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ABSTRACT: This work introduces a rigorous set-theoretic foundation of bilateral matching
mechanisms and studies their properties in a systematic manner. By providing a unified frame-
work to study bilateral matching mechanisms, we formalize how different spatial/informational
constraints can be implemented via a careful selection of matching mechanisms. In particular, this
paper explains why and how various matching mechanisms generate different degrees of information
isolation in the economy.

1 Introduction

There is a well-established research program in economics dealing with the efficiency of
allocations achieved via decentralized and uncoordinated private decisions. Especially, the
focus of this program has been on environments where trade is fragmented and subject to
frictions. This literature has mainly relied on pairwise matching and trading, as a natural
way to make spatial and informational constraints explicit.

This paper develops a rigorous set-theoretic foundation of bilateral matching mecha-
nisms. It introduces a comprehensive definition of such mechanisms and formalizes sys-
tematically some of their basic properties, for economies populated by any arbitrary set of
agents. It also provides an explicit specification of the mechanisms of operation of match-
ing processes. In short, it presents a fully integrated theoretical approach to bilateral
matching mechanisms.

Our study makes a contribution to a very large literature. For instance, pairwise
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trading frameworks have formed the basis of a literature studying how market frictions
affect equilibrium output and unemployment, as in Diamond [5], the cyclical behavior
of job creation and destruction, as in Pissarides [16] or Mortensen and Pissarides [15],
and business cycles, as in Diamond and Fudenberg [6]. Bilateral matching has also been
used to motivate the existence of obstacles—or complementary barriers—to the flow of
information. This includes studies of the sustainability of cooperation in social games, as
in Ellison [8], economic governance, as in Dixit [7], or the ‘foundations of money’ literature,
as in Kiyotaki and Wright [11], Shi [17], Green and Zhou [9] or Lagos and Wright [14].

The need for a fully integrated theoretical approach to bilateral matching lies in the
literature’s fragmented treatment of such mechanisms. This lack of a unifying framework
prevents a clear understanding of the exact connection between the environmental con-
straints imposed by the meeting technology, the frictions assumed in the environment and
the possible allocations. One is often confronted with hazy explanations as to how, and to
what extent, the desired geographical and informational constraints are a reflection, or an
implication, of the mechanism by which agents meet each other. 1 In fact, understanding
these aspects—in particular where informational constraints originate in a model—is crit-
ical. A clear example is provided by the work of Kocherlakota [12], who spells out why
information frictions are central to monetary theory.

Using our machinery, we define an exact map between properties of pairwise match-
ing mechanisms and degrees of informational isolation. We show how different types of
informational constraints can be induced in a manner that is consistent with the physical
description of the environment. For instance, we find that neither random matching nor
unobservability of the partner’s characteristics—both common assumptions in the liter-
ature (e.g., see [9] or [14])—are necessary to generate complete informational isolation.
Strong anonymity, as we call it, can be achieved even when matched agents cannot hide
their respective identities and actions and the matching rule is deterministic.

The paper is organized as follows. In Section 2 we introduce our notation. In Sec-
tion 3 we define the notion of a bilateral matching rule for a single period and present a
characterization that allows us to construct bilateral matching rules on any set of agents.
Section 4 defines the notion of bilateral matching mechanisms, and formalizes the way in
which different mechanisms can impose different levels of informational isolation in the
economy. In Section 5 we discuss the method of operation of several bilateral matching
mechanisms by means of various examples. Finally, in Section 6 we offer some concluding
remarks.

1An exception is Corbae, Temzelides and Wright [4] who carefully describe a pairwise trading envi-
ronment where matching rules are made explicit. Pairings are determined in equilibrium as a function of
matching histories.
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2 Notation

If A is any set, then the symbol |A| will denote the cardinality of the set A. As usual,
|A| = ℵ0 means that A is a countable set and |A| = c indicates that the cardinality of A
is the continuum.

If a set A is a union of a pairwise disjoint family of sets {Ai}i∈I , i.e., A =
⋃

i∈I Ai

and Ai ∩ Aj = �© if i �= j, then we shall denote this by the symbol A =
⊔

i∈I Ai. That is,
A =

⊔
i∈I Ai means that A =

⋃
i∈I Ai and Ai ∩ Aj = �© whenever i �= j.

Throughout the paper the letter X will denote a non-empty set. We shall think of the
set X as a collection of agents in the economy. We shall consider a discrete-time economy.

3 Bilateral Matching Rules

In this section, we shall discuss the properties of bilateral matching rules as they apply to
agents in any period. We start with their definition.

Definition 1. A bilateral matching rule for the set of agents X is simply a function
φ : X → X satisfying φ2(x) = x for all x ∈ X, i.e., φ2 = I, the identity mapping on X.

Here are two simple examples of bilateral matching rules.

a. Let X = N = {1, 2, . . .}, the set of natural numbers, and define φ : X → X by

φ(2a) = 2a − 1 and φ(2a − 1) = 2a .

b. Let X = (0,∞) and define φ : X → X by φ(x) = 1
x .

It should be noted immediately that if φ : X → X is a bilateral matching rule, then
the function φ is invertible. That is, φ is a surjective function that is also one-to-one.
Moreover, the inverse function of φ coincides with φ itself, i.e., φ−1 = φ.

A trivial bilateral matching rule is the identity mapping of X, that is, φ(x) = x for all
x ∈ X. If φ : X → X is a bilateral matching rule and x ∈ X is an arbitrary agent, then we
shall think any agent x as being matched with the agent φ(x). For this reason, we shall
call φ(x) the partner of x; and, of course, by the symmetry of the situation x = φ

(
φ(x)

)

is the partner of φ(x).

Definition 2. A bilateral matching rule φ : X → X is said to be exhaustive if φ(x) �= x
holds for all agents x ∈ X, i.e., whenever no agent is matched under φ to herself.

