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Abstract

This paper analyzes bidding behavior in a multi period multiple unit auction. While bidders are

ex ante symmetric, the first period outcome translates the second period game to a game between

asymmetric bidders. The first period outcome determines who will be a strong or a weak bidder in the

second period. The possibility of future asymmetry thus affects the bidding behavior in the current

symmetric environment. This leads to “excessive entry” and “overbidding’ in the first period. We

characterize the equilibrium in terms of the observed bid distribution and entry behavior. Using this

characterization we establish the nonparametric identification of bidders’ privately observed signals

from bid data. We suggest a three step procdure to estimate the dynamic mixed discrete-continuous

choice model.

We estimate our model and report the results. Specifically, we found that the federal government

is only recovering 25% of the ‘strong’ buyers’ willingness to pay.In the wildcat auctions, we found

that the bidders are willing to pay 10 % more to take possible future informational advantage.

1 Introduction

This paper analyzes bidding behavior in a multi-period multiple unit auction. There is a single seller

who has two units of the good and sells off each unit of the good sequentially via first price auctions.

In the first period bidders are typically symmetric. Whoever wins the first period auction learns his

valuation for the second period ‘better’ (in a sense to be made clear later), and becomes a strong bidder in

the second period. Thus the first period outcome generates asymmetry in the second period distribution
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of bidders’ valuations. The possibility of future asymmetry thus affects the bidding and entry behavior

in the first period symmetric environment. This would lead to more entry in the first period than if

we were analyzing the first period as a static game. We characterize the equilibrium in terms of the

observed distribution of bids and entry behavior, which in turn can be used to recover the unobserved

signals of bidders from observed variables, when bidders follow equilibrium strategies. It is important

to characterize bidding behavior in such an environment. This will give important policy directions in

the choice of designing auction mechanisms and reserve prices for both periods.

A well known example of this type of auctions are the oil tracts auctions1. In such auctions, for each

geographic location, the government auctions off several oil tracts via sequential first price sealed bid

auctions. Thus there are multiple goods for each locations and bidders may demand one, more or none

of these goods depending on their valuations. There are two major kinds of oil and gas lease sales. A

wildcat sale covers tracts whose geology is not well known and on which exploration involves searching

for a new deposit. Firms can get pre bidding seismic informations but no on site drilling is permitted.

A drainage sale consists of tracts in areas where a deposit has been discovered. On-site drilling is not

permitted but firms owning adjacent tracts can conduct off-site drilling, which may be informative about

the oil deposited in the tracts to be auctioned. Thus bidders who already have won adjacent tracts via

wildcat auctions have informational advantages over other bidders for drainage tracts. This creates a

clear asymmetry among bidders, separating them in two categories: those who have ‘more accurate’

information, we call them strong bidders, and those who do not have as accurate information as the

strong bidder; we call them weak bidders. This asymmetry is generated by who has won in the previous

wildcat auction. Thus bidders who bid for wildcat tracts do not only take their evaluations of the oil

storage in the wildcat tracts, but they also keep in mind the informational advantages they would get in

subsequent sales in that area by winning the current auction. The latter effect generates major dynamics

in the bidding behavior.

We model wildcat tracts as tracts being sold in the first period of the game, and the drainage tracts

are sold in the second period. In the wildcat sales bidders are typically symmetric in the sense that

they receive privately observed seismic signals from the same distribution. If the signal is not above a

threshold level, then bidding is not optimal. A puzzle so far has been, whether we notice some kind

of overbidding as 64% of wildcat tracts turn out to be dry2. If the fault lay with the accuracy of the

seismic surveys, one would have expected them to be carried out less and less as these are quite costly

to carry out. However, that has not been seen. An alternate explanation of why people bid when they
1Examples also include spectrum auctions, treasury auctions etc.
2Descriptive statistics as reported by Hendricks and Porter (’89).
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apparently should not is because bidders rationally take into account dynamic considerations. Owning

an oil tract even if it has a high chance to turn out dry, gives the owner an advantage for future drainage

sales. Thus, bidders rationally calculate the advantages of bidding in future drainage auction in deciding

on optimal bidding strategies in a wildcat auction. Thus this dynamics lowers the threshold level of

signal for bidding for wildcat tracts and overstates the expected valuation of the tract. This leads to

more entry in the wildcat sales relative to the static analysis of wildcat auction. Reduced form analysis

suggests that ex-post drainage tract values conditional on ex-post wildcat tract values and competition,

have a significant positive effect on entry and bidding decisions for wildcat tracts.

The valuation from any tract, conditional on winning, depends on how much oil is stored in that tract

minus the cost of drilling. Now for a wildcat tract, this value is likely to be same for all the bidders, since

the amount of oil stored in those tracts is same for all the bidders and as they have not won any tract in

the neighborhood, there are also no difference in drilling technologies. We therefore model the wildcat

tracts as a common value (CV) auction. However the drilling cost is likely to be different for different

bidders in drainage auctions. Since the costs associated with shifting resources from other previously

won tracts is different depending on whether the bidder has won a tract in the neighborhood or not. We

therefore model the drainage auctions as affiliated private value (APV) auctions: affiliated through the

common component of how much oil is stored in the tract and the private component depends on the

drilling cost. This is our maintained assumption throughout this paper.

Assumption : The wildcat auctions are common value auctions whereas the drainage auctions are

affiliated private value auction.

Note that, this assumption is easily testable following Haile, Hong & Shum (’04). Also as will be

clear later, our results will not change because of this assumption. However, the economic interpretation

of the first order conditions associated with bidding will be different.

Our aim in this paper will be, to formulate a model and recover bidders’ valuations for the wildcat

and drainage tracts, which takes these dynamics into account. This will give important policy directions

for the government to device a better auction mechanism for wildcat and drainage tracts which generates

more revenue. Researchers have previously argued that drainage auctions are under priced. Our analysis

will give directions for the analysis of the optimal (reserve) pricing in such an environment.

We model this as a three stage dynamic game of mixed discrete and continuous choice. The first stage

is an entry game where bidders makes the discrete choice of whether to bid for the wildcat tract or not

depending on the pre-bidding seismic signals received. While deciding to enter they keep the possibility

of future asymmetry in mind. This future asymmetry is also taken into account while deciding how

much to bid for the wildcat auction. While bidding for the drainage auction bidders know who is a
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strong and weak bidder. However no bidder knows their valuations from the tract perfectly. This leads

to aggressive bidding by the weak bidder in equilibrium.

We show the existence of equilibrium for this dynamic game and establish uniqueness in the bidding

games in the wildcat and drainage auctions.

The equilibrium bidding function is monotonic, hence we can invert it to rewrite the distribution of

privately observed signals in terms of the distribution of bids and the observed entry behavior. We then

use this to establish non-parametric identification of distribution of privately observed signals.

The structural parameters of our model are the distribution of unobserved signals (‘pseudo values’)

and the ‘entry parameters’ (to be described later). We suggest a three step estimation procedure based on

the identification results to recover the structural parameters from the data. The structural parameters of

our model are the distributions of bidders’ privately observed signals for wildcat and drainage auction

and the sunk cost associated with submission of bids. Our procedure extends the works of Guerre,

Perrigne and Vuoung (GPV) (’00) to dynamic auctions with entry.

We used data3 on sales of wildcat tracts off the coasts of Texas and Louisiana held during the

period 1954 to 1990 to estimate our model and report our results. Specifically we found that the federal

government only recovers 25% of the ‘strong’ bidder’s willingness to pay in the drainage auctions. Also

in the wildcat auctions, we found that the bidders are willing to pay 10 % more to take possible future

informational advantage.

2 Related Literature

Asymmetry in auctions has received increased attention recently. Maskin & Riley (’96 &’00), Athey(’00),

Lebrun (’99), Mcadams (’04), Reni & Zamir (’03) have characterized asymmetric first price sealed

bid auctions and established monotonicity of the equilibrium under specific assumptions. Asymmetry

originating from size difference (Laffont, Oscard, Vuoung(’95), geographic locations (Bajari(’99)), and

capacity constraints (Jofre-Bonet & Pesendorfer (’03)(JBP)) among others have been studied in the

literature. However except for JBP no paper has analyzed asymmetry in a dynamic context. Also to

the best of our knowledge no paper has analyzed the process of asymmetry generation starting from

a symmetric environment in a multiple unit framework as in our paper. This endogenous asymmetry

also endogenizes entry in our model. Endogenous entry, although prevalent in procurement auctions,

has received increased theoretical attention recently in Mcaffee(’87), Levin & Smith (’94) among others.

3I am grateful to Prof. Ken Hendricks, Joris Pinkse and Rob Porter for sharing the data.
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Our empirical modelling of entry is different from theirs and more related to Berry, Levinson, Pakes

(’94) modelling of entry as in the standard IO literature.

The presence of possible asymmetry in drainage tract sales have been widely documented by Hen-

dricks & Porter (’88,’89,’95) among others. However their analysis does not account for dynamics in a

multiple unit structural model as in ours.

Multiple unit auction is yet to be widely studied, both in theoretical and empirical literature. Most

of the analysis is confined to bidding behavior in a static and symmetric environment. A standard

assumption made is that the marginal valuations of successive units are constant and independent of

the allocation of other units. To the best of our knowledge no paper has analyzed the dynamics and

possible future asymmetry as in our model in an uncertain environment. We have also provided explicit

form of the distribution of valuation in terms of the observed bid data and equilibrium entry behavior.

This makes it readily available for structural estimation of the unobserved valuations distributions and

counter-factual experiments from the observed bid data, which will be relevant for devising optimum

(reserve) price.

3 Model

3.1 Description and Information Structure

For simplicity of exposition, we present the model here for two bidders and two periods. However a

generalization to the N bidder case in a multi-period framework is straightforward and will be sketched

in the identification and estimation section.

This is a multi-stage game of incomplete information. There is a seller who has two indivisible units

of the good and sells off each unit of the good in sequential first price auctions. There are two potential

buyers 1 and 2. All players are risk neutral. The seller, who does not act strategically, offers the good via

a first price sealed bid auction. The first period auction is called wildcat auction and the second period

is called drainage auctions for reasons described earlier. Bidders receive private signals sw and sd about

their valuations of wildcat and drainage auction respectively. It is assumed that the unknown value of

oil stored in a tract of type t to a bidder i, U t
i can be expressed as a function of all bidder’s signals

ut
i(s

t
1, s

t
2) = E(U t

i |St
1 = st

1, S
t
2 = st

2)

where t = {wildcat, drainage} and ut
i is bidder i′s valuation and is assumed to be non-decreasing in

all its arguments, strictly increasing in st
i and twice continuously differentiable..
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This is an interdependent valuation model, as other bidder may posses information that would, if

known to a particular bidder, affect the value he assigns to the tract. When bidder’s valuations only

depend on his signal ut
i(s

t
1, s

t
2) = st

i, then it is called a pure private value model. On the other hand if

the valuation remains the same for all bidders ut
i(s

t
1, s

t
2) = U, then it is a pure common value setting.

