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Abstract

We develop a Savage-type model of choice under uncertainty in which agents identify

uncertain prospects with subjective compound lotteries. Our theory permits issue prefer-

ence; that is, agents may not be indifferent among gambles that yield the same probability

distribution if they depend on different issues. Hence, we establish subjective foundations

for the Anscombe-Aumann framework and other models with two different types of proba-

bilities. We define second-order risk as risk that resolves in the first stage of the compound

lottery and show the equivalence of aversion to this risk with issue preference, the Ellsberg

paradox, and uncertainty aversion.

† This research was supported by grants from the National Science Foundation.



1. Introduction

In the last ten years, the Ellsberg paradox has received more attention then any other

experimentally observed violation of the expected utility hypothesis. What distinguishes

the Ellsberg paradox from the Allais Paradox and other related violations of subjective

expected utility theory that generated interest in non-expected utility models in the past is

the fact that Ellsberg paradox type behavior cannot be explained within a model of choice

among lotteries. That is, the Ellsberg paradox calls into question not only subjective

expected utility theory but all models of choice under uncertainty that postulate behavior

based on reducing uncertainty to risk.

The following “mini” version is useful for understand the issues raised by the Ellsberg

paradox as well as our interpretation and resolution. An experimental subject is presented

with an urn. He is told that the urn contains three balls, one of which is red. The remaining

balls are either green or white. A ball will be drawn from the urn at random. The decision-

maker is asked to choose between a bet that yields $100 if a green ball is drawn and 0

dollars otherwise and a bet that yields $100 if a red ball is drawn and 0 dollars otherwise.

Before the ball is drawn, the decision-maker is asked his preference over two other

bets. In one bet he is to receive $100 if either a green or a white ball is drawn and 0 if a

red ball is drawn. With the other option, the decision-maker gets $100 if either a red or a

white ball is drawn and 0 if a green ball is drawn. These bets can be described as follows:

f =
(

100 0 0
G W R

)
versus h =

(
0 0 100
G W R

)

f ′ =
(

100 100 0
G W R

)
versus h′ =

(
0 100 100
G W R

)

Consider a decision-maker who prefers h to f and f ′ to h′. Presumably, by preferring h

to f the decision-maker is revealing his subjective assessment that there is a higher chance

of a red ball being drawn than a green ball. Similarly, by revealing a preference for f ′

over h′, the decision-maker is expressing his belief that the event “green or white” is more

likely than “red or white”. If the decision-maker’s assessments of the likelihoods of G, W

and R could be described by some probability µ, and if we assume that the decision-maker

prefers a greater chance of winning $100 to a smaller chance of winning $100, we would
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conclude from the choice above that µ(R) > µ(G) and µ(G ∪ W ) > µ(R ∪ W ). Since,

G, W, R are mutually exclusive events, no such probability exists, hence the paradox.

One intuitive explanation of the above behavior is the following: the decision-maker

finds it difficult to associate unique probabilities with the events G, W, R ∪ G and R ∪ W .

In contrast, the probability of the events R is 1
3 and hence the probability of the event

G ∪ W is 2
3 . The ambiguity of the events G, W permits the agent to view each of these

events as being less likely than R when they are associated with good prizes but more

likely than R when associated with bad prizes. Consequently, the agent can prefer h to f

and f ′ to h′. We call this interpretation of the Ellsberg paradox “the ambiguity aversion

interpretation.”

We provide an alternative interpretation of the Ellsberg paradox. In our model, behav-

ior consistent with the Ellsberg paradox is identified as the agent’s preference for betting

on one issue over betting on another, even if the corresponding probabilities and prizes are

the same. To understand how our model relates to the choice experiment above, imagine

that the balls in the urn are numbered 1, 2, and 3. Without loss of generality, let ball

3 be the red ball. We can distinguish between two different kinds of uncertainty. First,

there is the issue of which ball gets chosen. Second, there is the issue of the color of balls

1 and 2. With this description of the underlying type space, the events G, W , and R can

be depicted as follows:

G G W W ball 1
G W G W ball 2
R R R R ball 3
gg gw wg ww

In the matrix above, the last column describes the uncertainty regarding the ball that

is chosen, while the bottom row depicts the uncertainty regarding the color of each ball.

For example gg denotes the contingency in which both ball 1 and ball 2 are green, while

wg describes the contingency where ball 1 is white and ball 2 is green. We refer to the

uncertainty regarding the number of the ball that is drawn as issue a and the uncertainty

regarding the color of the first two balls as issue b. Capital letters describe the color of the

ball that is drawn.

Assume that the decision-maker considers every possible resolution of issue a equally

likely and every possible resolution of issue b equally likely. Furthermore, assume that he
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considers the two issues to be statistically independent. Note that a bet on R corresponds

to a bet on issue a. Hence, given our independence assumption, learning the outcome of

issue b does not affect the decision-maker’s belief regarding R. In contrast, the decision-

maker’s assessment of the probability of G conditional of ww is 0, while his assessment of

G given gg is 2
3 . Hence, R is a bet on which ball gets chosen (issue a), while G entails

both a bet on which ball gets chosen and on the number of green balls in the bag (issue

b). Taking unions with W reverses the roles of G and R. Observe that the probability

of G ∪ W does not change once issue b is resolved, while the probability of R ∪ W does.

Hence a decision-maker who, ceteris paribus prefers lotteries that depend only on issue

a to equivalent lotteries that depend both on issue b and issue a and has the subjective

prior above, must prefer the act h (getting $100 if and only if R occurs) to f (getting $100

if and only if G occurs) but must prefer f ′ (getting $100 if and only if G or W occurs)

to h′ (getting $100 if and only if R or W occurs). We call this “the issue preference

interpretation” of the Ellsberg paradox.

In the issue preference interpretation, the events associated with issue b are at least

in principle, observable. We can imagine looking into the urn and verifying the number

of green balls. In contrast, with the ambiguity aversion interpretation, the uncertainty

regarding the probability of G depends on what Nau (2002) calls “credal” states. To un-

derstand the distinction between between observable and credal states consider a maxmin

expected utility maximizer (Gilboa and Schmeidler (1989)) who has the the same four pos-

sible probability distributions over G, W, R that correspond to the columns of the matrix

above. We would not expect uncertainty regarding this agent’s beliefs to be resolved. We

cannot identify the state space associated with this uncertainty, let alone construct the acts

that are needed to verify the axioms of any particular theory or to elicit the agent’s prior

over these states. To put it differently, Savage’s axioms provide a way of identifying the

agent’s subjective prior over objective states. Formulations of ambiguity based on credal

states entail a subjective prior over subjective states. It is not clear how Savage’s approach

to probability and choice under uncertainty can be carried out when the state space itself

is subjective.

In our model, we assume an objective state space that has a product structure. Hence,

the two issues (a and b) are verifiable. We introduce assumptions that ensure that the agent
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has a subjective prior over this state space. Given his prior, the agent views any two acts

that depend only on issue a, (i.e., are measurable with respect to issue a) as equivalent

whenever they have the same probability distribution over prizes. Similarly, the agent

identifies two acts that have the same probability distribution whenever they both depend

only on issue b. However, the agent may not be indifferent between an act that depends

only on issue a and one that depends on issue b even if they yield the same lottery.

Machina and Schmeidler (1992) define a probabilistically sophisticated decision-maker

as one whose preference over acts (i.e., uncertain prospects) depends only on his subjective

prior and the lottery that the act yields given his prior (i.e., the risky prospect). Thus,

our agents are not probabilistically sophisticated. However, our assumptions also ensure

that the (payoff) relevant uncertainty over the two issues can be described by a single,

compound lottery. We call this, second-order probabilistic sophistication. Each stage of the

compound lottery is identified with the resolution of one issue. The ordering of the issues

is determined endogenously, from the agent’s preferences.

In Theorem 1, we show that a suitable modification of Machina and Schmeidler’s model

of probabilistic sophistication on a state-space that has a product structure (i.e., with

two distinct issues) yields second-order probabilistic sophistication; that is, preferences

where the decision-maker’s ranking of acts depends only on the corresponding compound

lotteries. We call the preferences characterized by Theorem 1 second-order probabilistically

sophisticated (SPS) preferences.

Like a probabilistically sophisticated agent, a second-order probabilistically sophisti-

cated decision-maker has a well-defined subjective prior over the state space. However,

unlike a probabilistically sophisticated decision-maker, for a second-order probabilistically

sophisticated agent, the lotteries associated with the acts f, g given the prior µ do not

provide sufficient information to rank all acts. A second-order probabilistically sophisti-

cated agent needs to keep track not just of the risk associated with f and g but also the

second-order risk.

In addition to providing a suitable framework for formulating the issue preference

interpretation of the Ellsberg paradox, Theorem 1 provides Savage-type subjectivist foun-

dations for the Anscombe-Aumann model. That is, it identifies features of preferences
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that lead to a model of uncertainty where the agent has two different types of subjec-

tive probabilities corresponding to the Anscombe-Aumann’s horse race and roulette wheel

probabilities.

The subjective model of compound lotteries provided by Theorem 1 is “robust” in the

sense of Machina and Schmeidler. That is, it imposes no restrictions on how the decision-

maker evaluates compound lotteries, other than stochastic dominance. Hence, Theorem

1 provides a framework for evaluating the interaction of the Ellsberg paradox with other

known violations of the expected utility hypothesis.

Kreps and Porteus (1978) introduce a more general form of compound lotteries which

they call temporal lotteries to study decision-makers who have preferences for when un-

certainty resolves. In their theory, temporal lotteries are taken as given, that is they view

objective, compound lotteries as the primitive description of the underlying uncertainty.

Furthermore, their assumptions yield expected utility preferences over temporal lotteries.

That is, both the decision-maker preferences over compound lotteries and their rankings of

the prizes of compound lotteries (i.e., ordinary lotteries) satisfy the independence axiom.

Formally, the relationship between our Theorem 1 and the main theorem in Kreps

and Porteus (1978) is analogous to the relationship between Machina and Schmeidler’s

main result and the von Neumann-Morgenstern theorem. We start with purely subjective

uncertainty and provide necessary and sufficient conditions for a preference relation to be

second-order probabilistically sophisticated.

In Theorem 3 we establish that assuming Savage’s sure-thing principle on acts that

depend only on one of the two issues characterizes SPS expected utility (SPS-EU) pref-

erences. Hence, Theorem 3 provides Savage-type foundations for the Kreps and Porteus

(1978) model.

Klibanoff, Marinacci and Mukerji (2002) (henceforth KMM) introduce an auxiliary

state space S2, which is a set of probability distributions over a basic state space S1. They

identify S2 with the uncertainty regarding the agent’s prior over S1 and call a Savage act

on S2, a second order act. KMM assume that the agent is a subjective expected utility

maximizer when evaluating second order acts and an expected utility maximizer when

ranking objective lotteries over outcomes. They identify an ordinary act f on S1, with a
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second order act that yields for each prior ν on S1, the certainty equivalent of the lottery

induced by f and ν, to obtain preferences with a Kreps-Porteus representation. While their

utility function is formally analogous to the one describing SPS-EU preferences (Theorem

3), the underlying objects are different. In KMM the choice objects are second order acts

and lotteries, while we consider ordinary, single stage acts over a state-space that has a

product structure (Ωa ×Ωb). Our axioms enable a representation that evaluates acts as if

issue ωb ∈ Ωb is realized in the first stage and ωa ∈ Ωa is realized in the second.

