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ABSTRACT

The aim of the paper is to fulfill the gap for testing hypotheses on parameters of the
log-normal stochastic volatility model, more precisely, to propose finite sample exact
tests in the sense that the tests have correct levels in small samples. To do this, we
examine method-of-moments-based tests and we provide explicit expressions for all
the moments and the estimators which simplifies highly the test procedures. We then
state the asymptotic distribution of the estimator as well as that of the proposed
test statistics for testing the null hypothesis of no persistence in the volatility. We
then compare in a study of level and power the standard asymptotic techniques
to the technique of Monte Carlo tests which is valid in finite samples and allow
for test statistics whose null distribution may depend on nuisance parameters. In
particular maximized Monte Carlo tests (MMC) introduced by Dufour (1995) have
the exact level in finite samples when the p-value function is maximized over the entire
set of nuisance parameters. In contrast to MMC tests which are highly computer
intensive, simplified (asymptotically justified) approximate versions of Monte Carlo
tests provide a halfway solution which achieves to control the level of the tests while
alleviating the use of computers.
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1. Introduction
Evaluating the likelihood function of ARCH models is relatively easy compared to
Stochastic Volatility models (SV) for which it is impossible to get an explicit closed-
form expression for the likelihood function [see Shephard (1996), Mahieu and Schot-
man (1998)]. This is a generic feature common to almost all nonlinear latent variable
models due to the curse of the high dimensionality of the integral appearing in the
likelihood function of the stochastic volatility model. This is the reason why econome-
tricians were reluctant to use this kind of models in their applications for a long time
since in this setting, maximum likelihood methods are computationnaly intensive.
But recently progress has been made regarding the estimation of nonlinear latent vari-
able models in general and stochastic volatility models in particular. There mainly
exists three types of methods, namely, the quasi-exact methods, simulation-based-
estimation methods and the bayesian methods. Thus, we can mention the Quasi Max-
imum Likelihood (QML) approach suggested by Nelson (1988) and Harvey, Ruiz and
Shephard (1994), Ruiz (1994), and a Generalized Method of Moments(GMM) proce-
dure proposed by Melino and Turnbull (1990). On the other hand, increased com-
puter power has made simulation-based estimation methods more attractive among
which we can mention the Simulated Method of Moments (SMM) proposed by Duffie
and Singleton (1993), the indirect inference approach of Gouriéroux, Monfort and
Renault (1993) and the moment matching methods of Gallant and Tauchen (1994).
But computer intensive Markov Chain Monte Carlo methods applied to SV models by
Jacquier, Polson and Rossi (1994) and Kim and Shephard (1994), Kim, Shephard and
Chib (1998), Wong(2002a,2002b) and simulation-based Maximum Likelihood (SML)
method proposed by Danielsson and Richard (1993), Danielsson (1994), are the most
efficient methods to estimate this kind of models. In particular, Danielsson (1994),
Danielsson and Richard (1993) developp an importance sampling technique to esti-
mate the integral appearing in the likelihood function of the SV model. In a Bayesian
setting, Jacquier, Polson and Rossi (1994), Kim, Shephard and Chib (1998) combine
a Gibbs sampler with the Metropolis-Hastings algorithm to obtain the marginal pos-
terior densities of the parameters of the SV model.

This paper has two contributions. The first one is to propose a simple estimation
method for a log-normal stochastic volatility model with an autoregressive mean part.
The second contribution which appears to be the most important one, is to provide
inference techniques for this model.

Indeed, the standard form as set forth, for instance, in Harvey, Ruiz, and Shep-
hard (1994), Jacquier, Polson, and Rossi (1994), Danielsson (1994), takes the form of
an autoregression whose innovations are scaled by an unobservable volatility process,
usually distributed as a lognormal autoregression but other distributions (Student,
mixture of normal distributions) can be considered [see Kim, Shephard and Chib
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(1998), Mahieu and Schotman (1998), Wong (2002a,2002b)]. The stochastic volatil-
ity specification we have chosen here comes from Gallant, Hsieh, Tauchen (1995),
Tauchen (1996). Whereas all the authors quoted above, mainly focus on estimation
procedures for the stochastic volatility model, often preoccupied by efficiency con-
siderations [e.g. bayesian methods, Efficient Method of Moments], our paper unlike
the others is mostly motivated by inference techniques applicable to the stochastic
volatility model. Our concern for inference, in particular for simulation-based in-
ference such as the technique of Monte Carlo tests introduced by Dwass (1957) for
permutation tests, and later extended by Barnard (1963) and Birnbaum (1974), jus-
tifies an estimation method easy to implement. Thus, the estimation method used
in this paper is mainly a method of moments in two steps which coincides with the
GMM procedure in the particular case that the autoregressive mean part vanishes.
Econometricians previously quoted mainly focused on efficient estimation procedures
to estimate the SV model, they mostly examine specification tests such as the χ2 tests
for goodness of fit in Andersen and Sorensen (1996), Andersen, Chung and Sorensen
(1999), specification tests with diagnostics in Gallant, Hsieh and Tauchen (1995), χ2

specification tests through Indirect Inference criterion in Monfardini (1997), or likeli-
hood ratio tests statistics for comparative fit in Kim, Shephard and Chib (1998). As
a consequence, inference techniques for testing hypotheses on parameters remained
underdeveloped, apart from standard t tests for individual parameters in Andersen
and Sorensen (1996), in Andersen, Chung and Sorensen (1999) often performed with
size distorsions.

In this setting, the aim of the paper is to fulfill the gap for testing hypotheses on
parameters of the SV model, more precisely, to propose finite sample exact tests in
the sense that the tests have correct levels in small samples. To do this, we exam-
ine method-of-moments-based tests. We extend the first moments of the volatility
process originally stated by Jacquier, Polson and Rossi (1994) by providing general
expressions for them and further provide analytic formulas for the estimators which
simplifies highly the test procedures. We then state the asymptotic distribution of the
estimator as well as that of the proposed test statistics for testing the null hypothesis
of no persistence in the volatility. We then compare in a study of level and power the
standard asymptotic techniques to the technique of Monte Carlo tests which is valid
in finite samples and allow for test statistics whose null distribution may depend on
nuisance parameters. In particular maximized Monte Carlo tests (MMC) introduced
by Dufour (1995) have the exact level in finite samples when the p-value function
is maximized over the entire set of nuisance parameters. In contrast to MMC tests
which are highly computer intensive, simplified (asymptotically justified) approximate
versions of Monte Carlo tests provide a halfway solution which achieves to control
the level of the tests while alleviating the use of computers.

The paper is organized as follows. The second section sets the framework and
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the assumptions underlying the model. In the third section, we expose the estima-
tion procedure used as well as the distributional results obtained for our estimator.
Hypothesis testing is examined in the fourth section and the distribution of the test
statistics is stated. The fifth section explicits the technique of Monte Carlo tests. The
sixth section presents the data used in the empirical application while implementation
results are discussed in the seventh section. All proofs are gathered in the appendix.