Notice that the bilateral matching rule in example (a) above is exhaustive while the
bilateral matching rule of example (b) is not. The next result reveals the structure of the
bilateral matching rules. In fact, it characterizes the bilateral matching rules.
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Theorem 3. If φ : X → X is a bilateral matching rule, then there exist three pairwise
disjoint subsets A, B, and C of X such that:

1. X = A � B � C.

2. φ(a) = a for each a ∈ A.

3. φ(B) = C (or, equivalently, φ(C) = B).

Proof. Let φ : X → X be a bilateral matching rule. Assume first that φ is exhaustive.
So, in this case A = �©. We shall establish the existence of the sets B and C using Zorn’s
lemma.2

To this end, let C denote the collection of all non-empty subsets B of X such that
B ∩ φ(B) = �©. Notice that for each x ∈ X the set B = {x} belongs to C. Indeed,
if B ∩ φ(B) = {x} ∩ {φ(x)} �= �©, then x = φ(x), which contradicts the fact that φ is
exhaustive. It should be clear that the set C is partially ordered by the inclusion relation
⊇.

Next, we claim that the partially ordered set C satisfies the condition of Zorn’s lemma.
That is, we claim that every chain of C has an upper bound in C. To see this, let {Bj}j∈J

be a chain of C, that is, for any pair of indices i, j ∈ J we either have Bi ⊇ Bj or Bj ⊇ Bi.
Let B =

⋃
j∈J Bj , and we claim that B ∈ C. To establish this claim, assume by way

of contradiction that B ∩ φ(B) �= �©. Fix some b ∈ B ∩ φ(B) and let a ∈ B be such
that b = φ(a). Choose i, j ∈ J such that a ∈ Bi and b ∈ Bj . Since either Bi ⊇ Bj or
Bj ⊇ Bi is true, we can assume without loss of generality that a, b ∈ Bj . In particular,
we have b = φ(a) ∈ Bj ∩ φ(Bj) = �©, which is impossible. This contradiction shows that
B ∩ φ(B) = �©, and so B ∈ C.

According to Zorn’s lemma there exists a maximal element in C, say B∗. We claim that
B∗ � φ(B∗) = X. To see this, assume by way of contradiction that B∗ � φ(B∗) �= X. So,
there exists some x ∈ X such that x /∈ B∗ � φ(B∗). Now consider the set B′ = B∗ ∪ {x}.
Clearly, the set B′ properly contains B∗ and we claim that B′ ∩ φ(B′) = �©. Indeed, if

y ∈ B′ ∩ φ(B′) =
[
B∗ ∪ {x}

]
∩

[
φ(B∗) ∪ {φ(x)}

]
= B∗ ∩ {φ(x)} ,

then we have y = φ(x) ∈ B∗. This implies, x = φ
(
φ(x)

)
= φ(y) ∈ φ(B∗), contrary to

x /∈ B∗�φ(B∗). Thus, B′∩φ(B′) = �© must be the case, which contradicts the maximality
property of the set B∗. Therefore, B∗ � φ(B∗) = X. This shows that in this case the
desired conclusion is true with A = �©, B = B∗, and C = φ(B∗).

Now consider the general case. That is, assume that φ : X → X is an arbitrary bilateral
matching rule. Let A = {x ∈ X : φ(x) = x} and put X1 = X \ A. If x ∈ X1, then notice
that φ(x) ∈ X1. Otherwise, φ(x) ∈ A implies x = φ2(x) = φ

(
φ(x)

)
= φ(x) or x ∈ A,

which is impossible. It follows that φ : X1 → X1 is an exhaustive bilateral matching rule,
2For a rigorous discussion regarding Zorn’s Lemma see [10].
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and so by the previous part there exist two disjoint sets B and C with B � C = X1 and
φ(B) = C. Now notice that the sets A, B, and C satisfy the desired properties.

The interpretation of Theorem 3 is the following: If φ : X → X is a bilateral matching
rule, then by deleting the set of fixed points of φ (i.e., the set of agents that are matched
to themselves by φ) we can split the remaining set of agents into two sets (the sets B and
C) having the same cardinality such that φ maps B onto C (that represents a complete
matching of the agents in the set X \ A).

The partition X = A � B � C is not unique. Of course, the set A (as being the set
of fixed points of φ) is uniquely determined. The sets B and C need not be uniquely
determined. For instance, if X = {1, 2, 3, 4} and the exhaustive bilateral matching rule
φ : X → X is defined by φ(1) = 2, φ(2) = 1, φ(3) = 4, and φ(4) = 3, then we have the
following decompositions X = {2, 4} � {1, 3} = {2, 3} � {1, 4}.

Any partition X = A � B � C as described in Theorem 3 will be referred to as an
(A, B, C)-decomposition of X with respect to the bilateral matching rule φ. For instance,
if X = (0,∞) and the bilateral matching rule φ : X → X is defined by φ(x) = 1

x , then an
(A, B, C)-decomposition is given by A = {1}, B = (0, 1) and C = (1,∞). Notice that a
bilateral matching rule φ is exhaustive if and only if A = �©.

Theorem 3 demonstrates how one can construct bilateral matching rules on any set
X. For an example, let X = [0, 1] and consider the partition of X determined by the sets
A =

[
1
2 , 3

4

]
, B =

[
0, 1

2

)
, and C =

(
3
4 , 1

]
. If we take any surjective and one-to-one function

f : B → C, then the function φ : X → X, defined by

φ(x) =






x if x ∈ A

f(x) if x ∈ B

f−1(x) if x ∈ C ,

is clearly a bilateral matching rule for the set X.
Finite sets with an odd number of agents and compact convex subsets of Hausdorff

locally convex spaces do not admit continuous exhaustive bilateral matching rules.

Lemma 4. For a set of agents X we have the following.

1. If X is a finite set with an odd number of agents, then X does not admit any
exhaustive bilateral matching rule.

2. If X is a non-empty compact convex subset of a Hausdorff locally convex space, then
X does not admit any continuous exhaustive bilateral matching rule.