A second important distinction between the SPS-EU model and the model studied

in KMM is in the interpretation. KMM compare their model to maxmin expected util-

ity theory by identifying S2 with uncertainty regarding the agent’s prior. Hence, in the

terminology of Nau (2002), these are credal states.

Segal (1987, 1990) uses preferences over compound lotteries (which he calls two-stage

lotteries) to analyze the Ellsberg paradox and other related phenomena. In his model,

second stage preferences satisfy the expected utility hypothesis while in the first stage, the

decision-maker has anticipated utility preferences.1 In Segal (1987), this particular model

of choice over compound lotteries is assumed and Ellsberg paradox type behavior is related

to the decision-maker’s attitude towards second-order risk (which he calls ambiguity).

Segal uses his model to address a large number of experimentally documented violations

of probabilistic sophistication. Segal (1990) derives the model studied in Segal (1987)

from assumptions on the preference relation over compound lotteries and investigates the

relationships among various stochastic dominance and reduction (of compound lotteries)

axioms.

In Theorem 4, we provide a definition of comonotonic sure thing principle for acts on

a product set. We show that this leads to a characterization of SPS Choquet expected

utility (SPS-CEU) preferences that maximize expected utility when evaluating acts that

depend on issue a and maximize rank-dependent expected utility when evaluating acts

that depend on issue b. Hence, Theorem 4 provides a subjectivist formulation of Segal’s

model.

1 Quiggin (1982) introduces the theory and Yaari (1987) provides axiomatic foundations of the case
with a linear utility index.
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To see how second-order probabilistic sophistication relates to the Ellsberg paradox,

consider a decision-maker who has a prior over the state-space describing the joint reso-

lution of issues a and b above. Assume that this prior is uniform. Hence, µ(ωa, ωb) = 1
12

for all ωa ∈ {ball 1, ball 2, ball 3} and all ωb ∈ {gg, gw, wg, ww}. Let pα denote the lot-

tery that yields $100 with probability α and 0 dollars with probability 1 − α. For such a

decision-maker, the act f can be described as a lottery that yields p 2
3

with probability 1
4 ,

p 1
3

with probability 1
2 and p0 with probability 1

4 . Hence, for each act, µ induces a lottery

over lotteries, which we call a compound lottery. Let πf denote the compound lottery

associated with f . Computing the compound lotteries associated with the acts f , h, f ′,

and h′ above yields:

πf =
1
4
× p 2

3
+

1
2
× p 1

3
+

1
4
× p0, πh = 1 × p 1

3

πf ′ = 1 × p 2
3
, πh′ =

1
4
× p 1

3
+

1
2
× p 2

3
+

1
4
× p1

Note that πf and πh both yield $100 with probability 1
3 and πf ′ and πh′ both yield

$100 with probability 2
3 . However, πf is a mean preserving spread of πh and πh′ is a

mean preserving spread of πf ′ . Our definition of second-order risk aversion requires that

the agent prefers a compound lottery to a mean preserving spread. Hence, the Ellsberg

paradox type behavior corresponds to second-order risk aversion.

Theorems 2 and 5 establish the relationship between issue preference, second-order

risk aversion and uncertainty aversion (Schmeidler (1989)). We show that in general,

uncertainty aversion implies second-order risk aversion which implies that among lotteries

that have the same subjective probability distribution, the agent prefers ones that depend

only on issue a to lotteries that depend on both issues and prefers the latter to lotteries

that depend only on issue b. If the agent is a SPS-EU or a SPS-CEU maximizer, then

second-order risk aversion and uncertainty aversion are equivalent.

Like Segal (1987), we relate Ellsberg paradox type behavior to a form of second-

order risk aversion. However, we use a different notion of second-order risk. His notion

is applicable to binary acts (i.e. act that yield the same two prizes) and is analogous

to a notion of risk aversion based on comparing lotteries to their means. Our notion of
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second-order risk aversion is analogous to the standard notion of risk aversion based on

mean preserving spreads and is applicable to all lotteries.

The notion of ambiguity aversion used in Klibanoff, Marinacci and Mukerji (2002)

is formally similar to our concept of second-order risk aversion. Their definition entails

comparing arbitrary lotteries to appropriate second-order riskless lotteries, i.e., it is anal-

ogous to a definition of risk aversion based on comparing lotteries to their means. Within

their expected utility framework, risk aversion defined as not preferring the distribution

to its mean is equivalent to risk aversion defined as preferring the distribution to a mean

preserving spread.

In Kreps and Porteus, the “issue” is time and the decision-maker cares about how

much of the uncertainty is resolved in period 1 versus in period 2. In our model, the fact

that issue b resolves at the first stage of the compound lottery has no temporal significance.

The particular representation is derived from the fact that the agent’s preferences satisfy

greater separability properties with respect to issue b than with respect to issue a. By

taking temporal lotteries as the primitive of their model, Kreps and Porteus are implicitly

making the same assumption with respect to lotteries that resolve earlier.

Nau (2002) also provides a model with two issues. His axioms ensure the existence of a

representation that is additively separable when restricted to lotteries that depend only on

issue a or only on issue b but permit state-dependent preferences. Since state-dependence

makes it impossible to identify subjective probabilities, he offers a local measure of ambi-

guity aversion. Nau’s is the closest to our interpretation of the Ellsberg paradox in that

he places more emphasis on the agent’s different treatment of two issues and less emphasis

on identifying the more ambiguous issue.

Epstein and Zhang (2001) note that the notion of ambiguity requires a violation of

probabilistic sophistication when formulated within the Savage setting but may be consis-

tent with probabilistic sophistication within the Anscombe-Aumann framework. To the

extent that the notion of ambiguity is motivated by the Ellsberg Paradox, our notion of

issue preference resolves this apparent paradox. The Anscombe-Aumann model has two

different types of uncertainty, corresponding to the objective probabilities (issue a in our

model) and the subjective uncertainty (issue b) associated with the state. Hence, an agent
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may be probabilistically sophisticated over the subjective states and still prefer a partic-

ular objective lottery to the corresponding subjective one. In the Savage setting, both

issues have to be specified in the description of the subjective state space. In this frame-

work a preference for issue a versus issue b is synonymous with the failure of probabilistic

sophistication.

2. Second-Order Probabilistic Sophistication

Let Z be a set of prizes and Ω := Ωa × Ωb be the set of all states. We refer to a, b as

issues. Let A be the algebra of all subsets of Ωa and B be the algebra of all subsets of Ωb.

Let Ea denote the algebra of all sets of the form A × Ωb for some A ∈ A, Eb denote the

algebra of all sets of the form Ωa ×B for some B ∈ B, and E denote the algebra of all sets

that can be expressed as finite unions of sets of the form A × B for A ∈ A, B ∈ B (i.e.,

E is the algebra generated by Ea ∪ Eb). A function f : Ω′ → Z ′ is simple if f(Ω′) is finite.

For any algebra E ′, the function f is E ′−measurable if it is simple and f−1(z) ∈ E ′ for all

z ∈ Z.

Let F denote the set of all (Savage) acts; that is, F is the set of E−measurable

functions from Ω to Z. An individual is characterized by a binary relation � on F . Our

first assumption is that this binary relation is a preference relation.

Axiom 1: (Preference Relation) � is complete and transitive.

We use ∼ to denote the indifference relation associated with � and use f � g to

denote f � g and not g � f . We identify each z ∈ Z with the corresponding constant

prospect. Our second assumption ensures that the individual is not indifferent among all

constant prospects.

Axiom 2: (Nondegeneracy) There exists x, y ∈ Z such that x � y.

Let Ec denote the complement of E in Ω. For any set E ∈ E , we say that the uncertain

prospects f and g agree on E if f(s) = g(s) for all s ∈ E. We write f = g on E to denote

the fact that f agrees with g on E. An event E ∈ E is null if f = g on Ec implies

f ∼ g. Otherwise, the event E is non-null. Our next assumption states that for all non-

null events E and all uncertain prospects f , improving what the decision-maker gets if E
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occurs, keeping what he gets in all other contingencies constant makes the decision-maker

better off.

Axiom 3: (Monotonicity) For all non-null E, f = g on Ec, f = z on E, g = z′ on E

implies z � z′ if and only if f � g.

Axioms 1−3 are identical to their counter-parts in Savage’s theory. The next assump-

tion ensures that Ω can be divided into arbitrarily “small” events of the form A × Ωb and

Ωa × B:

Axiom 4: (Continuity) For f � g, z ∈ Z there exist a partitions E1, . . . , En ∈ Ea of and

partition F1, . . . , Fn ∈ Eb of Ω such that

(a) [f i = f, gi = g on Ec
i and f i = gi = z on Ei] implies [f i � g and f � gi]

(b) [fj = f, gj = g on F c
j and fj = gj = z on Fj ] implies [fj � g and f � gj ]

Most models that study uncertain prospects (i.e., the Savage setting) impose the

assumptions above.2 These models differ with respect to their comparative probability

axiom and their separability axioms.

Note that for any f ∈ F , there exists a partition A1, . . . , An of A and a partition

B1, . . . , Bm of B such that the function f is constant on each Ai ×Bj , for i = 1, . . . , n and

j = 1, . . . , m. Hence, we can identify each f ∈ F with some n + 1 by m + 1 matrix. That

is:

f =




x11 . . . x1m A1
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗




Let Fa and Fb denote the set of Ea and Eb measurable acts respectively. For f ∈ Fa and

g ∈ Fb we write

f =


 x1 A1

...
...

xn An


 , g =

(
x1 . . . xm

B1 . . . Bm

)

2 Axiom 4 is a slightly stronger than the usual continuity assumption since it requires that the event
space can be partitioned both into small probability Ea and Eb events.
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Axiom 5a: (a−Strong Comparative Probability) If x � y and x′ � y′ then




x A1

y A2

z3 A3
...

...
zn An


 �




y A1

x A2

z3 A3
...

...
zn An


 iff




x′ A1

y′ A2

z′3 A3

...
...

z′n An


 �




y′ A1

x′ A2

z′3 A3

...
...

z′n An




Axiom 5a is the Machina-Schmeidler strong comparative probability axiom imposed

on Ea−measurable acts. Consider prizes x, y such that x � y and an act f that yields x

on event A1 ×Ωb and y on A2 ×Ωb. If the decision-maker prefers f to the act that yields

y on A1 × Ωb and x on A2 × Ωb agrees f outside of (A1 ∪ A2) × Ωb, this suggests that

he considers A1 × Ωb more likely than A2 × Ωb. The assumption asserts that prizes don’t

affect probabilities. That is, if we conclude that the decision-maker A1 × Ωb strictly more

likely than A2×Ωb using some act f , we should not be able to conclude the opposite using

some other act f ′. Our main assumption is the axiom below:

Axiom 5b: (a|b−Strong Comparative Probability) If


 x1 A1

...
...

xn An


 �




y1 A1
...

...
yn An


 and




x′
1 A1

...
...

x′
n An


 �




y′
1 A1

...
...

y′
n An




Then,




x1 y1 z13 . . . z1m A1
...

...
...

. . .
...

...
xn yn zn3 . . . znm An

B1 B2 B3 . . . Bm ∗


 �




y1 x1 z13 . . . z1m A1
...

...
...

. . .
...