2. Framework
The basic form of the stochastic volatility model we study here for yt comes from
Gallant, Hsieh, Tauchen (1995). Let yt denote the first difference over a short time
interval, a day for instance, of the log-price of a financial asset traded on securities
markets.

Assumption 2.1 The process {yt, t ∈ N} follows a stochastic volatility model of the
type:

yt − µy =

Ly∑
j=1

cj(yt−j − µy) + exp(wt/2)ryzt , (2.1)

wt − µw =
Lw∑
j=1

aj(wt−j − µw) + rwvt , (2.2)

where µy, {cj}Ly

j=1, ry, µw, {aj}Lw
j=1 and rw are the parameters of the two equations,

called the mean and volatility equations respectively. st = (yt, wt)
′ is initialized from

its stationary distribution.

The lag lengths of the autoregressive specifications used in the literature are typically
short, e.g. Lw = 1, and Ly = 1, or Ly = 0 [see e.g. Andersen and Sorensen (1996),
Andersen, Chung and Sorensen (1999) Gallant, Hsieh, Tauchen (1995)].

Assumption 2.2 The vectors (zt, vt)
′, t ∈ N are i.i.d. according to a N(0, I2) dis-

tribution.

Assumption 2.3 The process st = (yt, wt)
′ is strictly stationary.

The process is Markovian of order Ls = max(Ly, Lw) with conditional density
ps(st|st−Ls , . . . , st−1, ρ) given by the stochastic volatility model,where

ρ = (µy, c1, . . . , cLy , ry, µw, a1, . . . , aLw , rw)′ (2.3)
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is a vector which contains the free parameters of the stochastic volatility model. The
process {yt} is observed whereas {wt} is regarded as latent. Write py,J(yt−J , . . . , yt|ρ)
for the implied joint density under the model of a stretch yt−J , . . . , yt. No general
closed-form expressions are available for the moments of yt, but they can be approx-
imated by Monte Carlo integration.

3. Method-of-moments estimation of an AR(1)-SV
model

In this section, we derive analytic expressions for the moments and the estimator of
θ = (a1, ry, rw)′ as well as its distributional properties. Let us consider in a first step
a simplified version of model (2.1)-(2.2) with µy = µw = 0 and cj = aj = 0, ∀j ≥ 2.
We then have:

yt = c1yt−1 + exp(wt/2)ryzt , |c1| < 1 (3.4)

wt = a1wt−1 + rwvt , |a1| < 1 . (3.5)

We shall call the model represented by equations (3.4)-(3.5) the stochastic volatility
model with an autoregressive mean part of order one [AR(1)-SV for short]. This
specification of the stochastic volatility model comes from Gallant, Hsieh and Tauchen
(1995). Let us first introduce some useful notation:

ut(c1) ≡ yt − c1yt−1 (3.6)

and
vt(θ) ≡ exp(

a1wt−1 + rwvt

2
)ryzt, ∀ t . (3.7)

with
vt(θ) = ut(c1), ∀ t . (3.8)

For simplicity of notation, let us call ut ≡ ut(c1) = vt(θ) . To estimate this AR(1)-SV
model above, we consider a two-step method whose first step consists in applying
ordinary least squares (OLS) to the mean equation which yields a consistent estimate
of the parameter c1 denoted by ĉT and the adjusted residuals ût ≡ ut(ĉT ). Then, we
apply in a second step a method of moments to the residuals ût to get the estimate of
the parameter θ = (a1, ry, rw)′ of the mean and volatility equations. Jacquier, Polson
and Rossi (1994) have derived the expressions of the moments of ut for particular
values of k, namely E(u2

t ), E(u4
t ), E(u6

t ) and E(u2
t u

2
t+m). We derive them below in

the general case for any values of k.

Proposition 3.1 Moments of the volatility process.
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Under Assumptions 2.1,2.2,2.3, with µy = µw = 0 and cj = aj = 0, ∀ j ≥ 2. Then
ut has the following moments for even values of k and l:

µk(θ) ≡ E(uk
t ) = rk

y

k!

2(k/2)(k/2)!
exp[

k2

8
r2
w/(1− a2

1)] , (3.9)

µk,l(m|θ) ≡ E(uk
t u

l
t+m)

= rk+l
y

k!

2(k/2)(k/2)!

l!

2(l/2)(l/2)!
exp[

r2
w

8(1− a2
1)

(k2 + l2 + 2klam
1 )] .(3.10)

The odd moments are equal to zero.

The proofs of the propositions are gathered in the Appendix. In particular, for k = 2,
k = 4 and k = l = 2 and m = 1, we get as in Jacquier, Polson and Rossi (1994):

µ2(θ) = E(u2
t ) = r2

y exp[r2
w/2(1− a2

1)] , (3.11)

µ4(θ) = E(u4
t ) = 3r4

y exp[2r2
w/(1− a2

1)] , (3.12)

and
µ2,2(1|θ) = E[u2

t u
2
t−1] = r4

y exp[r2
w/(1− a1)] . (3.13)

Solving the above moment equations corresponding to k = 2, k = 4 and m = 1 yields
the following proposition.

Proposition 3.2 Method-of-moments estimator.
Under the assumptions of Proposition 3.1, we have:

a1 =
[log(µ2,2(1|θ))− log(3)− 4 log(µ2) + log(µ4)]

log( µ4

3(µ2)2
)

− 1 , (3.14)

ry =
31/4µ2

µ
1/4
4

, (3.15)

rw =

(
log(

µ4

3(µ2)2
)(1− a2

1)

)1/2

. (3.16)

Given the latter proposition, it is easy to compute a method-of-moments estimator
for θ = (a1, ry, rw)′ replacing the theoretical moments by sample counterparts based
on the estimated residuals ût. Let θ̂T denote the method-of-moments estimator of θ.
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Typically, E(u2
t ), E(u4

t ) and E(u2
t u

2
t−1) are approximated by:

µ̂2 =
1

T

T∑
t=1

û2
t µ̂4 =

1

T

T∑
t=1

û4
t , µ̂2(1) =

1

T

T∑
t=1

û2
t û

2
t−1

respectively. Additionally, let ḡT (Û) = 1
T

∑T
t=1 gt(Û) with gt(Û) = (û2

t , û
4
t , û

2
t û

2
t−1)

′ .
Then

ḡT (Û) =




1
T

∑T
t=1 û2

t
1
T

∑T
t=1 û4

t
1
T

∑T
t=1 û2

t û
2
t−1


 , (3.17)

ḡT (θ) = 1
T

∑T
t=1 gt(θ) with gt(θ) = (v2

t (θ), v
4
t (θ), v

2
t (θ)v

2
t−1(θ))

′ , i.e.