Proof. (1) Assume that X is a finite set with an odd number of agents and let φ : X → X
be a bilateral matching rule. If X = A � B � C is an (A, B, C)-decomposition of X with
respect to φ, then we have |X| = |A|+ |B|+ |C| = |A|+2|B|. Since |X| is an odd number,
we get |A| �= 0, and this shows that φ cannot be an exhaustive bilateral matching rule.
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(2) If X is a non-empty compact convex subset of some Hausdorff locally convex space, then
according to the classical Brouwer–Schauder–Tychonoff fixed point theorem every contin-
uous function φ : X → X must have a fixed point; see, for instance [1, Corollary 16.52,
p. 550].

4 Bilateral Matching Mechanisms

We start with the definition of a bilateral matching mechanism.

Definition 5. A bilateral matching mechanism on a set of agents X is a sequence
Φ = (φ0, φ1, φ2, φ3, . . .) such that:

a. For each t ≥ 1 the function φt : X → X is a bilateral matching rule of X.

b. The function φ0 : X → X is the identity mapping, i.e., φ0(a) = a for each a ∈ X.

As before, the agent φt(a) is called the partner of agent a at period t; and, of course, by
the symmetry of the situation a is the partner of φt(a) at period t.

The period 0 can be viewed as the “idle” period before the process of trading starts in
period 1, i.e., at period 0 we consider that each agent is matched to himself or herself. For
concreteness, we assume that an agent a in a match observes the identity of his partner,
φ(a), with whom he can voluntarily exchange information on past matches or objects
available to the agent in the match. That is, although agents cannot observe directly the
outcome, or identities of individuals, of matches in which they were not directly involved,
they can acquire or provide this information through their partners.

Note that Definition 5 does not imply that a bilateral matching mechanism pairs every
agent to someone else at every date. However, this is often assumed for practical purposes;
see, for instance, Kiyotaki and Wright [11]. We now formalize this special matching scheme
in the definition below.

Definition 6. A bilateral matching mechanism Φ = (φ0, φ1, φ2, φ3, . . .) on a set of agents
X is said to be exhaustive if for each t ≥ 1 the bilateral matching rule φt is exhaustive.

Now let Φ = (φ0, φ1, φ2, φ3, . . .) be a bilateral matching mechanism on a set of agents
X. For each t ≥ 0 we shall denote by Pt(a) the set of all partners of an agent a ∈ X in
periods up to and including period t. That is,

Pt(a) = {φ0(a), φ1(a), φ2(a), ..., φt(a)} .

The life-long collection of all partners of a is the set:

P (a) = {φ0(a), φ1(a), φ2(a), ...} .
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Since φ0(a) = a note that a ∈ Pt(a) holds for all t ≥ 0 and all agents a. Also observe that
P0(a) = {a} for each a ∈ X. Two agents a and b are said to have a common partner if
there exists some agent c different than a and b such that

c ∈ P (a) ∩ P (b) .

Before proceeding further, we formalize some terminology in the context of our model.

Definition 7. We shall say that two agents a and b:

1. Share a direct partner, if there exist periods t1 < t2 < t3 and an agent c different
than a and b such that:

φt1(a) = b ,

φt2(b) = c ,

φt3(c) = a .

2. Share an indirect partner, if there exist periods t1 < t2 < t3 < · · · < tk and agents
a1, a2, . . . , ak−2 different than a and b, where k ≥ 4 such that:

φt1(a) = b ,

φt2(b) = a1 ,

φt3(a1) = a2 ,

...
φtk−1

(ak−3) = ak−2 ,

φtk(ak−2) = a .

This helps us define the way in which information or objects may flow across agents,
over time. Specifically, suppose a and b meet, at some date, and b wants to transfer
information to a after the match breaks, via a third agent. The “direct partner case”
considers an occurrence in which a meets agent c, after b has met both of them. Here we
say that c is a direct partner of b. Thus, agent c can transfer information to a from b after
their match has ended.

The “indirect partner case” deals with exchange of information by means of a sequence
of matches among agents. That is, agent a meets ak−2 who has never met b. However, ak−2

has met someone who was in direct or indirect contact with b, in the past. Here we say
that in period tk agent ak−2 is an indirect partner of b. This, too, can allow information
transfers from b to a, across time.

We need to introduce one more notation. We shall denote by Πt(a) the set of all of a’s
past and current partners (including a herself), the past partners of a’s current partner,
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the partners that a’s partner in period t− 1 met until period t− 2, and so on. This set of
agents is given by the recursive formula

Π0(a) = P0(a) = {a} , and Πt(a) = Πt−1(a)
⋃

Πt−1

(
φt(a)

)
for t = 1, 2, . . . .

From the above recursive formula and an easy inductive argument it follows that Πt(a)
is a finite set since it includes a finite set of matching dates and partners. In particular,
we note that Πt(a) does not include the agents that a’s partners have met after matching
with a and until the current period t. Also, it should be clear that Pt(a) ⊆ Πt(a) holds
for all agents a ∈ X and all periods t ≥ 0.

We now have all the necessary machinery to introduce several properties of bilateral
matching mechanisms. More precisely, we can formalize the different restrictions on the
exchange of information that are commonly assumed throughout the matching literature.

Definition 8. A bilateral matching mechanism on a set of agents X is said to be:

1. Eventually weakly anonymous, if for each agent a there exists a period t (depending
on a) such that:

(a) the partners of a after period t are all distinct, and

(b) Pt(a) ∩ {φt+1(a), φt+2(a), . . .} ⊆ {a} .

2. Weakly anonymous, if the lifetime partners of any agent a are distinct. That is,
for each agent a and each t �= τ with φt(a) �= a we have φt(a) �= φτ (a).

3. Anonymous, if for each agent a that satisfies φt+1(a) �= a in some period t ≥ 1 the
agents a and φt+1(a) do not have a common partner up to and including period t,
that is,

Pt(a) ∩ Pt

(
φt+1(a)

)
= �© .

4. Strongly anonymous, if for each agent a that satisfies φt+1(a) �= a in some period
t ≥ 1 we have

Πt(a) ∩ Πt

(
φt+1(a)

)
= �© .

