ¿ 2 Z:

The integer j is called a scale parameter, and the integer q a translation parameter.

Intuitively, j localizes analysis in frequency and q localizes analysis in time. The simul-

taneous time-frequency localization of information is the key feature of wavelet analysis.

Next, assumption 2(b) is implied when the function Ã is in Cv(R) where Cv(R) is the

set of all functions f de…ned on the real line R such that all the derivatives up to order v

exist, and f (v) is continuous on R: Fast decaying wavelet functions satisfy this condition.

Examples include a family of compactly supported wavelets constructed by Daubechies

(1992), which is popular in the wavelet literature. A class of orthonormal wavelets has the

support of [0; 2v ¡ 1]; where v is positive integer, and enjoy the property that the …rst v

moments equal to zero. For example, Haar wavelet is de…ned as Ã(x) = 1 for x 2 (0; 0:5];
and ¡1 for x 2 (0:5;1]; and has v = 1: We consider Daubechies’ family of wavelets for

the analysis in our paper. Another example is a class of spline wavelets. For example,

the …rst order spline wavelet, often called Franklin wavelet, has v = 2; and spline wavelet

of order 2 has v = 3: In general, the spline wavelets of order n has the property thatR1
¡1 x

rÃ(x)dx = 0 for r = 0;1; 2; ¢ ¢ ¢n:
We now consider the spectral representation of long memory time series for LP esti-

mation. The spectral density in the stationary case of d 2 (¡0:5;0:5) is often modelled

as

f (¸) = j¸j¡2df ¤(¸)(4)

where f ¤(¸) is assumed to be even and positive function which is continuous on [¡¼; ¼]
with 0 < f ¤(0) < 1: The asymptotic bias of LP estimator basically depends on how to

assume the behavior of f ¤ around zero frequency. In HDB, it is assumed that the …rst

derivative of f¤(0) is zero, and the second and third derivatives of f ¤ are bounded in a

neighborhood of zero frequency. In AG, it is assumed that f ¤ is smooth of order s at zero

frequency for some s ¸ 1:

The spectral density of the wavelet transform around zero frequency is introduced as

(for example, see Kato and Masry(1999))

fj (¸) = Cj j¸j¡2djÃ̂(¸)j2 as ¸ ! 0(5)
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where Cj = cj=2¼ < 1 is a constant term, which depends on integer-valued scale j, and

Ã̂(¢) is the Fourier transform of wavelet Ã; that is to say, Ã̂(¸) = (2¼)¡
1
2

R1
¡1 Ã(x)e

¡i¸xdx:

One di¤erence between two spectral representations of (4) and (5) is that the function

jÃ̂(¸)j2 in (5) do not have the same property as f ¤(¸) in (4). The function jÃ̂(¸)j2 is known

to be even, positive and continuous on [¡¼; ¼]; but it is not bounded away from zero at

zero frequency, say, jÃ̂(0)j = 0: The mean zero property,
R1
¡1 Ã(x)dx = 0 is fundamental

in wavelet analysis, which implies Ã̂(0) = 0: It is necessary that Ã̂(¸) is bounded away

from zero around ¸ = 0 to obtain the explicit form of asymptotic bias, we express the

spectral density of the wavelet transform in an alternative form.

In doing so, we use the property of vanishing moment of the wavelet function. The van-

ishing moment condition in assumption 1(b) is equivalently expressed in the frequency do-

main that the …rst v spectral derivatives around zero frequency are zero, say, d
r

d¸r
Ã̂(¸)

¯̄
¯
¸=0

=

0 for r = 0; 1; 2; ¢ ¢ ¢; v¡ 1: Here, we notice the relation, dr

d¸r Ã̂(¸)
¯̄
¯
¸=0

= (¡i)r
R

R x
rÃ(x)dx:

The term, jÃ̂(¸)j2 has the …rst 2v zero spectral derivatives at the neighborhood of ¸ = 0:

Also, odd numbered derivatives are equal to zero, since jÃ̂(¸)j2 is even function.