...
yn xn zn3 . . . znm An

B1 B2 B3 . . . Bm ∗




iff 


x′
1 y′

1 z′13 . . . z′1m A1

...
...

...
. . .

...
...

x′
n y′

n z′n3 . . . z′nm An

B1 B2 B3 . . . Bm ∗


 �




y′
1 x′

1 z′13 . . . z′1m A1

...
...

...
. . .

...
...

y′
n x′

n z′n3 . . . z′nm An

B1 B2 B3 . . . Bm ∗




Axiom 5b has three important implications. First, it implies the Machina-Schmeidler

strong comparative probability axiom on Eb. To see this, assume that all columns in the
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above statement of Axiom 5b are constants. That is, x1 = x2 = . . . = xn, y1 = y2 =

. . . = yn, z13 = z23 = . . . = zn3, etc. Then, we obtain a symmetric version of Axiom 5a.

This ensures that the agent is probabilistically sophisticated over Eb−measurable acts. It

follows from this observation that Axiom 5b is stronger than the symmetric counterpart

of 5a. To see the other two implications consider the example below. (To simplify the

presentation, we have represented the events with their probabilities):

f =
(

1 .5
100 .5

)
�

(
100 .5
0 .5

)
= g

Since the two rows of f and g are equiprobable, f � g is simply a statement of the

fact that 1 is preferred to 0. Then, Axiom 5b implies

f ′ =


 1 100 −500 .5

100 0 1000 .5
.4 .3 .3 ∗


 �


 100 1 −500 .5

0 100 1000 .5
.4 .3 .3 ∗


 = g′

But, the preference for f over g relies on the fact that the rows of f and g are equally

likely and f ′ � g′ requires that conditional on each column, these rows are equally likely.

Hence, Axiom 5b implies that equally likely issue a (i.e., row) events remain equally likely

after conditioning on any issue b (column) event. Thus, the second implication of the

axiom is that it renders the issues statistically independent.

To understand the final implication of Axiom 5b note that the second row of f ′ is

better than the first row of f ′. Switching the columns of f ′ (to obtain g′) improves the

first row at the expense of the second. That is, the utilities associated with the rows of g′

are closer together than the corresponding utilities for the rows of f ′ and therefore g′ has

less risk with respect to issue a. Axiom 5b precludes aversion to such risk. It is this feature

of Axiom 5b that permits the reduction of acts into compound lotteries where second-order

risk is only associated with issue b.

Note that we can interpret Axiom 5b as a version of Machina-Schmeidler’s comparative

probability axiom applied to a richer set of prizes. To see this identify each f ∈ Fa with

a function fa : Ωa → Z by setting fa(ωa) = f(ωa, ωb) for any ωb ∈ Ωb. Formally:
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Definition: Let F0
a denote the set of all simple functions from Ωa to Z. Define the

bijection

χ : Fa → F0
a

as follows:

χ(f)(ωa) = f(ωa, ωb) for all ωb ∈ Ωb

We let fa denote χ(f).

Then, by identifying each f ∈ F with a function from Ωb to F0
a , we can interpret

Axiom 5b as Machina-Schmeidler’s strong comparative probability axiom. To clarify this

symmetry between Axioms 5a and 5b, we re-state Axiom 5b as follows:

Axiom 5b: Suppose f, f̂ , g, ĝ, h3, ĥ3, . . . hm, ĥm ∈ Fa and

f � g and f̂ � ĝ

Then, (
fa ga h3

a . . . hm
a

B1 B2 B3 . . . Bm

)
�

(
ga fa h3

a . . . hm
a

B1 B2 B3 . . . Bm

)
iff (

f̂a ĝa ĥ3
a . . . ĥm

a

B1 B2 B3 . . . Bm

)
�

(
ĝa f̂a ĥ3

a . . . ĥm
a

B1 B2 B3 . . . Bm

)

Henceforth, we refer to Axioms 5a and 5b together as Axiom 5. Let ∆(Z ′) = {p :

Z ′ → [0, 1] | p−1((0, 1]) is finite and
∑

z p(z) = 1} be the set of all simple lotteries on some

set Z ′. Let p(G) =
∑

z∈G p(z) for G ⊂ Z ′. Let δz denote the degenerate lottery that yields

z with probability 1. We say that φ : ∆(Z ′) → IR satisfies stochastic dominance if for all

α ∈ (0, 1), φ(αδz + (1 − α)r) > φ(αδz′ + (1 − α)r) if and only if φ(δz) > φ(δz′).

We use p, p′ and p′′ to denote generic elements of P := ∆(Z) and π, π′, π′′ to denote

generic elements of ∆(P ). Hence, P is the set of simple lotteries on Z and ∆(P ) is the set

of simple lotteries on P . We call ∆(P ) the set of compound lotteries.

Definition: A function µ on E is a probability if (i) µ(E) ≥ 0 for all E ∈ E , (ii) µ(Ω) = 1

and (iii) E ∩ E′ = ∅ implies µ(E ∪ E′) = µ(E) + µ(E′).

13



Given any probability µ on E , we can associate with each f ∈ F , a lottery pf ∈ P .

and a compound lottery πf ∈ ∆(P ). Since the underlying µ is clear we suppress the

dependence on µ in the definitions below.

Definition: Let µ be a probability on E . For f ∈ F , define pf ∈ ∆(Z) as follows:

pf (z) = µ(f−1(z)) for all z ∈ Z

Let µa and µb denote the marginals of the probability measure µ on the two issues, i.e.

µa(A) = µ(A×Ωb) and µb(B) = µ(Ωa×B) for every A ∈ A and B ∈ B. We say that Ea, Eb

are µ−independent if µ(A×B) = µa(A) · µb(B) for every A ∈ A and B ∈ B. When Ea, Eb

are µ−independent, we also associate with each Savage act f ∈ F , an Anscombe-Aumann

act f∗ and a compound lottery πf ∈ ∆(P ). Let F∗ denote the set of all simple functions

from Ωb to P , i.e., F∗ is the set of all Anscombe-Aumann acts.

Definition: Let µ be a probability on E and let Ea, Eb be µ−independent. For f ∈ F

such that

f =




x11 . . . x1m A1
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗




define f∗ as follows:

pj(z) =
∑

i:xij=z

µa(Ai)

f∗(s) = pj for all s ∈ Bj

Then, we can associate a compound lottery with each Anscombe-Aumann act by

evaluating the probability of the event which yields p for each p ∈ P .

Definition: Let µ be a probability on E and let Ea, Eb be µ−independent. For f ∈ F ,

define the compound lottery πf as follows:

πf (p) = µb(f∗−1(p))

14



We say that a measure µ is nonatomic on Ea if E ∈ Ea and λ ∈ [0, 1] implies there

exists E′ ∈ Ea such that E′ ⊂ E and µ(E′) = λµ(E). A symmetric condition is required

for µ to be nonatomic on Eb. We say that µ is nonatomic if it is nonatomic on both Ea, Eb.

Note that the three mappings described above are all onto when Ea, Eb are µ−independent

and µ is nonatomic. That is, for each p ∈ P there exists f ∈ F such that pf = p, for each

h ∈ F∗ there exists f ∈ F such that f∗ = h, and for each π ∈ ∆(P ) there exists f ∈ F
such that πf = π.

Machina and Schmeidler call � probabilistically sophisticated if there exists a mix-

ture continuous and stochastic dominance satisfying function W : P → IR and a subjective

probability measure µ such f � g iff W (pf ) ≥ W (pg). Hence, a probabilistically sophis-

ticated decision-maker has a subjective prior over the state-space, considers all acts that

yield the same lottery equivalent and satisfies stochastic dominance. The theorem below

establishes a weaker version of probabilistic sophistication for decision-makers that satisfy

Axioms 1 − 5. According to this weaker notion of probabilistic sophistication, a decision-

maker has a subjective prior over the state space, considers all acts that yield the same

compound lottery as equivalent and satisfies the appropriate counter-parts of continuity

and stochastic dominance.

For any function W : ∆(P ) → IR, we will say that a sequence of compound lotter-

ies πn is W -bounded if there exist z∗, z∗ ∈ Z such that W (z∗) ≥ W (x) ≥ W (z∗) for

any x ∈
⋃∞

n=1

⋃
p∈supp πn

supp p. We endow P with the supremum metric: d∞(p, p′) =

supz∈Z |p(z) − p′(z)| for p, p′ ∈ P . Then the sequence of compound lotteries πn weakly

converges to a compound lottery π, if for every open subset G of P ,

liminfn→∞πn(G) ≥ π(G).

Definition: A function W : ∆(P ) → IR is weakly continuous if for any W -bounded

sequence πn weakly converging to π, we have (i) if W (π) > W (π′) then there exists N

such that W (πn) > W (π′) for n ≥ N , and (ii) if W (π) < W (π′) then there exists N such

that W (πn) < W (π′) for n ≥ N .
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Theorem 1: The binary relation � satisfies Axioms 1 − 5 if and only if there exists a

nonatomic probability µ on E and a weakly continuous function W : ∆(P ) → IR, such

that (i) Ea, Eb are µ−independent, (ii) W (πf ) ≥ W (πg) iff f � g, and (iii) Both W and

the function w : P → IR defined by w(p) = W (δp) satisfy stochastic dominance.

The details of the proof of Theorem 1, which relies on Theorem 2 of Machina and

Schmeidler (1992), are in the appendix. Here, we give a sketch. Let Ω′ be an arbitrary

state space, Z ′ be any set of prizes and let F ′ be the set of all simple functions from Ω′

to Z ′. Theorem 2 of Machina and Schmeidler (1992) establishes that if a binary relation

�′ over F ′ satisfies Axiom 1 − 3 and continuity (i.e., replace Ωa with Ω′ in Axiom 4a)

and strong comparative probability (i.e., let the Ai’s in Axiom 5a denote arbitrary subset

of Ω′) then �′ is probabilistically sophisticated. Applying this theorem to Fa yields a

probability measure µa and a stochastic dominance satisfying function w̃ : P → IR such

that f � g iff w̃(pf ) ≥ w̃(pg) for all f, g ∈ Fa, where the probability distributions pf , pg

are derived from µa.

We next introduce a binary relation �∗ on F∗ by f∗ �∗ g∗ if and only if f � g and show

that �∗ is well-defined. Applying Machina and Schmeidler’s Theorem 2 again, we obtain

a probability µb on Ωb and a stochastic dominance satisfying function W : ∆(P ) → IR

such that f∗ �∗ g∗ iff W (π∗
f∗) ≥ W (π∗

f∗) where for any h ∈ F∗, the compound lottery π∗
h

is defined by π∗
h(p) = µb(h−1(p)). Let µ be the product on E of µa and µb. That is, for

any E−set E =
⋃n

i=1 Ai × Bi, let µ(E) =
∑n

i=1 µa(Ai) · µb(Bi). To complete to proof we

show that W is weakly continuous.

