
Dynamic time series binary choice∗

Robert de Jong† Tiemen Woutersen ‡

January 30, 2004

Abstract

This paper considers dynamic time series binary choice models. It shows in a time
series setting the validity of the dynamic probit likelihood procedure when lags of the
dependent binary variable are used as regressors, and it establishes the asymptotic
validity of Horowitz’ smoothed maximum score estimation of dynamic binary choice
models with lags of the dependent variable as regressors. The latent error is explicitly
allowed to be correlated. It turns out that no long-run variance estimator is needed
for the validity of the smoothed maximum score procedure in the dynamic time series
framework. One novel aspect of this paper is a proof that weak dependence properties
hold for dynamic binary choice models with correlated errors.

1 Introduction

For a dynamic linear time series model

yn =

p∑
j=1

ρjyn−j + γ′xn + un, (1)

n = 1, . . . , N , it is well-known that a sufficient condition for consistency as N → ∞ of the
least squares estimator is that E(un|yn−1, . . . , yn−p, xn) = 0, and that even if un is weakly
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dependent, consistency can be proven as long as this condition holds, without assumption of
normality on un. In this paper, we analyze maximum likelihood estimation of the dynamic
probit model of order p, and maximum score estimation of dynamic binary choice models of
order p, and we explicitly allow the error to be correlated. We define the dynamic binary
choice model of order p as

yn = I(

p∑
j=1

ρjyn−j + γ′xn + un > 0). (2)

For conditional maximum likelihood estimation of the dynamic probit model, the key con-
dition that is needed will turn out to be

E(yn|xn, yn−1, yn−2, . . .) = Φ(

p∑
j=1

ρjyn−j + γ′xn), (3)

while in the smoothed maximum score setting, we will need the condition

Median(un|yn−1, . . . , yn−p, xn) = 0. (4)

Therefore, this paper attempts to analyze the dynamic time series binary choice model at a
level of generality that is comparable to the level of generality at which linear dynamic time
series models can be analyzed.
Manski (1975) uses the sign function to develop the first semiparametric estimator for the
binary choice model. Coslett (1983) and Ichimura (1993) derive alternative estimators for
the binary choice model. Imbens (1992) and Matztkin (1992) also develop estimators for the
semiparametric binary choice model. Finally, in his seminal paper, Horowitz (1992) smooths
the sign function of Manski (1975, 1985) and derives an estimator that is asymptotically
normally distributed. However, all these estimators assume that one has a random sample.
Thus, none of these estimators allows for lagged dependent explanatory variables. In this
paper we consider the binary choice model in a time series setting and we allow for lagged
dependent variables as explanatory variables. For the semiparametric case, we only impose
a median assumption. Thus, we allow the variance (and other moments of the error distri-
bution) to depend on lagged error terms, lagged dependent variables as well as regressors.
Moreover, the median assumption allows for heterogeneity that is caused by random coef-
ficients, e.g. a data generating process whose parameters are random and symmetrically
distributed around (ρ, γ′)′.
Ruud (1981) and Poirier and Ruud (1988) have considered the probit model with correlated
errors. Robinson (1982) considered the tobit model with correlated errors. An example of
an empirical paper that focuses on the dynamic probit methodology is Eichengreen, Watson,
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and Grossman (1985). However, no formal stationarity properties for dynamic probit mod-
els are derived in these papers, nor anywhere else in the literature as far as the authors are
aware. Potential applications include finance models concerning the likelihood of a financial
transaction in a given time period as well as models concerning labor market participation
decisions in which the relative importance of wealth versus welfare effects are studied.
The setup of this paper is as follows. In Section 2, the weak dependence properties of yn are
analyzed. Section 3 of this paper will analyze the dynamic probit procedure when lagged
values of yn have been included among the regressors and normality of un is assumed. In
Section 4, we consider consistency of the smoothed maximum score estimator of the dynamic
time series binary choice model. The smoothed maximum score estimator was first suggested
in Horowitz (1992). Section 5 establishes asymptotic normality of the smoothed maximum
score estimator1.

2 Properties of the dynamic time series binary choice

model

A big analytical complication in the analysis below is to show that yn satisfies the appropriate
“fading memory” property when generated through a general dynamic binary choice model
with regressors and possibly correlated errors. For the analysis of the smoothed maximum
score estimator, this “fading memory” property that is proven for yn needs to be strong
enough to allow a proof of an equivalent of the Hoeffding inequality, and in addition, it
needs to allow for a proof of a central limit theorem (CLT) for a function of yn and xn that
depends on N in a situation where no martingale difference CLT can be applied. For a
proof of validity of the dynamic probit model, the “fading memory” property only needs to
support laws of large numbers and uniform laws of large numbers.
The “fading memory” property that we will prove for yn is that of near epoch dependence.
The idea of the proof is similar to that of proofs for showing fading memory properties of
processes yn of the form

yn = f(yn−1) + εn, (5)

where f(.) is such that |f(x) − f(y)| ≤ L|x − y| for some L < 1. Functions f(.) satisfying
this condition are called contraction mappings. Such proofs can be found in Bierens (1981)
and Pötscher and Prucha (1997), for example. Pötscher and Prucha (1997, Section 6.4)
contains a thorough discussion of these types of results, but the approach in the proof of

1In addition, some corrections to Horowitz’ proof of the validity of the smoothed maximum score procedure
are provided.
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this paper is somewhat different from the approaches discussed there. The differences are
that the f(.) function in the dynamic binary choice case is not continuous, depends on εn, is
not strictly less than 1, and depends on more than one lagged value of yn. These problems
are essentially solved by smoothing the response function by the expectations operator, by
using the fact that yn is a binary random variable, and by the use of the appropriate metric
on the arguments of the f(.) function.
Near epoch dependence of random variables yn on a base process of random variables vn is
defined as follows:

Definition 1 Random variables yn are called near epoch dependent on vn if

sup
n∈Z

E|yn − E(yn|vn−m, vn−m+1, . . . , vn)|2 = ν(m)2 → 0 as m →∞. (6)

The base process vn needs to satisfy a condition such as strong or uniform mixing or indepen-
dence. For the definitions of strong (α-) and uniform (φ-) mixing see e.g. Gallant and White
(1988, p. 23) or Pötscher and Prucha (1997, p. 46). The near epoch dependence condition
then functions as a device that allows approximation of yn by a function of finitely many
mixing or independent random variables vn. Note also that for strictly stationary (yn, vn),
the “sup” in the above definition can be removed, because in that case

E|yn − E(yn|vn−m, vn−m+1, . . . , vn)|2 (7)

does not depend on n. The reader is referred to Gallant and White (1988) for a detailed
account of the near epoch dependence condition. See also Pötscher and Prucha (1997) for a
more up-to-date treatment of dependence concepts such as near epoch dependence.
For establishing near epoch dependence of yn, we have the following result. Define S as the
set of all 2p possible p -vectors s such that its elements si are 0 or 1, and define

Φ = {φ : φ =

p∑
i=1

ρisi, s ∈ S}. (8)

Let φmin denote the smallest element of Φ, and let φmax denote the largest element.