ḡT (θ) =




1
T

∑T
t=1 v2

t (θ)
1
T

∑T
t=1 v4

t (θ)
1
T

∑T
t=1 v2

t (θ)v
2
t−1(θ)


 , (3.18)

with µ(θ) = (µ2(θ), µ4(θ), µ2,2(1|θ))′. In the lemmas below we state some convergence
results which will be useful to prove Proposition 3.5.

Lemma 3.3 Under the assumptions of Proposition 3.1,

p lim
T→∞

1

T

T∑
t=1

y2
t = µY 2 , (3.19)

where µY 2 ≡ E(y2
t ) = µ2(θ)

1−c21
, and we have:

√
T (ĉT − c1)

D→ N(0, 1− c2
1) . (3.20)

Lemma 3.4 Under the assumptions of Proposition 3.1, we have:

p lim
T→∞

1

T

T∑
t=1

ut(c1)yt−1 = E[ut(c1)yt−1] = 0 , (3.21)

p lim
T→∞

1

T

T∑
t=1

ut(c1)
3yt−1 = E[ut(c1)

3yt−1] = 0 , (3.22)

p lim
T→∞

1

T

T∑
t=1

u2
t (c1)ut−1(c1)yt−2 = E[u2

t (c1)ut−1(c1)yt−2] = 0 , (3.23)
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p lim
T→∞

1

T

T∑
t=1

ut(c1)u
2
t−1(c1)yt−1 = E[ut(c1)u

2
t−1(c1)yt−1] = 0 . (3.24)

We can now prove the following proposition.

Proposition 3.5 Asymptotic equivalence for
√

T (ḡT (Û)− µ(θ)).
Under the assumptions of Proposition 3.1, the process

√
T (ḡT (Û) − µ(θ)) is asymp-

totically equivalent to
√

T (ḡT (θ)− µ(θ)) .

The latter proposition will be useful in deriving the asymptotic distribution of the
method-of-moments estimator of θ, but before deriving its asymptotic distribution
we need to state the following lemma and proposition.

Lemma 3.6 Expression of covariances.
Let Xt = (X1t, X2t, X3t)

′ where X1t = v2
t (θ) − µ2(θ),X2t = v4

t (θ) − µ4(θ),X3t =
v2

t (θ)v
2
t−1(θ)− µ2,2(1|θ) and γi(τ) = Cov(Xi,t, Xi,t+τ ), i = 1, 2, 3 then

γ1(τ) = µ2
2(θ)[exp(γaτ

1)− 1] (3.25)
γ2(τ) = µ2

4(θ)[exp(4γaτ
1)− 1] ∀τ ≥ 1 (3.26)

γ3(τ) = µ2
2,2(1|θ)[exp(γ(1 + a1)

2aτ−1
1 )− 1] ∀τ ≥ 2 (3.27)

(3.28)

and
Cov(wt, wt+τ ) = aτ

1γ , (3.29)

where γ = r2
w

1−a2
1
.

Proposition 3.7 Asymptotic distribution of
√

T (ḡT (θ)− µ(θ)).
Under the assumptions of Proposition 3.1 and under the assumption that the 3 × 3
matrix E[(

√
T (ḡT (θ)−µ(θ)))2] is of full rank for all T, the process

√
T (ḡT (θ)−µ(θ))

is asymptotically distributed as a N(0, Ω∗) variable where Ω∗ is a positive definite
matrix such that Ω∗ = limT→∞ E[(

√
T (ḡT (θ)− µ(θ)))2].

Next proposition states the asymptotic normality of the method-of-moments estima-
tor of θ = (a1, ry, rw)′ a subvector of ρ′ = (c, θ′).

Proposition 3.8 Asymptotic distribution of the method-of-moments
estimator.
Under the assumptions of Proposition 3.1, the method-of-moments estimator θ̂T (Ω)
is such that: √

T [θ̂T (Ω)− θ]
D→ N(0,W (Ω)) (3.30)
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where

W (Ω) =

(
∂µ′

∂θ
(θ)Ω

∂µ

∂θ′
(θ)

)−1
∂µ′

∂θ
(θ)ΩΩ∗Ω

∂µ

∂θ′
(θ)

(
∂µ′

∂θ
(θ)Ω

∂µ

∂θ′
(θ)

)−1

(3.31)

As usual, there is an optimal choice of this matrix, i.e. a choice which minimizes
W (Ω).

Proposition 3.9 Optimal weighting matrix.
Under the assumptions of Proposition 3.1, the optimal choice of the Ω matrix is:
Ω = Ω∗−1 and

W ∗ = W (Ω∗−1) =

(
∂µ′

∂θ
(θ)Ω∗−1 ∂µ

∂θ′
(θ)

)−1

. (3.32)

The optimal estimator thus obtained is denoted by θ̂T . When the dimensions of µ
and θ are the same, we have W (Ω) = W ∗ ,∀ Ω and

W ∗ =

(
∂µ′

∂θ
(θ)

)−1

Ω∗
(

∂µ

∂θ′
(θ)

)−1

.

It is the asymptotic variance-covariance matrix of the estimator solution of

ḡT (Û) = µ(θ) .

A consistent estimator of W ∗ is obtained as soon as we have a consistent estimator of
Ω∗. A consistent estimator of Ω∗ can be easily obtained [see Newey and West (1987)]
by a fixed-bandwith Bartlett kernel estimator, i.e.:

Ω̂∗(θ) = Γ0 +
K∑

k=1

(1− k

K + 1
)(Γk + Γ ′

k) (3.33)

with

Γk =
1

T

T∑

t=k+1

[gt−k(θ)− ḡT (θ)][gt(θ)− ḡT (θ)]′ (3.34)
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with θ replaced by any consistent estimator θ̃T of θ,

Ω̂∗(θ̃T ) = Γ̂0 +
K∑

k=1

(1− k

K + 1
)(Γ̂k + Γ̂ ′

k) (3.35)

with

Γ̂k =
1

T

T∑

t=k+1

[gt−k(θ̃T )− ḡT (θ̃T )][gt(θ̃T )− ḡT (θ̃T )]′ (3.36)

since

ḡT (θ̃T ) =
1

T

T∑
t=1

gt(θ̃T )
p→ µ(θ0) = E[gt(θ0)]

and
1

T

T∑
t=1

gt−k(θ̃T )gt(θ̃T )′
p→ E[gt−k(θ)gt(θ)

′]

since the perturbation vectors have been shown to be strictly stationary and ergodic
[see proof of Proposition 3.7 in Appendix].