A key implication of our notions of anonymity, is that different degrees of anonymity
provide different levels of informational isolation between any two partners. Before pro-
ceeding with a formalization of this claim, it may be helpful to provide some intuition.

In a model with eventually weak anonymity, two agents may be paired repeatedly to
each other over time, but their match will eventually break down and it cannot be recon-
stituted. This matching mechanism is commonly adopted in the labor-search literature
where ongoing bilateral worker-firm matches are affected by a process of job-destruction;
see, for instance, Pissarides [16] or Mortensen and Pissarides [15]. It has also been used in
the monetary literature, to study the interaction between money and credit (as in Corbae
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and Ritter [3]), or the evolution of the equilibrium price in markets with decentralized
price formation mechanisms; see for example Binmore and Herrero [2].

Weak anonymity implies that agents are not paired longer than one period. Further-
more, once an agent a meets a partner b at some period t, a will never meet b again.
Therefore, a and b cannot directly exchange information or objects over time. In every
t ≥ 1 and for each a we have φt+1(a) /∈ Pt(a). An implication of this property, for example,
is that direct credit arrangements, such as the direct redemption of IOU’s, cannot take
place. However, the door is open to the possibility that a and b, although never meeting
again, may share a direct partner c.

The next result shows how matching mechanisms with stronger degrees of anonymity
remove all direct and indirect links between agents.

Lemma 9. If the bilateral matching mechanism is:

a. anonymous, then no pair of agents will share any direct partner over their lifetimes.

b. strongly anonymous, then no pair of agents will share any direct or indirect partner
over their lifetimes.

Proof. (a) Let Φ = (φ0, φ1, φ2, φ3, . . .) be an anonymous bilateral matching mechanism
and assume by way of contradiction that two agents a and b share a direct partner. This
means that there exist three periods t1 < t2 < t3 and an agent c such that:

(i) φt1(a) = b, (ii) φt2(b) = c, and (iii) φt3(c) = a .

Clearly, we have

t1 < t2 ≤ t3 − 1 . (�)

Now note that (iii) yields a = φt3(c) = φ(t3−1)+1(c) �= c and so by the anonymity of Φ,
we get Pt3−1(c) ∩ Pt3−1(φ(t3−1)+1(c)) = �© or

Pt3−1(c) ∩ Pt3−1(a) = �© . (��)

Using (ii) we obtain b = φt2(c) and a glance at (�) guarantees that b ∈ Pt3−1(c). Next,
observe that (i) in conjunction with (�) implies b ∈ Pt3−1(a). So b ∈ Pt3−1(c) ∩ Pt3−1(a)
contrary to (��). This contradiction establishes the validity of (a).

(b) Assume that Φ = (φ0, φ1, φ2, φ3, . . .) is a strongly anonymous bilateral matching
mechanism and suppose first by way of contradiction that two agents a and b share an
indirect partner. This means that there exist periods t1 < t2 < t3 < · · · < tk and agents

9



a1, a2, . . . , ak−2 different than a and b, where k ≥ 4 such that:

φt1(a) = b ,

φt2(b) = a1 ,

φt3(a1) = a2 ,

...
φtk−1

(ak−3) = ak−2 ,

φtk(ak−2) = a .

Clearly, we have
t1 < t2 < t3 < · · · < tk−1 ≤ tk − 1 . (†)

From a = φtk(ak−2) = φ(tk−1)+1(ak−2) �= ak−2 and the strong anonymity of Φ, it
follows that Πtk−1(ak−2) ∩ Πtk−1(φ(tk−1)+1(ak−2)) = �© or

Πtk−1(ak−2) ∩ Πtk−1(a) = �© . (††)

Now note that ak−2 ∈ Πtk−1(ak−2) is trivially true. On the other hand, it is not
difficult to see that ak−2 ∈ Πtk−1(a). But then we have ak−2 ∈ Πtk−1(ak−2) ∩ Πtk−1(a),
contrary to (††).

Finally, to establish that no pair of agents share a direct partner in their life times,
use part (a) in conjunction with the fact that strong anonymity implies anonymity. (See
also the proof of Lemma 10.)

Lemma 9 shows that in an anonymous matching mechanism any two agents a and
b cannot exchange information (or objects) over time indirectly, by means of a common
partner c. An example is the Townsend Turnpike model [18]; see also Example 14 in
Section 5. However, a possibility still exists that agents a and b may share an indirect
partner d.3 This possibility is ruled out by strong anonymity.

A strongly anonymous matching mechanism is characterized by the most severe restric-
tion on information flows among agents. It rules out the possibility that an agent meets
former partners or any agents that his former partners might have been in contact with
(directly or indirectly) before matching with him. Perhaps, this is obvious from the defi-
nition of strong anonymity, and from prior research; our definition replicates assumption
(A2) in Kocherlakota [12] for v �= ω under bilateral matching.

Lemma 9 main contribution, however, is it brings out a more subtle, but very impor-
tant, implication. Strong anonymity rules out any chances that an arbitrary agent a may

3For example, suppose that agent 3 met 4 in t. Suppose 3 is matched to 6 in t + j. Then it is possible
that in the periods between t and t + j, agent 4 has met 2, then agent 2 has met agent 1, and agent 1 has
met agent 6. In this case, agent 2 is an indirect partner of both agents 6 and 3. In practical terms, this
means that agent 2 could have communicated to agent 1 something he heard from 4 about agent 3. Agent
1 can then pass this on to 6 before he meets 3.
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meet in the future someone who has been in direct or indirect contact with any of a’s
former partners. In short, strong anonymity insures total information isolation between
any two partners at any point in time, past and future. This is unlike weaker forms of
anonymity, as they only provide a weaker restriction on the feasible pattern of future
matches.

The assumption of strong anonymity features prominently in the foundations of money
literature; see the original model of Kiyotaki and Wright [11], or the more recent matching
models of Shi [17], Lagos and Wright [14], or Green and Zhou [9]. In this class of models,
as observed by Kocherlakota [12], strong restrictions on information flows make money
essential in expanding the allocation set. Similar severe informational frictions have also
been exploited in the social games literature concerned with the study of cooperative
equilibria (as in Ellison [8]), or the interaction between long-term exchange relationships
and anonymous market exchange (as in Kranton [13]).