Theorem 1 Assume that yn is generated as yn = I(
∑p

j=1 ρjyn−j +ηn > 0). Let ηn be strong
mixing and strictly stationary. Assume that there is some δ > 0 for which there exists a
positive integer K such that

P (φmax + max
i=1,...,p

ηn−i > 0|yn−p−K , yn−p−K−1, . . .)

−P (φmin + min
i=1,...,p

ηn−i > 0|yn−p−K , yn−p−K−1, . . .) < 1− δ almost surely, (9)
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and the near epoch dependence sequence v(.) satisfies v(m) ≤ C1 exp(−C2m), for positive
constancts C1 and C2. Then (i) yn is near epoch dependent on ηn; (ii) (yn, ηn) is strictly
stationary.

Note that if ηn = γ′xn + un for strong mixing and strictly stationary (x′n, un)′, clearly ηn is
mixing as well. This observation will be used below.
The proof of the above result is substantially easier for the case where ηn is i.i.d., only one
lagged yn is used as regressor and no other regressors are included. In that case, we can
write

yn = yn−1I(ρ1 + ηn > 0) + (1− yn−1)I(ηn > 0), (10)

implying that

νm ≡ sup
n∈Z

E|yn − E(yn|ηn−m, . . . , ηn)|2

= sup
n∈Z

E|(I(ρ1 + ηn > 0)− I(ηn > 0))(yn−1 − E(yn−1|ηn−m, . . . , ηn−1)|2

= |P (ρ1 + ηn > 0)− P (ηn > 0)| sup
n∈Z

E|yn−1 − E(yn−1|η(n−1)−(m−1), . . . , ηn−1)|2

= |P (ρ1 + ηn > 0)− P (ηn > 0)|νm−1, (11)

which implies that the ν(m) sequence decays exponentially under the condition of Equation
(9). The proof of Theorem 1 should be viewed as an extension to the above reasoning.
The fact that yn is a 0/1-valued near epoch dependent random variable can now be exploited
to show that (yn, xn) is also strong mixing. Note that this is an observation that apparently
has not been made in the literature before. The result is as follows:

Theorem 2 Suppose that yn = f(vn, vn−1, . . .) is a sequence of 0/1-valued random variables
that is near epoch dependent on vn with near epoch dependence coefficients ν(m), where
vn = (x′n, un)′ is strong mixing with mixing coefficients α(m). Then (yn, x′n)′ is strong mixing
with strong mixing coefficients C(ν(m) + α(m)) for some C > 0.

The mixing property of (yn, xn) will be used in the proofs for consistency and asymptotic
normality of the next sections.
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3 The dynamic probit model

This section examines the behavior of the dynamic probit model estimator that results from
including lagged yn among the regressors. Let β = (ρ′, γ′)′ denote the true parameter and let
b = (r′, c′)′, ρ, r ∈ Rp and γ, c ∈ Rq, and let R and Γ denote the parameter spaces for r and
c respectively, and let B = R× Γ. We assume normality of the errors so that the likelihood
conditional on y1, ..., yp has the following form,

LN(b) = (N − p)−1

N∑
n=p+1

ln(b)

= (N − p)−1

N∑
n=p+1

[yn log(Φ(

p∑
j=1

rjyn−j + c′xn)) + (1− yn) log(1−Φ(

p∑
j=1

rjyn−j + c′xn))].(12)

Given the result of Theorem 2, it is now straightforward to find standard conditions under
which the maximum likelihood estimator bML

N is consistent.

Assumption A

1. xn is a sequence of strictly stationary strong mixing random variables with α-mixing
numbers α(m), where xn ∈ Rq for q ≥ 0 and γ ∈ Rq, and the second absolute moment
of xn exits. The distribution of xn is not contained in any linear subspace of Rq.

2. un is independently normally distributed with mean zero and variance one.

3. yn = I(
∑p

i=1 ρiyn−i + γ′xn + un > 0).

4. β ∈ B, where B is a compact subset of Rp+q.

Theorem 3 Under Assumption A, bML
N

p−→ β. If in addition the strong mixing coefficients
satisfy α(m) ≤ Cm−η for positive constants C and η and E|ln(b)|1+δ < ∞ for some δ > 0
and all b ∈ B, then bML

N
as−→ β.

Let I = −E(∂/∂b)(∂/∂b′)ln(β). For asymptotic normality, we need an additional assump-
tion.
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Assumption B

1. β is in the interior of B.

Theorem 4 Under Assumptions A and B, N1/2(bML
N − β)

d−→ N(0, I−1).

Under the above Assumptions A and B, it also follows that the usual estimators of I, using
either the outer product or Hessian approach, will both be weakly consistent for I.
Note that given the weak dependence property of Theorem 2, it is also possible to set forth

conditions such that for weakly dependent un with arbitrary distribution, N1/2(bML
N −β∗)

d−→
N(0, J) for some matrix J and a β∗ that uniquely minimizes the objective function. Here of
course β∗ does not necessarily equal the true parameter value β. However, in order to show
that the probit objective function is uniquely minimized at β, we need that a first order
condition of the type

E(yn − Φ(

p∑
i=1

ρiyn−i + γ′xn))w(yn−1, . . . , yn−p, xn) = 0 (13)

holds for some function w(., . . . , .). This condition is implied by

E(yn|yn−1, . . . , xn) = Φ(

p∑
i=1

ρiyn−i + γ′xn), (14)

and the latter condition is equivalent to assuming that un is i.i.d. and standard normal if
lagged values of yn are included.

4 Consistency of the smoothed maximum score esti-

mator

The smoothed maximum score estimator is defined as argminb∈BSN(b, σN), where

SN(b, σN) = (N − p)−1

N∑
n=p+1

(2I(yn = 1)− 1)K((

p∑
j=1

rjyn−j + c′xn)/σN) (15)

and σN is a bandwidth-type sequence such that σN → 0 as N →∞, where K(.) is a function
such that K(−∞) = 0 and K(∞) = 1. This objective function is a smoothed version of the
maximum score objective function

S∗N(b) = (N − p)−1

N∑
n=p+1

(2I(yn = 1)− 1)I(

p∑
j=1

rjyn−j + c′xn ≥ 0). (16)
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In addition, let S(b) = ES∗N(b). This notation is justified because we will use conditions
under which (yn, xn) will be proven to be strictly stationary. See Manski (1985) and Pollard
(1984) for more information and results regarding the maximum score estimator. While
Horowitz’ maximum score estimator can reach an asymptotic efficiency bound (see Horowitz
(1992)), Pollard (1984) showed that the maximum score estimator in general is consistent of
order N−1/3.
The following five assumptions are needed for the proof of our consistency result:

Assumption 1 vn = (x′n, un)′ is a sequence of strictly stationary strong mixing random
variables with α-mixing numbers α(m), where xn ∈ Rq for q ≥ 1 and γ ∈ Rq, and

yn = I(

p∑
i=1

ρiyn−i + γ′xn + un > 0). (17)

Note that by Theorem 1 and the discussion following that theorem, (yn, xn)′ is strictly
stationary. This justifies the formulation of the assumptions below in their current forms.
Define x̃n = (yn−1, . . . , yn−p, xn2, . . . , xnq).