We assume that the wildcat auction is a common value (CV) auction and the drainage auction is an

affiliated private value (APV) auction for reasons described earlier4.

The distribution of signals for auction of type t, Ft(.) are affiliated, in the sense defined5 in Milgrom&

Weber (MW)(’82). By affiliation, high value of one signal leads to a higher value of the other signal.

Note that, independence is a special of affiliation.

3.1.1 Information in the Wildcat Auction (First Period)

Let the value of oil stored in wildcat tract, drawn from Fu, be denoted by u. Bidders are typically

symmetric for wildcat auctions in the sense that they privately observe conditionally independent, but

affiliated signals sw about u from the same distribution FW (sw|u)6.

To economize on notations, let the expected common value of oil stored in an wildcat auction when

bidder i has one rival, be given by,

U = E[ui(sw
i , Yw)|sw

i ,max
j 6=i

sw
j = Yw, A = 2]

where Yw is the maximum signal received by the rival of bidder i, and let U0 be the same when he does

not have any rival. Let u and u0 be the values that these random variables take. Note that, since wildcat

auction is a pure CV auction, due to the presence of ‘winner’s curse’, U and U0 need not be the same.
4Another approach could be not to impose any CV or APV assumption and estimate the interdependent ‘values’ for

each auction. We can then test wheter they are CV or APV using HHS.
5The concept of affiliation as coined by Milgrom & Weber (’82), is what is known as Total Positivity (TP) in statistical

literature. More specifically the variables s = (s1, s2, ..sn) are said to be affiliated if for all s′, s′′ ∈ S,

f(s′∧s′′)f(s′∨s′′) ≥ f(s′)f(s′′)

where (s′∨s′′) = (max(s′
1, s′′

1 ), max(s′
2, s′′

2 ), ..., max(s′
n, s′′

n)), and (s′∧s′′) = (min(s′
1, s′′

1 ), min(s′
2, s′′

2 ), ..., min(s′
n, s′′

n)) are

the component wise maximum and minimum of s′ and s′′. It is easy to verify that f is affiliated if and only if, for all i 6= j,

∂2

∂si∂sj
ln f ≥ 0

For more details see MW.
6Thus, each of the random variables sw

1 and sw
2 are affiliated with the common component u, but conditioned on the

common component u they are indepedent.
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The winner of the wildcat auction becomes a strong bidder in the drainage auction. The relative

strongness of bidders’ are determined by his location state variable. The location of bidder i evolves

according to

Di = { i is strong, if i won the wildcat auction in the same location
i is weak, if i did not win wildcat auction in the same location

The dynamics of the model is represented by the evolution of the state variable D. When bidders are

bidding for wildcat tracts they are also choosing their future locations D, which affects their marginal

distribution of valuations for drainage tracts. Note that, the state variable can also be a continuous

distance variable, leading to a continuous type space instead of discrete one as described above.

3.1.2 Information in the Drainage Auction (Second Period)

Bidders in drainage auctions are divided into two groups: strong bidder (denoted by 1); who has won

the wildcat tract in the first period, and weak bidders (denoted by 0); who did not win in the first

period. They draw their private signals about the value of the drainage tract, v from different marginal

distributions, F1(.|v) and F0(.|v) respectively. Thus sd
1 is the realization of the random variable sd drawn

from the distribution F1(.|v). Bidders receive affiliated signals sd
i ∈ <, about the unknown value of oil

stored in drainage tracts v, v ∼ Fv, sd
i ∼ F d

i (sd|v), and let their joint distribution be F (v, sd
i , s

d
j ) =

F d
1 (sd|v)F d

0 (sd|v)Fv(.), we assume that all the distributions are continuous.

Strong bidders evaluate the value of the tract ‘better’, in the sense that their signals about the value

of the tract is more ‘accurate’ than that of the weak bidder. Thus, if the realization of v is low then

strong bidder’s signal sd
1 is low and vice versa. We shall use the concept of ‘accuracy’ as introduced in

the statistics literature by Lehmann (’88) and applied recently in economics by Persico (’00) and Athey

& Levin (’01). Formally

Definition 1 Given two distributions of signals F1(.|v) and F0(.|v), we say that the realization of sd
1

drawn from F1(.|v) is more accurate than sd
0, drawn from F0(.|v), if

h1,v(sd) = F−1
1 [F0(sd|v)|v] (1)

is non-decreasing in v, for every sd.

Intuitively, the notion of a more accurate signal can be interpreted as the one which is more correlated

with the random variable v. Note that, ‘accuracy’ is more general than stochastic dominance. We shall
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outline a procedure later on how to test the assumption of accuracy using ex post production and bid

data7.

This kind of asymmetry can be explained with the following simple example. Suppose the common

value of the object is v and every bidder’s valuations of the object is s1 = v + ε1, and s0 = v + ε0, where

ε′s have zero mean and var(ε1) ≤ var(ε0). Thus the strong bidder (bidder 1) evaluates the common value

of the object better than the weak bidder (bidder 0), in the sense that he receives a more concentrated

signal around the true common value of the object.

To explain the above definition better, suppose v can take only two values v1 < v2. Both bidders

receive signals sd
1 and sd

0 respectively about v. Bidders make inferences about v based on their signals.

Now for the weak bidder any ‘most powerful’ test of v1 versus v2 has the form ‘accept’ v2 if sd
0 > sd

0.

The probability that weak bidder rejects the fact the value is v2 when the true value is actually v2

(Type I error), is given by F0(sd
0|v2). That of the strong bidder would be F1(sd

1|v2). The probability that

the weak bidder would accept the fact that the value is v2 when the true value is actually v1 (Type

II error), is given by 1 − F0(sd
0|v1). Similarly that for the strong bidder is 1 − F1(sd

1|v1). If we fix the

same probability of Type I error for both bidders, then F1(sd
1|v2) = F0(sd

0|v2), inverting this gives us the

relationship in equation 1 in the above definition. The strong bidders’ signal is more ‘accurate’ in the

sense that it has lower Type II error ( more ‘Power’). This implies sd
1 ≥ F−1

1 [F0(sd
0|v1)|v1], this gives us

the non-decreasing in v part of the definition8.

3.2 Timeline of Events

The sequence of moves, for each location, are as follows:

1) Number of potential bidders9 is common knowledge. Bidders first receive some information; sw,

about the value of oil stored in the tract, u, sw ∼ FW (.) of the wildcat tract from a seismic survey.

2) There are 2 potential bidders for any location. They simultaneously decide whether to bid for the

wildcat auction or not. Bidders receive action specific shocks ε associated with actions of whether to

enter or not, drawn independently from Logistic distribution10. If they decide not to bid they receive ε1

7One simple test will be a test of correlation of the estimated valuation and exact value of oil stored. Given the expost

data on oil auction we can test that the correlation is higher for strong bidder than for the weak bidder. Another test of

asymmetry using ‘copula’ is described in Gupta (’04).
8For details; see Lehmann (’88, especially pp.527-528).
9This is not necessary. As long as the distribution of the potential bidders are known to bidders then our analysis will

go through. However we abstract away from it for simplicity.
10The assumption of logistic distribution is not necessary. However, we adopt this as it will lead to a closed form of the

choice probability of whether to enter or not (to be defined later). This will be very handy for the empirical analysis.
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and if they decide to bid they receive ε2 in the current period. The error ε is independent of the seismic

survey signals and they are not errors associated with the analysis of seismic surveys. Hence they do

not affect the actual amount of bids submitted. These errors are like bidders’ action specific shocks,

shocks received while going to bid, or following the arguments of Bajari & Hortacsu (’03) and Mckelvey

& Palfrey (’95); errors made while deciding to bid. These errors could also be interpreted as the cost of

conducting the seismic surveys. Let the actual number of bidders be A.

3) If they decide to bid then they further incur a sunk cost K to analyze the survey and submit a

bid bw
11.

4) Any bidder submitting a bid bw, wins the auction with probability η(bw, Bw), where Bw is the

maximum of the rival bid.

5) If they win the auction they learn the valuation U .

6) Next period bidders decide how much to bid for the neighboring drainage tracts :bd. Bidders draw

their signals about the valuations of the drainage tract vi, from continuous asymmetric distributions

Fi(sd|v). They win the drainage tract with a probability η(bd, Bd, D), where D is the state (location)

variable of bidder and Bd being the maximum of the rivals’ bid.

We assume that the auctioneer (government), does not act strategically and always sells the objects

to the highest bidder via two independent first price auctions.

In this game bidders have three kinds of choices : a discrete choice of whether or not to bid in an

wildcat tract, and a continuous choice of how much to bid for the wild cat tract and a second continuous

choice of how much to bid for the drainage tract. Thus the number of bidders in an wildcat tract is

endogenous. However all the potential bidders bid for a drainage tracts12. Thus there is no endogeneity

of number of bidders in a drainage tract. Some of them may bid zero though depending on their signals

received.
11In reality, before any wildcat sale potential bidders hire a geophysical firm to “shoot” a seismic survey for a large (50

block) area, and bear the cost (US$12 million) jointly. The interpretation of this survey across firms and they receive a

signal sw, unknown to other bidders. They typically reject half of the tracts in the 50 block area. If a firm does not

reject the tract, it often purchase more data and shoot “‘infill” or “cross-diagonal” lines on selected blocks by incurring

additional costs (ε in our model) to build a better picture of the model. The cost of the information upgrade in an area is

between US$1/2m to US$1 million. In addition the firm must pay for the inhouse expertise to interpret the data (K in

our model).
12This model is extendable to allow entry in drainage auction too. Please see section 4. However, for simplicity I abstract

away from entry in drainage tracts.
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3.3 Value Function

The value of the wildcat tract, to the ith bidder, Vi, can be written as follows:

Vi(sw
i , ε) = max

αi∈{1,2}
{Q1;i(sw

i ) + ε1, Q2;i(sw
i ) + ε2}, i = {1, 2} (2)

Equivalently,

Vi(sw
i , ε) = max

αi∈{1,2}
{[Q1;i(sw

i ) + ε1]I(αi = 1) + [Q2;i(sw
i ) + ε2]I(αi = 2)}

where αi = 1 represents not bidding and αi = 2 represents bidding, I{.} is the indicator function,

Q1 + ε1 is the expected value to the bidder if he decided not to bid for the wild cat auction, and Q2 + ε2

is the expected value of bidding for the wildcat tract. He receives an action specific shock εk. We assume

that εk ’s are independently drawn from a logistic distribution.