Therefore a consistent estimator of W ∗ is given by:

Ŵ ∗ =

(
∂µ′

∂θ
(θ̂T )Ω̂∗−1(θ̃T )

∂µ

∂θ′
(θ̂T )

)−1

. (3.37)

4. Hypothesis tests
We assume that the parameter θ = (a, ry, rw)′ is partitioned into

θ =

(
θ1

θ2

)

with θ1
def
= a . We consider the null hypothesis H0 : a = 0 which corresponds to

test the absence of long memory in the volatility. To define these tests we have to
introduce the optimal unconstrained estimator:

(
θ̂1T

θ̂2T

)
= θ̂T

9



and the optimal constrained estimator obtained by optimizing the criterion submitted
to θ1 = 0. This estimator is denoted by:

(
0

θ̂c
2T

)
= θ̂c

T .

The Wald statistic is defined as

ξW
T = T (θ̂1T )′Ŵ ∗−1

1 (θ̂1T ) (4.38)

where Ŵ ∗
1 is a consistent estimator of the asymptotic covariance-variance matrix of√

T θ̂1T . W ∗
1 is defined at equation (A.128).

The score statistic is defined from the gradient of the objective function with
respect to θ1 evaluated at the constrained estimator. This gradient is given by:

DT =
∂µ′

∂θ1

(θ̂c
T )Ω∗−1(µ(θ̂c

T )− ḡT (Û)) (4.39)

and the test statistic is
ξS
T = TD′

TADT . (4.40)

where A is a consistent estimator of the inverse of the covariance matrix of
√

TDT

whose covariance matrix is defined at equation (A.130). Finally, we can introduce
the difference between the optimal values of the objective function that we will call
the LR-type test in the simulations:

ξC
T = T [M∗

T (θ̂c
T )−M∗

T (θ̂T )] (4.41)

where the criterion to be minimized is:

M∗
T (θ)

def
= [ḡT (Û)− µ(θ)]′Ω̂∗−1[ḡT (Û)− µ(θ)] (4.42)

Proposition 4.1 Asymptotic distribution of the three classic tests.
Under the assumptions of Proposition 3.1, the test statistics ξW

T , ξS
T , and ξC

T are
asymptotically equivalent under the null hypothesis, and have the common distribution
χ2(1).

We also consider the C(α)-type test statistic defined by:

PC(θ̃c
T ) = T [µ(θ̃c

T )− ḡT (Û)]′W̃0[µ(θ̃c
T )− ḡT (Û)] (4.43)
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where

W̃0 = Ĩ−1
0 J̃0(J̃

′
0Ĩ
−1
0 J̃0)

−1

[P̃0(J̃
′
0Ĩ
−1
0 J̃0)

−1P̃ ′
0]
−1

P̃0(J̃
′
0Ĩ
−1
0 J̃0)

−1J̃ ′0Ĩ
−1
0 , (4.44)

with
J̃0 = J(θ̃c

T ) =
∂µ

∂θ′
(θ̃c

T ) , (4.45)

Ĩ−1
0 = I(θ̃c

T )−1 = Ω∗(θ̃c
T )−1 (4.46)

and P̃0 = P (θ̃c
T ) where P (θ) corresponds to the derivative of the constraints w.r.t.

the parameters of interest θ evaluated at any root-n consistent estimator of θ that
satisfies the constraint a = 0. For our concern, θ̃c

T will be obtained by setting a = 0

in the analytical expressions of the unrestricted method-of-moments estimator θ̂T

given at equations (3.14) to (3.16). It is known [see Dufour and Trognon (2001, p.8,
Proposition 3.1)] that the C(α)-type test statistic is asymptotically distributed as a
χ2(1) variable under the null hypothesis.
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5. Monte Carlo testing
The technique of Monte Carlo tests has originally been suggested by Dwass (1957)
for implementing permutation tests, and did not involve nuisance parameters. This
technique has been later extended by Barnard (1963) and Birnbaum (1974). This
technique has the great attraction of providing exact (randomized) tests based on any
statistic whose finite sample distribution may be intractable but can be simulated.

We study here the case where the distribution of the test statistic S depends on
nuisance parameters. For the test statistics exposed in section 4, their asymptotic dis-
tribution is asymptotically pivotal (Chi-square distribution), but their finite sample
distribution remains unknown. At this stage, we need to make an effort of formal-
ization to clearly expose the procedure. We consider a family of probability spaces
{(Z,AZ , Pρ) : ρ ∈ Ω} and suppose that S is a real valued AZ-measurable function
whose distribution is determined by Pρ̄ where ρ̄ is the “true” parameter vector. We
wish to test the hypothesis

H0 : ρ̄ ∈ Ω0,

where Ω0 is a nonempty subset of Ω. We take a critical region of the form S ≥ c,
where c is a constant which does not depend on ρ. The critical region S ≥ c has level
α if and only if

Pρ[S ≥ c] ≤ α, ∀ρ ∈ Ω0,

or equivalently,
sup
ρ∈Ω0

Pρ[S ≥ c] ≤ α.

Firthermore, S ≥ c has size α when

sup
ρ∈Ω0

Pρ[S ≥ c] = α.

If we define the distribution and p-value functions,

F [x|ρ] = Pρ[S ≤ x], x ∈ R̄,

G[x|ρ] = Pρ[S ≥ x], x ∈ R̄,

where ρ ∈ Ω, it is easy to see that the critical regions

sup
ρ∈Ω0

G[S|ρ] ≤ α(c),
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where α(c) ≡ supρ∈Ω0
G[c|ρ], and

S ≥ sup
ρ∈Ω0

F−1[(1−G[c|ρ])+|ρ] ≡ c̄

are equivalent to S ≥ c in the sense that c ≤ c̄.
We consider a real random variable S0 and random vectors of the form

S(N, ρ) = (S1(ρ), . . . , SN(ρ))′, ρ ∈ Ω,

all defined on a common probability space (Z,AZ , P ), such that the variables
S0, S1(ρ̄), . . . , SN(ρ̄) are i.i.d. or exchangeable for some ρ̄ ∈ Ω, each one with dis-
tribution function F [x|ρ̄] = P [S0 ≤ x]. Typically, S0 will refer to a test statistic
computed from the observed data when the true parameter vector is ρ̄ (i.e., ρ = ρ̄),
while S1(ρ), . . . , SN(ρ) will refer to i.i.d replications of the test statistic obtained in-
dependently (e.g., by simulation) under the assumption that the parameter vector is
ρ (i.e., P [Si(ρ) ≤ x] = F [x|ρ]). In other words, the observed statistic S0 is simulated
by first generating an “observation” vector y according to

y = g(ρ, z, v) (5.47)

where the function g is bivariate for our AR(1)-SV model, and corresponds to equa-
tions (3.4) and (3.5), with ρ = (c, θ)′, θ = (a, ry, rw)′. The perturbations z and v have
known distributions, which can be simulated (N(0, 1) or student, or mixtures, e.g.)
and then computing

S(ρ) ≡ S[g(ρ, z, v)] ≡ gS(ρ, z, v) . (5.48)

The observed statistic S0 is then computed as S0 = S[g(ρ̄, z0, v0)] and the simulated
statistics Si(ρ) = S[g(ρ, zi, vi)] , i = 1, . . . , N where the random vectors z0, z1, . . . , zN

are i.i.d. (or exchangeable) and v0, v1, . . . , vN are i.i.d. (or exchangeable) as well.
The technique of Monte Carlo tests provides a simple method allowing one

to replace the theoretical distribution F (x|ρ) by its sample analogue based on
S1(ρ), . . . , SN(ρ):

F̂N [x; S(N, ρ)] =
1

N

N∑
i=1

s(x− Si(ρ)) =
1

N

N∑
i=1

1[0,∞](x− Si(ρ))

where s(x) = 1[0,∞](x) and 1A(x) is the indicator function associated with the set A.
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We also consider the corresponding sample tail area function:

ĜN [x; S(N, ρ)] =
1

N

N∑
i=1

s(Si(ρ)− x)·

and the p-value function

p̂N [x|ρ] =
NĜN [x|ρ] + 1

N + 1
.