Interestingly, in the above models (as well as virtually in all other models in the liter-
ature) strong anonymity is implemented by assuming that agents are unable to recognize
their partners’ identities, preferences, and the like or by assuming random matching. Our
formalization of anonymous matching emphasizes that strong anonymity need not rely on
these stringent assumptions. In fact, we later prove how complete informational isolation
can be achieved by a careful specification of the matching mechanism (see Subsection 5.1),
when partners cannot hide their respective identities or actions from each other and when
the matching mechanism is deterministic.

As expected, the more restrictive anonymity properties subsume the less restrictive.

Lemma 10. We have the following implications:

Strong Anonymity =⇒ Anonymity
=⇒ Weak Anonymity
=⇒ Eventual Weak Anonymity

In general, no reverse implication is true.

Proof. Let Φ = (φ0, φ1, φ2, φ3, . . .) be a bilateral matching mechanism on a set of agents
X and fix some agent a ∈ X.

Assume first that Φ is strongly anonymous. If φt+1(a) �= a, then from

Pt(a) ∩ Pt

(
φt+1(a)

)
⊆ Πt(a) ∩ Πt

(
φt+1(a)

)
= �© ,

it follows that Pt(a) ∩ Pt

(
φt+1(a)

)
= �©. This shows that Φ is an anonymous bilateral

matching mechanism.
Now suppose that Φ is anonymous. Assume by way of contradiction that for some

1 ≤ t < τ and some agent a we have φt(a) �= a and φt(a) = φτ (a). Let t∗ = τ − 1
and b = φt∗+1(a) = φτ (a) �= a. Clearly, t ≤ t∗. Now note that b ∈ Pt∗(b) and that
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b = φτ (a) = φt(a) ∈ Pt∗(a), contrary to Pt∗(a) ∩ Pt∗(b) = �©. This contradiction shows
that anonymity implies weak anonymity.

The fact that weak anonymity implies eventual weak anonymity is obvious. To see
that no reverse implication holds true, see Examples 12, 13, and 14 in Section 5.

In general, although the opposite implication is not true, there are cases in which less
restrictive anonymity implies more stringent anonymity. For example, the next lemma
presents a condition under which weak anonymity implies anonymity.

Lemma 11. Let Φ = (φ0, φ1, φ2, φ3, . . .) be a weakly anonymous bilateral matching mech-
anism. Assume that there exists a partition X = B � C of X such that φt(B) = C for
each t ≥ 1, i.e., for each t ≥ 1 the bilateral matching rule φt maps B onto C. Then the
bilateral matching mechanism Φ is anonymous.

Proof. Notice that by the symmetry of the situation we also have that φt(C) = B for each
t ≥ 1. This implies φt is an exhaustive bilateral matching rule for each t ≥ 1. Assume by
way of contradiction that there exists some agent a such that Pt(a)∩Pt(b) �= �© holds true
for some t ≥ 1, where b = φt+1(a). Without loss of generality, we can assume that a ∈ B;
and so b = φt+1(a) ∈ C. Clearly, b �= a.

Since φt(a) ∈ C, φt(b) ∈ B and B∩C = �©, it follows from Pt(a) = {a, φ1(a), . . . , φt(a)},
Pt(b) = {b, φ1(b), . . . , φt(b)}, and Pt(a) ∩ Pt(b) �= �© that there exists some 1 ≤ τ ≤ t such
that either a = φτ (b) or b = φτ (a). In either case, we have φτ (a) = b = φt+1(a). However,
the latter conclusion contradicts the weak anonymity of Φ. Consequently, the bilateral
matching mechanism Φ is anonymous.

An example is as follows. Divide a set of agents into two sets with the same cardinality.
Call these two sets, for example, “sellers” and “buyers,” and in each period match every
seller to a different buyer. Then the agents cannot share any common direct partner as no
seller is ever matched to another seller, and no buyer is ever matched to another buyer.
Thus these matches are anonymous. An example of this type of matching mechanism, as
noted above, is the Townsend’s Turnpike [18].

5 Examples

In this section, we shall present a variety of bilateral matching mechanisms. Start by ob-
serving that only infinite sets of agents can admit exhaustive eventually weakly anonymous
(and hence weakly anonymous, anonymous, and strongly anonymous) bilateral matching
mechanisms.

We start by presenting an exhaustive eventually weakly anonymous bilateral matching
mechanism that is not weakly anonymous.
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Example 12. Let N =
⊔∞

n=1 Nn be a partition of the natural numbers N such that each
Nn is countable.4 For each t ∈ N the set

⊔
i�=t Ni is countable. So, there exists a one-to-one

surjective function ft :
⊔

i�=t Ni → Nt. By Theorem 3, this function ft defines an exhaustive
bilateral matching rule φt : N → N. Letting φ0 = I, it follows that (φ0, φ1, φ2, . . .) is an
exhaustive bilateral matching mechanism on the set N. Now fix some a ∈ N. Then there
exists a unique k ∈ N such that a ∈ Nk. In particular, since for each t �= k we have
a ∈

⊔
i�=t Ni, it follows that φt(a) ∈ Nt for each t �= k. This implies that the set of agents

in the set {φi(a) : i �= k} are all distinct. However, there is a possibility (and it is easy
to construct examples) that φk(a) = φr(a) for some r �= k. If we let τ = max{r, k}, then
we have Pτ (a) ∩ {φτ+1(a), φτ+2(a), . . .} = �©, and this shows that (φ0, φ1, φ2, . . .) is an
exhaustive eventually weakly anonymous bilateral matching mechanism that might fail to
be weakly anonymous.

The next example is an example of a weakly anonymous bilateral mechanism that fails
to be anonymous.

Example 13. We consider X = N. As usual, we let φ0 be the identity mapping on N.
The next three exhaustive matching rules are defined by the following matrices:

φ1 =
[

2 4 6 8 10 12 14 16 18 20 22 24 . . .
1 3 5 7 9 11 13 15 17 19 21 23 . . .