Integrating over the ε′ks, we get the smoothed value function, V σ
i , the value function before the bidder

observes his action specific shocks εk (i.e, before incurring the cost for more ”infill”),

V σ
i (sw

i ) =
∫

Vi(sw
i , ε)dΦ(ε) = max

αi∈{1,2}
{[Q1;i(sw

i ) + E(ε1)]I(αi = 1) + [Q2;i(sw
i ) + E(ε2)]I(αi = 2)}

Under the assumption of logistic distribution of ε′ks , E(εk) = λ− ln(P (αi = k)), k = {1, 2}, where

λ is the Euler’s constant.

If a bidder decides to bid bw(sw) for the wild cat tract, he wins the tract with probability ηw(bw, Bw),

when the maximum of his rival’s bid Bw. His next period state will be D. Next period he will then bid

for the drainage tract in the same location. Let the expected value from bidding for the drainage tract

be Ti(D).

Thus,
Q2;i(sw

i ) = maxbW≥0[{Pr(α−i = 2|sw
i ){(U − bw)× ηW −K

+β
∑2

j=1 Pr(j winsWA)
∫

Ti(D)dF (sd, D)}
+Pr(α−i = 1|sw

i ){(U0 − bw) + β
∫

Ti(i is strong)dF1(sd, D)}]

(3)

where

Pr(α−i = 2|sw
i ) =

∫
Pr(α−i = 2|sw

−i)dFw(sw
−i|sw

i )

Pr(α−i = 2|sw
−i) is the probability that the rival decides to bid, given rival’s privately received signal sw

−i.

This is then integrated over sw
−i given that the ith bidder received a signal sw

i ; the relevant distribution

function being Fw(sw
−i|sw

i ), which gives us the probability that bidder i assigns that his rival enters,

given that the ith bidder received a signal sw
i . We shall characterize Pr(αi|sw

i ) shortly.
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{(U−bw)×ηW −K }represents bidder i’s expected value from bidding in the wildcat tract, and Ti(D)

is his expected value from bidding the drainage tract discounted by β. For notational simplicity, I have

suppressed the arguments of the probability of winning; ηW (bw, BW ), and
∫

Ti(D)dF (sd|v,D)dF (v) is

the ex-ante value from the drainage auction, before bidders receive their signals about the drainage

tracts13.

The terms within the first curly parentheses represents bidders’ expected valuations when he has a

rival. The terms within the second curly parentheses represents bidders i′s expected valuation when he

does not have a rival. Both terms being weighted by the probability of whether he has a rival or not.

Note that using affiliation of sw’s it can be easily shown that, Pr(α−i = 2|sw
i ) first order stochastically

dominates Pr(α−i = 2|sw′
i ) for sw

i > sw′
i .

If the bidder decides not to bid for the wildcat tract, he will receive his discounted expected valuation

from the drainage tract where for sure he will be a weak bidder if his rival enters this period and otherwise

would face the same problem and value V σ
i (sw′

i ) again next period. Hence

Q1;i(sw
i ) = {β Pr(α−i = 2|sw

i )×
∫

Ti(1 is weak)dF0(sd|v)+β Pr(α−i = 1|sw
i )×

∫
V σ

i (sw′
i )dFw(sw′

i )} (4)

The expected value from the drainage tract can be written as

Ti(D) =
∫

max
bD≥0

{(vi − bD)× ηD(D, .)}dF (v|sd, D)

From the bidder’s perspective, the drainage tract being auctioned next period. Hence its expected

value depends on the next period’s state D. This in turn depends on bidders choices and outcomes in

the wildcat auction this period.

We assume that the drainage auction is an affiliated private model, hence
∫

vidF (v|sd, D) = sd
i (D).

Note that we can write the value function as a mapping into itself.

V σ
i = Λ(V σ

i ) (5)

Using standard arguments in the literature (see Bhattacharya & Majumdar (’89), Theorem 3.2,), it

can be shown that the mapping Λ, and a unique solution to the value function exists.
13Note that

F (sd|v, D = i is strong) = F1(.|v), and F (sd|v, D = i is weak) = F0(.|v)
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3.4 Equilibrium

We solve for symmetric perfect Bayesian equilibrium in monotone strategies for each stage game. Solution

method will involve backward induction. We shall first solve the drainage tract auction as a function of

bidders state variable next period D. We shall substitute this solution in the value function and solve

the wildcat auction which determines D.

More specifically, three stages are:

1) Solve the third stage problem of bidding in drainage auctions, as a function of state variable

D,denoted by T (D), which also determines part of Q1.

2) Substitute T (D) in the second stage problem to solve for how much to bid for the wildcat auction.

This determines D, and part of Q2, excluding the probability weight of rival discrete actions.

3) Compare Q2 +ε2and Q1 + ε1 to determine whether to bid or not for the wildcat auction in the

first stage. This will determine the equilibrium probability of winning.

3.4.1 Last Stage Decision: Analysis of Drainage Tracts

The distribution of valuations of strong and weak bidders are given by F1(|.v) and F0(.|v) respectively.

Note that strong bidder receive more ‘accurate’ signal as defined before. Let v1(sd
1, s

d
0) = E[V1|Sd

1 =

sd
1, S

d
0 = sd

0] be the expected value to bidder 1 when he received a signal sd
1 and his rival received a

signal sd
0. v0(sd

1, s
d
0) is defined analogously. Bidder’s valuations are interdependent. i.e., vi(sd

i , s
d
j ) is

non-decreasing in sd
i , sd

j , i 6= j, {i, j} ∈ {0, 1}, Moreover we assume vi is strictly increasing in sd
i and

vi(0, 0) = 0. Henceforth, we will suppress the arguments of vi.

Let the bid by two bidders be bd
1 and bd

0 respectively. Let each bidder adopts monotone bidding

strategy bd
i (si) with an inverse φi(bd

i ). Thus by bidding b, the strong bidder wins the auction with

probability Pr(bd
0 ≤ b) = Gd

0(b) = Pr(φ0(bd
0) ≤ φ0(b)) = F0(φ0(b)), similarly the weak bidder wins the

auction with probability Gd
1(b). Let the supports of the distributions of signals be [si, si] for i ∈ {0, 1}.

In general we may have s0 ≤ s1 ≤ s1 ≤ s0 as described below. s0

︷︸︸︷
s0 ↓ s1 s1 s0

Proposition 2 a) There exists a pure strategy equilibrium of the drainage auction. It is characterized

by the following conditions
F ′

0

F0
φ′0(b) =

1
v1 − b

(6)

and
F ′

1

F1
φ′1(b) =

1
v0 − b

(7)
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in the common support of signals, i.e., for all s0, s1 ∈ [s1, s1], satisfying the boundary conditions, b0(

s0) = b1(s1) = b, b0(s0) = b1(s1) = b, The equilibrium pair of inverse bid function is given by, φi(bd) =

b−1
i (bd), i ∈ {0, 1},where sd

i = φi(b), is the inverse bid function. When the weak bidder has a signal

s0 ≤ s0 ≤ s1, then one equilibrium solves the differential equation F ′
1(s1)

F1(s1)
φ′1(b) = 1

v0−b0
, and strong bidder

submits a bid 0.

Moreover we can rank the ex-ante values from the drainage auction as∫
T (i is strong)dF (v|sd, D)dF1(sd) >

∫
T (i is weak)dF (v|sd, D)dF0(sd)

Proof. Details are given in the appendix. Here is a sketch, first note that the utility function satisfies

the single crossing property and affiliation of signals guarantees that the distribution of valuations is

log-supermodular (see Athey(’00)). Hence the assumptions of theorem 4.10 of Athey (’00) is satisfied

and a pure strategy equilibrium exists. The exact characterization of the equilibrium in terms of the

differential equations given above then can be found by taking the first order conditions with appropriate

boundary conditions14.

3.4.2 First Stage Decision: Analysis of Wildcat Auction

Note that, the first stage decision of whether to bid, and how much to bid for the wildcat auction is

formulated in such a way that if the seismic information does not reveal a signal above the threshold

level, then not bidding is optimal. Thus number of actual bidders is endogenous in the wildcat auction.

The threshold level of signal, defined as the lowest signal at which a bidder believes the value of the

tract conditional on winning (in a symmetric equilibrium) is not worth bidding, is given by,

lim sup
sw

i ↓sw∗
Pr(αi = 1|sw

i ) → 1 (8)

i.e., it is the supremum of the limiting signal when not bidding becomes optimal.

Below, we define the conditional choice probability (CCP) of the decision to bid for bidder i, given

by,

Pr(αi = 2|sw
i ) =

∫
I{αi = 2|sw

i }dΦ(ε)

where αi is the optimum decision of bidder i and sw
i is the vector of signals received by bidder i and

his rival.

Equivalently,
Pr(αi = 2|sw

i ) = Pr(Q1 + ε1,i ≤ Q2 + ε2,i|sw
i )

= Pr(ε1,i − ε2,i ≤ Q2 −Q1|sw
i )

14We assume throughout in the paper that the second order condition is satisfied.
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and

Pr(αi = 1|sw
i ) = 1− Pr(αi = 2|sw

i )

Given our assumption about the unobservable εi follows a logistic distribution, we have a closed form

solution for the conditional choice probability,

Pr(αi = 2|sw
i ) =

exp(Q2;i(sw)/ρ)∑
k exp(Qk;i(sw)/ρ)

where ρ is the smoothing parameter.

Note that, Q2 depends on the entry choices (P−i) of other bidder too; i.e. Q2(P−i).

All the bidders in the wildcat tracts are symmetric. Hence in equilibrium, Pr(αi = 2|sw) = p∗, for

all i = 1, 2. k = 1, 2.

Hence, writing in vector notations, for each location,

p∗(sw
i ) =

exp(Q2;i(p∗)/ρ)∑
k exp(Qk;i(p∗)/ρ)

(9)

for all i = 1, 2. Note that by symmetry we mean conditional symmetry, i.e., bidders with same signals

follow same strategies, and strategies are monotone.

Let Yw be the maximum signals of the rivals bid in the wildcat auction if there is a rival and zero

otherwise15, then the probability of bidder i wins the auction is the probability that his bid is higher

than Yw. Let each bidder adopts the monotone bidding strategy b(sw) with an inverse φ(bw).