We refer to preferences satisfying Axioms 1 − 5 as second-order probabilistically so-

phisticated (SPS) preferences. Comparing Theorem 1 above to Theorem 2 of Machina

and Schmeidler (1992), we note that Machina-Schmeidler decision-makers are indifferent

between any two Savage acts that yield the same probability distribution over prizes. That

is, they are indifferent between f and g whenever f and g imply the same risk pf = pg. In

contrast, decision-makers characterized by our weaker notion of probabilistic sophistication

are indifferent between f and g whenever f and g yield the same second-order risk on issue

b. That is, f ∼ g whenever πf = πg. In section 3, we provide measures of second-order

risk, relate second-order risk aversion to issue preference and the Ellsberg paradox.
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3. Second-Order Risk Aversion and the Ellsberg Paradox

By Axiom 2, there are prizes x, y ∈ Z such that x � y. Let x = 1 and y = 0. Consider

the following acts

f =


 1 0 A

1 0 Ωa\A
B Ωb\B ∗


 , g =


 1 1 A

0 0 Ωa\A
B Ωb\B ∗


 , h =


 1 0 A

0 1 Ωa\A
B Ωb\B ∗




Note that if µ is any measure on E that renders the issues independent and µ(A) = µ(B) =
1
2 , then πg = πh. To see this note that both πg and πh assign probability 1 to the lottery

p that yields 1 with probability 1
2 and 0 with probability 1

2 . If � is an SPS decision-

maker then πg = πh implies g ∼ h. Note also that pf = pg = ph = p. Hence, if the

decision-maker were probabilistically sophisticated he would be indifferent among all three

acts. However, an SPS decision-maker may distinguish between acts that yield different

second-order distributions. Observe that

πf =
1
2
δδ1 +

1
2
δδ0 �= δ 1

2 δ1+
1
2 δ0

= πg = πh

A decision-maker facing the bet f will know the outcome of his bet whenever he learns the

resolution of issue b while a decision-maker holding the bet g or h will learn nothing when

he learns the resolution of issue b. That is, a decision-maker confronting f faces significant

second-order risk (with respect to issue b) while a decision-maker facing g or h faces no

second-order risk.

This notion of second-order risk is analogous to the standard notion of risk. To see

the similarity between the two concepts recall that when Z is an interval of real numbers,

both Z and ∆(Z) are mixture spaces. Suppose there are two lotteries p, p′ ∈ ∆(Z) such

that p = α(βδx + (1− β)δy) + (1−α)p′′ and p′ = αδβx+(1−β)y + (1−α)p′′. Then, p is said

to be a mean preserving spread of p′. A decision-maker who has preferences over lotteries

is risk averse if he prefers p′ to p whenever p is a mean preserving spread of p′. Hence,

a risk averse decision-maker prefers it when a mixture in the space ∆(Z) is replaced by

mixture in the space Z. Since ∆(P ) and P are also mixture spaces, we can use the same

idea to define second-order risk aversion:
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Definition: The compound lottery π is a mean preserving spread of π′ if there are

α, β ∈ (0, 1), p, q ∈ P and π′′ ∈ ∆(P ) such that

π = α(βδp + (1 − β)δq) + (1 − α)π′′ and

π′ = αδβp+(1−β)q + (1 − α)π′′

We say that � is second-order risk averse if f ′ � f whenever πf is a mean preserving

spread of πf ′ .

Theorem 2: Let � be an SPS preference. Then, (iii) ⇒ (i) ⇔ (ii) ⇒ (iv):

(i) � is second order risk averse

(ii) h∗ = αf∗ + (1 − α)g∗ and πf = πg implies h � f

(iii) h∗ = αf∗ + (1 − α)g∗ and f ∼ g implies h � f

(iv) f ∈ Fa, g ∈ F , h ∈ Fb and pf = pg = ph implies f � g � h.

Condition (iv) states that if f is a bet on issue a, h is a bet on issue b and g is any act

that has the same subjective probability distribution as f and h, then, a decision-maker

who is averse to second-order risk will prefer f to g and g to h. We call this condition issue

preference. Theorem 2 establishes that in general, second-order risk aversion is a stronger

condition than issue preference. Condition (iii) of Theorem 2 is exactly Schmeidler’s

definition of uncertainty aversion if we interpret his objective lotteries as issue a and the

subjective uncertainty as issue b. The preferences studied by Schmeidler need not be SPS

but satisfy what Schmeidler calls comonotonic independence. The above characterization

of second-order risk aversion does not rely on comonotonic independence and hence can be

adapted to any preference satisfying Axioms 1 − 5. Finally, uncertainty aversion implies

second-order risk aversion. Condition (ii) applies only to f and g that yield the same

compound lottery. By Theorem 1 such acts are indifferent. Hence, (ii) is weaker than

(iii). In the appendix, after the proof Theorem 2, we provide a counter-examples to (iv)

implies (ii) and another counter-example to (ii) implies (iii). Hence, a result stronger

than Theorem 2 cannot be proved.
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In the following section, we show that conditions (i) − (iv) are equivalent for SPS

preferences that are EU within each issue or satisfy comonotonic independence in the

sense of Schmeidler (1989).

In the introduction, we described how sensitivity to second-order risk can be utilized

to interpret the Ellsberg paradox as a consequence of second-order risk aversion. Note

however that by identifying issue a with the number of green balls and issue b with the

number of the ball that gets chosen, we could have interpreted the Ellsberg paradox as a

consequence of second-order risk loving behavior.

Which of the two possible ways of assigning issues is the right one? More generally, how

can we distinguish issue a type uncertainty from issue b type uncertainty? In our approach,

the choice of the issue b (i.e., the source of second-order risk) is, like the assignment of

probabilities, is a subjective matter.

Recall the example at the beginning of this section. Regardless of which issue is issue

a and which issue is issue b, the compound lottery associated with act h is δp 1
2
. Now, to

verify which issue is the one associated with second-order uncertainty, i.e., issue b, we need

to check if agent is indifferent between g and h or f and h. The former, means that the

column events are issue b events, while the latter implies that the row events are issue b

events.

3.1 Second-Order Risk with Expected Utility Preferences

Simpler and stronger characterization of second-order risk aversion are feasible for

SPS preferences satisfying certain expected utility properties. Axiom 6a below is Savage’s

sure thing principle applied to acts in Fa. In contrast, Axiom 6b is Savage’s sure thing

principle applied to all acts conditional on events in Eb. We refer to Axioms 6a, b together

as Axiom 6. Theorem 3 below establishes that imposing Axiom 6 on SPS preferences yields

a version of the model introduced by Kreps and Porteus (1978). In this case, the agent is

an expected utility maximizer with respect to both issue a and b lotteries but may not be

indifferent between an issue a lottery and an equivalent issue b lottery. We refer to this

type of preferences as SPS-EU preferences. Parts a and b of the following axiom impose

Savage’s sure thing principle on issue a and issue b dependent acts. Note that both parts of
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the axiom together are weaker than Savage’s sure thing principle since neither part applies

to acts that depend on both issues.

Axiom 6: (Sure Thing Principles) Let Ea ∈ Ea, Eb ∈ Eb, f, g, f ′, g′ ∈ Fa, and f̃ , g̃, f̃ ′, g̃′ ∈
F . Then

(a) f = f ′ on Ea, g = g′ on Ea, f = g on Ec
a, f ′ = g′ on Ec

a

implies f � g if and only if f ′ � g′

(b) f̃ = f̃ ′ on Eb, g̃ = g̃′ on Eb, f̃ = g̃ on Ec
b , f̃ ′ = g̃′ on Ec

b

implies f̃ � g̃ if and only if f̃ ′ � g̃′

Axioms 1−6 lead to SPS preferences with a different von Neuman-Morgenstern utility

function for each issue. If we interpret issue b as the first period and issue a as the second

period, Theorem 3 yields a subjective model of Kreps and Porteus temporal lotteries.3

Theorem 3: The binary relation � satisfies Axioms 1 − 6 if and only if there exists

a nonatomic probability µ on E and a function W : ∆(P ) → IR, such that (i) Ea, Eb

are µ−independent, (ii) W (πf ) ≥ W (πg) iff f � g, and (iii) Both W and w defined by

w(p) = W (δp) are expected utility functions. In particular,

W (π) =
∑
p∈P

v

(∑
x∈Z

u(x)p(x)

)
π(p)

for some continuous and strictly increasing v : IR → IR and u : Z → IR.

We refer to preferences that satisfy the hypothesis of Theorem 3 as SPS expected

utility (SPS-EU) preferences.4 We call the corresponding (v, u, µ) a representation of �.

It is easy to verify that a SPS-EU preference (v, u, µ) is second-order risk averse if and

only if v is concave. Hence, second-order risk aversion of a SPS-EU preferences is formally

equivalent to preference for late resolution of uncertainty as formulated by Kreps and

Porteus (1978).

3 Compound lotteries are simplified versions of Kreps-Porteus temporal lotteries. The latter allow for
interim consumption and more importantly, multiple periods.

4 Machina and Schmeidler’s comparative probability axiom, which is analogous to our Axiom 5 is
weaker than Savage’s weak comparative probability axiom. In the presence of the sure thing principle,
Savage’s axiom is equivalent to the Machina-Schmeidler axiom. Therefore, in Theorem 3, we can replace
Axiom 5 with suitable analogues of Savage’s comparative probability axiom.

20



Nau (2002) considers the case where both Ωa and Ωb are finite and Z is an interval

of real numbers. His assumptions yield additive separability but not state-independence.

Hence, he characterizes preferences that can be represented by a function W of the form

W (f) =
∑
i∈Ωb

vi


 ∑

j∈Ωa

uij(f(i, j))




The state-dependence allows for a richer set of preferences but makes it impossible

to identify subjective probabilities. Instead, Nau utilizes a differentiability assumption

to define local probabilities. He notes that a finite state version of what we have called

SPS-EU preferences is a special case of his preferences. He uses this model to discuss the

Ellsberg Paradox and the Allais Paradox.

The Ellsberg paradox is often studied within the framework of Choquet expected

utility or maxmin expected utility preferences. In the Anscombe-Aumann framework,

Choquet expected utility preferences are defined as follows: Recall that F∗ denotes the

set of all simple functions from Ωb to P . Let u : Z → IR and define U : P → IR by

U(p) =
∑

z∈Z u(z)p(z). A function ν : B → [0, 1] is a capacity if ν(Ωb) = 1, ν(∅) = 0 and

ν(B) ≥ ν(B′) whenever B′ ⊂ B.

For any real-valued, Eb measurable function r define the Choquet integral of r as

follows: ∫
Ωb

rdν =
k∑

i=1

(αi − αi+1)ν


⋃

j≤i

Bj




where α1 ≥ . . . ≥ αk, αk+1 = 0 and B1, . . . , Bk form a partition of Ωb such that r(s) = αi

for all s ∈ Bi, i = 1, . . . , k. Then, a preference relation �∗ on F∗ is a Choquet expected

utility preference if there exists a capacity ν and a function u : Z → IR such that the

function W ∗ defined below represents �.

W ∗(f∗) =
∫

Ωb

u ◦ f∗ dν

Anscombe and Aumann (1963) choose P as their prizes. We do not assume the

existence of objective lotteries. However, we utilize the agent’s subjective probability µa

on A to identify an Anscombe-Aumann act f∗ with each f .
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Schmeidler’s axiomatization of Choquet expected utility relies on the comonotonic in-

dependence axiom. Gilboa (1987) provides a characterization of Choquet expected utility

preferences in the Savage setting. The axiom below is a version of the comonotonic inde-

pendence axiom that yields second-order probabilistically sophisticated Choquet expected

utility preferences.

Definition: Let f and g be the two acts below:

f =




x11 . . . x1m A1
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗


 g =




y11 . . . y1m A1
...