We have the following spectral density around zero frequency,

fj (¸) = C¤
j j¸j¡2dfg(¸)j¸j2v + O(j¸j2v+2)g as ¸ ! 0(6)

= C¤
j j¸j¡2(d¡v)g(¸) +O(j¸j¡2(d¡v)+2) as ¸ ! 0

where g(¸) = d2v

d¸2v
jÃ̂(¸)j2; and C¤j =

2¡2jv

(2v)!
Cj :

The expression of transformed spectral density satis…es the Assumption 1 in Robinson

(1995). The O(¢) term in (6) becomes negligible by imposing suitable conditions on the

rate of growth m in ¸k = 2¼k=n; where k = 1; 2; ¢ ¢ ¢; m: The condition on m is stated as

follows, which is standard in the long memory literature.

ASSUMPTION 2 :m = m(n)! 1; and m=n! 0 as n ! 1:

The positive integer m is restricted to increase at slower rate than n: This is identical to

assumption 1 in AG.

3. WAVELET-BASED ESTIMATOR

We show the consistency of wavelet-based LP estimator for d 2 (0:5; 1:5): First, we

discretize the wavelet transform in (2) by re-indexing the time t as t = (2v¡ 1)i=n; where
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i = 1;2; ¢ ¢ ¢; n; given the known value of v: Then, the support of the wavelet Ã; [0; 2v¡ 1]
is entirely covered. De…ne the discrete wavelet transform for fXtg

wj(q) = 2
j=2

X

t

xtÃ(2
jt ¡ q);(7)

where t = (2v ¡ 1)( i
n
); with i = 1;2; ¢ ¢ ¢; n:

It is natural to de…ne a periodogram for wavelet transform, since it is covariance

stationary process. De…ne a periodogram at …xed scale j;

I(j)k ´ Ik =
1

2¼n

(2j¡1)(2v¡1)X

q=0

jwj (q) exp(i¸kq)j2;(8)

where ¸k = 2¼k=n; and k = 1;2; ¢ ¢ ¢; m: The scale j is suppressed as it is …xed during

the analysis, which helps simplify the notation. The maximum number of q equals to

(2j ¡ 1)(2v ¡ 1); which depends on the e¤ective support of the wavelet. If Haar wavelet

is used, then q runs from 0 to 2j ¡ 1:
Write the LP regression as

log Ik = ®+ ¯Xk + log(g(¸k)=g(0)) + "k;(9)

where ® = (log(g(0))+log C¤j ¡´); ¯ = (d¡v); Xk = ¡2 log(¸k); and "k = log(Ik=fk)+´;

for k = 1;2; ¢ ¢ ¢m:
The term, log(g(¸k)=g(0)) is dominating term for the asymptotic bias. To get the

explicit form of the asymptotic bias, we have Taylor expansion for log(g(¸k)=g(0)) at

¸ = 0;

log
g(¸k)

g(0)
=
1

2

g
00
(0)

g(0)
¸2k +O(¸

4
k)

where we have used the fact that jÃ̂(¢)j2 is even function, then odd numbered spectral

derivatives of g(¢) equal to zero at ¸ = 0:

We show the consistency of LP estimator for d; by examining the asymptotic bias,

and variance.

THEOREM 1 : Suppose Assumptions 1 and 2 hold. Then,

(a) E bd¡ d = ¡8¼
2

9

g
00
(0)

g(0)

m2

n2
(1 + o(1)) + O(m4=n4) + O(

log3m

m
):

(b) V ar( bd) =
¼2

24m
+ o(

1

m
):
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Theorem 1 shows that wavelet-based estimator bd is consistent for d 2 (0:5; 1:5) in the L2
sense. The variance takes the same form as in the stationary case. Unlike the case of data

tapering, we do not have e¢ciency loss to achieve the consistency. The proof is basically

adapted from AG and HDB, as well as Robinson(1995).