Then,

Pr(i wins WA) = Gw
Bw|bw

i
(y|bw

i ) = Pr(bw
i > Bw = max bw

j , for j 6= i| 3 A bidders)

= Pr(φ(bw
i ) > φ(bw

j ), for j 6= i| 3 A bidders)

= Pr(α−i = 2|sw
i )Fw(φ(bw

−i)) + Pr(α−i = 1|sw
i )

where the first line states that the bidder wins the auction if his bid is higher than the maximum

of his actual rivals’ (A) bid (Bw). The second line uses monotonicity of the bidding strategy16 of

actual bidders to express distribution of valuations signals in terms of equilibrium bid distribution of the

rival bidder (Gw
Bw(bw

i )). The third line weights these probabilities by the probability of entry of potential

bidders. The first term is the probability that the rival enters, In that case bidder i wins with probability
15This is necessary as it will be obvious below. It may also be a reserve price in the presence of a reserve price.
16Note that, when we have endogeneous bidders, as in the wildcat auction, affilation (supermodularity) is not sufficient

to ensure the existence of an increasing bid function. Mcaffee, Quan, and Vincent (’02) have analyzed this case and gave

a sufficient condition in terms of log-supermodularity. We assume that holds here. We shall come back to it later.
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Fw(φ(bw
−i)). The second term is the case when the rival does not enter, in that case, conditional on

bidding, bidder i wins with probability one.

Let MY i|sw
= Pr(α−i = 2|sw

i )Fw(φ(bw
−i)), be the distribution of maximum signal of bidder’s rival

when his rival enters. Let the associated density function be mYw|sw
. Then,

Gw
Bw|bw

i
(y|bw

i ) = MYw|sw
(Yw|sw

i ) + Pr(α−i = 1|sw
i )

= MYw|sw
(φ(Bw)|φ(bw

i )) + Pr(α−i = 1|φ(bw
i )) (10)

Let gw be the density function associated with Gw.

Lemma 3 The equilibrium bidding rule of the wildcat bidding game can be characterized by the following

equations:

bW = U−[MYw|sw
(sw

1 |sw
1 )+Pr(α−i = 1|sw

i )]× b′(sw
1 )

mYw|sw
(sw

1 |sw
1 )

+β

∫
[T (1 is strong)−T (1 is weak)]dF (sd|v,X ′)dF (v)

(11)

with the terminal condition, bW (sw∗
) = 0.

and writing in terms of the distribution of bids,

bW = U −
Gw

Bw|sw
(bw

1 |bw
1 )

gw
Bw|sw

(bw
1 |bw

1 )
+ β

∫
[T (1 is strong)− T (1 is weak)]dF (.|v,X ′)dF (v) (12)

Proof. In the appendix.

The first order condition states that bid equals expected valuation plus a mark down and plus a

markup. The markdown accounts for the level of competition in the wildcat sale. The mark up accounts

for the discounted incremental effect on the future discounted profits if bidder 1 wins the contract instead

of another firm.

Proposition 4 The equilibrium of the entire game is characterized by the equations 6, 7 ,9and 11

Proof. (Sketch) Existence of the equilibrium is a complicated issue. Here is a brief sketch of the

arguments which are yet to be formalized. The game has three stages (two periods). The first period

consists of two stages and the second period one. The first stage decision is whether to enter the wildcat

auction or not. Second stage is how much to bid for wildcat and the third stage is how much to bid

for the drainage tracts. The proof of existence of equilibrium will involve backwards induction. The

third stage is a game of affiliated private value auctions with asymmetric buyers, asymmetry arising

from the second stage outcome. The second stage is a bidding game of pure common value models
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with symmetric bidders, in the sense that they receive the signals from the same distribution. The first

stage is a game of entry with symmetric potential bidders. We shall first solve the last stage game The

existence of equilibrium in the stage game, follows from the analysis Jackson,Simon, Swinkels and Zane

(’02), Maskin & Riley (’96,’00) and Athey (’00). We shall plug the equilibrium values of T (D), in the

second stage problem and solve for the bidding strategies for bidder who has decided to enter. This is

common value environment with independent types and the existence of equilibrium in this stage game

again follows from theorem 2 of Maskin & Riley(’00b) given opponents’ entry behavior. The existence of

equilibrium of the entire game now involves solving for the equilibrium entry probabilities P. Note that

given the second and third stage equilibrium decisions of bidders, and the assumptions of iid extreme

value distribution of ε′s, the equilibrium entry probability is a continuous function of rival’s expected

behavior (see equation 9) . Hence Brower’s fixed point theorem applies and an equilibrium exists.

Proposition 5 There will be excessive entry in the wildcat auctions if there is a drainage auction in the

following period, compared to if there were no drainage auction in the second period. i.e., the threshold

level of signal is lower in the former case.

Proof. In the Appendix.

4 Identification

4.1 Identification of Valuations in the Drainage Auction

In this section we establish the identification of the distribution of signals from the observed bidding

behavior of bidders for the drainage and wildcat auctions respectively. Note that, for simplicity of

exposition, in our theoretical analysis we have so far assumed that there are only two bidders. For

the identification and estimation of the OCS auction data we generalize the first order conditions to

more than two bidders below. We assume that there are two types of bidders in the drainage auctions.

Let there be n1d strong bidders (type 1) and n0d weak bidders (type 0). Note that n1d and n0d are

endogenous. They are determined by who has won in the wildcat auctions. However, before bidding for

the drainage auctions, bidders (and the econometrician) can observe n1d and n0d.

Let

v1i(sd
1i, y

d
1i, y

d
0i) = E[V d

1i|Sd
1i = sd

1i, Y
d
1 = max

j∈strong,j 6=i,
sd
1j = yd

1i, Y
d
0 = max

j∈Weak
sd
0j = yd

0i]

be the expected value to bidder i of type 1 when he received a signal sd
1i and the maximum signal of

his rival of type 1 received a signal yd
1i, and that of his rival of type 0 be yd

0i. v0i(sd
0i, y

d
1i, y

d
0i) is defined
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analogously. Note that bidders are asymmetric across the groups but symmetric within each group.

Hence v1i(sd
1i, y

d
1i, y

d
0i) = v1(sd

1i, y
d
1i, y

d
0i) for all i ∈Type 1, and v0i(sd

0i, y
d
1i, y

d
0i) = v0(sd

0i, y
d
1i, y

d
0i),for all

i ∈Type 0. We assume vk(sd
ik, yd

ki, y
d
ji) is non-decreasing in sd

ik, yd
ki, y

d
ji, for all i, and j 6= k, {j, k} ∈

{0, 1}, Moreover we assume vk is strictly increasing in sd
ik and vk(0, 0, 0) = 0. Henceforth, for notational

simplicity, we will suppress the arguments of vk.

Each of ‘strong’ bidders receives a private signal17 sd
1i about his valuation vd

1 and chooses bd
1i to

maximize E[(v1i − bd
1i)I(Bd

−i ≤ bd
1i)|s1i], where Bd

−i = max{bd
1i(s

∗
1i), b

d
0i(s

∗
0i)}, y∗1i = maxj 6=i,j sd

1j and

y∗0i = maxj 6=i,j sd
0j . and bd

1i(.) and bd
0i(.) are the equilibrium strategies of ‘strong’ and ‘weak’ bidders

respectively. We restrict our attention to symmetric, strictly increasing and differentiable equilibrium

strategies. By ‘symmetry’ we mean symmetry within each sub-group of strong and weak bidders. Since

we have modeled drainage auctions as an APV model, we have E(vd
1i|sd

1i) = sd
1i., hence the problem of

a representative ‘strong’ bidder is thus

maxbd
1i

(vd
1i − bd

1i) Pr(y∗1i ≤ φd
1(.) and y∗0i ≤ φd

0(.)|sd
1i)

= maxbd
1i

(vd
1i − bd

1i)Fy∗1 ,y0|s1i
(y∗1i ≤ φd

1(.), y∗0i ≤ φd
0(.)|sd

1i)

where φd
1(.) and φd

0(.) are the inverse of the equilibrium strategy bd
ji(.), j = {0, 1}.

We derive the equilibrium conditions below for the common support of signals,

Differentiating with respect to bd
1i, we get the first order differential equation

−Fy∗1 ,y0|s1i
(φd

1(b
d
1i), φ

d
0(b

d
0)|sd

1i) + (vd
1i − bd

1i)[
∂Fy∗1 ,y0|s1i

(φd
1(bd

1i),φ
d
0(bd

0)|sd
1i)

∂y∗1
× 1

bd′
1 (φ1(b1i))

+
∂Fy∗1 ,y0|s1i

(φd
1(bd

1i),φ
d
0(bd

0)|sd
1i)

∂y0
× 1

bd′
0 (φ0(b1i))

] = 0

for all s1i ∈ [sd
1, s

d
1], where bd

1i = bd
1i(s

d
1i), with the boundary condition bd

1(s
d
1) = sd

1.

Similarly for the weak bidders we have the first order condition,

−Fy1,y∗0 |s0i
(φd

1(b
d
1i), φ

d
0(b

d
0)|sd

0i) + (vd
0i − bd

0i)[
∂Fy1,y∗0 |s1i

(φd
1(bd

1i),φ
d
0(bd

0)|sd
1i)

∂y1
× 1

bd′
1 (φ1(b0i))

+
∂Fy1,y∗0 |s0i

(φd
1(bd

1i),φ
d
0(bd

0)|sd
0i)

∂y∗0
× 1

bd′
0 (φ0(b0i))

] = 0

To establish identification of distribution of private signals we need to uniquely express the distribu-

tion of observed bids in terms of the distribution of signals assuming that the bidders follow equilibrium

strategies.

Now, observe that the conditional distribution of bids are given by
17Note that, the assumption of APV would imply that vk(sd

ik, yd
ki, y

d
ji) = sd

ik. The signals are still affiliated and hence

so are sd
ik, yd

ki and yd
ji.
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GBd∗
1 ,Bd

0 |bd
1
(X, X|x) = Pr(Bd∗

1 ≤ X, B0 ≤ X|bd
1 = x)

= Pr(yd∗
1 ≤ φd

1, y
d
0 ≤ φd

0(X)|sd
1 = φd

1(x))

= Fy∗1 ,y0|s1i
(φd

1(X), φd
0(X)|φd

1i(x))

Differentiating we get,

dG
Bd∗

1 ,Bd
0 |b

d
1
(X,X|x)

dX =
∂Fy∗1 ,y0|s1i

(φd
1(X),φd

0(X)|φd
1i(x))

∂yd∗
1

× 1
bd′
1 (φd

1(X))

+
∂Fy∗1 ,y0|s1i

(φd
1(X),φd

0(X)|φd
1i(x))

∂yd
0

× 1
bd′
0 (φd

0(X))

Using the above we can rewrite the first order conditions for the strong bidders as

vd
1 = bd

1 +
GBd∗

1 ,Bd
0 |bd

1
(bd

1, b
d
1|bd

1)

dGBd∗
1 ,Bd

0 |bd
1
(bd

1, b
d
1|bd

1)/dX
= ξd

1(bd
1, G) (13)

Similarly for the weak bidders, we have

vd
0 = bd

0 +
GBd

1 ,Bd∗d
0 |bd

1
(bd

0, b
d
0|bd

0)

dGBd
1 ,Bd∗d

0 |bd
1
(bd

0, b
d
0|bd

0)/dX
= ξd

0(bd
0, G) (14)

The following lemma establishes the identification of distribution of private signals from bid distri-

bution.