. . .
...

...
yn1 . . . ynm An

B1 . . . Bm ∗




These acts are comonotonic if for all j, k




x1j A1

...
...

xnj An


 �


 x1k A1

...
...

xnk An


 implies




y1j A1

...
...

ynj An


 �




y1k A1
...

...
ynk An




The axiom below is the comonotonic sure thing principle for SPS preferences. It

imposes the sure thing principle on all comonotonic acts conditional on Ea events.

Axiom 6c: (Comonotonic Sure Thing Principle) Let Ea ∈ Ea be nonnull and f, g, f ′, g′ ∈
F , be comonotonic acts. Then

f = f ′ on Ea, g = g′ on Ea, f = g on Ec
a, f ′ = g′ on Ec

a

implies f � g if and only if f ′ � g′

Since all acts in Fa are comonotonic, Axiom 6c implies Axiom 6a. Of course Axiom

6c does not imply Axiom 6b. Similarly, Axiom 6 does not imply Axiom Axiom 6c. This

last assertion can be verified by observing that the preferences characterized by Theorem

3 and 4 are not nested.

Theorem 4 describes preferences that are not probabilistically sophisticated. However,

the associated �∗ is probabilistically sophisticated. Hence, we characterize only a subset
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of the preferences studied in Gilboa (1987). This fact accounts for the relatively simpler

axioms of Theorem 4.

Recall that for any SPS preference � there exists a non-atomic µa and �∗ such that

f � g if and only if f∗ �∗ g∗. We call the preference � a second-order probabilistically

sophisticated Choquet expected utility (SPS-CEU) preference if the corresponding �∗ is a

Choquet expected utility preference on F∗ for some capacity ν = γ ◦µb where µb is a non-

atomic probability on B and γ : [0, 1] → [0, 1] is a strictly increasing bijection. We refer to

(γ, u, µ) as a representation of �. The theorem below identifies SPS-CEU preferences as

the SPS preferences satisfying Axiom 6c.

Theorem 4: The binary relation � satisfies Axioms 1 − 5 and 6c if and only if it is a

SPS-CEU preference.

Our final result provides a stronger characterization of second-order risk aversion for

SPS-EU and SPS-CEU preferences. The theorem shows the equivalence of Schmeidler’s

notion of uncertainty aversion and our notion of second-order risk aversion for SPS-CEU

and SPS-EU preferences. It follows that all of the characterizations of uncertainty aversion

provided by Schmeidler are also characterizations second-order risk aversion.5

Theorem 5: Let � be a SPS-EU preference or a SPS-CEU preference. Then, the

following conditions are equivalent:

(i) � is second order risk averse

(ii) h∗ = αf∗ + (1 − α)g∗ and πf = πg implies h � f

(iii) h∗ = αf∗ + (1 − α)g∗ and f ∼ g implies h � f

(iv) f ∈ Fa, g ∈ F , h ∈ Fb and pf = pg = ph implies f � g � h.

Theorem 5 establishes that for SPS-CEU preferences and SPS-EU preferences, second-

order risk aversion is equivalent to issue preference. Also, the theorem establishes the

equivalence of Schmeidler’s notion of uncertainty aversion and our notion of second-order

risk aversion provided we identify Schmeidler’s objective lotteries with issue a.

5 For example, Schmeidler show that an Choquet expected utility preference is uncertainty averse if
and only if ν is convex, that is ν(B) + ν(B′) ≤ ν(B ∩ B′) + ν(B ∪ B′) for all B, B′ ∈ B. For SPS-CEU
preferences, this condition is equivalent to γ being a convex function.
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Definition of ambiguity aversion in Klibanoff, Marinacci and Mukerji (2002) is similar

to (iv). They impose this condition only on binary acts. For SPS-EU preferences, this

ensures that the condition holds for all acts.6

4. Conclusion

As in the first interpretation outlined in the introduction, the Ellsberg paradox is

often intuitively identified with aversion to ambiguity. Recently, a number of authors have

formalized this intuition by providing definitions of ambiguity and ambiguity aversion.

The approach taken by these authors is roughly the following: first, a set of unam-

biguous acts is defined. Then, an ambiguity neutral agent is defined. Finally, agent 1 is

defined to be ambiguity averse if there is an ambiguity neutral agent 2 such that for any act

g and any unambiguous act f , f �2 g implies f �1 g. The notion of ambiguity/ambiguity

aversion formalized in Epstein (1999) and Epstein and Zhang (2001) differs from the one

in Ghirardato and Marinacci (2001) with respect to the underlying notion of ambiguity

neutrality. Epstein (1999) identifies being ambiguity neutral with probabilistic sophistica-

tion while Ghirardato and Marinacci (2001) define ambiguity neutrality as expected utility

maximization. Ghirardato and Marinacci (2001) seek a very broad notion that permits

them to relate any departure from the expected utility model as either ambiguity aversion

or ambiguity loving, while the Epstein/Epstein and Zhang formulation is tailored to the

analysis of the Ellsberg paradox.

In contrast, both in Nau (2002) and in our model, the emphasis is on the agent having

different preferences over uncertain prospects that depend on separate issues. Nau defines

the agent’s preferred issue as the unambiguous one. Like Ghirardato and Marinacci, Nau

utilizes his model to provide a unified framework analyzing state dependent preferences,

the Ellsberg paradox and the Allais’ paradox. Like Epstein (1999) and Epstein and Zhang

(2001), we have attempted to identify our central concept (issue preference or equivalently,

second-order risk aversion) exclusively with the Ellsberg paradox.

6 This can be verified by noting that in the proof of Theorem 5, only binary acts are used for establishing
(iv) ⇒ (iii) for SPS-EU preferences.
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5. Appendix

5.1 Proof of Theorem 1

In the proofs we use the following notion of p-convergence.

Definition: Given a nonatomic probability µ on Ω such that Ea, Eb are µ−independent,

a sequence πn of compound lotteries p-converges to a compound lottery π if there exist

acts f, fn ∈ F with πf = π and πfn = πn, such that for any ε > 0:

lim
n→∞

µb({s ∈ Ωb : d∞(f∗
n(s), f∗(s)) ≥ ε}) = 0.

Lemma 0: Weak convergence is equivalent to p-convergence.

Proof: First note that p-convergence is the convergence of f∗
n to f∗ in probability. It is

well-known that convergence in probability implies weak convergence when the underlying

probability measure is countably additive (see for example the corollary to Theorem 3.1 in

Billingsley (1999)). Although in our case µb need not be countably additive, the standard

proof can be adapted since the distribution of f has finite support.

For the converse, suppose πn weakly converges to π. Since µ is nonatomic, there exists

f such that πf = π. Let Oε(p) denote the open ball around p with radius ε. Choose δ > 0

small enough such that d∞(p, q) > 2δ for any distinct p, q ∈ suppπ. Since µb is nonatomic,

for any n, one can construct f∗∗
n : Ωb → P such that πf∗∗

n
= πn and

µb

[
f∗∗−1

n (Oδ(p)) ∩ f∗−1(p)
]

= min {πn (Oδ(p)) , π (p)} ∀p ∈ suppπ

By nonatomicity of µa, we can find fn such that f∗
n = f∗∗

n for all n. For any ε ≤ δ, Oε(p)’s

are disjoint for p ∈ suppπ, hence weak convergence of πn to π ensures that:

lim
n→∞

πn(Oε(p)) = π(Oε(p)) = π(p) ∀p ∈ suppπ

In particular for ε = δ, we have

lim
n→∞

µb

[
f∗∗−1

n (Oδ(p)) ∩ f∗−1(p)
]

= π(p) ∀p ∈ suppπ
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therefore

lim
n→∞

µb(Bn) = 0 where Bn = Ωb \
( ⋃

p∈supp π

[f∗∗−1
n (Oδ(p)) ∩ f∗−1(p)]

)
.

Let ε ≤ δ. Since Oε(p) is disjoint from Oδ(q) for distinct p, q ∈ suppπ, we have:

f∗∗−1
n (Oε(p)) =

[
f∗∗−1

n (Oε(p)) ∩ f∗−1(p)
]
∪

[
f∗∗−1

n (Oε(p)) ∩ Bn

]
therefore for any p ∈ suppπ,

lim
n→∞

µb

[
f∗∗−1

n (Oε(p)) ∩ f∗−1(p)
]

= lim
n→∞

µb

[
f∗∗−1

n (Oε(p))
]

= π(p)

establishing the p-convergence of πn to π.

With this alternative definition of convergence, it is straightforward to verify that

if � has the representation in Theorem 1, then it satisfies Axioms 1 − 5. For the other

direction, assume that � satisfies Axioms 1 − 5. Then � |Fa−the restriction of � to

A−measurable acts, satisfies the Machina-Schmeidler axioms. Therefore by Theorem 2 of

Machina and Schmeidler (1992), there is a nonatomic probability measure µa on (Ωa,A)

and a mixture continuous and monotonic (with respect to first order stochastic dominance)

function w̃ : P → IR such that w̃(pf ) ≥ w̃(pg) if and only if f � g for all f ∈ Fa. Hence,

w̃ represents �|Fa , the restriction of � to Fa.

Lemma 1: If B1 is nonnull, then:


 x1 A1

...
...

xn An


�




y1 A1
...

...
yn An


⇔




x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗


�




y1 z12 . . . z1m A1
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗




Proof: Let B1 be nonnull. We prove the lemma in two steps. In Step 1, we show that

strict preference � on the left hand side implies strict preference � on the right hand side.

In the second step we show that indifference ∼ on the left hand side implies indifference

∼ on the right hand side.
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Step 1: First assume that


 x1 A1

...
...

xn An


 �




y1 A1
...

...
yn An


 .

By Axiom 2 (Nondegeneracy), there exist x, y ∈ Z such that x � y. By Axiom 3

(Monotonicity),




x z12 . . . z1m A1
...

...
. . .

...
...

x zn2 . . . znm An

B1 B2 . . . Bm ∗


 �




y z12 . . . z1m A1
...

...
. . .

...
...

y zn2 . . . znm An

B1 B2 . . . Bm ∗


 .

Applying to the partition {B1, ∅, B2, . . . , Bm}, Axiom 5b (a|b−Strong Comparative Prob-

ability) yields




x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗


 �




y1 z12 . . . z1m A1
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗


 .

Step 2: Assume that 
 x1 A1

...
...

xn An


 ∼




y1 A1
...

...
yn An


 .

Suppose that the acts




x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗


 and




y1 z12 . . . z1m A1
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗




are not indifferent. Without loss of generality, assume




x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗


 �




y1 z12 . . . z1m A1
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗


 (∗)

27



Let z∗ be a �-worst and z∗ a �-best outcome in {xi : i = 1, . . . , n} ∪ {yi : i =

1, . . . , n} ∪ {zij : i = 1, . . . , n, j = 2, . . . , m}. Note that it can not be that z∗ ∼ z∗,

otherwise by iterated application of Axiom 3 (Monotonicity) we would have indifference

in (∗). Therefore,

z∗ �


 x1 A1

...
...

xn An


 ∼




y1 A1
...

...
yn An


 or


 x1 A1

...
...

xn An


 ∼




y1 A1
...

...
yn An


 � z∗.

Suppose that z∗ is as in above (The other case can be covered by a symmetric argu-

ment). By the representation obtained for �|Fa , there exists i∗ ∈ {1, . . . , n}, such that

z∗ � yi∗ and µa(Ai∗) > 0. Without loss of generality let i∗ = 1.