]

φ2 =
[

1 2 4 5 10 12 14 16 18 20 22 24 . . .
3 7 6 8 13 15 9 11 21 23 17 19 . . .

]

φ3 =
[

1 2 4 5 10 12 14 16 18 20 22 24 . . .
7 3 8 21 6 23 17 19 13 15 9 11 . . .

]

The remaining exhaustive matching rules φ4, φ5, φ6, . . . will be constructed by induction.
As a matter of fact if

B = {1, 2, 4, 5, 10, 12, 14, 16, 18, 20, 22, 24, . . .} , and
C = {7, 3, 8, 21, 6, 23, 17, 19, 13, 15, 9, 11, . . .} ,

then for each t ≥ 4 the bilateral matching rule φt will map B onto C. (Notice that the
agents of the set C are ordered as shown in the second row of the matrix φ3.)

To define φ4 consider C as a pairwise disjoint union of sets each of which contains twelve
agents. That is, we write C = C4 =

⊔∞
n=1 A4

n, where A4
1 consists of the first twelve elements

of C, A4
2 consists of the next twelve elements of C (as ordered above), A4

3 consists of the

4 One way of constructing by induction such a partition is as follows. Start with N1 = {2, 4, 6, . . .} and
assume that Nn has been selected so that N\Nn = {n1, n2, n3, . . .} is countable, where n1 < n2 < n3 < · · · .
Now to complete the inductive argument let Nn+1 = {n1, n3, n5, . . .}.
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next twelve elements of C, and so on. Notice that A4
1 = {7, 3, 8, 21, 6, 23, 17, 19, 13, 15, 9, 11}.

Next, we reorder C as follows:

C = C4 = A4
2 � A4

1 � A4
4 � A4

3 � · · · =
∞⊔

n=1

[
A4

2n � A4
2n−1

]
=

∞⊔

n=1

A5
n ,

where A5
n = A4

2n � A4
2n−1 and A5

n is considered as an ordered set by having first the
ordered elements of A4

2n followed by the ordered elements of the set A4
2n−1. Notice that

each ordered set A5
n consists of 24 = 2 × 12 elements. The exhaustive matching rule φ4 is

now given by the matrix:

φ4 =
[

1 2 4 5 10 12 14 16 18 20 22 24 . . .
A4

2 A4
1 A4

4 A4
3 A4

6 A4
5 · · · A4

2n A4
2n−1 · · ·

]

.

Notice that we can replace each At
n with anyone of its permutations.

The construction of the φ5, φ6, . . . can be completed by induction following the above
process. More specifically, assume that for some t ≥ 4 the set C has been ordered as
follows: C = Ct =

⊔∞
n=1 At

n, where each At
n consists of 2t−4 × 12 elements. Now consider

the ordered sets At+1
n = At

2n�At
2n−1 (each of which has 2(t+1)−4×12 elements) and obtain

the new ordering of the set C given by C = Ct+1 =
⊔∞

n=1 At+1
n . Now to complete the

induction define the exhaustive matching rule φt+1 via the matrix

φt+1 =
[

1 2 4 5 10 12 14 16 18 20 22 24 . . .

At+1
2 At+1

1 At+1
4 At+1

3 At+1
6 At+1

5 · · · At+1
2n At+1

2n−1 · · ·

]

.

It is easy to check that (φ0, φ1, φ2, . . .) is an exhaustive weakly anonymous bilateral
matching mechanism. If we let a = 3, then we have b = φ2+1(3) = φ3(3) = 2. Now notice
that

P2(2) = {2, 1, 7} and P2(3) = {3, 4, 1} .

This shows that (φ0, φ1, φ2, . . .) is not anonymous.

The next example is an example of an exhaustive anonymous bilateral matching mech-
anism that is not strongly anonymous and is due to R. Townsend [18].

Example 14 (Townsend [18]). The matching mechanism in Townsend’s turnpike model
of exchange [18] is an example of matching mechanism that is anonymous but not strongly
anonymous. It has countably many agents. Each agent is assumed to be located into one
of the countably many of spatially separated islands. The bilateral matching mechanism is
such that “any two agents are paired at most once during their lifetimes” (i.e., it satisfies
weak anonymity), and “they share no common third agent as a trading partner” (i.e., it
satisfies anonymity). At each time period each agent travels on a turnpike, either east or
west, moving by one position. See Townsend [18] for a figure depicting such a bilateral
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matching mechanism. As in Kocherlakota [12], we can interpret this economy as having
countably many islands (or “trading posts”) located at the integer points along the real
line. At any time period each island is populated by two agents, one “stayer” and one
“mover.”

The set of agents is X = Z \ {0} = {. . . ,−3,−2,−1, 1, 2, 3, . . .}, i.e., the set of integers
deprived of the zero. Without loss of generality we can identify the stayers with even
numbers and the movers with odd numbers. The exhaustive bilateral matching mechanism
(φ0, φ1, φ2, . . .) is defined as follows. As usual, we let φ0 = I, the identity mapping
on X. Now let B = {. . . ,−4,−2, 2, 4, . . .}, the set of all non-zero even integers, and
C = {. . . ,−3,−1, 1, 3, . . .}, the set of all odd integers. For t ≥ 1 the exhaustive matching
rules φt : B → C are defined via the formulas:

φ1(a) =

{
a − 1 if 0 < a ∈ B

a + 1 if 0 > a ∈ B ,

and
φt(a) = φ1(a) − 4(t − 1) if t > 1 .

The following table describes the above exhaustive bilateral matching mechanism.