Assumption 2 The support of the distribution of xn is not contained in any proper linear
subspace of Rq. (b) δ < P (yn = 1|xn1, x̃n) < 1− δ almost surely for some δ > 0. (c) γ1 6= 0,
and for almost every x̃n, the distribution of xn1 conditional on x̃n has everywhere positive
density with respect to Lebesgue measure.

Assumption 3 Median(un|xn, yn−1, . . . , yn−p) = 0 almost surely.

Assumption 4 |γ1| = 1, and β̃ = (ρ1, . . . , ρp, γ2, . . . , γq) is contained in a compact subset
B̃ of Rp+q−1.

Assumption 5 For φmax and φmin as defined before, for some δ > 0 there exists a positive
integer K such that

P (φmax + max
i=1,...,p

(γ′xn−i + un−i) > 0|yn−p−K , yn−p−K−1, . . .)

−P (φmin + min
i=1,...,p

(γ′xn−i + un−i) > 0|yn−p−K , yn−p−K−1, . . .) < 1− δ. (18)

For normalization, we need to set |c1| = 1 when calculating the minimizer of SN(b, σN).
Therefore, the estimator bN needs to be defined as

bN = argminb:|c1|=1SN(b, σN). (19)

The following result shows the consistency of bN :

Theorem 5 Under Assumptions 1,2,3,4 and 5, bN
p−→ β. If in addition the strong mixing

coefficients satisfy α(m) ≤ Cm−η for positive constants C and η, then bN
as−→ β.
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5 Asymptotic normality

Define, analogously to Horowitz (1992), b̃ = (r1, . . . , rp, c2, . . . , cq), and let

TN(b, σN) = ∂SN(b, σN)/∂b̃, (20)

QN(b, σN) = ∂2SN(b, σN)/∂b̃∂b̃′. (21)

Also, define

zn =

p∑
j=1

ρjyn−j + γ′xn, (22)

and let p(zn|x̃n) denote the density of zn given x̃n, let P (.) denote the distribution of x̃n,
let F (.|zn, x̃n) denote the cumulative distribution of un conditional on zn and x̃n. For each
positive integer i, define

F (i)(−z, x, x̃) = ∂iF (−z|z, x̃)/∂zi (23)

and

αA =

∫ ∞

−∞
vhK ′(v)dv (24)

αD =

∫ ∞

−∞
K ′(v)2dv. (25)

Also analogously to Horowitz (1992), define

A = −2αA

h∑
i=1

{[i!(h− i)!]−1E[F (i)(0, 0, x̃n)p(h−i)(0|x̃n)x̃n]}, (26)

D = αDE[x̃nx̃
′
np(0|x̃n)], (27)

Q = 2E[x̃nx̃′nF
(1)(0|0, x̃n)p(0|x̃n)]. (28)

We need to strengthen the fading memory conditions of Assumption 1 in order to establish
asymptotic normality:

Assumption 1’ vn = (x′n, un)′ is a sequence of strictly stationary strong mixing random

9



variables with α-mixing numbers α(m) such that α(m) ≤ Cm−(2r−2)/(r−2)−η for some η > 0,
where xn ∈ Rq for q ≥ 1 and γ ∈ Rq, and

yn = I(

p∑
i=1

ρiyn−i + γ′xn + un > 0). (29)

The following assumption is the analogue of Horowitz’ Assumption 5, which is the assumption
below for r = 4. It appears that Horowitz’ truncation argument is in error, but that his
argument is correct for bounded data. This explains the presence here of a condition here
that is stronger than that of Horowitz.

Assumption 6 For all vectors γ such that |γ| = 1, E|γ′x̃|r < ∞ for some r > 4.

The assumption below is needed in lieu of Horowitz’ Assumption 6.

Assumption 7 For some sequence mN ≥ 1,

σ
−3(p+q−1)
N σ−2

N N1/rα(mN) + σ
−2(p+q−1)/β
N N2/rα(mN)

+| log(NmN)|(N1−4/rσ4
Nm−2

N )−1 → 0 as N →∞. (30)

For the case of independent (xn, un), α(m) = 0 for m ≥ 1, and we can set mN = 1 for that
case. The first condition then becomes

(log(N))(N1−2/rσ4
N)−1 → 0 as N →∞, (31)

implying that for bounded data, we can set r = ∞ and obtain Horowitz’ condition

(log(N))(Nσ4
N)−1 → 0 as N →∞. (32)

The following assumptions are identical to Horowitz’ Assumptions 7-11:

Assumption 8 (a) K(.) is twice differentiable everywhere, |K(.)| and K ′′(.) are uniformly
bounded, and each of the following integrals over (−∞,∞) is finite:

∫
[K ′(v)]4dv,

∫
[K ′′(v)]2dv,∫ |v2K ′′(v)|dv. (b) For some integer h ≥ 2 and each integer i (1 ≤ i ≤ h),

∫ |viK ′(v)|dv <
∞, and

∫ ∞

−∞
viK ′(v)dv =

{
0 if i < h,
d (nonzero) if i=h.

(33)
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(c) For any integer i between 0 and h, any η > 0, and any sequence {σN} converging to 0,

lim
N→∞

σi−h
N

∫

|σNv|>η

|viK ′(v)|dv = 0 (34)

and

lim
N→∞

σN

∫

|σNv|>η

|K ′′(v)|dv = 0. (35)

Assumption 9 For each integer i such that 1 ≤ i ≤ h − 1, all z in a neighborhood of 0,
almost every x̃n, and some M < ∞, p(i)(zn|x̃n) exists and is a continuous function of zn

satisfying |p(i)(zn|x̃n)| < M . In addition, p(zn|x̃n) < M for all z and almost every x̃.

Assumption 10 For each integer i such that 1 ≤ i ≤ h, all zn in a neighborhood of 0,
almost every x̃n, and some M < ∞, F (i)(−zn, zn, x̃n) exists and is a continuous function of
zn satisfying |F (i)(−zn, zn, x̃n)| < M .

Assumption 11 β̃ is an interior point of B̃.

Assumption 12 The matrix Q is negative definite.

In addition to the above equivalents to Horowitz’ assumptions, we will also need the following
two assumptions. The first assumption is needed to assure proper behavior of covariance
terms.

Assumption 13 The conditional joint density p(zn, zn−j|xn, xn−j) exists for all j ≥ 1 and
is continuous at (zn, zn−j) = (0, 0) for all j ≥ 1.

The next condition on K ′′(.) is needed to formally show a uniform law of large numbers for
the second derivative of the objective function.

Assumption 14 K ′′(.) satisfies, for some β ∈ (0, 1] and all x, y ∈ R,

|K ′′(x)−K ′′(y)| ≤ L|x− y|β. (36)

To prove asymptotic normality, we need an inequality in the spirit of Hoefding’s inequality
but for random variables with unbounded support. We derive such an inequality in the
Appendix as Lemma 10. The inequality of Lemma 10 also allows for martingale difference
sequences so that it covers both the random sample case of Horowitz (1992) as well as the
dynamic case.
Our asymptotic normality result now is the following. This result, of course, is nearly
identical to Horowitz’ in the non-dynamic cross-section case.
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Theorem 6 Let Assumptions 1’ and Assumptions 2-14 hold for some h ≥ 2. Then

1. If Nσ2h+1
N →∞ as N →∞, σ−h

N (b̃N − β̃)
p−→ −Q−1A.