Lemma 6 a)The affiliated distribution of privately observed signals for the drainage auction are non-

parametrically identified from the observed bids.

b) The expected value of winning the drainage auctions, T (i is strong) and T (i is weak) are identified

from the observed bids.

Proof. In the Appendix.

4.2 Identification of Valuations in the Wildcat Auctions

The first order conditions associated with the Bayesian equilibrium strategies for the bidders who have

already entered to bid in the wildcat auction is given by

bW = U −
Gw

Bw|sw
(bw

1 |bw
1 )

gw
Bw|sw

(bw
1 |bw

1 )
+ β

∫
[T (1 is strong)− T (1 is weak)]dF (.|v,D)dF (v) (15)
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Lemma 7 Given β, the distribution of U from the common value model for wildcat auction is identified

for the bidders who submitted bids, from the observed distribution of bids and the data on actual and

potential number of bidders18.

Proof. In the Appendix.

5 Estimation Strategy

The structural parameters of interest are Fw, F d
1 , F d

0 , K, and U0. The estimation of our model will

proceed in three stages. In the first stage we will estimate F d
1 , F d

0 non-parametrically, in the second

stage we will estimate Fw non-parametrically, in the third stage we will estimate the ‘entry parameters’

K and U0.

First Step :In the first step we shall estimate the bid distributions from the drainage auctions for

a particular location and recover the ‘pseudo’ values using the equations 24 and 14. Note that the right

hand side of both these equations are represented in terms of the distributions of observed bids. We

therefore need to estimate
G

Bd∗
1 ,Bd

0 |b
d
1
(C,C|c)

dG
Bd∗

1 ,Bd
0 |b

d
1
(C,C|c)/dC and

G
Bd

1 ,Bd∗d
0 |bd

1
(bd

1 ,bd
1 |b

d
1)

dG
Bd

1 ,Bd∗
0 |bd

1
(bd

0 ,bd
0 |bd

0)/dC
. The standard procedure for

estimation as developed in GPV(’00) or LPV(’02) does not apply here as if both nd
1 and nd

0 are strictly

positive then the terms above involves a trivariate distribution and a total derivative, see Campo, Perrigne

and Vuoung (’03) for more details.

The ratio in 24 can be interpreted as

Pr(Bd∗ ≤ b1, B
d
0 ≤ b1, b1 = b1)

Pr(Bd∗ = b1, Bd
0 ≤ b1, b1 = b1) + Pr(Bd∗ ≤ b1, Bd

0 = b1, b1 = b1)

Let L be the number of auctions and K(.) be a kernel.

Note that the term GBd∗
1 ,Bd

0 ,bd
1
(x, y, z) can be estimated as

GBd∗
1 ,Bd

0 ,bd
1
(x, y, z) =

1
hg1L

L∑
l=1

1
nd

1

nd
1∑

i=1

1(Bd∗
1il ≤ x)1(Bd

0l ≤ y)KG(
z − b1il

hg1

)

Similarly GBd
1 ,Bd∗

0 ,bd
1
(bd

1, b
d
1|bd

1) can be estimated as,

18Note that U depends on both signals (sw) and the actual number of bidders (A). Unless more structure is imposed the

distribution of signals are not identified from the distribution of U. see Laffont & Vuoung (’96) and Li, Perrigne & Vuoung

(’00) for one such approach.
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GBd
1 ,Bd∗

0 ,bd
0
(x, y, z) =

1
hg0L

L∑
l=1

1
nd

0

nd
0∑

i=1

1(Bd
1l ≤ x)1(Bd∗

0l ≤ y)K(
z − b0il

hg0

)

The denominators of 24 can be estimated as,

D̂11(x, y, z) =
1

h2
g1

L

L∑
l=1

1
nd

1

nd
1∑

i=1

K(
x−Bd∗

1il

hg1

)1(Bd
0l ≤ y)K(

z − b1il

hg1

)

D̂12(x, y, z) =
1

h2
g1

L

L∑
l=1

1
nd

1

nd
1∑

i=1

1(Bd∗
1il ≤ x)K(

y −Bd
0il

hg1

)K(
z − b1il

hg1

)

Similarly for 14,we have

D̂01(x, y, z) =
1

h2
g01

L

L∑
l=1

1
nd

0

nd
0∑

i=1

K(
x−Bd

1il

hg1

)1(Bd∗
0l ≤ y)K(

z − b0il

hg1

)

D̂02(x, y, z) =
1

h2
g0

L

L∑
l=1

1
nd

0

nd
0∑

i=1

1(Bd
1il ≤ x)K(

y −Bd∗
0il

hg0
)K(

z − b0il

hg0

)

Therefore the private values from the drainage auctions are estimated as,

v̂d
1 = bd

1 +
ĜBd∗

1 ,Bd
0 ,bd

1
(bd

1, b
d
1, b

d
1)

D̂11(bd
1, b

d
1, b

d
1) + D̂12(bd

1, b
d
1, b

d
1)

= ξ̂d
1(bd

1, G) (16)

v̂d
0 = bd

0 +
ĜBd,Bd∗

0 ,bd
0
(bd

0, b
d
0, b

d
0)

D̂01(bd
0, b

d
0, b

d
0) + D̂02(bd

0, b
d
0, b

d
0)

= ξ̂d
0(bd

0, G) (17)

We plug these pseudo values into the objective function to get back the equilibrium value function

for the strong and weak bidders respectively. More specifically, we get

T1(1 is strong) =
∫

max
bD≥0

{(v1 − b1)× ηD(X ′, .)}dF (sd
1)

Now,

(v1 − b)× ηD(D, .) =
GBd∗

1 ,Bd
0 |bd

1
(X, X|x)

dGBd∗
1 ,Bd

0 |bd
1
(X, X|x)/dX

×GBd∗
1 ,Bd

0 |bd
1
(X, X|x)

⇒
T1(1 is strong) =

∫
GBd∗

1 ,Bd
0 |bd

1
(X, X|x)

dGBd∗
1 ,Bd

0 |bd
1
(X, X|x)/dX

×GBd∗
1 ,Bd

0 |bd
1
(X, X|x)f1(sd

1)dsd
1

Now,

f1
∂b−1(b)

∂b
= g1(b)
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and
∂b−1(b)

∂b
=

1
∂b(c)

∂c

By substituting, we get

T1(1 is strong) =
∫

GBd∗
1 ,Bd

0 |bd
1
(X, X|x)

dGBd∗
1 ,Bd

0 |bd
1
(X, X|x)/dX

×GBd∗
1 ,Bd

0 |bd
1
(X, X|x)g1(b1)db1

Similarly,

T0(1 is weak) =
∫

GBd
1 ,Bd∗d

0 |bd
1
(bd

1, b
d
1|bd

1)

dGBd
1 ,Bd∗

0 |bd
1
(bd

0, b
d
0|bd

0)/dX
×GBd

1 ,Bd∗d
0 |bd

1
(bd

1, b
d
1|bd

1)g0(b0)db0

The bid distributions are estimated using nonparametric density estimation. The integration is

evaluated numerically.

Second Stage

In the second stage we first non parametrically estimate the bid distributions for each wildcat sales Gw

and gw respectively. We then plug these and T1 and T0 in the following first order equation characterizing

the equilibrium, to get the ‘pseudo’ values,

bW = U −
Gw

Bw|sw
(bw

1 |bw
1 )

gw
Bw|sw

(bw
1 |bw

1 )
+ β

∫
[T (1 is strong)− T (1 is weak)]dF (.|v,D)dF (v) (18)

Third Stage

The estimated ‘pseudo; values from the drainage and wildcat auctions help us calculate the choice

specific value functions

Q2;i(sw
i ) = max

bW≥0
[{Pr(α−i = 2|sw

i ){(U − bw)× ηW −K + β
2∑

j=1

Pr(j winsWA)
∫

Ti(D)dF (sd|v,D)dF (v)}

+Pr(α−i = 1|sw
i ){(U0 − bw) + β

∫
Ti(i is strong)dF1(sd|v)dF (v)}] (19)

and

Q1;i(sw
i ) = {β Pr(α−i = 2|sw

i )×
∫

Ti(1 is weak)dF0(sd|v)dF (v)+β Pr(α−i = 1|sw
i )×

∫
V σ

i (sw′
i )dFw(sw′

i )}
(20)

Now the parameters to be estimated are K and U0 respectively.
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We will exploit the discrete choice of entry to estimate the sunk cost parameter K and U0. We shall

use the choice probabilities of entry

p∗(sw
i ) =

exp(Q2;i(p∗)/ρ)∑2
k=1 exp(Qk;i(p∗)/ρ)

(21)

to form the likelihood function

L(K, U0|.) =
L∏

l=1

p∗l (s
w
i )

where L is the number of wildcat auctions. Maximization of these likelihood would give us an estimate

of the parameters19 (K, U0).

Note that given the estimates from the first two steps the right hand side of 21, is known except the

discrete decision of the opponents of type i. We can follow two steps here, first note that the 21 is a

continuous mapping from opponents decisions and hence a fixed point exists. We solve this fixed point

by solving for the pj , for all potential entrant j in a wildcat location by Nelder-Meade or Newton method

by simultaneous solution of j equations and then form the likelihood. Thus it is a nested procedure,

where the fixed point equations is solved inside the nests and the likelihood function is maximized.

In another procedure we may avoid computing the fixed point calculations. From the data if we can

estimate the nonparametric choice probabilities of the opponents p−i then we can plug in those estimates

and maximize the likelihood. This procedure is feasible, since we have data on entry behaviors of all

potential entrants and many other observed heterogeneities also. This procedure is computationally

more attractive.