· · · -16 -14 -12 -10 -8 -6 -4 -2 2 4 6 8 10 12 14 16 · · ·
1 · · · -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 · · ·
2 · · · -19 -17 -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 · · ·
3 · · · -23 -21 -19 -17 -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 · · ·
4 · · · -27 -25 -23 -21 -19 -17 -15 -13 -11 -9 -7 -5 -3 -1 1 3 · · ·

It is a routine matter to verify that (φ0, φ1, φ2, . . .) is a weakly anonymous bilateral
matching mechanism—which is also anonymous. (A quick way of seeing this is by using
Lemma 11.) This bilateral matching mechanism is not strongly anonymous since some
partners of some agents have common partners. For instance, using the above table, it is
easy to see that

Π2(2) = Π1(2) ∪ Π1

(
φ2(2)

)
= Π0(2) ∪ Π0

(
φ1(2)

)
∪ Π0

(
φ2(2)

)
∪ Π0

(
φ1(φ2(2))

)

= P0(2) ∪ P0(1) ∪ P0(−3) ∪ P0(−4)
= {2} ∪ {1} ∪ {−3} ∪ {−4} = {−4,−3, 1, 2} ,

and that

Π2(φ3(2)) = Π2(−7) = Π1(−7) ∪ Π1

(
φ2(−7)

)

= Π0(−7) ∪ Π0

(
φ1(−7)

)
∪ Π0

(
φ2(−7)

)
∪ Π0

(
φ1(φ2(−7))

)

= P0(−7) ∪ P0(−8) ∪ P0(−4) ∪ P0(−3)
= {−7} ∪ {−8} ∪ {−4} ∪ {−3} = {−8,−7,−4,−3} .
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Since −3 ∈ Π2(2) ∩ Π2(φ3(2)), it follows that Π2(2) ∩ Π2(φ3(2)) �= �©, so that the
bilateral matching mechanism is not strongly anonymous.

Note that the Townsend bilateral matching mechanism allows for indirect links among
agents. To see the reason for this, consider the first three periods in the above table.
Agent 2 meets 1 in t = 1, and −3 in t = 2. Agent −7 meets −8 in t = 1, −4 in t = 2, and
2 in t = 3. Furthermore, −4 and −3 are partners in t = 1. Therefore, a partner of 2 and
a partner of −7 met before period t = 3. Hence, this economy could possibly admit the
following (non-monetary) transfer scheme: in period t = 1 agent −4 makes a transfer to
−3, expecting that (i) in period t = 2 agent −7 will make a transfer to −4, while −3 will
make a transfer to 2, and (ii) in period t = 3 agent 2 will make a transfer to −7.

5.1 Strongly anonymous bilateral matching mechanisms

We start by exhibiting examples of strongly anonymous bilateral matching mechanisms.
Let X denote again an infinite set of agents. Assume that there exists a partition
{A1, A2, . . .} of X, i.e., X =

⊔∞
n=1 An, such that all the An have the same cardinality.

At each period t ≥ 1 we can also partition X as follows (the brackets indicate the parti-
tion sets in each period):

Period Partition of the set of agents X

0 X = [A1] � [A2] � [A3] � [A4] � [A5] � [A6] � · · ·
1 X =

[
A1 � A2

]
�

[
A3 � A4

]
�

[
A5 � A6

]
� · · ·

2 X =
[
A1 � A2 � A3 � A4

]
�

[
A5 � A6 � A7 � A8

]
� · · ·

3 X =
[
A1 � A2 � A3 � A4 � A5 � A6 � A7 � A8

]
�

[
A9 � A10 � A11 � A12 � A13 � A14 � A15 � A16

]
� · · ·

...
...

t X =
∞⊔

n=1

[
A(n−1)2t+1 � A(n−1)2t+2 � · · · � An2t

]

=
∞⊔

n=1

2t
⊔

k=1

A(n−1)2t+k

=
∞⊔

n=1

Bt
n =

[
Bt

1 � Bt
2

]
�

[
Bt

3 � Bt
4

]
� · · ·

=
∞⊔

n=1

[
Bt

2n−1 � Bt
2n

]
=

∞⊔

n=1

Bt+1
n

... ,
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where we let Bt
n =

⊔2t

k=1 A(n−1)2t+k for each n = 1, 2, . . . and each t ≥ 1. It should be
clear that for each t ≥ 1 the sequence {Bt

1, B
t
2, B

t
3, . . .} is pairwise disjoint and the sets

Bt
n, n = 1, 2, . . ., all have the same cardinality. Moreover, note that Bt+1

n = Bt
2n−1 � Bt

2n

holds for all n = 1, 2, . . . and all t ≥ 1.
For each n = 1, 2, . . . and each t ≥ 1, let f t

n : Bt
2n−1 → Bt

2n be a one-to-one and
surjective function. Also, let gt

n : Bt
2n → Bt

2n−1 be the inverse of f t
n. Next, for each t ≥ 1

define φt : X → X by

φt(x) =

{
f t

n(x) if x ∈ Bt
2n−1

gt
n(x) if x ∈ Bt

2n .
(�)

We let φ0 = I, the identity on X.
Clearly, for each t ≥ 1 the function φt : X → X is an exhaustive bilateral matching rule

on X. Moreover, from Bt+1
n = Bt

2n−1 � Bt
2n, it follows that for each n the set Bt+1

n is φt-
invariant, i.e., φt(Bt+1

n ) ⊆ Bt+1
n . As a matter of fact, it is easy to see that φt restricted to

each Bt+1
n is an exhaustive bilateral matching rule. More generally, we have the following.

Lemma 15. For each t ≥ 0 and each τ = 0, 1, . . . , t the sets Bt+1
n , n = 1, 2, . . ., are φτ -

invariant. In fact, for each τ = 1, . . . , t the restriction of φτ to each Bt+1
n is an exhaustive

bilateral matching rule.

Proof. We shall use induction on t. For t = 0 the conclusion is obvious. Therefore, for
the induction step, assume that the conclusion is true for some t ≥ 0 . For each n we
have Bt+2

n = Bt+1
2n−1 � Bt+1

2n and by our induction hypothesis for each i = 1, . . . , t the
functions φi : Bt+1

2n−1 → Bt+1
2n−1 and φi : Bt+1

2n → Bt+1
2n are exhaustive bilateral matching

rules. It easily follows that for each i = 1, . . . , t the function φi : Bt+2
n → Bt+2

n is itself an
exhaustive bilateral matching rule on the set Bt+2

n . By the preceding discussion, we also
know that φt+1 restricted to each Bt+2

n is an exhaustive bilateral matching rule. Hence, for
each τ = 1, . . . , t+1 the function φτ restricted to Bt+2

n is an exhaustive bilateral matching
rule. This completes the induction and the proof of the lemma.