The sample distribution function is related to the ranks R1, · · · , RN of the variables
S1(ρ), . . . , SN(ρ) (when put in ascending order) by the expression:

Rj = NF̂N [Sj; S(N, ρ)] =
N∑

i=1

s(Sj(ρ)− Si(ρ)), j = 1, . . . , N.

The central property which is exploited here is the following: to obtain critical values
or compute p-values, the “theoretical” null distribution F [x|ρ̄] can be replaced by its
simulation-based “estimate” F̂N [x|ρ] ≡ F̂N [x; S(N, ρ)] in a way that will preserve the
level of the test in finite samples, irrespective of the number N of replications used.

Thus, in this framework, Dufour (1995) states the finite sample validity of Monte
Carlo tests when the p-value function is maximized over the entire set of the nuisance
parameters as it is formulated in the reported proposition below [see Dufour (1995,
p.13, Proposition 4.1].

Proposition 5.1 Validity of MMC tests when ties have zero probabil-
ity.
Under the above assumptions and notations, set
S0(ρ̄) = S0 and suppose that

P [Si(ρ̄) = Sj(ρ̄)] = 0, for i 6= j, i, j = 0, 1, . . . , N.

If ρ̄ ∈ Ω0, then for 0 ≤ α1 ≤ 1,

P [sup{ĜN [S0|ρ] : ρ ∈ Ω0} ≤ α1] ≤ P [inf{F̂N [S0|ρ] : ρ ∈ Ω0} ≥ 1− α1]

≤ I[α1N ] + 1

N + 1

where

P [inf{F̂N [S0|ρ] : ρ ∈ Ω0} ≥ 1− α1] = P [S0 ≥ sup{F̂−1
N [1− α1|ρ] : ρ ∈ Ω0}]
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for 0 < α1 < 1, and

P [sup{p̂N [S0|ρ] : ρ ∈ Ω0} ≤ α] ≤ I[α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1.

Following the latter proposition, if we choose α1 and N so that

α =
I[α1N ] + 1

N + 1
(5.49)

is the desired significance level, the critical region sup{ĜN [S0|ρ] : ρ ∈ Ω0} ≤ α1

has level α irrespective of the presence of nuisance parameters in the distribution
of the test statistic S under the null hypothesis H0 : ρ̄ ∈ Ω0. The same also holds
if we use the (almost) equivalent critical regions inf{F̂N [S0|ρ] : ρ ∈ Ω0} ≥ 1 − α1

or S0 ≥ sup{F̂−1
N [1 − α1|ρ] : ρ ∈ Ω0}. Dufour call such tests maximized Monte

Carlo (MMC) tests. The function ĜN [S0|ρ] (or p̂N [S0|ρ]) is then maximized with
respect to ρ ∈ Ω0, keeping the observed statistic S0 and the simulated disturbance
vectors z1, ..., zN and v1, ..., vN fixed. The function ĜN [S0|ρ] is a step-type function
which typically has zero derivatives almost everywhere, except on isolated points
(or manifolds) where it is not differentiable. So it cannot be maximized with usual
derivative-based algorithms. However, the required maximizations can be performed
by using appropriate optimization algorithms that do not require differentiability,
such as simulated annealing. For further discussion of such algorithms, the reader
may consult Goffe, Ferrier, and Rogers(1994).

On the other hand, Dufour (1995) also proposes simplified (asymptotically jus-
tified) approximate versions of the Monte Carlo tests where this time the p-value
function is evaluated at a consistent point estimate, which defines a Bootstrap ver-
sion, or a consistent set estimate of ρ, which defines asymptotic Monte Carlo tests
based on consistent set estimators. The author shows [see Dufour, (1995, p.16, Propo-
sition 5.1 and p.19, Proposition 6.3)] that both tests are asymptotically valid in the
sense that they have the correct level α asymptotically and the estimated p-values
converge to the true p-values. He also assesses the validity of the MMC tests and the
asymptotic Monte Carlo tests based on consistent set estimators for general distribu-
tions , when ties have non-zero probability [see Dufour, (1995, p.14, Proposition 4.2
and p.17, Proposition 5.2)].

It is this technique of Monte Carlo tests in their maximized and Bootstrap versions
which will be applied in section 6 to compare their level and power with those of the
standard asymptotic tests of section 4.
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6. Implementation results
Here we test the null hypothesis of no-persistence in the volatility, which corresponds
to H0 : a = 0 against the alternative H1 : a = 0.9. The nominal level of the tests
has been set to α = 5%. M represents the number of replications to evaluate the
frequence of rejection of both hypotheses, and N represents the number of simu-
lated statistics used in the Monte Carlo tests. T is the sample size of the serie yt

whose data generating process is assumed to be specified as in equations (3.4)-(3.5).
Implementation is performed with the GAUSS software.

The Wald statistic as defined at equation (4.38) is evaluated at the unrestricted
method-of-moments estimator θ̂1T . The Score statistic as defined at equation (4.40) is
evaluated at the restricted estimator θ̂c

T which minimizes the criterion M∗
T (θ) defined

at equation (4.42) submitted to the constraint a = 0 whereas θ̃c
T represents another

restricted estimator of θ obtained by setting a = 0 in the analytical expressions of
the unrestricted method-of-moments estimator θ̂T given at equations (3.14) to (3.16).
The C(α)-type statistic as defined at equation (4.43) is evaluated at this restricted
estimator θ̃c

T of θ. Additionally, the LR-type test statistic corresponds to the difference
between the optimal values of the objective function. Let LR(Ω̂) ≡ ξC

T [see equation
(4.41)] where Ω̂ ≡ Ω(θ̂T ). The weighting matrix Ω̂ is estimated by a kernel estimator
with a fixed-Bandwith Bartlett Kernel, where the lag truncation parameter K has
been set to K = 5 as defined through equations (3.35) and (3.36).