6 Practical Issues

The observed distribution of bids is in general highly skewed with a large number of observations in

the lower end. We therefore apply log- transformation to the distribution of bids. The logarithm

transformation to the distribution of bids translates equations 16 and 17 to

vd
1 = exp(cd

1)(1 +
GCd∗

1 ,Cd
0 |cd

1
(cd

1, c
d
1|cd

1)

dGCd∗
1 ,Cd

0 |cd
1
(cd

1, c
d
1|cd

1)/dX
)− 1 = τd

1 (cd
1) (22)

vd
0 = exp(cd

0)(1 +
GCd

1 ,Cd∗d
0 |cd

1
(cd

0, c
d
0|cd

0)

dGCd
1 ,Cd∗d

0 |cd
1
(cd

0, c
d
0|cd

0)/dX
)− 1 = τd

0 (cd
0) (23)

19We assume that the expected value of the tract if there are no rival bidder is constant across auctions, i.e., U is constant

across L.
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where c = log(1 + b), GCd∗
1 ,Cd

0 |cd
1
(cd

1, c
d
1|cd

1) is the conditional density of (Cd∗
1 , Cd

0 ) = (maxi 6=1 log(1 +

bd
1i),maxi log(1+b0i)) given log(1+b1), c1 being chosen arbitrarily among n1 values, and dGCd∗

1 ,Cd
0 |cd

1
(cd

1, c
d
1|cd

1)/dX

is the appropriate total derivative.

Since Kernel density estimators are not well estimated close to the boundaries of their support

(‘boundary effect’), we use trimming as used in GPV and LPV in our simulation. Specifically, for each

ni,

v̂d
il = τi(cil) if hi ≤ cil ≤ bmax − hi (24)

= ∞ otherwise

for i = {0, 1}, l = 1, 2, ...L.

Similar log-transformations and trimming is applied to data on wildcat bids too.

The marginal densities of v̂d
i is estimated by

f̂(v̂d∗
il ) =

1
h2

gi
nd

i L

L∑
l=1

K(
x− v̂d∗

il

hg1

)

6.1 Choice of Bandwidths and Kernels

Uniform consistency of the estimation of the ‘pseudo values’ requires compact kernels and specific band-

width rates (see GPV). We used triweight Kernels as has been used in the literature (see GPV, LPV).

The choice of bandwidths requires more attention. We used the bandwidths h = c(nL)−1/5, and

c = 2.978 × 1.06σ̂d, where σ̂ is the standard deviation of bids and h uses the same formula and its

values will be different in different applications depending on the value of n,L and c. for that data set.

7 Monte Carlo Simulation

7.1 Simulation of Drainage Auction

The analytical solution of asymmetric private value model is available only for a very special case. We

adopt the solution presented in Krishna (’02) to generate distribution of bids and recover the private

values from there. We perform this simulation for two bidders. We assume that strong bidder’s valuation

is distributed uniformly in [0, w1] and that of weak bidder be distributed uniformly [0, w2]. Note that,

here the strong bidder’s valuation stochastically dominates that of the weak bidder, which is a special

case of our assumption of strongness. Krishna has shown that in this case the closed form solution for

the bidding rule is,
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bd
i (si) =

1
kisi

(1−
√

1− kis2
i )

where ki = 1
w2

i
− 1

w2
j
, i = {1, 2}.

We set w1 = 4
3 and w2 = 4

5 , and generate L =100 draws from the respective uniform distributions to

generate the bid data using the above equation. We then estimate the ‘pseudo values’ by the methods

described above for the drainage auction. We used a triweight kernel and bandwidths used in Campo,

Perrigne & Vuoung (’03). We present the estimated distribution of ‘pseudo values’ in the graph. More

specifically, we used the following bandwidth h1 = c1(n1L)−1/5, and h2 = c2(n0L)−1/6, c1 = 2.978 ×
1.06σ̂d1 , c2 = 2.978× 1.06σ̂d2 .

We plotted the estimated bid distribution function in figure 1 and compared it with the actual

distribution.

Insert Figure 1 About Here

8 Data

We apply our model to data20 on sales of wildcat and drainage tracts off the coasts of Texas and Louisiana

held during the period 1954 to 1990. The government sells off these tracts to the highest bidder via a

sealed bid auction and charges his bid. Bidder for these tracts are oil companies. For each tract the data

set contains the date of sale; acreage; location (Latitude and Longitude); the identity of all bidders and

the amounts they bid; whether the government accepted the high bid; the number, date and depth of any

wells that were drilled; and monthly production of oil,condensate, natural gas and other hydrocarbons

through 1991. We also have information on drilling costs of wildcat and production wells obtained from

annual surveys by the American Petroleum Institute. Typically an wildcat tract consists of 5000 to 5760

acres and covers on an average 0.0463 degrees of longitude and 0.0405 degrees of latitude. There are

generally eight drainage tracts surrounding an wildcat tract and each one covers around 2500 acres. The

strong and weak bidders are identified using the latitude and longitude information. Specifically, a strong

bidder for a drainage tract is a bidder who has owned the nearest wildcat tract in the neighborhood

before the drainage tract sold.

I present below a descriptive statistics of the tracts offered

Table1
20I am grateful to Prof. Ken Hendricks and Prof. Joris Pinkse for sharing the data.
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Period # of Tracts Tracts Receiving Bids Bids Per Tract Sold Total Winning Bid

1954-1960 950 454 2.94 419 621

1961-1967 1460 841 2.95 801 1317

1968-1974 2041 1269 4.04 1103 12855

1975-1982 6811 2753 2.59 2383 26591

1983-1990 136952 8011 1.38 7582 14394

Selected Statistics as reported by (HP’89) on wildcat and drainage tracts are given below21.

Table 2

Wildcat Drainage

Number of Tracts 1056 144

Number of Tracts Drilled 748 124

Number of Productive Tracts 385 86

Average Winning Bid 2.67 5.76

Average Net Profits 1.22 4.63

Average Tract Value 5.27 13.51

Average Number of Bidders 3.46 2.73

Table 3

Wins by Neighbor Firms Wins by Non-Neighbor Firms

No. of Tracts 59 55

No. of Tracts Drilled 47 51

No. of Productive Tracts 36 31

Average Winning Bid 6.04 4.87

Average Gross Profits 12.75 4.45

Average Net Profits 6.71 -0.42

This suggests the following major points supporting our hypothesis:
21We are presenting descriptive staistics for data used by HP(’89). Our final data set will be different for two main

reasons. First, because our data set will cover more observations as we have observation for post 1970 too. Second, we did

not model joint bidding in our model. During a part of the sell period, joint bidding was allowed. We will have todrop

those observations. However the basic features of the data are expected to remain same.
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1) Strong bidder has informational advantage: Both social rents and net profits are much

higher on tracts won by a strong bidder. Discounted social value as measured by ex post revenue minus

drilling costs was on an average US $12.75 million for tracts won by strong bidders and US $4.45 million

for tracts won by weak bidders.

Net profit measured as ex post revenue minus the drilling costs minus the bid was on an average

US$6.71 million for tracts won by strong bidders and only US$-0.42 million for tracts won by weak

bidders. This suggests that information however noisy has some role to play in deciding how much to

bid for the drainage tracts, and considering the fact that most of the drainage tracts were won by strong

bidders, it suggests evidence that the drainage tracts were under priced and reserve prices should be

increased.

2) Higher gross profit per acre from drainage tracts than wildcat tracts: Average gross

profit per acre measured as ex post revenue minus cost for wildcat tracts was US$ 793.7 million and that

for drainage tracts was US$4863.8 million.

3) Number of Bidders is endogenous: All firms submit bids in less than half of the tracts offered

for sale. Thus pre-bidding seismic signals may play a role in determining whether to bid or not.

4) ‘Excessive Entry’ in wildcat tracts: Out of the wildcat tracts sold oil was found only in 36

% of them whereas in more than 60% of the cases oil was found in drainage tracts.

8.1 Reduced Form Prediction

In this section we explore if the bidders were taking the potential profitability of the drainage tracts

also into account while deciding to bid for the wildcat tracts. We only observe the decision to bid and

the amount of bid for the wildcat tracts. However we have ex-post informations on tracts’ value of oil,

drilling cost, acerage of the drainage tracts and whether the tracts were dry or not. Although these

ex-post information are also unavailable to the firm while entering and bidding for the wildcat tracts,

we use them as a reasonable proxy about bidder’s information level.

In the theoretical model we have identified that there will be excessive entry in the wildcat auctions

and bidders will also bid higher in the wildcat auction depending on the informational advantage he will

foresee as a strong bidder over the weak bidder. We take ex-post gross profit of the drainage tracts as

a proxy for the profitability of the drainage tracts.
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8.1.1 Entry in Wildcat

In this section we report evidence of the presence of effects of drainage tracts on the decision to bid for

the wildcat tracts controlling for the competition and profitability of wildcat tracts. In the following

table we report OLS regression results for entering the wildcat auction regressed on the ex-post value of

drainage tracts (dv) conditional on the ex-post values of wildcat tracts (wv).

OLS Regression of Entry Decision

Dependent Variable: No of Bidders in Wildcat p−values

wv 3.030e-05 0.1638

wv2 -2.670e-10 0.0561

Dv 3.529e-05 0.1067

Dv2 -1.746e-10 0.0580

Constant 2.885e+00 8.61e-16

The estimated elasticity on the basis of the median level is reported below.

Elasticity Calculation for Entry Based on Median Value

Dependent Variable: Elasticity

wv 0.038

dv 0.036

Thus conditional on the wildcat values the entering decision is significantly affected by the value of

the drainage tracts. The elasticity is almost same for wildcat and drainage values.

Poisson Regression; Incidence rates on Entry

Dependent Variable: No of Bidder in Wildcat p−values

wπ 1.001 0.008

wπ2 1 0.002

Dπ 1.002 0.001

Dπ2 1 0.001

Thus,increase in the drainage tract values increases the number of bidders by 0.2%.
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8.1.2 Bidding in Wildcat Tracts

Conditional on entry the bidding decision in wildcat tracts is regressed on ex-post wildcat and drainage

values.

OLS Regression of BiddingDecision

Dependent Variable: Log Bid Wildcat p− values

wv 1.252e-05 0.17

wv2 -5.093e-11 0.38

Dv 9.353e-06 0.31

Dv2 -6.993e-11 0.07

wn 2.984e-01 1.39e-14

Constant 1.354e+01 < 2e-16

The estimated elasticity on bidding decision based on the above regression is reported below.

Elasticity Calculation Based on Median Value

Dependent Variable: Elasticity

wv 0.02

dv 0.01

wn 0.59

Thus all the reduced form variables have expected signs. Although the estimated effects are low, but

in general bids are in millions of dollars hence their absolute effects are not small.