Further, we obtain the form of MSE

MSE(bd) =
µ
8¼2

9

g
00
(0)

g(0)

¶2
m4

n4
(1 + o(1)) +O

µ
m3 log3m

n4

¶
+
¼2

24m
(1 + o(1)):(10)

Given the form of MSE, we obtain the optimal m¤

m¤ = 0:2661 ¢
µ
g(0)

g00(0)

¶2=5

n4=5:(11)

In the case of stationary GPH estimator, the optimal m¤ is not available, since it de-

pends on unknown spectral density. In our case, both g(0) and g00(0) depend on the

known wavelet function, thus the optimal m¤ is available if the functional form of the

wavelet function is given. For example, Haar wavelet has jÃ̂(¸)j = (¸=4) ¢ ( sin(¸=4)
(¸=4)

)2; which

generates the optimal number of frequencies,

m¤ = 0:207 ¢ n4=5:(12)

It follows from (11) and (12) that we have MSE( bd) = O(n¡4=5): This is the same

convergence rate as that of GPH estimator in the stationary case, developed by HDB.

Faster rate of convergence of MSE can be only obtained by including additional regressors

of frequencies in the LP regression as in AG. In such case, MSE = O(n¡(4+4r)=(5+4r));

given that s ¸ 2 + 2r; with s is the order of smoothness of f ¤ around zero frequency, and

r the number of additional regressors.

Given the optimal rate ofm above, we construct the asymptotic normality of wavelet-

based estimator as similarly done in HDB and AG in stationary case.

COROLLARY 1 : Suppose Assumption 1 hold, and m = o(n4=5); then

m1=2( bd¡ d) ! d N(0;
¼2

24
) as n! 1:

The proof, brie‡y stated in the Appendix, follows from Robinson (1995), HDB, and AG.

4. SIMULATION STUDIES
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We investigate the …nite sample performance of the wavelet-based LP regression esti-

mator. We consider ARFIMA(1; d; 0) process with autoregressive parameter Á = 0; 0:5;

and 0:8; as well as d = 0:6; 0:8; 1:0; 1:2 and 1:4: The I(d) process fXtgnt=1 is generated

through Xt =
Pt¡1

k=0
(d)k
k!
ut¡k; and (d)k = d(d+ 1) ¢ ¢ ¢ (d+ k ¡ 1); where ut » i:i:d:N (0; 1):

(Shimotsu and Phillips (2002)). One thousand iterations for sample size of n = 512 are

conducted.

For wavelet-based estimator, we use Haar wavelet, which has v = 1 in (9). The

optimal number of the frequencies m is used according to (12). The integer-valued j for

the transformed periodogram is chosen as large as possible so that the periodogram is well

behaved. We use j = 8 for n = 512 in our simulation, which generates the transformed

series, fwj (q); q = 0;1; ¢ ¢ ¢; 28g. Neighboring values of j give similar results. We label

wavelet-based estimator as W:

For comparison, we include two LP regression estimators in our simulations. One is

tapered GPH estimator using cosine taper (Velasco (1999) and Hurvich and Ray (1995)).

Data tapering using cosine bell is applied to raw data, where periodogram ordinates at

¸k for k = l + 1; l+ 2; ¢ ¢ ¢; m with l = 1 are used in the regression as in Hurvich and Ray

(1995). We label this estimator as DT: The other estimator is the GPH estimator using

data di¤erencing. We estimate d¤ = d ¡ 1 for the …rst di¤erenced data, then obtain the

estimate of d: There is another approach to combine data di¤erencing and data tapering

proposed by Hurvich and Chen (2000). Since both tapered and untapered estimator using

data di¤erencing show pretty similar results for d 2 (0:5; 1:5) in their simulations, we only

include untapered GPH estimator through data di¤erencing. We label this as DF: For

DT and DF; we set m = [0:25n4=5]; which is, as an optimal rate, used in the simulations

in Hurvich and Chen (2000).