Let S denote the test statistic which alternatively will take the form of one of the
four test statistics earlier mentionned and let S0 denote the statistic computed from
the observed data (Standard and Poor’s Composite Price Index) or the “pseudo-true”
data obtained by simulation under the hypothesis to be tested. The critical regions
used to perform the tests are of the form:

Rc = {S0 > χ2
1−α(1) = 3.84}

for the standard asymptotic tests, and of the form:

Rc = {p̂N [S0|ρ̂c
T ] ≤ α}

with the p-value function

p̂N [S0|ρ] =
NĜN [S0|ρ] + 1

N + 1
,
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and the tail area function

ĜN [S0; S(N, ρ)] =
1

N

N∑
i=1

s(Si(ρ)− S0),

for the Bootstrap tests where the p-value function may be evaluated at any con-
sistent restricted estimator of ρ = (c, θ′)′ = (c, a, ry, rw)′. The simulated statistics
Si(ρ) i = 1, ..., N will always be evaluated under the null hypothesis in the Monte
Carlo tests whatever the hypothesis to be tested. α has been set to α = 5%. The
Bootstrap version of the Monte Carlo tests whose p-value function is evaluated at
a consistent point estimate of the nuisance parameters follows the methodology ex-
plicited in section 5.

6.1. Test level

Here we study the empirical frequence of rejection of the null hypothesis H0 : a = 0
and compare it to the nominal level fixed at α = 5%.

LEVELS in % (under H0)
Asymptotic tests

T=50 T=100 T=200 T=500 T=1000 T=2000
Wald 0.4 1.3 1.8 4.4 2.4 3.2
Score(Ω̂C) 14.3 7.6 5.4 4.2 3.2 3
LR(Ω̂) 25.8 17.9 13.7 7.4 3.9 3.7
C(α) 3.7 2.6 2.9 3 2.9 2.9

LEVELS in % (under H0)
Bootstrap tests

T=50 T=100 T=200 T=500 T=1000 T=2000
Wald 5.1 5.1 4.3 2 0.8 3.1
Score(Ω̂C) 3.1 1.7 2 4.3 4.4 2.9
LR(Ω̂NC) 3.5 3.2 2.6 1.4 0.5 2.9
C(α) 4.7 4.4 4.9 6.3 5.4 4

Note that the Bootstrap test which is a simplified (asymptotically justified) version
of the Maximized Monte Carlo test, reduces drastically the size distorsions observed
for its standard asymptotic counterpart, mostly for the score test statistic. The C(α)
test performs quite well and is attractive in this context since it does not require
any computer optimization to get the restricted estimate of θ. However the level of
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the LR(Ω̂) test remains over 5% for a sample size of T = 1000, which suggests a
maximized version of the Monte Carlo test to control the level in this case.

6.2. Test power

Here we study the power of the tests, that is the empirical frequence of rejection of
the null hypothesis H0 : a = 0 when the data have been generated under alternative
hypothesis H1 : a = 0.8. The first table below reports the power of the standard
asymptotic tests whose size has been corrected with respect to the corresponding
simulated critical values which yield exact 5%-level tests under the null hypothesis.

Simulated critical values
MM=10000 replications

T=50 T=100 T=200 T=500 T=1000 T=2000
Wald 0.9619 1.4615 2.1764 3.5563 3.0587 3.0344
Score(Ω̂C) 8.8501 5.5501 3.8858 3.3685 3.0459 2.9812
LR(Ω̂) 39.6310 19.0368 11.7330 5.0693 3.4685 3.0480
C(α) 3.1991 3.0226 2.8863 2.9096 2.8879 2.9133

POWER in % (under H1)
Size-corrected Asymptotic tests

T=50 T=100 T=200 T=500 T=1000 T=2000
Wald 12.6 17.1 28.8 50.2 82.4 92.5
Score(Ω̂C) 16.9 21.3 42 78.4 95.8 99.6
LR(Ω̂) 13 8.2 13.4 55.8 87.3 96.6
C(α) 17.2 30.1 50.2 81.5 96 99.5

POWER in % (under H1)
Bootstrap tests (N = 99)

T=50 T=100 T=200 T=500 T=1000 T=2000
Wald 10.9 12.5 19.9 43.2 68.1 83.5
Score(Ω̂C) 12.5 10.8 19.5 49.8 76.2 88.7
LR(Ω̂) 10.6 6.8 12.8 53.7 81.9 91.4
C(α) 15.9 27.1 42.6 73.9 93.5 98.5

We do not prescribe these methods when the sample size is very small (e.g. T =
50), the tests do have ver little power and in this case a maximized Monte Carlo test
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could improve the results. Both test procedures have more power when the sample
size grows which is intuitive since both tests are asymptotically justified. In the
standard asymptotic procedure, the likelihood ratio type (LR) and C(α) tests are
the most powerful when the sample size is large. Once again, the C(α) test is the
most powerful one in the Bootstrap procedure where it reaches and exceeds a power
of 90% while being the easiest to implement since it does not require in our case any
optimization procedure.

7. Empirical application
In this subsection we test the null hypothesis of no-persistence in the volatility from
real data (Standard and Poor’s Composite Price Index (SP), 1928-87).

7.1. Data

The data have been provided by Tauchen where Efficient Method of Moments have
been used by Gallant, Hsieh and Tauchen to fit a standard stochastic volatility model
and various extensions. The data to which we fit the univariate stochastic volatility
model is a long time series comprised of 16,127 daily observations, {ỹt}16,127

t=1 , on
adjusted movements of the Standard and poor’s Composite Price Index, 1928-87.
The raw series is the Standard and Poor’s Composite Price Index (SP),daily, 1928-
87. We use a long time series, because, among other things, we want to investigate
the long-term properties of stock market volatility through a persistence test. The
raw series is converted to a price movements series, 100[log(SPt) − log(SPt−1)], and
then adjusted for systematic calendar effects, that is, systematic shifts in location and
scale due to different trading patterns across days of the week, holidays, and year-end
tax trading. This yields a variable we shall denote yt.

7.2. Results

The unrestricted estimated value of ρ from the data is:

ρ̂T = (0.129, 0.926, 0.829, 0.427)′

where the method-of-moments estimated value of a corresponds to âT = 0.926. We
may conjecture that there is some persistence in the data during the period 1928-87
what is statistically checked by performing the tests below. The restricted estimated
values of ρ from the data are:

ρ̂c
T = (0.129, 0, 0.785, 1.152)′
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and
ρ̃c

T = (0.129, 0, 0.829, 1.133)′ .

Note the large discrepancy between the unrestricted and restricted estimated values
of rw.

data
Asymptotic tests Bootstrap tests

S0 N=19 N=99 N=999
Wald 206.03 0.05 0.01 0.001
Score(Ω̂C) 1039.04 0.05 0.01 0.001
LR(Ω̂) 63.20 0.05 0.01 0.001
C(α) 854.55 0.05 0.01 0.001

All standard asymptotic tests reject indeed the null hypothesis of no-persistence in
the volatility since S0 > χ2

1−α(1) = 3.84 as well as all the Bootstrap tests whose
p-value is equal or less than 5%, whatever length of the simulated statistics is used
to implement them.