9 Structural Estimation Results

**(Very Preliminary and Incomplete)

In this section we present the structural estimation results for only a subset of the data22. Main

structural elements of our model is the pre-bidding expected values of the drainage tracts to the strong
22Specifically, I report here a specific set of drainage tracts auctioned in the period 1970-1979 where only two bidders

were present and whose corresponding wildcat auctions also had two bidders. There is no specific reason but simplicity for

this. More results for the entire relevant data set and the estimated sunk cost parameter from the entry game will follow.
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and weak bidders, pre-bidding expected value of the wildcat tracts, the sunk cost parameter K and the

value of the wildcat tract if no bidder bids U0.

In figures 2 and 4 we represent the estimated functions of ξ̂1 and ξ̂0 which is the inverse of the

equilibrium strategy as given by equations (16 ) and (17). Both these functions are increasing suggesting

that the underlying valuation distribution being affiliated private values may not be rejected by the data.

The estimated density of v̂1 and v̂0 are depicted in figures 3 and 5. The mean, median and variance of

the strong and weak bidders’ estimated valuations are reported in the table (all values are in US1982$

in millions) below.

Table 4

Strong Bidder Weak Bidder

Mean 2.75 1.71

Median 2.57 1.71

Variance 2.02 0.39

Insert Figure 2− 5 About Here

It appears that the density of the weak bidder has less mean median and variance than the strong bid-

ders. This suggests that weak bidders are less likely to draw high private values than the strong bidders.

This is in corroboration of the special case of asymmetry of our basic model where the strong bidder has

higher valuation than the weak bidder. However a more formal test of this of this is necessary23.

In figures 6 we depict Û as estimated by equation (18) which also takes into account the possible

dynamics. The estimated density of Û is represented in figure 7.

Insert Figure 6− 7 About Here

The informational rent as measured by v̂1−b1
v̂1

for the strong bidder in the drainage auction and

similar calculations for others in wildcat and drainage auctions are given in the following table.

Table 5
23A newly developed test of asymmetry is a test based on Copula by Gupta (’04) for first price auctions. In that test, we

have modelled asymmetry of valuations as a particular form of ‘coupledness’ of the joint density in terms of their respective

marginals. The association is then represented by a particular ‘copula’ parameter. Given the ex-post values of the oils in

these tracts, we can test whether the ‘association’ parameter of the strong bidder’s valuations with ex-post oil values is

statistically higher than that of the weak bidder.
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Summary Statistics of Informational Rent

Auction Type Mean Median 3rd Quantile

Wildcat Auction (no Dynamics) 0.65 0.7 0.81

Wildcat Auction (with Dynamics) 0.54 0.59 0.7

Drainage Auction: Strong Bidder 0.71 0.77 0.87

Drainage Auction: Weak Bidder 0.63 0.62 0.73

Thus on an average the winner’s informational rent is 75% for strong bidders and 61% for weak

bidders in the drainage auctions. Thus on an average the government is capturing only 39 % from the

weak bidders willingness to pay and 25% from the strong bidder’s willingness to pay. These preliminary

numbers also suggests that the weak bidder sheds his valuation less than the strong bidder, i.e., they

bid more aggressively, as argued in the theoretical analysis. These numbers are consistent but slightly

different and higher to the analysis of Camp, Perrigne Vuong(’03) where they analyzed asymmetry

originating due to the presence of joint or solo bidders. As evident from the theoretical analysis, our

model of asymmetry is different from theirs. The informational rent in the wildcat auctions are quite

high too. In the wildcat auctions, we found that the bidders are willing to pay 10 % more to take possible

future informational advantage. This is possibly because of the presence of the possible dynamics.

INCOMPLETE.

10 Conclusion and Ongoing Work

In this paper we have formulated a dynamic auction model where asymmetry of bidders is endogenous.

The seller sells multiple units of similar goods via a sequence of first price auctions in two periods. The

first period winner becomes a strong bidder in the second period bidding game in the sense that he learns

his valuations better. For our application of the OCS oil tract auctions, this asymmetry is characterized

by the location state variable of the bidders in the second period. If the bidder wins the first period

(wildcat tract auction) then he wins an oil tract closer to the tract being sold next period (drainage

tract auction).This is more informative as the strong bidder can conduct off-site drilling to gather more

information about the tract to be sold than the weak bidder. The possibility of future asymmetry affects

bidders’ bidding behavior in the first period. The first period is characterized by an entry stage and

a bidding stage. In the entry stage bidders incur a sunk cost of seismic survey to enter to bid . The

possibility of future asymmetry affects both bidders’ entry and bidding behavior in the first stage and
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leads to ‘excessive’ entry and ‘overbidding’ relative to the static auction game. We have characterized

the equilibrium and established nonparametric identification of the ‘pseudo values’ in both stages. We

suggested a three stage procedure to semi-parametrically estimate the model. We used data on oil tract

auctions off the coast of Lousiana and Texas to estimate our model. Preliminary descriptive statistics

and reduced form analysis lends support to the possibility of excessive entry and overbidding as an

equilibrium behavior. We report our structural estimates of our model. We found that the government

was recovering on an average only 25% strong bidder willingness to pay from the drainage auctions. In

the wildcat auctions, we found that the bidders are willing to pay 10 % more to take possible future

informational advantage.

We are currently extending our model in many directions. First, we are allowing entry in the

second period (drainage auction) too. Since these tracts are sold sequentially and each wildcat tract

is surrounded on an average by eight drainage tracts, which need not be sold on the same date, this

seems a natural extension. Second, we are considering modelling the possibility of entering in different

wildcat tracts (first period) sold on the same date. Since many tracts are sold on the same date, bidders

do participate in selective tracts depending on the seismic surveys. Third, we have characterized what

should be optimal reserve price the government should charge for wildcat tracts given bidders dynamic

behavior. The distributions of ‘pseudo values’ estimated in this paper is an building block to that reserve

price. This reserve price is characterized and semiparametrically estimated by a methodology similar to

Li, Perrignme and Vuoung (03). Fourth, we are investigating the optimal reserve price the government

should charge in the second period (drainage auctions). This is a complicated issue as this reserve price

should depend on the first period bids and any observable production. But bidders while bidding in the

first period will figure that out and underbid. This would lead to the so called ‘Ratchet Effect’. Fifth,

this is even more ambitious. The government is currently selling the objects in two sequential first price

auctions. This need not be the optimal mechanism. A first price followed by a second price, or some

other mechanism may be ‘better’ for the government. This is a major theoretical issue unexplored so

far.
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11 Appendix

11.1 Proofs of the Theoretical Model

Proposition 8 There exists a pure strategy equilibrium of the drainage auction. It is characterized by

the following conditions
F ′

0

F0
φ′0(b) =

1
v1 − b

(25)

and
F ′

1

F1
φ′1(b) =

1
v0 − b

(26)

satisfying the boundary conditions,Fi(φi(b∗)) = 1, i ∈ {0, 1}, satisfying the boundary conditions, b0(

s0) = b1(s1) = b, b0(s0) = b1(s1) = b, The equilibrium pair of inverse bid function is given by, φi(bd) =

b−1
i (bd), i ∈ {0, 1},where sd

i = φi(b), is the inverse bid function. When the weak bidder has a signal

s0 ≤ s0 ≤ s1, then one equilibrium solves the differential equation F ′
1(s1)

F1(s1)
φ′1(b) = 1

v0−b0
, and strong bidder

submits a bid 0.

Moreover, we can rank the ex-ante values from the drainage auction as∫
T (i is strong)dF1(.|v)dF (v) >

∫
T (i is weak)dF0(.|v)dF (v)

Proof. First note that the utility function has the single crossing property and affiliation of sig-

nals guarantees that the distribution of valuations is log-supermodular (see Athey(’00)). Hence the

assumptions of theorem 4.10 of Athey (’00) is satisfied and a pure strategy equilibrium exists.

To establish the conditions stated above, note that, bidder i solves the following problem,

Ti(D) = max
bd

i ≥0
{(vi − bd

i )× Fj(sj < φj(b)), i, j = {0, 1}, i 6= j

Taking logarithm and differentiating with respect to bd
i , we get the first order conditions,

F ′
0

F0
φ′0(b) =

1
v1 − b

and
F ′

1

F1
φ′1(b) =

1
v0 − b

satisfying the relevant boundary conditions as described below.

For s0 ≥ s1 ⇒ b0( s0) = b1(s1) = b, since otherwise, if say b0( s0) ≥ b1( s1), then weak bidder

wins for sure when his valuation is s0 and pays more than he needs to, he could increase his payoff by

bidding slightly less than b0( s0).The boundary condition at the lower end point is more tricky. It is
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straightforward to show that though b1(s1) = b1, and b0(s0) = 0. However note that for all s0 ∈ (s0, s1),

weak bidder loses for sure, and he is indifferent in submitting any bid or 0. However then the strong

bidder would be better off in submitting b1 = 0 too. But then the weak bidder for all his signals

s0 ∈ (s0, s1) can submit a bid slightly above zero and win the auction. Therefore the weak bidder has

to submit a higher than zero bid . We conjecture that the weak bidder submitting a bid b0, solving the

differential equation F ′
1(s1)

F1(s1)
φ′1(b) = 1

v0−b0
for all s0 ∈ (s0, s1), is a Bayes-Nash equilibrium, where φi(.)

is the inverse bid function for bidder i. For all s0, s1 ∈ [s1, s1], the equilibrium is characterized by the

standard differential equation as characterized below. Let the supports of these distributions be [bd
i , b

d

i ],

respectively for i ∈ {0, 1}.
Since the equilibrium bid distributions24 are, Gi(b) = Fi(φi(b)), i = {0, 1}, hence G′

i = F ′
i (φi(b))φ′i(b),

where ′ represents the derivative.

Hence, rewriting the first order conditions, we get everything in terms of the bid distribution func-

tions,
G′

0

G0
=

1
v1 − b

(27)

and
G′

1

G1
=

1
v0 − b

(28)

Hence the expected value of valuations conditional on winning by the strong bidder is

T (i is strong) = G0 ×
G0

G′
0

(29)

Similarly,

T (i is weak) = G1 ×
G1

G′
1

(30)

Note that this no longer holds true for our case as Persico’s problem was covert information acquisition

and our case is overt information acquisition. In our case the weak bidder knows that he is weak and

adjusts his bid accordingly (aggressively). The intuition of the proof is that we need to show that in

equilibrium
∫

T (i is strong)dF1(.|v)dF (v) >
∫

T (i is weak)dF0(.|v)dF (v)

⇒ after they have received their signals for the drainage auctions (sd
1, and s0), then in equilibrium

(v1 − b1)F0(.|v)dF1(.|v)dF (v) >

∫
(v0 − b0)F1(.|v)dF (v)

we have to integrate this over all the possible signals (sd
1, and s0), they may get, i.e., over F1(s1|.) and

F0(.|v), since they are evaluating this during the wildcat bidding entering stage. (think of equilibrium

dominance here)
24The bid distributions exists by the existence of monotonic strategies.
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Now since the weak bidder must bid higher than the strong bidder to have the same probability of

winning. Let us fix this probability to the winning probability of the weak bidder (say p0) then multiply

(v1 − b1) with this winning probability of weak bidder, since the weak bidder is bidding higher then

(v1 − b1)× p0 ≥ (v0 − b0)× p0, now since the strong bidder is doing better even now when he is not

playing the equilibrium strategy then it must be the case the strong bidder is doing better in equilibrium

by incentive compatibility.