By Axiom 4a (Continuity), there is a partition C1, . . . , Ck of Ωa such that for any

i = 1, . . . , k:




x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗


 �




z∗ z∗ . . . z∗ Ci

y1 z12 . . . z1m A1 \ Ci

...
...

. . .
...

...
yn zn2 . . . znm An \ Ci

B1 B2 . . . Bm ∗


 .

Since µa(A1) > 0, there is i ∈ {1, . . . , k} such that µa(Ci ∩ A1) > 0. By iterated

application of Axiom 3 (Monotonicity) we have




z∗ z∗ . . . z∗ Ci

y1 z12 . . . z1m A1 \ Ci

...
...

. . .
...

...
yn zn2 . . . znm An \ Ci

B1 B2 . . . Bm ∗


 �




z∗ z12 . . . z1m A1 ∩ Ci

y1 z12 . . . z1m A1 \ Ci

y2 z22 . . . z2m A2
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗




.

By transitivity




x1 z12 . . . z1m A1 ∩ Ci

x1 z12 . . . z1m A1 \ Ci

x2 z22 . . . z2m A2
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗




�




z∗ z12 . . . z1m A1 ∩ Ci

y1 z12 . . . z1m A1 \ Ci

y2 z22 . . . z2m A2
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗




(∗∗)
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Since µa(Ci ∩ A1) > 0 and z∗ � y1, by the representation for �|Fa we have




z∗ A1 ∩ Ci

y1 A1 \ Ci

y2 A2
...

...
yn An


 �




y1 A1 ∩ Ci

y1 A1 \ Ci

y2 A2
...

...
yn An


 ∼




x1 A1 ∩ Ci

x1 A1 \ Ci

x2 A2
...

...
xn An


 .

But then Step 1 implies that




z∗ z12 . . . z1m A1 ∩ Ci

y1 z12 . . . z1m A1 \ Ci

y2 z22 . . . z2m A2
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗




�




x1 z12 . . . z1m A1 ∩ Ci

x1 z12 . . . z1m A1 \ Ci

x2 z22 . . . z2m A2
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗




a contradiction to (∗∗).

Lemma 1 and the representation obtained for �|Fa permit us associate with � a

preference �∗ on Anscombe-Aumann acts F∗ as follows. For any f ∈ F let f∗ �∗ g∗ ⇔
f � g. We next note that �∗ is well defined as a preference on F∗.

Lemma 2:
(i) For any h ∈ F∗ there is f ∈ F such that h = f∗.

(ii) If f∗ = g∗ then f ∼ g.

Proof: Part (i) follows from nonatomicity of µa, part (ii) follows from iterated application

of Lemma 1.

By construction δp �∗ δq ⇔ w̃(p) > w̃(q). The preference relation �∗ inherits the

Nondegeneracy axiom from �. Note that a set B ∈ B is null with respect to �∗ if

and only if it is null with respect to �. Therefore, Lemma 1 implies that �∗ satisfies

Statewise Monotonicity. By Axiom 3 (Monotonicity) and Axiom 4 (Continuity), � satisfies

continuity on Ωb. Finally, by Axiom 5b (a|b−Strong Comparative Probability), �∗ also

satisfies Strong Comparative Probability. Therefore, we can apply Theorem 2 of Machina

and Schmeidler (1992) once again, in order to obtain a nonatomic probability measure µb
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on (Ωb,B) and a mixture continuous and monotonic with respect to first order stochastic

dominance function W : ∆ (P ) → IR such that W (π∗
f∗) ≥ W (π∗

g∗) iff f∗ � g∗ for all f, g ∈ F
where π∗

h∗ ∈ ∆(P ) is defined by π∗
h∗(p) = µb(h∗−1(p))). Since πf = π∗

f∗ for any f ∈ F , we

have that

f � g ⇔ f∗ �∗ g∗ ⇔ W (π∗
f∗) > W (π∗

g∗) ⇔ W (πf ) > W (πg) ∀f, g ∈ F

establishing that W represents �. Define w: P → IR by w(p) = W (δp). Then

w(p) > w(q) ⇔ W (δp) > W (δq) ⇔ δp �∗ δq ⇔ w̃(p) > w̃(q)

showing that w and w̃ are ordinally equivalent. In particular, w is also monotonic with

respect to first order stochastic dominance. We conclude the proof by showing that W is

weakly continuous.

Lemma 3: W is weakly continuous.

Proof: Assume that πn is a W -bounded sequence that weakly converges to π. Then there

exist z∗, z∗ ∈ Z such that for any x ∈
⋃∞

n=1

⋃
p∈supp πn

supp p, we have W (z∗) ≥ W (x) ≥
W (z∗) implying z∗ � x � z∗. Since weak convergence implies p-convergence, there exist

acts f, ft ∈ F with πf = π and πft = πt, such that for any ε > 0:

lim
t→∞

µb({s ∈ Ωb : d∞(f∗
t (s), f∗(s)) ≥ ε}) = 0 (∗)

We only consider the case where W (π) > W (π′), the argument for the other case is

symmetric. By nonatomicity of µ there is f ′ ∈ F such that π′ = πf ′ , then f � f ′.

Suppose without loss of generality that we can express f as:




x11 . . . x1m A1
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗




where (i) µa(A1) > 0; (ii) x1j � xij , for i = 1, . . . , n and j = 1, . . . , m. (If f does not have

the above form, using nonatomicity of µa we can find f̄ ∈ F of the desired form such that

f̄∗ = f∗.)
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Let x be a �-worst outcome in {z∗} ∪
⋃

p∈supp π supp p. Now since f � f ′, by Axiom

4a (Continuity) there is a partition C1, . . . , Ck of Ωa such that for any i = 1, . . . , k:

gi =




x . . . x Ci

x11 . . . x1m A1 \ Ci

...
. . .

...
...

xn1 . . . xnm An \ Ci

B1 . . . Bm ∗


 � f ′.

Since µa(A1) > 0, there is i ∈ {1, . . . , k} such that µa(Ci ∩A1) > 0. Let C = Ci ∩A1, then

g :=




x . . . x C
x11 . . . x1m A1 \ C
x21 . . . x2m A2
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗




� gi � f ′,

where again the initial weak preference above follows from iterated application of Axiom

3 (Monotonicity).

Suppose without loss of generality that: (iii) µb(B1) > 0 and

(iv)




x C
x11 A1 \ C
...

...
xn1 An


 �




x C
x1j A1 \ C
...

...
xnj An


 j = 1, . . . , m.

(If g does not satisfy (iii) and (iv), we can reorder the columns by adjoining the null Bj ’s

to a nonnull one and construct ḡ satisfying (iii) and (iv) such that the equality ḡ∗ = g∗

holds µb-almost surely.)

Since g � f ′, by Axiom 4b (Continuity) there is a partition D1, . . . , Dl of Ωb such that

for any j = 1, . . . , l:

hj =




x x . . . x C
x x11 . . . x1m A1 \ C
...

...
. . .

...
...

x xn1 . . . xnm An

Dj B1 \ Dj . . . Bm \ Dj ∗


 � f ′.
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Since µb(B1) > 0, there is j ∈ {1, . . . , l} such that µb(Dj ∩ B1) > 0. Let D = Dj ∩ B1,

then

h :=




x x x . . . x C
x x11 x12 . . . x1m A1 \ C
x x21 x22 . . . x2m A2
...

...
...

. . .
...

...
x xn1 xn2 . . . xnm An

D B1 \ D B2 . . . Bm ∗




� hj � f ′,

where again the initial weak preference above follows from iterated application of Axiom

3 (Monotonicity).

Let ε = min{µa(C)/n, µb(D)/m} > 0. From (∗), choose N large enough such that

µb({s ∈ Ωb : d∞(f∗
r (s), f∗(s)) ≥ ε}) < ε for any integer r ≥ N. (∗∗)

Fix any integer r ≥ N . By nonatomicity of µa and (∗∗), there is f̄r ∈ F and events

E1, . . . , En ∈ A; F1, . . . , Fm ∈ B such that f̄∗
r = f∗

r , Ei ⊂ Ai, Fj ⊂ Bj , µa(Ei) < ε,

µb(Fj) < ε and f̄r gives xij on Ai \ Ei × Bj \ Fj for i = 1, . . . , n and j = 1, . . . , m.

Then, by (iv), our choice of ε and iterated application of monotonicity with respect

to stochastic dominance of W , we obtain:

hr =




x x . . . x x C
x11 x . . . x1m x A1 \ C
x21 x . . . x2m x A2
...

...
. . .

...
...

...
xn1 x . . . xnm x An

B1 \ F1 F1 . . . Bm \ Fm Fm ∗




� h.

Similarly, by (ii), our choice of ε and iterated application of monotonicity with respect to

stochastic dominance of w and W , we obtain:

gr =




x11 x . . . x1m x A1 \ E1

x x . . . x x E1
...

...
. . .

...
...

...
xn1 x . . . xnm x An \ En

x x . . . x x En

B1 \ F1 F1 . . . Bm \ Fm Fm ∗




� hr.

32



Finally, by iterated application of Axiom 3 (Monotonicity) and the construction of f̄r, we

have that f̄r � gr. Therefore fr ∼ f̄r � gr � hr � h � f ′, as desired.

5.2 Proof of Theorem 2

Part (iii) ⇒ (ii) follows from πf = πg ⇒ f ∼ g for SPS preferences. To see the

implication (i) ⇒ (iv), it is enough to note that f ∈ Fa, g ∈ F , and h ∈ Fb induce the

same lottery (i.e., pf = pg = ph) then, there exists π1, . . . , πm and k such that πj+1 is a

mean preserving spread of πj for all j = 1, . . . , m− 1, π1 = πf , πk = πg and πm = πh. We

conclude the proof of the theorem by establishing the equivalence of (i) and (ii).

(i) ⇒ (ii): Assume that � is second order risk averse. Let f, g, h ∈ F be such that

h∗ = αf∗ + (1 − α)g∗ and πf = πg. Then

πh =
∑

(p,q)∈P×P

µb

(
f∗−1(p) ∩ g∗−1(q)

)
δαp+(1−α)q.

Let

π =
∑

(p,q)∈P×P

µb

(
f∗−1(p) ∩ g∗−1(q)

)
(αδp + (1 − α)δq).

Therefore there exists π1, . . . , πm such that π1 = πh, πm = π and πj+1 is a mean preserving

spread of πj for j = 1, . . . , m− 1. Hence, (i) implies W (πh) ≥ W (π). We can rewrite π as

π =
∑
p∈P


α

∑
q∈P

µb

(
f∗−1(p) ∩ g∗−1(q)

)
+ (1 − α)

∑
q∈P

µb

(
f∗−1(q) ∩ g∗−1(p)

) δp

=
∑
p∈P

[
αµb

(
f∗−1(p)

)
+ (1 − α)µb

(
g∗−1(p)

)]
δp

=
∑
p∈P

[απf (p) + (1 − α)πg(p)] δp = πf = πg.

Since πf = π and W represents �, we have h � f .