Table I reports the bias and mean squared error (MSE) of LP regression estimators for

di¤erent values of d with Á = 0; 0:5 and 0:8; when n = 512: We assess the performances

according to the values of Á: For Á = 0; W performs between DT and DF: As for the

bias, W is more positively biased than DF; and less positively biased than DT in most

cases. The MSE ofW is rather larger than that of DF; which is the smallest for all values

of d; and smaller than that of DT: Thus, when autoregression parameter is zero, we see

that DF performs the best, followed by W; and by DT:

Next, we increase the value of Á to 0:5: All the estimators become more positively

biased than in the case of Á = 0: Now, W obtains the smallest bias for all values of d:
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The bias of W is almost half as much as that of DF; and again DT has the largest bias.

In terms of MSE, DF still has the smallest MSE due to smallest variance, followed by W;

then byDT: The MSE of W is slightly larger than that of DF; but the di¤erence becomes

smaller than in the case of Á = 0:

Lastly, we increase the value of Á to 0:8: It is again pronounced that the bias of W

is less a¤ected by the magnitude of autoregression than that of DF and of DT: For all

values of d; W obtains the smallest bias. The bias of W is between half and nearly a third

of that of DF: Due to this signi…cant bias reduction, W now achieves the smallest MSE.

Thus, when autoregression parameter is strong and positive, W performs the best.

In sum, wavelet-based estimator works reasonably well without data tapering or data

di¤erencing. In particular, it is attractive when autoregression parameter is strongly

positive.

Department of Economics, National University of Singapore, 10 Kent Ridge Crescent,

Singapore 119260; ecsleej@nus.edu.sg
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APPENDIX

PROOF OF THEOREM 1: Let I ;X; R; and " denotem£ 1 column vectors whose k-th

elements are log Ik ; Xk; log(g(¸k)=g(0)); and "k ; respectively. As in AG, we write the

regression equation in matrix form as log I = (log g(0) + logC¤¡ ´)1m +X¯ +R+ ": By

letting Z = X ¡ 1mX with X = (X 01m)=m; we write

log I = ((log g(0) + logC¤ ¡ ´+Xd)1m + Z¯ +R + "(13)

The bias term can be written as E bd ¡ d = (Z 0Z)¡1Z 0(R + "):
The proof consists of the three parts: (a) Z0Z; (b) Z 0R; and (c) Z 0E("): First, note

that Xk = ¡2 log¸k; then from HDB (page22), we have Z 0Z = 4m(1 + o(1)): Next, we

write

Z 0R =
1

2

g
00
(0)

g(0)
Z 0¸2k +

mX

k=1

(Xk ¡X)O(¸4k):(14)

The …rst term in (14) is written as

1

2

g
00
(0)

g(0)
Z 0¸2k =

1

2

g
00
(0)

g(0)
Z 0(

k

m
)2(
2¼m

n
)2

= ¡2
9

g
00
(0)

g(0)
(
2¼m

n
)2m(1 + o(1))

= ¡8¼
2

9

g
00
(0)

g(0)

m3

n2
(1 + o(1));

where the …rst line follows from ¸k = 2¼k=n; and the second line from Z 0(k=m)2 =

¡[4=9]m(1 + o(1)) by Lemma 2(c) in AG. The order of magnitude for the second term in

(14) follows from AG or HDB (page 38) that
Pm

k=1(Xk ¡X)O(¸4k) = O(m5=n4):

Lastly, with the assumption of Gaussianity, we directly apply the Lemma 8 in HDB

or Lemma 2(f) in AG. Then, we have Z 0E(") = O(log3m): The proof of the variance

term comes directly from HDB (proof of Theorem 1), then we omit it. This completes

the proof.