2. If Nσ2h+1
N has a finite limit λ as N →∞,

(NσN)1/2(b̃N − β̃)
d−→ N(−λ1/2Q−1A,Q−1DQ−1). (37)

In order to estimate the matrices A, D and Q, we need an additional result, the analogue of
Horowitz’ (1992) Theorem 3.

Theorem 7 Let bN be a consistent smoothed maximum score estimator based on σN such
that σN = O(n−1/(2h+1)). For b ∈ {−1, 1} × B̃, define

tn(b, σ) = (2I(yn = 1)− 1)(x̃n/σN)K ′(b′xn/σ). (38)

Let σ∗N be such that σ∗N = O(N−δ/(2h+1)), where 0 < δ < 1. Then: (a) ÂN ≡ (σ∗N)−hTN(bN , σ∗N)
converges in probability to A; (b) the matrix

D̂N ≡ (σN/N)
N∑

n=1

tn(bN , σN)tn(bN , σN)′ (39)

converges in probability to D; (c) QN(bN , σN) converges in probability to Q.
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Proofs

Proof of Theorem 1:

The dynamic binary choice model of order p can be written as

yn = I(

p∑
i=1

ρiyn−i + ηn > 0) = g(yn−1, yn−2, . . . , yn−p, ηn).

This g(., . . . , .) satisfies, for all 0-1 valued y1, y2, . . . , yn−p and ỹ1, ỹ2, . . . , ỹn−p,

|g(y1, y2, . . . , yp, ηn)− g(ỹ1, ỹ2, . . . , ỹp, ηn)| ≤ L(ηn) max
j=1,...,p

|yj − ỹj|,

where

L(ηn) = sup
φ,φ′∈Φ

|I(φ + ηn > 0)− I(φ′ + ηn > 0)|.

The idea of the proof is to show that the process yn can be approximated arbitrarily well by
using a function of a finite number of ηn - this is the content of the near epoch dependence
concept. We do this by using for our approximation ŷm

n the y that would have resulted if
the process had been started up using 0 values for the yn and ηn that occurred m periods
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or longer ago. Formally, for all n define ŷm
n = 0 for m ≤ 0. Then for all m ≥ 1 recursively

define

ŷm
n = g(ŷm−1

n−1 , ŷm−2
n−2 , . . . , ŷm−p

n−p , ηn).

Note that by construction, ŷm
n = fm(ηn, ηn−1, . . . , ηn−m). Define maxj∈A cj = 0 if A is empty.

Then for these approximators ŷm
n we have

max
j=1,...,p

|yn−j+1 − ŷm−j+1
n−j+1 |

= max(|g(yn−1, yn−2, . . . , yn−p, ηn)− g(ŷm−1
n−1 , ŷm−2

n−2 , . . . , ŷm−p
n−p , ηn)|, max

j=2,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |)

≤ max(L(ηn) max
j=1,...,p

|yn−j − ŷm−j
n−j |, max

j=2,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |)

≤ max(L(ηn)|yn−p − ŷm−p
n−p |, max

j=2,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |)

≤ max(L(ηn)|yn−p − ŷm−p
n−p |, L(ηn−1) max

j=1,...,p
|yn−j−1 − ŷm−j−1

n−j−1 |, max
j=3,...,p

|yn−j+1 − ŷm−j+1
n−j+1 |)

≤ max(L(ηn)|yn−p − ŷm−p
n−p |, L(ηn−1)|yn−p−1 − ŷm−p−1

n−p−1 |,

L(ηn−1)|yn−p − ŷm−p
n−p |, max

j=3,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |)

≤ max
j=1,...,p

L(ηn−j+1) max
j=1,...,p

|yn−p−j+1 − ŷm−p−j+1
n−p−j+1 |,

and because 0 ≤ L(u) ≤ 1, we also have by repeating this reasoning K times, for all K ≥ 1,

max
j=1,...,p

|yn−j+1 − ŷm−j+1
n−j+1 |

≤ max
j=1,...,p

L(ηn−j+1) max
j=1,...,p

|yn−pK−j+1 − ŷm−pK−j+1
n−pK−j+1 |.

Next, note that by assumption there exists a positive integer K̃ such that, for some δ > 0,

|E( max
j=1,...,p

L(ηn−j+1)|yn−pK̃ , yn−pK̃−1, . . .)|

= |P (φmax + max
j=1,...,p

ηn−j+1 > 0|yn−pK̃ , yn−pK̃−1, . . .)
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−P (φmin + min
j=1,...,p

ηn−j+1 > 0|yn−pK̃ , yn−pK̃−1, . . .)| < 1− δ

for some δ > 0. Therefore, for m ≥ pK̃,

χm
def
= sup

n∈Z
E max

j=1,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |2

≤ sup
n∈Z

E

(
E( max

j=1,...,p
L(ηn−j+1)|yn−pK̃ , yn−pK̃−1, . . .) max

j=1,...,p
|yn−pK̃−j+1 − ŷm−pK̃−j+1

n−pK̃−j+1
|2

)

≤ (1− δ) sup
n∈Z

E max
j=1,...,p

|yn−pK̃−j+1 − ŷm−pK̃−j+1

n−pK̃−j+1
|2

= (1− δ) sup
n∈Z

E max
j=1,...,p

|yn−j+1 − ŷm−pK̃−j+1
n−j+1 |2

= (1− δ)χm−pK̃ .

Because χj ≤ 1 for all j ≥ 0, it now follows that

χm ≤ (1− δ)[m/(pK̃)],

where [x] denotes the integer part of x. Now, because the conditional expectation is the best
possible L2-approximation,

sup
n∈Z

E|yn − E(yn|ηn, ηn−1, . . . , ηn−m)|2

≤ sup
n∈Z

E max
j=1,...,p

|yn−j+1 − ŷm−j+1
n−j+1 |2

≤ (1− δ)[m/(2K̃)] ≤ C1 exp(−C2m)

for positive constants C1 and C2 depending on δ and on the α(.) sequence.
To show that (yn, ηn) is strictly stationary, note that ŷm

n = fm(ηn−m, . . . , ηn) by construction,
where fm(., . . . , .) does not depend on n or N . This then implies that (yn, ηn) is strictly
stationary. ¤

16



Proof of Theorem 2:

The definition of the strong mixing coefficients is

sup
n∈Z

sup
F,G
{|P ((xn, yn) ∈ F, (xn+m, yn+m) ∈ G)− P ((xn, yn) ∈ F )P ((xn+m, yn+m) ∈ G)|},

see for example White (2001, page 47). Because yn is a 0/1-valued random variable, there
are only four possibilities for the possible values of the (yn, yn−m) pair.
For the case yn = 1, yn+m = 1, we now have, defining Fn = σ(vn, vn−1, . . .),

|EI((xn, 1) ∈ F )ynI((xn+m, 1) ∈ G)yn+m − EI((xn, 1) ∈ F )ynEI((xn+m, 1) ∈ G)yn+m|
= |EI((xn, 1) ∈ F )yn[E(I((xn+m, 1) ∈ G)yn+m|Fn)− EI((xn+m, 1) ∈ G)yn+m]|
≤ E|E((I(xn+m, 1) ∈ G)yn+m|Fn)− E(I((xn+m, 1) ∈ G)yn+m)|,

and convergence to zero with m of the last expression constitutes the L1-mixingale condition
for I((xn, 1) ∈ G)yn. Now I((xn, 1) ∈ G)yn is a sequence that is bounded and near epoch
dependent on vn, implying that it is an L1-mixingale, which in turn implies that

E|E(I((xn, 1) ∈ G)yn|Fn−m)− E(I((xn, 1) ∈ G)yn)|
≤ C(ν(m) + α(m)).