(ii) ⇒ (i): Assume that the SRS preference � satisfies condition (ii). It is enough to show

that f � g whenever πg is a mean preserving spread of πf . Let πg be a mean preserving

spread of πf , then there are α, β ∈ [0, 1], p, q ∈ P and π′ ∈ ∆(P ) such that

πg = α(βδp + (1 − β)δq) + (1 − α)π′ and

πf = αδβp+(1−β)q + (1 − α)π′
.
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Let B ⊂ Ωb be such that µb(B) = α and f∗ = βp + (1 − β)q on B. Without loss of

generality, let f∗ = g∗ outside of B.

Next, we define a sequence of partitions Πk = {Bk
0 , Bk

1 , . . . , Bk
2k−1} of B such that

Πk+1 refines Πk for k ≥ 1. Let B1
0 = {s ∈ B : g∗(s) = p} and B1

1 = {s ∈ B : g∗(s) = q}.
Having defined the partition Πk for some k ≥ 1, inductively define Πk+1 as follows: For

any l ∈ {0, . . . , 2k − 1} by nonatomicity of µb, partition Bk
l into two subsets Bk+1

2l and

Bk+1
2l+1 such that µb(Bk+1

2l ) = βµb(Bk
l ) and µb(Bk+1

2l+1) = (1 − β)µb(Bk
l ).

Note that µb(Bk
l ) = αβi(1 − β)k−i where i is the number of 0’s in the k-digit binary

expansion of l. (For example, if k = 5 and l = 9 then the 5-digit binary expansion of 9 is

01001 so i = 3.) By nonatomicity of µa, we can find a sequence of acts gk ∈ F such that:

g∗k(s) =




p s ∈ Bk
l and l is even

q s ∈ Bk
l and l is odd

g∗(s) s /∈ B

By definition g∗1 = g∗, implying that g1 ∼ g. By nonatomicity of µb, there exist acts

hn
m for n = 0, 1, 2, . . . and m = 1, 2, . . . such that:

hn∗
m =

m2n∑
k=(m−1)2n+1

1
2n

g∗k

i.e., hn∗
m is the equal weight probability mixture (average) of the mth 2n consecutive

Anscombe-Aumann acts in the sequence g∗k.

Note that on B2n

l , hn∗
1 gives i

2n p+ 2n−i
2n q and on Bm2n

l , hn∗
m gives i

2n p+ 2n−i
2n q where i

is the number of 0’s in the last 2n digits in the m2n-digit binary expansion of l. Therefore,

we can write πhn
1

as:

πhn
1

= α
2n∑
i=0

(
2n

i

)
βi(1 − β)2

n−iδ i
2n p+ 2n−i

2n q + (1 − α)π′

It is easy to verify that πhn
m

= πhn
1

and therefore hn
m ∼ hn

1 for all m ≥ 1. Since

hn+1∗
m = 1

2hn∗
2m−1 + 1

2hn∗
2m and πhn

2m−1
= πhn

2m
, by condition (ii), hn+1

m � hn
2m. and therefore

hn
1 � h0

1, by transitivity for any n ≥ 0. Since h0∗
1 = g∗1 we have h0

1 ∼ g1, thus hn
1 � h0

1 ∼
g1 ∼ g implying that hn

1 � g for any n ≥ 0.
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We next show that πhn
1

weakly converges to πf . Let ε > 0 be given. Let ε′ > 0 be

such that d∞(β′p + (1 − β′)q, βp + (1 − β)q) < ε for any β′ ∈ (β − ε′, β + ε′). By the

Weak Law of Large Numbers, the average of i.i.d. Bernouilli random variables with mean

β converges in probability to β. Therefore, there is N such that for any n ≥ N :

2n∑
i=0

(
2n

i

)
βi(1 − β)2

n−i1{| i
2n −β|≥ε′} < ε.

Then for any n ≥ N ,

µb ({s ∈ Ωb : d∞ (h∗n
1 (s), f∗(s)) ≥ ε})

=α

2n∑
i=0

(
2n

i

)
βi(1 − β)2

n−i1{d∞( i
2n p+ 2n−i

2n q,βp+(1−β)q)≥ε}

≤
2n∑
i=0

(
2n

i

)
βi(1 − β)2

n−i1{| i
2n −β|≥ε′} < ε.

Thus πhn
1

weakly converges to πf . Since
∞⋃

n=0

suppZ πhn
1

= suppZ πf is finite and W (πhn
1
) ≥

W (πg), weak continuity of W implies that W (πf ) ≥ W (πg). Therefore � is second order

risk averse.

Below, we provide counter-examples to (i) implies (iii) and (iv) implies (i). For both

counter-examples assume that Z = {0, 1}. Hence, P can be identified with the unit interval

where p ∈ P denotes the probability of getting 1. Also, each π can be identified with a

simple probability distribution on the unit interval. Let µa be any nonatomic probability

measure on the set of all subsets of some Ωa. Similarly, let µb be any nonatomic probability

measure on the set of all subsets of some Ωb.

We first define a weakly continuous utility function W on ∆(P ). Since each f ∈ F
can be identified with a unique πf , this utility function induces a preference �W on F .

Define the function m : ∆(P ) → [0, 1] as follows:

m(π) =
∑

x∈[0,1]

xπ(x)

Hence, m(π) is the mean of π. For any lottery π define ηπ, the absolute error of π as

follows:

ηπ(z) =
∑

x:|x−m(π)|=z

π(x)
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Hence, m(ηπ) is the mean absolute error of π. Let ψ(α) = log(1+α)
3 . Define

W (π) = m(π) − ψ(m(ηπ))

The weak continuity of W is easy to verify. It is straightforward to check that for any

y > x, an increase in π(y) at the expense of π(x) cannot increase m(ηπ) at a rate greater

than 2(y − x) and hence ψ(m(ηπ)) cannot increase at a rate greater than 2(y − x)/3. On

the other hand, m(π) increases at a rate y − x. The overall effect is an increase in W (π)

establishing that W satisfies stochastic dominance. Since W (δx) = x we conclude that w

satisfies stochastic dominance as well. We claim that �W satisfies (i) but not (iii). To

verify (i), note that W is risk averse since mean-preserving spreads leave m(π) unchanged

and (weakly) decrease m(ηπ).

To see that �W does not satisfy (iii), let π = .5δ1 + .5δ0 and set w = W (π) < .5.

Choose f, g such that πf = δw and πg = π. Let h be such that h∗ = .5f∗ + .5g∗, then

πh = .5δ.5w+.5 + .5δ.5w and m(ηπh
) = .5m(ηπ) + .5m(ηδw

) = .5m(ηπ). Hence, the strict

concavity of ψ ensures that W (πh) < .5W (π) + .5W (δw) = w proving that �W does not

satisfy (iii).

For the second counter-example, let V be the nonexpected utility functional on ∆(P )

defined as follows:

V (π) =
αm(π1) + 2(1 − α)m(π2)

2 − α
(∗)

where π = απ1 + (1 − α)π2, π1(x) > 0 implies x ≥ V (π) and π2(x) > 0 implies x ≤ V (π).

The preference represented by this V belongs to the class introduced in Gul (1991). In

particular, this preference is a disappointment averse preference with linear u and β = 1.

Gul (1991) establishes that the function V is well-defined; that is a real number V (π)

satisfying (∗) always exists and that this number is the same for any α, π1, π2 satisfying

the properties above. Define W : ∆(P ) → IR as follows:

W (π) = m(π) − 1
4
V (ηπ)

Weak continuity of W follows from continuity of disappointment averse preferences in Gul

(1991). Again, it can be verified that for y > x a small increase in π(y) at the expense
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of π(x) increases V (ηπ) at a rate no greater than 3(y − x) and hence V (ηπ)/4 increases

at a rate no greater than 3(y − x)/4, while m(π) increases at a rate y − x, proving that

W and the function w defined by w(p) := W (δp) both satisfy stochastic dominance. We

claim that �W satisfies (iv) but not (i).

Let f ∈ Fa, g ∈ F such that pf = pg. Then, W (πf ) = pf = pg ≥ pg − V (ηπg )/4 =

W (πg) and hence f � g.

Next, take h ∈ Fb such that ph = pg. Then ηπg can be expressed as
∑N

j=1 αjηj where

each ηj has the form

ηj =
wj

zj + wj
δzj +

zj

zj + wj
δwj

for some αj , zj , wj such that 1 ≥ zj ≥ wj ≥ 0, αj ≥ 0, for j = 1, . . . , N and
∑N

j=1 αj = 1.

Also,

ηπh
=

w∗

z∗ + w∗ δz∗ +
z∗

z∗ + w∗ δw∗

for some z∗, w∗ such that 1 ≥ z∗ ≥ zj and z∗ ≥ w∗ ≥ wj for all zj , wj . Gul (1991) shows

that the nonexpected utility functional V satisfies betweenness; that is, V (ν) ≥ V (ν′)

implies

V (ν) ≥ V (αν + (1 − α)ν′) ≥ V (ν′)

Thus, to prove that W (πg) ≥ W (πh) it is enough to establish that

V (
w∗

z∗ + w∗ δz∗ +
z∗

z∗ + w∗ δw∗) ≥ V (
w

z + w
δz +

z

z + w
δw)

whenever z∗ ≥ z, w∗ ≥ w, z∗ ≥ w∗ and z ≥ w. This is verified easily by noting that

V ( z
z+w δw + w

z+w δz) = 3zw
2z+w is increasing both in z and in w.

To show that W does not satisfy (i), we construct π and π′ such that π′ is a mean-

preserving spread of π and V (ηπ) > V (ηπ′). For example π = .4δ5/6 + .6δ0 and π′ =

.2δ1 + .2δ2/3 + .6δ0 and hence V (ηπ) = 3/8, V (ηπ′) = 10/27 satisfy the desired inequality.

5.3 Proof of Theorem 3

Let W be the representation of � guaranteed by Theorem 1. Let µ = µa × µb be

the associated probability measure. Define �∗ on F∗ as follows f∗ �∗ g∗ if and only if

W (πf ) � W (πg). Since µb and µa are nonatomic, �∗ is well-defined. It follows from Axiom
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6b (The Sure Thing Principle) and Savage’s Theorem that �∗ has an expected utility

representation W ∗ such that W ∗(f∗) =
∑

p U∗(p)µ(f∗−1(p)). By Axiom 6a (The Sure

Thing Principle), the preference on Fa defined by f �′ g if and only if U∗(pf ) ≥ U∗(pg)

satisfies all of the Savage axioms and therefore there exists an expected utility function

U : P → IR such that if U(pf ) ≥ U(pg) if and only if U∗(pf ) ≥ U∗(pg). Since U∗ and U

represent the same preference � there exist a strictly increasing function v : U(P ) → IR

such that U∗ = v ◦ U . Let u(z) = δz for all z ∈ Z. Define W ′ by

W ′(π) =
∑
p∈P

v

(∑
x∈Z

u(x)p(x)

)
π(p)

Note that W ∗(f∗) = W ′(πf ) for all f and f � g iff f∗ �∗ g∗ iff W ∗(f∗) ≥ W ∗(g∗) iff

W (πf ) ≥ W (πg). Since U is an expected utility function, U(P ) is an interval. Hence, if

v is continuous it can easily be extended to a continuous, strictly increasing function on

IR. Therefore, to conclude the proof, we need only to show that v is continuous. Since,

v is strictly increasing, there are only two possible types of discontinuities it can have:

There exists t = U(p) and ε > 0 such that either v(t) ≥ v(t′) + ε for all t′ < t, t′ ∈ U(P )

or v(t′) ≥ v(t) + ε for all t′ > t, t′ ∈ U(P ). Suppose, the former holds for some t (the

argument for the other case is symmetric and omitted).