PROOF OF COROLLARY 1: We verify the Theorem 2 in Robinson (1995), which is

essential to show the asymptotic normality. The proof of asymptotic normality directly

follows from that of Theorem 2 in HDB or of Theorem 2 in AG, which are based on
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Robinson (1995). Write discrete Fourier transform of transformed series fwj(q)g for …xed

j; and its normalized version as

u(¸k) = (2¼n)
¡1=2P(2j¡1)(2v¡1)

q=0 wj(q) exp(i¸kq); and v(¸k) = u(¸k)=f1=2:(15)

The normalization is made by using f 1=2 rather than Cj¸
¡2djÃ̂(¸)j2:

Efu(¸k)u(¸k)g
= (2¼n)¡1

P(2j¡1)(2v¡1)
q=0

P(2j¡1)(2v¡1)
r=0 Efwj(q)wj(r)g expfi(q ¡ r)¸kg

=
R ¼
¡¼ f(¸)(2¼n)

¡1 P(2j¡1)(2v¡1)
q=0

P(2j¡1)(2v¡1)
r=0 expf¡i(q ¡ r)¸g expfi(q¡ r)¸kgd¸

=
R ¼
¡¼ f(¸)K(¸k ¡ ¸)d¸:

where K(¸) = (2¼n)¡1
P(2j¡1)(2v¡1)

q=0

P(2j¡1)(2v¡1)
r=0 expfi(q ¡ r)¸g: Then, we obtain the

same expression as that of (4.1) in Robinson (1995), and the right hand side of (4.2) does

not appear due to normalization. Thus, the proof of Theorem 2 in Robinson (1995) is

applied to have

Efv(¸k)v(¸k)g = 1 + O(
log k

k
):

By similar reasoning, we also obtain

Efu(¸k)u(¸k)g =
R ¼

¡¼ f (¸)D(¸k ¡ ¸)(¸ + ¸k)d¸;
Efu(¸k)u(¸s)g =

R ¼

¡¼ f (¸)D(¸k ¡ ¸)D(¸¡ ¸s)d¸;
Efu(¸k)u(¸s)g =

R ¼

¡¼ f (¸)D(¸k ¡ ¸)D(¸+ ¸s)d¸;

where D(¸) = (2¼n)¡1
P(2j¡1)(2v¡1)

q=0 exp(iq¸): Then, again by the proof of Robinson

(1995), we verify that Efu(¸k)u(¸k)g = O(k= log k); Efu(¸k)u(¸s)g = O(k= log s); and

Efu(¸k)u(¸s)g = O(k= log s):
Given the above results, the proof of Theorem 2 in HDB or of Theorem 2 in AG

follows.
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TABLE I

BIAS AND MSE OF LP ESTIMATORS: n = 512:

Bias MSE

Á = 0 d W DT DF W DT DF

0.6 0.0200 0.0079 0.0104 0.0285 0.0349 0.0171

0.8 0.0085 0.0156 0.0024 0.0289 0.0345 0.0169

1.0 0.0079 0.0256 -0.0011 0.0291 0.0347 0.0166

1.2 0.0116 0.0401 -0.0020 0.0297 0.0355 0.0163

1.4 0.0218 0.0597 0.0027 0.0306 0.0374 0.0166

Á = 0:5 0.6 0.0326 0.0671 0.0558 0.0285 0.0392 0.0206

0.8 0.0211 0.0747 0.0504 0.0292 0.0398 0.0193

1.0 0.0183 0.0847 0.0473 0.0297 0.0412 0.0189

1.2 0.0213 0.0991 0.0467 0.0302 0.0437 0.0185

1.4 0.0317 0.1184 0.0514 0.0312 0.0480 0.0191

Á = 0:8 0.6 0.1000 0.3207 0.2662 0.0380 0.1374 0.0875

0.8 0.0908 0.3285 0.2621 0.0376 0.1419 0.0852

1.0 0.0883 0.3384 0.2594 0.0380 0.1484 0.0837

1.2 0.0919 0.3525 0.2586 0.0386 0.1582 0.0832

1.4 0.1013 0.3721 0.2615 0.0405 0.1723 0.0848
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