The cases yn = 1, yn+m = 0; yn = 0, yn+m = 1; and yn = 0, yn−m = 0 are analogous, which
then proves the result. ¤

For the proof of Theorem 3, we need the following two lemmas.

Lemma 1 Under the conditions of Theorem 3, E supb∈B |ln(b)| < ∞.

Proof of Lemma 1:

Define wn = (yn−1, . . . , yn−p, x
′
n)′ and note that Ewnw

′
n exists by Assumption A1. Existence

of Ewnw
′
n and the probit specification imply the result. The reasoning is similar to the result

for cross-section probit, see Newey and McFadden (1994, page 2125, Example 1.2). ¤

Lemma 2 Under the conditions of Theorem 3, (i) E(wnw
′
n) is positive definite and (ii)

Eln(b) is uniquely minimized at b = β.

17



Proof of Lemma 2:

The assumptions of Theorem 1 are satisfied so that (x′n, yn)′ is strongly stationary. The
assumption that distribution of xn is not contained in any linear subspace of Rq implies that
the distribution of wn is not contained in any proper linear subspace of Rp+q (see the proof
of Lemma 3 for a proof of the general case). This implies that Ewnw

′
n is nonsingular so that

Ewnw
′
n is positive definite. Let b 6= β so that E[(x′n(b− β))2] = (b− β)′Ewnw′

n(b− β) > 0,
implying that w′

n(b− β) 6= 0 on a set with positive probability, implying that w′
nb 6= w′

nβ on
a set with positive probability. Both Φ(z) and Φ̄(z) = 1− Φ(z) are strictly monotonic, and
therefore w′

nb 6= w′
nβ implies that both Φ(w′

nb) 6= Φ(w′
nβ) and Φ̄(w′

nb) 6= Φ̄(w′
nβ). Thus, the

density

p(yn|wn, b) = Φ(w′
nβ)ynΦ̄(w′

nb)
1−yn 6= p(yn|wn, β)

on a set with positive probability. Lemma 1 stated that E supb∈B |ln(b)| < ∞, and therefore
both conditions of Newey and McFadden (1994, Lemma 2.2) are satisfied. Therefore, Eln(b)
is uniquely minimized at b = β.

¤

Proof of Theorem 3:

It is easily seen from Lemma 1 and Lemma 2 that all the conditions of Theorem A1 of
Wooldridge (1994) are satisfied, except for the condition of uniform convergence in proba-
bility of LN(b). Note that Wooldridge’s Theorem A1 can be extended to include a strong
convergence result if instead of uniform convergence in probability of LN(b), uniform almost
sure convergence LN(b) is assumed. To show this uniform convergence, we use the generic
uniform law of large numbers of Andrews (1987). To show a weak or strong uniform law
of large numbers, this theorem requires compactness of the parameter space, and in addi-
tion it needs to be verified that the summands qn(wn, b) are such that qn(wn, b), q∗n(wn, b) =
sup{qn(wn, b̃) : b̃ ∈ B, |b̃ − b| < ρ} and qn∗(wn, b) = inf{qn(wn, b̃) : b ∈ B, |b̃ − b| < ρ} are
well-defined and satisfy a (respectively weak or strong) law of large numbers, and that for
all b ∈ B,

lim
ρ→0

sup
n∈Z

|N−1

N∑
n=1

Eq∗n(wn, b)− Eq∗n(wn, b)| = 0.

The latter condition follows from stationarity of (yn, xn), continuity, and the envelope con-
dition of Assumption A. In addition, qn(wn, b), q∗n(wn, b) and qn∗(wn, b) are well-defined
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and strong mixing random variables, implying that weak law of large numbers for uni-
formly integrable mixingales of Andrews (1988) applies. Alternatively we can apply the
strong law of large numbers of Theorem 4 of de Jong (1995), from which it follows that if
α(m) + ν(m) ≤ Cm−η for some positive constants C and η, these variables will satisfy a
strong law of large numbers. This is because under the condition that E|ln(b)|1+δ < ∞, the
summands will be an L1+δ/2-mixingale. ¤

Lemma 3 Under the conditions of Theorem 4,

(N − p)1/2(∂LN(b)/∂b)|b=β
d−→ N(0, I).

Proof:

Note that by assumption, E((∂Ln(b)/∂b)|b=β|wn) = 0 so that E(∂Ln(b)/∂b)|b=β = 0. More-
over, (∂Ln(b)/∂b)|b=β is a martingale difference sequence that is strong mixing and strictly
stationary. In particular, the version of Bierens (2004, Theorem 7.11) of a central limit
theorem of McLeish (1974) yields asymptotic normality. Applying the information matrix
equality yields the result. ¤

Proof of Theorem 4:

We prove Theorem 4 by checking the conditions of Newey and McFadden (1994, theorem
3.1). Consistency was shown in Theorem 3. Condition (i) was assumed. Condition (ii),
twice differentiability of the log likelihood, follows from the probit specification. Condition
(iii) was shown in Lemma 3. Note that stationarity and strong mixing imply ergodicity, see
White (2001, theorem 3.34). Condition (iv) then follows from the probit specification and
reasoning similar to Newey and McFadden, page 2147, example 1.2. Nonsingularity follows
from the probit specification and Ewnw′

n being positive definite so that condition (iv) is
satisfied. ¤

For the proof of Theorem 5, we need the following lemmas.
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Lemma 4 For all a ∈ R, if 0 ≤ zn ≤ 1 and (zn, xn) is strictly stationary and strong mixing,
then

sup
b∈B

|N−1

N∑
n=1

(znI(b′xn ≤ a)− EznI(b′xn ≤ a))| p−→ 0.

In addition, if α(m) ≤ Cm−η for positive constants C and η, the convergence is almost
surely.

Proof of Lemma 4:

We will apply the generic uniform law of large numbers of the Theorem of Andrews (1987). It
requires compactness of the parameter space B (which is assumed), and in addition it needs
to be verified that the summands qn(wn, b) are such that qn(wn, b), q∗n(wn, b) = sup{qn(wn, b̃) :
b̃ ∈ B, |b̃ − b| < ρ} and qn∗(wn, b) = inf{qn(wn, b̃) : b ∈ B, |b̃ − b| < ρ} are well-defined and
satisfy a (respectively weak or strong) law of large numbers, and for all b ∈ B,

lim
ρ→0

sup
n∈Z

|N−1

N∑
n=1

Eq∗n(wn, b)− Eq∗n(wn, b)| = 0.