Hence the proof of the proposition.

Proof of Lemma 3

Now when bidder 1 decides to bids for the wildcat auction, in the simple case of two bidders he is

solving the following

maxbW≥0[Pr(α−i = 2|sw
i ){(U − bW )× Fw(φ(bw

j ) ≤ sw
i for j 6= i))−K + ε2

+β[T (1 is strong)]Fw(φ(bw
j ) ≤ sw

i for j 6= i))

+β[T (1 is weak)]Fw(φ(bw
j ) ≤ sw

i for j 6= i)}+ (U0 − bw) Pr(α−i = 1|sw
i )]

where T (X ′, 1 is strong), T (X ′, 1 is weak) are as given above.

Equivalently,

maxbW≥0[(U − bW )× Pr(α−i = 2|sw
i )× Fw(φ(bw

j ) ≤ sw
i for j 6= i))−K + ε2

+β[T (1 is strong)] Pr(α−i = 2|sw
i )× Fw(φ(bw

j ) ≤ sw
i for j 6= i))

+β[T (1 is weak)] Pr(α−i = 2|sw
i )× Fw(φ(bw

j ) ≤ sw
i for j 6= i) + (U0 − b) Pr(α−i = 1|sw

i )]

Equivalently, using the definitions of M(.), we get,

maxbw≥0{(U − bW )MYw|s1(y|φ(bw
1 ))−K + ε2 + βMYw|sw

(y|φ(bw
1 ))[

∫
T (1 is strong)dF1(.|v)dF (v)]

+β[1−MYw|sw
(y|φ(bw

1 ))][
∫

T (1 is weak)dF0(.|v)dF (v)]}+ (U0 − b) Pr(α−i = 1|sw
i )

The first order condition implies,

{(U − bW )mYw|swi
(sw

1 |s
w
1 )

b′(sw) −MYwi|si
(sw

1 |sw
1 ) + β

mYw|swi
(sw

1 |s
w
1 )

b′(sw) [
∫

T (1 is strong)dF1(.|v)dF (v)]

−β[mYw|sw (sw
1 |s

w
1 )

b′(sw) ][
∫

T (1 is weak)dF0(.|v)dF (v)]} − Pr(α−i = 1|sw
i ) = 0

(31)

with the terminal condition, bW (sw∗
) = 0.

Equivalently,
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(U − bW )mYw|sw (sw
1 |s

w
1 )

b′(sw
1 ) −MYw|swi

(sw
1 |sw

1 ) + β[mYw|sw (sw
1 |s

w
1 )

b′(sw
1 ) ]

∫
[T (1 is strong)− T (1 is weak)]dF1(.|v,D)dF (v)

= {(U − bW ) + β
∫

[T (1 is strong)− T (1 is weak)]dF (.|v,D)dF (v)}mYw|sw (sw
1 |s

w
1 )

b′(sw
1 )

−M
w|si

(sw
1 |sw

1 )− Pr(α−i = 1|sw
i ) = 0

(32)

Equivalently,

{(U − bW ) + β
∫

[T (1 is strong)− T (1 is weak)]dF (.|v,D)dF (v)}mYw|sw (sw
1 |s

w
1 )

b′w(sw
1 )

−MYw|sw
(sw

1 |sw
1 )− Pr(α−i = 1|sw

i ) = 0

⇒

bW = U−{MYw|sw
(sw

1 |sw
1 )+Pr(α−i = 1|sw

i )}× b′(sw
1 )

mYw|sw
(sw

1 |sw
1 )

+β

∫
[T (1 is strong)−T (1 is weak)]dF (.|v,D)dF (v)

(33)

Note that, under the assumption of monotonic bidding strategies, we expressed the bid distribution

function,

Gw
Bw|bw

i
(y|bw

i ) = MYw|sw
(φ(Bw)|φ(bw

i )) + Pr(α−i = 1|φ(bw
i ))

with the density function,

gw
Bw|bw

i
= Pr(α−i=2|sw

1 )F w′
(sw

1 |s
w
1 )

b′(sw
1 )

= m(.)
b′(sw

1 )

Substituting in the first order conditions, we get,

bW = U −
Gw

Bw|bw
i
(bw

1 |bw
1 )

gw
Bw|bw

i
(bw

1 |bw
1 )

+ β

∫
[T (1 is strong)− T (1 is weak)]dF (.|v,D)dF (v) (34)

Proposition 9 There will be excessive entry in the wildcat auctions if there is a drainage auction in the

following period, compared to if there were no drainage auction in the second period. i.e., the threshold

level of signal is lower in the former case.

Proof. (Sketch) The relative values of Q1 + ε1 and Q2 + ε2 will determine whether the bidder will

decide to enter or not. Assumption of extreme value distribution of ε will imply a closed form solution

for the choice probabilities as showed above. The threshold level of signal (sw∗
), below which not bidding

is optimal can be written as
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lim sup
sw

i ↓sw∗
Pr(αi = 1|sw

i ) → 1 (35)

i.e., it is the supremum of that limiting signal when not bidding becomes optimal.

Now,

Pr(αi = 1|sw
i ) =

exp(Q1;i(sw)/ρ)∑
k exp(Qk;i(sw)/ρ)

=
1

1 + exp(Q2;i(sw)−Q1;i(sw))/ρ

Let

ZD(sw) = {Q2;i(sw)−Q1;i(sw)|there is a drainage auction}

and

ZND(sw) = {Q2;i(sw)−Q1;i(sw)|there is no drainage auction}

then after we substitute the equilibrium values of Q2;i(sw) and Q1;i(sw) using equations 27, 28, 9and

15, it can be shown that,

ZD(sw)− ZND(sw) = 2β × Pr(α−i = 1|sw)×
∫

T (1 is weak)dF0(.|v)dF (v) ≥ 0

Since every thing is monotonic in sw, comparison of the above expressions would help us conclude,

{sw∗ | lim supsw
i ↓sw∗ Pr(αi = 2|sw

i ) → 1, there is a drainage auction}
≤ {sw∗ | lim supsw

i ↓sw∗ Pr(αi = 2|sw
i ) → 1, there is no drainage auction}

11.2 Identification Proofs

Lemma 10 a)The affiliated distribution of privately observed signals for the drainage auction are non-

parametrically identified from the observed bids.

b) The expected value of winning the drainage auctions, T (i is strong) and T (i is weak) are identified

from the observed bids.

Proof. a) The proof is very similar to the proof of Campo, Perigne & Vuoung (’02). Let the joint

distribution of bids from the asymmetric drainage auction be G(.) with the support [b, b]n. Let there

be two distributions of private values Fd(.) and F̃d(.) leading to the same joint distribution of bids.

Let bd
1(., F ) and bd

0(., F ) and b̃d
1(., F ), b̃d

0(., F ) be the strictly increasing Bayesian equilibrium strategies

corresponding to Fd(.) and F̃d(.) respectively. Therefore they satisfy the first order differential equations.

Hence
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F (sd
1, s

d
0) = Pr(ξd

1(bd
1, G) ≤ sd

1, ξ
d
0(bd

0, G) ≤ sd
0) = G(ξd−1

1 (sd
1, G), ξd−1

0 (sd
0, G))

F̃ (sd
1, s

d
0) = Pr(ξd

1(bd
1, G) ≤ sd

1, ξ
d
0(bd

0, G) ≤ sd
0) = G(ξd−1

1 (sd
1, G), ξd−1

0 (sd
0, G))

Hence F (sd
1, s

d
0) = F̃ (sd

1, s
d
0) on their common support [sd

1, s
d
0]

n .= [ξd
0(bd, G), ξd

1(b
d
, G)]n. Hence the

asymmetric APV model of the drainage auction is identified.

b) It is a standard result that if the distribution is uniquely identified and has a well defined ex-

pectation, then it has a unique expectation. Since T (sd) is an expectation with respect to the random

variable sd, hence it is unique and so is the expectation of the difference.

Lemma 11 Given β, the distribution of U from the common value model for wildcat auction is identified

for the bidders who submitted bids, from the observed distribution of bids and the data on actual and

potential number of bidders25.

Proof. First note that by lemma (b) on the identification of the drainage auction, the third term is

identified from data on drainage auctions.

Now recall that for the two bidder case, we had,

Gw
Bw|bw

i
(y|bw

i ) = MYw|sw
(Yw|sw

i ) + Pr(α−i = 1|sw
i )

= MYw|sw
(φ(Bw)|φ(bw

i )) + Pr(α−i = 1|φ(bw
i ))

= Pr(α−i = 2|sw
i )Fw(φ(bw

−i)) + Pr(α−i = 1|φ(bw
i )) (36)

A straightforward generalization of the above for the N bidder case is

Gw
Bw|bw

i
(y|bw

i ) =
∑
j 6=i

Pr(αj = 2|sw
i )Fw(φ(bw

−i)) + Pr(αj = 1|φ(bw
i ), for all j)

Since Gw
Bw|bw

i
(y|bw

i ) and Pr(αj = 2|sw
i ) and Pr(αj = 1|sw

i ) are observable from the observed data on

bids and entry behavior, Fw(φ(bw
−i)) is identified. Hence the expected common value component U is

identified using the first order condition.
25Note that U depends on both signals (sw) and the actual number of bidders (A). Unless more structure is imposed the

distribution of signals are not identified from the distribution of U. see Laffont & Vuoung (’96) and Li, Perrigne & Vuoung

(’00) for one such approach.
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11.3 Bootstrap

For the sunk cost K and common value element when no bidder is present U0 we use the spatial block

bootstrap procedure described below to compute the standard error.

1. Select B wildcat tracts randomly.

2.Add all tracts in the neighborhood tracts sold on or before that tract in the sample to calculate

the potential bidders.

3.For each wildcat tracts selected, select all the drainage tracts associated with the wildcat tracts.

4. Perform the estimation procedure described before in three stages and estimate all the parameters.

5. Compute all statistics for the bootstrap sample.

6. Repeat steps 2− 5 B times.

Note that the block bootstrap is necessary to accommodate the spatial dependence of wildcat and

drainage tracts inherent in the model.
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