Choose t′ < t such that v(t′) > v− − ε where v− is the left limit of v at t. Let

p′ ∈ P , f ∈ Fa, g ∈ F and B ∈ B be such that U(p′) = t′, µb(B) = .5, f∗(ωb) = p

for all ωb ∈ Ωb, g∗(ωb) = p for all ωb ∈ B and g∗(ωb) = p′ for all ωb ∈ Ωb\B. Then

W ′(πf ) = v(t) > .5v(t) + .5v(t′) = W ′(πg) > v− and hence f � g. Let x minimize U(δz)

among z in the support of p′. There exists A ∈ A with µa(A) > 0 such that f gives a prize

strictly better than x on A. Then, for any A′ ⊂ A such that µa(A′) > 0 f̂(ωa, ωb) = x

for all ωa ∈ A′ and f̂(ωa, ωb) = f(ωa, ωb) otherwise implies W ′(πf̂ ) ≤ v−. So, g � f̂ ,

contradicting Axiom 4a (Continuity).

5.4 Proof of Theorem 4

Two acts f∗, g∗ ∈ F∗ such that

f∗ =
(

p1 p2 . . . pm

B1 B2 . . . Bm

)
, g∗ =

(
q1 q2 . . . qm

B1 B2 . . . Bm

)
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are comonotonic if pi �∗ pj implies qi �∗ qj for all i, j. Three acts are comonotonic if each

pair is comonotonic.

A preference relation �∗ on F∗ satisfies vNM continuity if f∗ �∗ g∗ �∗ h∗ implies

that there exist α, β ∈ (0, 1) such that αf∗ + (1 − α)h∗ �∗ g∗ �∗ βf∗ + (1 − β)h∗. The

preference �∗ satisfies comonotonic independence, if f∗, g∗, h∗ are comonotonic, f∗ �∗ g∗

and α ∈ (0, 1) implies αf∗ + (1 − α)h∗ �∗ αg∗ + (1 − α)h∗.

By the theorem on page 578 of Schmeidler (1989) if a preference relation �∗ on F∗

satisfies vNM continuity, weak stochastic dominance (i.e., f∗(ωb) �∗ g∗(ωb) for all ωb ∈ Ωb

implies f∗ �∗ g∗), weak nondegeneracy (i.e., there exists f∗, g∗ such that f∗ �∗ g∗) and

comonotonic independence then it is has a Choquet expected utility representation.

By Theorem 1, there exists a preference �∗ on F∗ such that f � g iff f∗ �∗ g∗ and

a weakly continuous, stochastic monotonicity satisfying W such that W (πf ) ≥ W (πg) iff

f∗ �∗ g∗ for all f, g ∈ F . Then, Axiom 2 (Nondegeneracy) implies that �∗ satisfies weak

nondegeneracy and the fact that W is satisfies stochastic dominance implies �∗ satisfies

weak monotonicity. Also, it follows from the weak continuity of W that �∗ satisfies vNM

continuity. We show that �∗ is a Choquet expected utility by proving that �∗ satisfies

vNM comonotonic independence.

Observe that since Axiom 6c (Comonotonic Sure Thing Principle) implies Savage’s

sure thing principle on Fa. Then, by Savage’s theorem, there exists some expected utility

function U such that f � g iff U(pf ) ≥ U(pg) for all f, g ∈ Fa.

Consider comonotonic f∗, g∗ such that

f∗ =
(

p1 p2 . . . pm

B1 B2 . . . Bm

)
, g∗ =

(
q1 q2 . . . qm

B1 B2 . . . Bm

)

Then, for any natural number n construct f̂ , ĝ such that

f̂ =




p1 . . . pm A1
...

. . .
...

...
p1 . . . pm An

B1 . . . Bm ∗


 ĝ =




q1 . . . qm A1
...

. . .
...

...
q1 . . . qm An

B1 . . . Bm ∗




That is, f̂ conditional on Ai × Bj has distribution pj and ĝ conditional on Ai × Bj has

distribution qj for all i, j.
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For any M ⊂ {1, . . . , m}, let f̂M denote the act obtained from f by replacing each

row j ∈ M with the corresponding row of ĝ. Hence, f̂∅ = f̂ and f̂{1,...,m} = ĝ etc. Note

that U(pi) ≥ U(pj) and U(qi) ≥ U(qj) implies U(αpi + (1 − α)qi) ≥ U(αpj + (1 − α)qj).

Hence, f̂M and f̂M ′
are comonotonic for all M, M ′.

Then, by Axiom 6c (Comonotonic Sure Thing Principle), g∗ � 1
nf∗ + n−1

n g∗ implies

1
n

f∗ +
n − 1

n
g∗ ∼




q1 . . . qm A1

p1 . . . pm A2

q1 . . . qm A3
...

. . .
...

...
q1 . . . qm An

B1 . . . Bm ∗




�




p1 . . . pm A1

p1 . . . pm A2

q1 . . . qm A3
...

. . .
...

...
q1 . . . qm An

B1 . . . Bm ∗




∼ 2
n

f∗ +
n − 2

n
g∗

Repeating the argument with other rows and using transitivity implies g∗ � f∗. It follows

that f∗ � g∗ implies f∗ � αf∗ + (1 − α)g∗ � g∗ for every rational α ∈ (0, 1). It then

follows from the weak continuity of W that the same holds for every α ∈ (0, 1).

Suppose f∗ � g∗ and

h∗ =
(

r1 r2 . . . rm

B1 B2 . . . Bm

)
is also comonotonic with f∗ and g∗. For any α ∈ (0, 1) choose A ∈ A such that µa(A) = α

and note that by the argument above

f∗ ∼


 p1 . . . pm A

p1 . . . pm Ωa\A
B1 . . . Bm ∗


 �


 q1 . . . qm A

p1 . . . pm Ωa\A
B1 . . . Bm ∗


 ∼ αf∗ + (1 − α)g∗

Applying Axiom 6c (Comonotonic Sure Thing Principle) again yields

αf∗+(1−α)h∗∼


 p1 . . . pm A

r1 . . . rm Ωa\A
B1 . . . Bm ∗


�


 q1 . . . qm A

r1 . . . rm Ωa\A
B1 . . . Bm ∗


∼αg∗+(1 − α)h∗

Proving comonotonic independence.

Therefore �∗ is a Choquet expected utility preference, let W ∗ be the Choquet expected

utility that represents �∗. Without loss of generality let W ∗(p) = U(p) for any constant

act p ∈ F∗.

By Theorem 1, �∗ is probabilistically sophisticated. It follows that the associated

capacity ν can be written as γ ◦ µb for strictly increasing γ : [0, 1] → [0, 1] such that

40



γ(0) = 0, γ(1) = 1 and probability µb. To conclude the proof we show that γ is continuous.

Since γ is strictly increasing, there are only two possible types of discontinuities it can

have: Either γ(t) ≥ γ(t′) + ε for all t′ < t or γ(t′) ≥ γ(t) + ε for all t′ > t. Suppose, the

former holds for some t (the argument for the other case is symmetric and omitted).

Choose B such that µb(B) = t. Such a B exists by Theorem 1. Choose p, q such that

U(p) > U(q) and α ∈ (γ(t) − ε, γ(t)). Such p, q exits by nondegeneracy. Define f, g ∈ F ,

such that f∗(ωb) = p for all ωb ∈ B, f∗(ωb) = q for all ωb ∈ Ωb\B and g∗(ωb) = αp+(1−α)q

for all ωb ∈ Ωb. Note that W ∗(f∗) = γ(t)U(p) + (1 − γ(t))U(q) > αU(p) + (1 − α)U(q) =

W ∗(g∗) and hence f � g.

Let x minimize U(δz) among z in the support of q. Then, for any B′ ⊂ B such that

µb(B′) > 0 f̂(ωa, ωb) = x for all ωb ∈ B′ and f̂(ωa, ωb) = f(ωa, ωb) otherwise implies

W ∗(f̂∗) ≤ (γ(t)−ε)U(p)+(1−γ(t)+ε)U(q) < αU(p)+(1−α)U(q) = W ∗(g∗). So, g � f̂ ,

contradicting Axiom 4a (Continuity).

5.5 Proof of Theorem 5

In view of Theorem 5, we need only show that (iv) ⇒ (iii). Let �= (v, u, µ) be a

SPS-EU preference that satisfies (iv). Let t, t′ be in the convex hull of u(Z) and β ∈ [0, 1].

Then, there exist lotteries p, q ∈ P such that u(p) = t and u(q) = t′. By nonatomicity of

µ, there are acts f, g, h ∈ Fa, and B ∈ B such that pf = p, pg = p′, ph = βp + (1 − β)p′

and µb(B) = β. Define h′ ∈ F as follows: h′(ωa, ωb) = f(ωa, ωb) for all ωb ∈ B and

h′(ωa, ωb) = g(ωa, ωb) for all ωb �∈ B. Suppose (v, u, µ) is a representation of �. Then,

W (h) = v[βu(p)+(1−β)u(p′)] = v(βt+(1−β)t′) and W (h′) = βv(u(p)+(1−β)v(u(p′)) =

βv(t) + (1 − β)v(t′). By condition (iv), h � h′ and hence v is concave. Suppose h∗ =

αf∗ + (1 − α)g∗ for some f, g, h ∈ F such that f ∼ g. Then, it follows from Theorem 3

that W (h) =
∑k

i=1 v[αu(pi) + (1 − α)u(qi)]βi where W (f) =
∑k

i=1 v[u(pi)]βi = W (g) =∑k
i=1 v[u(qi)]βi for some p1, . . . , pk, q1 . . . , qk and βi > 0. It follows from the concavity of v

that W viewed as a function of (u(p1), . . . , u(pk)) [and hence (u(q1), . . . , u(qk))] is concave.

Hence, W (h) ≥ W (f) as desired.

Next, assume that � is a SPS-CEU preference. Let (γ, u, µ) be a representation of

�. Without loss of generality, assume u(z∗) = 1, u(z∗) = 0 for some z∗, z∗ ∈ Z. Let

α ∈ (0, 1) and t, t′ ∈ [0, 1]. Assume without loss of generality that t ≤ t′. Choose A ∈ A
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and B, B′ ∈ B such that µa(A) = α, B ∩ B′ = ∅, µb(B) = t, µb(B′) = t′ − t. Also, choose

B′′ ∈ B such that µb(B′′) = t+α(t′− t). Let f(ωa, ωb) = z∗ if (ωb ∈ B or ωa ∈ A, ωb ∈ B′)

and f(ωa, ωb) = z∗ otherwise. Also, let g(ωa, ωb) = z∗ if ωb ∈ B′′ and g(ωa, ωb) = z∗

otherwise. Then, W (f) = (1 − α)γ(t) + αγ(t′) while W (g) = γ(αt′ + (1 − α)t). Since

g ∈ Fb and pg = pf , (iv) establishes that γ is convex which implies that the capacity

ν = γ ◦ µb is convex. That is:

ν(B ∪ B′) + ν(B ∩ B′) ≥ ν(B) + ν(B′)

Then, (iii) follows from the characterization of uncertainty aversion (the proposition on

page 582) in Schmeidler (1989).
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