To show the last result, note that (zn, xn) is strictly stationary under the conditions of the
theorem, and therefore

lim
ρ→0

sup
n∈Z

|N−1

N∑
n=1

Eq∗n(wn, b)− Eq∗n(wn, b)|

= lim
ρ→0

sup
n∈Z

|EznI( sup
b̃:|b−b̃|<ρ

b′xn < a)− EznI( inf
b̃:|b−b̃|<ρ

b′xn < a)|

≤ lim sup
K→∞

lim
ρ→0

sup
n∈Z

|Ezn(I(b′xn < a + ρ|xn|)− I(b′xn < a− ρ|xn|))I(|xn| ≤ K)

+ lim sup
K→∞

lim
ρ→0

sup
n∈Z

|Ezn(I(b′xn < a + ρ|xn|)− I(b′xn < a− ρ|xn|))I(|xn| > K))|

≤ lim sup
K→∞

lim
ρ→0

|P (b′xn < a + ρK)− P (b′xn < a− ρK)|+ lim sup
K→∞

P (|xn| > K) = 0,

because x1n has a continuous distribution. Furthermore, note that qn(zn, b),

q∗n(wn, b) = znI( sup
b̃:|b−b̃|<ρ

b′xn < a)
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and

q∗n(wn, b) = znI( inf
b̃:|b−b̃|<ρ

b′xn < a)

are well-defined and strong mixing random variables, implying that weak law of large num-
bers for mixingales of Andrews (1988) applies; or alternatively we can apply the strong law of
large numbers of Theorem 4 of de Jong (1995), from which it follows that if α(m) + ν(m) ≤
Cm−η for some positive constants C and η, these variables will satisfy a strong law of
large numbers (note that because of boundedness of the summands, the summands are L2-
mixingales). ¤

Lemma 5 Under Assumptions 1,2, 3, 4 and 5,

sup
b∈B

|SN(b, σN)− ESN(b, σN)| p−→ 0.

In addition, if α(m) ≤ Cm−η for positive constants C and η, the convergence is almost
surely.

Proof of Lemma 5:

First note that Horowitz’ proof of his Lemma 4 (i.e. supb∈B |SN(b, σN)−S∗N(b)| as−→ 0 ) goes
through as it stands, except for the proof of uniform convergence of the term in his Equation
(A4), which uses a uniform law of large numbers for i.i.d. random variables. To show that

sup
b∈B

|N−1

N∑
n=1

(I(|
p∑

j=1

ρjyn−j + c′xn| < α)− EI(|
p∑

j=1

ρjyn−j + c′xn| < α))|

satisfies a strong or weak law of large numbers, we can use Lemma 4. To do so, note that

N−1

N∑
n=1

(I(|
p∑

j=1

ρjyn−j + c′xn| < α)

=
1∑

j1=0

. . .

1∑
jp=0

N−1

N∑
n=1

I(yn−1 = j1) . . . I(yn−p = jp)I(|
p∑

i=1

ρiji + c′xn| < α)
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and note that I(yn−1 = j1) . . . I(yn−p = jp) is strong mixing, because it is the product of
strong mixing random variables. It now only remains to be proven that

sup
b∈B

|S∗N(b)− S(b)| p−→ 0 or
as−→ 0,

which Horowitz shows by referring to Manski (1985). This can be shown by noting that

S∗N(b) = N−1

N∑
n=1

(2I(yn = 1)− 1)I(b′xn ≥ 0)

= 2N−1

N∑
n=1

ynI(b′xn ≥ 0)−N−1

N∑
n=1

I(b′xn ≥ 0),

and by Lemma 4, both terms satisfy a (weak or strong) uniform law of large numbers. ¤

Lemma 6 Under Assumptions 1,2, 3 and 4, S(b) ≤ S(β) with equality holding only if b = β.

Proof of Lemma 6:

This result follows by noting that all conditions from Lemma 3 of Manski (1985) are satisfied,
except that we need to show that the distribution of (yn−1, . . . , yn−p, x

′
n)′ is not contained in

any proper linear subspace of Rp+q. To show this, note that under the assumptions,

δ < p(yn|xn) < 1− δ,

δ < p(yn|yn−1, xn) < 1− δ,

. . .

δ < p(yn|yn−1, . . . , xn) < 1− δ.

The first of the above equations implies that yn is not a deterministic function of xn, so yn

cannot be a linear function of xn. Therefore, since by assumption the distribution of xn is not
contained in any proper linear subspace of Rq, the distribution of (yn, x′n)′ is not contained
in any proper linear subspace of Rq+1. From the second of the above equations, it follows
likewise that yn cannot be a linear function of yn−1 and xn, and that therefore the distribution
of (yn, x′n)′ is not contained in any proper linear subspace of Rq+2. Continuing this reasoning,
it follows that the distribution of (yn, yn−1, . . . , yn−p, x

′
n)′ is not contained in any proper

linear subspace of Rp+q+1. Therefore certainly, the distribution of (yn−1, . . . , yn−p, x
′
n)′ is not

contained in any proper linear subspace of Rp+q. ¤
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Proof of Theorem 5 :

The proof of the theorem now follows from Theorem A1 of Wooldridge (1994) and the results
of Lemma 5 and Lemma 6. ¤

Let zn =
∑p

j=1 ρjyn−j + γ′xn. The following lemma shows that Horowitz’ Lemma 5 holds as
it stands in our setting:

Lemma 7 Under Assumptions 1’ and Assumptions 2-14,

lim
N→∞

E[σ−h
N TN(β, σN)] = A;

lim
N→∞

Var[(NσN)1/2TN(β, σN)] = D.

Proof of Lemma 7:

The only adjustment to Horowitz’ Lemma 5 that needs to be made is to show that the
covariance terms in Var[(NσN)1/2TN(β, σN)] are asymptotically negligible. To prove this, we
show that for all vectors γ such that |γ| = 1,

lim
N→∞

σN

∞∑
m=1

|cov(γ′(x̃n/σN)K ′(zn/σN), γ′(x̃n−m/σN)K ′(zn−m/σN))| = 0.

By the covariance inequality for mixingales (see Davidson (1994, p. 212, Corollary 14.3)),

σNcov(γ′(x̃n/σN)K ′(zn/σN), γ′(x̃n−m/σN)K ′(zn−m/σN))

≤ σNCα(m)1−2/r(E|γ′(x̃n/σN)K ′(zn/σN)|r)1/r(E|γ′(x̃n−m/σN)K ′(zn−m/σN)|r)1/r

= σ−1
N Cα(m)1−2/r(

∫
|γ′x̃|r|K ′(z/σN)|rp(z|x̃)dzdP (x̃))2/r

= Cα(m)1−2/rσ
2/r−1
N (

∫
|γ′x̃|r|K ′(ζ)|rp(σNζ|x̃)dζdP (x̃))2/r

by substituting ζ = z/σN . The last term is smaller than C ′σ2/r−1
N α(m)1−2/r for some constant

C ′. Also, note that by Horowitz’ arguments, under the conditions of the theorem,

σNEγ′(x̃n−m/σN)K ′(zn−m/σN) = O(σN),
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implying that

σNcov(γ′(x̃n/σN)K ′(zn/σN), γ′(x̃n−m/σN)K ′(zn−m/σN))

= O(σN) + σNE(σNγ′(x̃n/σN)K ′(zn/σN)γ′(x̃n−m/σN)K ′(zn−m/σN))