8. Concluding remarks
The C(α) test outperforms the other types of tests while being the easiest to imple-
ment since it does not require in our framework any optimization procedure. It has
good statistical properties: a good level and a high power for sufficiently large sample
sizes. On the other hand, the Monte Carlo tests in general appear as a good alter-
native to the standard asymptotic tests, specifically when the standard asymptotic
approach fails - unit root specification or small-sample tests where the distribution
of the test statistic in unknown. We may consider as further reasearch an extension
of our approach to asymetric distributions such as the asymetric student distribution
and a willingness to test the hypothesis of leverage effect in the stochastic volatility
model.
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A. Appendix
Proof of Proposition 3.1
First, we recall that if U ∼ N(0, 1) then E(U2p+1) = 0, ∀ p ∈ N and E(U2p) =

(2p)!/[2pp!] ∀ p ∈ N [see Gouriéroux, Monfort, p.518, vol.2]. Under Assumptions
2.1,2.2,2.3 with a stationary AR(1) specification for wt, using the definition of ut,
we get:

E(uk
t ) = rk

yE(zk
t )E[exp(kwt/2)]

= rk
y

k!

2(k/2)(k/2)!
exp(

k2

4
r2
w/2(1− a2

1))

= rk
y

k!

2(k/2)(k/2)!
exp(

k2

8
r2
w/(1− a2

1)) (A.50)

where the second equality uses the definition of the gaussian Laplace transform of
wt ∼ N(0, r2

w

1−a2
1
) and of the moments of the N(0, 1) zt variable. Let us now calculate

the cross-product:

E[uk
t u

l
t+m] = E[rk+l

y zk
t zl

t+m exp(k
wt

2
+ l

wt+m

2
)]

= rk+l
y E(zk

t )E(zl
t+m)E[exp(k

wt

2
+ l

wt+m

2
)]

= rk+l
y

k!

2(k/2)(k/2)!

l!

2(l/2)(l/2)!
exp

(
r2
w

8(1− a2
1)

(k2 + l2 + 2klam
1 )

)

where E(wt) = 0, V ar(wt) = r2
w

1−a2
1
and

V ar(k
wt

2
+ l

wt+m

2
) =

k2

4
V ar(wt) +

l2

4
V ar(wt+m) + 2

k

2

l

2
Cov(wt, wt+m)

=
r2
w

4(1− a2
1)

(k2 + l2 + 2klam
1 ) . (A.51)

Proof of Proposition 3.2
Taking the ratio of equation (3.12) on equation (3.11) to the square produces

E(u4
t )

(E(u2
t ))

2
= 3 exp(r2

w/(1− a2
1)) , (A.52)

21



i.e.
Q ≡ (r2

w/(1− a2
1)) = log

(
E(u4

t )

3(E(u2
t ))

2

)
. (A.53)

Inserting Q ≡ (r2
w/(1− a2

1)) in equation (3.11) yields

ry =

(
E(u2

t )

exp(Q/2)

)1/2

=
31/4E(u2

t )

E(u4
t )

1/4
. (A.54)

From equation (3.13) we have

exp(
r2
w

(1− a1)
) =

E[u2
t u

2
t−1]

r4
y

(A.55)

which, after a few manipulations, yields

1 + a1 =
[log(E[u2

t u
2
t−1])− 4 log(ry)]

Q
(A.56)

or either

a1 =
[log(E[u2

t u
2
t−1])− log(3)− 4 log(E[u2

t ]) + log(E[u4
t ])]

log

(
E[u4

t ]

3(E[u2
t ])2

) − 1 . (A.57)

From the expressions of Q ≡ r2
w/(1− a2

1) at equation (A.53) and that of a1 above we
can deduce

rw =

(
log

(
E[u4

t ]

3(E[u2
t ])

2

)
.(1− a2

1)

)1/2

. (A.58)

Proof of Lemma 3.3
To prove the result, we shall show first that the process {y2

t − µY 2 , t ∈ N} is a
L1-mixingale w.r.t. the subfields Ft = σ(st, st−1, . . .) where st = (yt, wt)

′. In a second
step, we shall show that the sequence {y2

t − µY 2 , t ∈ N} is uniformly integrable.
Finally we shall apply the Law of Large numbers (L.L.N.) for L1-mixingales to the
sequence {y2

t − µY 2 , t ∈ N} to get the desired result.
For the L1-mixingale property, we note first that:

y2
t = (c1yt−1 + exp(wt/2)ryzt)

2

= c2
1y

2
t−1 + exp(wt)r

2
yz

2
t + 2c1yt−1 exp(wt/2)ryzt (A.59)

22



hence, iterating backwards on y2
t ,

y2
t = (c2

1)
my2

t−m + (c2
1)

m−1[exp(wt−m+1)r
2
yz

2
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2
)ryzt−m+1]

+ . . . + (c2
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2
t + 2c1yt−1 exp(wt/2)ryzt] . (A.60)

Besides, by Assumptions 2.2 and 2.3 we have:

µY 2 ≡ Ey2
t =

µ2

1− c2
1

.

Therefore, taking the conditional expectation from both sides of equation (A.60), we
get:

E(y2
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(A.61)

hence, since zt
i.i.d.∼ N(0, 1) and vt

i.i.d.∼ N(0, 1),
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or equivalently,
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Therefore, taking the unconditional expectation of the absolute value, we deduce
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(A.62)

Since

lim
m→∞

r2
y

m−1∑
j=0

(c2
1)

j exp(
a

2(m−j)
1

2

r2
w

1− a2
1

) exp(
r2
w

2

m−j−1∑

l=0

a2l
1 ) = lim

m→∞

[
r2
y

m−1∑
j=0

(c2
1)

j exp(
a

2(m−j)
1

2

r2
w

1− a2
1

)

exp(
r2
w

2

1− a
2(m−j)
1

1− a2
1

)

]

= lim
m→∞

r2
y

m−1∑
j=0

(c2
1)

j exp

[
r2
w

2

a
2(m−j)
1

1− a2
1

+
r2
w

2

(1− a
2(m−j)
1 )

1− a2
1

]
= lim

m→∞

m−1∑
j=0

(c2
1)

jr2
y exp(

r2
w

2(1− a2
1)

=
1

1− c2
1

r2
y exp(

r2
w

2(1− a2
1)

) =
µ2

1− c2
1

= µY 2 (A.63)

we get
E|E(y2

t − µY 2|Ft−m)| ≤ ηtξm

with ηt = 1, ∀t, and

ξm = (c2
1)

mµY 2 + | − µY 2 + r2
y

m−1∑
j=0

(c2
1)

j exp(
a

2(m−j)
1

2

r2
w

1− a2
1

) exp(
r2
w

2

m−j−1∑

l=0

a2l
1 )| ,∀ m,

(A.64)
with limm→∞ ξm = 0 and limT→∞ 1

T

∑T
t=1 ηt = 1 < ∞. Thus, the process {y2

t −
µY 2 , t ∈ N} is a L1-mixingale w.r.t. the subfields Ft , t ∈ N.