We are now ready to show that the exhaustive bilateral matching mechanism defined
above is strongly anonymous.

Theorem 16. Any bilateral matching mechanism (φ0, φ1, φ2, . . .) as defined by (�) is
strongly anonymous.

Proof. Let a ∈ X be an arbitrary agent and fix t ≥ 1. Let k be the unique natural
number such that a ∈ Bt+1

k . According to Lemma 15, we have φi(a) ∈ Bt+1
k for each

i = 0, 1, . . . , t. This easily implies Πt(a) ⊆ Bt+1
k . Now according to the definition of the

bilateral matching rule φt+1 either we have b = φt+1(a) ∈ Bt+1
k−1 or b = φt+1(a) ∈ Bt+1

k+1.
In particular, as above, either Πt(b) ⊆ Bt+1

k−1 or Πt(b) ⊆ Bt+1
k+1. Since Bt+1

k−1 ∩ Bt+1
k = �©,

Bt+1
k+1 ∩ Bt+1

k = �© and Πt(a) ⊆ Bt+1
k , we infer that Πt(a) ∩ Πt(b) = �©. Consequently,

(φ0, φ1, φ2, . . .) is a strongly anonymous bilateral matching mechanism.
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It is now easy to construct exhaustive bilateral matching mechanisms on sets of agents
X. The only thing that is needed is a countable partition of the set X for which all sets of
the partition have the same cardinality. Here are some examples of partitions on various
sets:

X = (0, 1] =
∞⊔

n=1

(
1

n+1 , 1
n

]

N = {1, 2, . . .} =
∞⊔

n=1

{n}

N = {1, 2, . . .} =
∞⊔

n=1

{2n − 1, 2n}

X = [0,∞) =
∞⊔

n=1

[n − 1, n) .

An example of an exhaustive strongly anonymous bilateral matching mechanism on N

that corresponds to the partition N =
⊔∞

n=1{n} is given by the matrix shown below. The
matrix describes how the even agents (the first row) are paired to odd agents in periods
t = 1, 2, 3, 4.

t 2 4 6 8 10 12 14 16 18 20 · · ·
1
2
3
4
...

1 3 5 7 9 11 13 15 17 19 · · ·
5 7 1 3 13 15 9 11 21 23 · · ·
13 15 9 11 5 7 1 3 29 31 · · ·
29 31 25 27 21 23 17 19 13 15 · · ·
...

...
...

...
...

...
...

...
...

... · · ·

Finally, we mention that it is easy to modify the preceding examples of exhaustive
bilateral matching mechanisms to yield non-exhaustive bilateral matching mechanisms.
As an example, we shall modify the last example to produce examples of (not necessarily
exhaustive) strongly anonymous bilateral matching mechanisms.

Example 17. Let X be an infinite set of agents such that X =
⊔∞

n=1 An, where all the
An have the same infinite cardinality. In particular, note that for each t ≥ 1 the sets Bt

n

(n = 1, 2, . . .) all have the same infinite cardinality. For each t ≥ 1 and each n ∈ N let
F t

n be a (possibly empty) subset of Bt
2n−1 such that the sets Bt

2n−1\ F t
n and Bt

2n have the
same (infinite) cardinality. For each n and t ≥ 1 let f t

n : Bt
2n−1\F t

n → Bt
2n be a one-to-one

and surjective function. Also, let gt
n : Bt

2n → Bt
2n−1\ F t

n be the inverse of f t
n.
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Next, for each t ≥ 1 define φt : X → X by

φt(x) =






x if x ∈ F t
n

f t
n(x) if x ∈ Bt

2n−1\ F t
n

gt
n(x) if x ∈ Bt

2n .

We also let φ0 = I. Clearly, for each t ≥ 1 the function φt is a bilateral matching rule
whose set of idle agents is

⊔∞
n=1 F t

n. Therefore, Φ = (φ0, φ1, φ2, . . .) is a bilateral matching
mechanism of the set X. In addition, it should be clear that φt restricted to the set
Bt+1

n = Bt
2n−1�Bt

2n is also a bilateral matching rule having as an (A, B, C)-decomposition
the partition Bt+1

n = F t
n �

(
Bt

2n−1\ F t
n

)
� Bt

2n.
We claim that Φ is strongly anonymous. To see this, assume that an agent a ∈ X

satisfies φt+1(a) �= a. Let n ∈ N be the unique natural number such that a ∈ Bt+1
n . If n is

even (say n = 2k), then it follows from the definition of φt+1 that φt+1(a) ∈ Bt+1
2k−1\ F t+1

k

and so φt+1(a) ∈ Bt+1
n−1. If n is odd (say n = 2k − 1), then φt+1(a) �= a implies a /∈ F t+1

k

and so a ∈ Bt+1
2k−1\ F t+1

k , from which it follows that φt+1(a) ∈ Bt+1
2k = Bt+1

n+1. Using the
latter conclusion and arguing as in Lemma 15, it is easy to see that the sets Bt+1

n are all
φτ -invariant for all 0 ≤ τ ≤ t. From this, and another easy argument (as in Theorem 16),
we see that Πt(a) ∩ Πt(φt+1(a)) = �©. Therefore, Φ is a strongly anonymous bilateral
matching mechanism.

6 Concluding remarks

We have presented a unified framework to study bilateral matching mechanisms and
demonstrated how different geographical and informational constraints can be imple-
mented by an appropriate choice of the mechanism by which agents meet each other. It
is our belief that the bilateral matching framework we have presented, can be used as the
fundamental building block to study rigorously more general classes of matching mech-
anisms. For example, one could consider extending our basic formalization to include
matching mechanisms that involve coalitions of more than two agents, continuous-time
matching processes and matching rules that are functions of prior realizations of matches.
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