= O(σN) + σ−1
N

∫
γ′x̃nK

′(zn/σN)γ′x̃n−mK ′(zn−m/σN)dP (xn, xn−m, zn, zn−m)

= O(σN) + σ−1
N

∫
γ′x̃nK

′(zn/σN)γ′x̃n−mK ′(zn−m/σN)dp(zn, zn−m|xn, xn−m)dzndzn−mdP (xn, xn−m)

= O(σN) + σN

∫ ∫
K ′(ζn)K ′(ζn−m)p(σNζn, σNζn−m|xn, xn−m)dζndζn−mγ′x̃n−mγ′x̃ndP (xn, xn−m)

= O(σN)

under the assumptions of the theorem. Therefore for any β ∈ (0, 1),

∞∑
m=1

|cov(γ′(x̃n/σN)K ′(zn/σN), γ′(x̃n−m/σN)K ′(zn−m/σN))|

≤ C

∞∑
m=1

(σN)β(α(m)(1−2/r)σ
2/r−1
N )1−β,

and by choosing β = (r − 2)/(2r − 2) + η and η > 0 small enough, the last term can be
bounded by

C(
∞∑

m=1

α(m)(r−2)/(2r−2)−η(r−2)/r)σ
(2r−2)η/r
N = O(σ

(2r−2)η/r
N ) = o(1),

where the finiteness of the summation follows from the assumptions. ¤

Horowitz’ Lemma 6 now holds as follows:

Lemma 8 Under Assumptions 1’ and Assumptions 2-14, (a) If Nσ2h+1
N → ∞ as N → ∞,

σ−h
N TN(β, σN)

p−→ A. (b) If Nσ2h+1
N has a finite limit λ as N →∞, (NσN)1/2TN(β, σN)

d−→
N(λ1/2A, D).
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Proof of Lemma 8:

The modification of Horowitz (1992) that is needed is to show that for all vectors γ such
that |γ| = 1,

(σN/N)1/2γ′
N∑

n=1

(tNn − EtNn)
d−→ N(0, γ′Dγ),

where

tNn = (2yn − 1)(x̃n/σN)K ′(zn/σN).

Since tNn is strong mixing, Theorem 2 of de Jong (1997) for strong mixing arrays can now
be applied to show this result under the conditions of the lemma. Note that the condition
α(m) ≤ Cm−r/(r−2)−η from that theorem follows from the assumptions of the lemma. ¤

For reproving Horowitz’ Lemma 7 for the case of strong mixing data, we need the following
lemmas:

Lemma 9 (Azuma(1967)) If ηn is a martingale difference sequence with respect to
Fn and |ηn| ≤ C, then

P (|N−1

N∑
n=1

ηn| > δ) ≤ 2 exp(−Nδ2/C2).

Proof of Lemma 9:

See Azuma (1967). ¤

An mN -fold application of the above lemma now gives the following result:

Lemma 10 If Fn is a sequence of sigma-fields such that ηn − E(ηn|Fn−1) is a martingale
difference sequence with respect to Fn, then for any integer-valued sequence mN such that
mN ≥ 1,

P (|N−1

N∑
n=1

(ηn − E(ηn|Fn−mN
))| > δ) ≤ 2mN exp(−δ2/(m2

NC2
N)).
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Proof of Lemma 10:

Obviously

N−1

N∑
n=1

(ηn − E(ηn|Fn−mN
)) =

mN−1∑
j=0

N−1

N∑
n=1

(E(ηn|Fn−j)− E(ηn|Fn−j−1)),

and therefore

P (|N−1

N∑
n=1

(ηn − E(ηn|Fn−mN
))| > δ)

≤
mN−1∑
j=0

P (|N−1

N∑
n=1

(E(ηn|Fn−j)− E(ηn|Fn−j−1))| > δ/mN)

≤ 2mN exp(−δ2/(m2
NC2

N))

by mN applications of Lemma 9. ¤

As in Horowitz (1992), define

gNn(θ) = (2I(yn = 1)− 1)x̃nK
′(zn/σN + θ′x̃n)−

E(2I(yn = 1)− 1)x̃nK
′(zn/σN + θ′x̃n).

The following result is now the analogue2 of Horowitz’ Lemma 7.

Lemma 11 If (yn, xn) is strong mixing with strong mixing sequence α(m), and there exists
a sequence mN ≥ 1 such that

σ
−3(p+q−1)
N σ−2

N N1/rα(mN) + (log(NmN))(N1−2/rσ4
Nm−2

N )−1 → 0,

then

sup
θ∈ΘN

|(Nσ2
N)−1

N∑
n=1

(gNn(θ)− EgNn(θ))| p−→ 0.

Note that the second part of Horowitz’ Lemma 7 will hold without modification. Also note
that the case of i.i.d. (yn, xn) is a special case, because then α(m) = 0 for m ≥ 1, and we
could set mN = 1 for that case.

2Note that Horowitz’ Lemma 7 only holds for bounded regressors, and that the truncation argument at
the start of Lemma 8 appears to be in error. Horowitz does not explicitly consider the remainder statistic
containing the summation elements for which |x̃n| exceeds a. Horowitz’ Lemma 9 appears to have a similar
problem in its proof. Therefore, Lemma 11 also serves to correct this aspect of Horowitz’ proof.
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Proof of Lemma 11:

Consider

gCN
Nn(θ) = (2I(yn = 1)− 1)x̃nK

′(zn/σN + θ′x̃n)I(|x̃n| ≤ CN)

−E(2I(yn = 1)− 1)x̃nK
′(zn/σN + θ′x̃n)I(|x̃n| ≤ CN),

and note that obviously,

gNn(θ)− EgNn(θ) = (gCN
Nn(θ)− EgCN

Nn(θ))

+(gNn(θ)− gCN
Nn(θ)− EgNn(θ) + EgCN

Nn(θ)). (40)

Now define CN = η−1/rN1/r(E|x̃n|r)1/r for any η > 0. Then because CN → ∞ as N → ∞,
following the reasoning as in the proof of (A16) of Horowitz (1992, page 525-526), it follows
that

sup
θ∈Θ

|EgNn(θ)− EgCN
Nn(θ)| → 0. (41)

In addition,

P (sup
θ∈Θ

|
N∑

n=1

(gNn(θ)− gCN
Nn(θ))| = 0) ≤ P (∃n : |x̃n| > CN) ≤ NE|x̃n|rC−r

N ≤ η, (42)

and we can choose η arbitrarily small. For the case r = ∞, it is trivial that these two terms
disappear asymptotically for some constant CN not depending on N . To deal with the first
part of Equation (40), note that

gNn(θ)− EgNn(θ) = (gNn(θ)− E(gNn(θ)|Fn−mN
)) + (E(gNn(θ)|Fn−mN

)− EgNn(θ)). (43)

To deal with the first part of the right-hand side of Equation (43), we can copy the argument
on page 525 of Horowitz (1992), except that now, by Lemma 10,

ΓN∑
i=1

P ((Nσ2
N)−1|

N∑
n=1

(gNn(θNi)− EgNn(θNi))| > ε/2)

≤ 2ΓNmN exp(−ε24−1Nσ4
NC−2

N m−2
N ).

Since ΓN = O(σ
−3(p+q−1)
N ), this term will converge to zero if

(log(NmN))(Nσ4
NC−2

N m−2
N )−1 → 0, (44)
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which is assumed. For dealing with the second part of the right-hand side of Equation (43),
note since gNn(θ) is strong mixing, it is also an L1-mixingale (see for example Davidson
(1994, p. 249, Example 16.3), implying that

E|E(gCN
Nn(θ)|Fn−mN

)− EgCN
Nn(θ)| ≤ 6CNα(mN).

Using Horowitz’ reasoning of page 525, it now suffices to show that for all ε > 0,

ΓN∑
i=1

P ((Nσ2
N)−1|

N∑
n=1

E(gCN
Nn(θNi)|Fn−mN

)− EgCN
Nn(θNi)| > ε) → 0.

By the Markov inequality,

ΓN∑
i=1

P ((Nσ2
N)−1|

N∑
n=1

E(gCN
Nn(θNi)|Fn−mN

)− EgCN
Nn(θNi)| > ε)

≤
ΓN∑
i=1

ε−1σ−2
N N−1

N∑
n=1

E|E(gCN
Nn(θ)|Fn−mN

)− EgCN
Nn(θ)|

= O(σ
−3(p+q−1)
N σ−2

N CNα(mN)) = o(1)

by assumption. ¤

Lemma 12 Under Assumptions 1’ and Assumptions 2-14, (b̃N − β̃)/σN
p−→ 0.

Proof of Lemma 12:

This follows from Lemma 11 and the reasoning3 of Horowitz’ (1992) Lemma 8. ¤

The following lemma corresponds4 to Horowitz’ Lemma 9.

3It should be noted that the truncation argument that is employed in Horowitz’ (1992) proof of his Lemma
8 appears to be incorrect as it stands. This is because the conditioning on the event Cγ does not appear
relevant; while Horowitz’ x̃ stands for a random variable distributed identically to any x̃n, the conditioning
should be with respect to every x̃n, n = 1, . . . , N , in order for this argument to work. However, unless x̃n

is almost surely bounded, such a conditioning set Cγ would depend on N , and will not have the desired
property that lim supγ→∞ lim supN→∞ P (Cγ) = 0.

4Note that Horowitz’ conditioning on XN appears to be in error, and note that when Horowitz uses his
Lemma 8 in the proof of his Theorem 2, a uniform law of large numbers appears to be needed rather than
the result of his Lemma 8.
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Lemma 13 Let {βN} = {βN1, β̃N} be such that (βN−β)/σN
p−→ 0 as N →∞. Then under

Assumptions 1’ and Assumptions 2-14,

QN(βN , σN)
p−→ Q.

Proof of Lemma 13:

Remember that

QN(βN , σN) = [σ−2
N N−1

N∑
n=1

(2yn − 1)x̃nx̃′nK
′′((

p∑
j=1

rjyn−j + c′xn)/σN)]b=βN
.

Since P (b1 = β1) → 1 and by the assumption that (βN − β)/σN
p−→ 0 as N →∞, it suffices

to show that for all η > 0 and any vector γ such that |γ| = 1,

sup
|θ̃|≤η

|N−1

N∑
n=1

rnN(θ̃)− ErnN(θ̃)| ≡ sup
|θ̃|≤η

|σ−2
N N−1

N∑
n=1

(2yn − 1)(γ′x̃n)2K ′′(zn/σN + θ̃′x̃n)

−E(2yn − 1)(γ′x̃n)2K ′′(zn/σN + θ̃′x̃n)| p−→ 0. (45)

Note that Horowitz (1992) shows the continuity of ErnN(θ̃) in θ̃ uniformly in N . To show
the result of Equation (45), note that

P (sup
|θ̃|≤η

|N−1

N∑
n=1

rnN(θ̃)I(|rnN(θ̃)| > CN) = 0)

≤
N∑

n=1

P ((γ′x̃n)2 > CN) ≤ NE|γ′x̃n|rC−r/2
N

and the last term can be made smaller than ε by choosing C
−r/2
N = N−1ε(E|γ′x̃n|r)−1. In

addition, it is easily verified that

sup
|θ̃|≤η

|N−1

N∑
n=1

E(rnN(θ̃)I(|rnN(θ̃)| > CN)) → 0.

Because of these two results, it suffices to show uniform convergence to zero in probability
of

RN(θ̃) = N−1

N∑
n=1

(rnN(θ̃)I(|rnN(θ̃)| ≤ CN)− ErnN(θ̃)I(|rnN(θ̃)| ≤ CN)
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+CNI(|rnN(θ̃)| > CN)− ECNI(|rnN(θ̃)| > CN)).

Now note that since θ̃ ∈ Rp+q−1, we can cover the parameter space {θ̃ : |θ̃| ≤ η} with

O(σ
−2(p+q−1)/β
N ) balls of size σ

2/β
N and with centers θ̃j. Now note that, by Assumption 14,

sup
N≥1

E sup
|θ̃−θ̃′|<δσ

2/β
N

|RN(θ̃)−RN(θ̃′)|

≤ sup
N≥1

E(γ′x̃n)2L sup
|θ̃−θ̃′|<δσ

2/β
N

|θ̃ − θ̃′|βσ−2
N → 0 δ → 0.

Using Lemma 11 and following the same reasoning as in the proof of that lemma, we can
now argue

lim sup
n→∞

P (sup
|θ̃|≤η

|RN(θ̃)− ERN(θ̃)| > ε)

≤ lim sup
n→∞

P (max
j
|RN(θ̃j)− ERN(θ̃j)| > ε/2)

≤ lim sup
n→∞

∑
j

P (|RN(θ̃j)− ERN(θ̃j)| > ε/2)

= O(σ
−2(p+q−1)/β
N [2mN exp(−Nε2/(4σ4

NC2
Nm2

N)) + ε−1CNα(mN)])

and because CN = O(N2/r), the last term converges to 0 if

σ
−2(p+q−1)/β
N N2/rα(mN) + (m−2

N σ−4
N N1−4/r)−1 log(NmN) → 0,

which is assumed. ¤

Proof of Theorem 6:

This proof is identical to the proof of Horowitz’ Theorem 2, where we need to use our Lemma
12 and Lemma 13 instead of Horowitz’ Lemma 8 and Lemma 9. ¤
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Proof of Theorem 7:

Part (a) now follows exactly5 as in Horowitz’ proof of his Theorem 3, where our Lemma 12
and Lemma 13 replace Horowitz’ Lemma 8 and Lemma 9. Part (c) follows from Lemma 13.

¤

5To show part (b), note that it appears as though Horowitz (1992, page 530) neglects to provide a formal
uniform law of large numbers result of the type

sup
|θ̃|≤η

|σ−1
N N−1

N∑
n=1

(γ′x̃n)2K ′(zn/σN + θ̃′x̃n)− E((γ′x̃n)2K ′(zn/σN + θ̃′x̃n)| p−→ 0

for all γ such that |γ| = 1. Under the conditions of our theorem, this result can be proven analogously to
the proof of Lemma 13, using the same CN and ball size sequences. Note that K ′(.) is Lipschitz-continuous
with β = 1, since K ′′(.) is assumed to exist and to be uniformly bounded.
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