We shall show now that the sequence {y2
t − µY 2 , t ∈ N} is uniformly integrable.

By the c̃r−inequality [see Loève (1963, p.155)], we get:

E|y2
t − µY 2|2 ≤ 2(E|y2

t |2 + E|µY 2|2)
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= 2µY 4 + 2µ2
Y 2 , (A.65)

where

µY 4 ≡ Ey4
t = E[c1yt−1 + ut(c1)]

4

= E[c4
1y

4
t−1 + 4c3

1y
3
t−1ut(c1) + 6c2

1y
2
t−1u

2
t (c1) + 4c1yt−1u

3
t (c1) + u4

t (c1)]

(A.66)

which yields, using the fact that the odd moments of ut(c1) are zero and Assumption
2.3

Ey4
t = c4

1Ey4
t−1 + 6c2

1Ey2
t−1Eu2

t (c1) + Eu4
t (c1)

=
1

1− c4
1

(µ4(θ) + 6c2
1µY 2µ2(θ)) < ∞ . (A.67)

Hence, E|y2
t − µY 2|2 above is finite and is equal to E|y2

t − µY 2|1+θ < ∞ , with
θ = 1 from which it follows that limM→∞ E(|y2

t − µY 2|1|y2
t−µY 2|≥M) = 0 [see James

Davidson (1994, p.190, Theorem 12.10)]. This holds for all t ∈ N. We can then say
that the process {y2

t − µY 2 , t ∈ N} is uniformly integrable.
Finally, we apply the L.L.N. for L1-mixingales [see Hamilton (1994, p.191, propo-

sition 7.6)] to the process {y2
t − µY 2 , t ∈ N} to obtain:

1

T

T∑
t=1

(y2
t − µY 2)

P→ 0

or, equivalently,
1

T

T∑
t=1

y2
t

P→ µY 2 . (A.68)

The process {ut(c1)yt−1 , t ∈ N} is clearly a martingale difference sequence (m.d.s.)
w.r.t. the subfields F ′

t. Hence, by the Central Limit Theorem (C.L.T.) for m.d.s. [see
Hamilton (1994, p.193, Proposition 7.8)], we get:

√
T (ĉT − c1) =

(
1

T

T∑
t=1

y2
t−1

)−1
1√
T

T∑
t=1

yt−1ut

D→
T→∞

(µY 2)
−1Z (A.69)

25



with Z ∼ N(0,
µ2

2

1−c21
), hence,

√
T (ĉT − c1)

D→ N(0, 1− c2
1) . (A.70)

Proof of Lemma 3.4

a) To show (3.21), we examine the uniform integrability of the process. We have:

E|utyt−1|r = E|ryzt exp(wt/2)yt−1|r

= E(|zt|r|ry|r exp(
r

2
wt)|yt−1|r)

= E|zt|r|ry|rE(exp(
r

2
wt))E|yt−1|r . (A.71)

For a standard gaussian variable, it is known that :

E|zt|2n = (2n− 1)!! (A.72)

where (2n− 1)!! = 1× 3× 5× . . .× (2n− 1) and

E|zt|2n+1 =

√
2

π
2nn! (A.73)

[see Gradshteyn and Ryzhik (1980, p.337, formula 3.461.3)]. Since

yt−1 = c1yt−2 + exp(wt−1/2)ryzt−1 ,

we have:
|yt−1|r = |c1yt−2 + exp(wt−1/2)ryzt−1|r . (A.74)

Using the c̃r−inequality [see Loeve (1963, p.155)], we can say that:

E|yt−1|r = E|c1yt−2 + exp(wt−1/2)ryzt−1|r

≤ c̃r

[
E|c1yt−2|r + E| exp(wt−1/2)ryzt−1|r

]

= c̃r

[
|c1|rE|yt−2|r + |ry|rE|zt−1|rE exp(

r

2
wt−1)

]
,

(A.75)
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where
c̃r = 1 for 0 < r ≤ 1 ,
c̃r = 2r−1 for r > 1 .

By Assumption 2.3, we have E|yt−1|r = E|yt−2|r, so that:

E|yt−1|r ≤ c̃r

1− c̃r|c1|r |ry|rE|zt−1|r exp(
r2

8

r2
w

1− a2
) ≡ Kr < ∞ (A.76)

with 1 − c̃r|c1|r 6= 0, and where E|zt|r is given by equations (A.72) and (A.73). In
particular, for r = 1,

E|yt−1| ≤ 1

1− |c1| |ry|
√

2

π
exp(

1

8

r2
w

1− a2
1

) ≡ K1

Thus, we can say that:
E|yt−1|r ≤ Kr < ∞ ,

for r finite. At this step, it is now possible to compute equation (A.71) which becomes

E|utyt−1|r ≤ E|zt|r|ry|r exp(
r2

8

r2
w

1− a2
1

)Kr ≡ Br < ∞ (A.77)

and this holds for any r finite. E|utyt−1|r = E|utyt−1|1+θ with θ = (r − 1) > 0 i.e.
r > 1 from which it follows that:

lim
M→∞

E(|ut(c1)yt−1|1|ut(c1)yt−1|≥M) = 0

[see Davidson, (1994, p.190 Theorem 12.10)]. And this holds for all t ∈ N\{0}. Thus,
the collection {ut(c1)yt−1, t ∈ N\{0}} is uniformly integrable.

Second, the process {ut(c1)yt−1, t ∈ N\{0}} which is a m.d.s. w.r.t. Ft can
be described as a L1-mixingale w.r.t. Ft with ξ0 = 1, ξm = 0 ,m ≥ 1 and set
ηt = E|ut(c1)yt−1| which corresponds to equation (A.77) with r = 1 from which it
follows that ηt ≤ B1 < ∞ or:

lim
T→∞

1

T

T∑
t=1

ηt ≤ lim
T→∞

1

T

T∑
t=1

B1 = B1 < ∞ .

Finally, by the L.L.N. for L1-mixingale [see Hamilton (1994, p.191, Proposition 7.6)]
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we conclude that :

1

T

T∑
t=1

(ut(c1)yt−1)
P→ E(ut(c1)yt−1) = 0 . (A.78)

b) To prove (3.22), we proceed in a similar way. Clearly, the process
{ut(c1)

3yt−1} = {vt(θ)
3yt−1} is a m.d.s. w.r.t. Ft = σ(st, st−1, . . .) where st = (yt, wt)

′

since:

E[ut(c1)
3yt−1|Ft−1] = yt−1E[ut(c1)

3|Ft−1]

= yt−1E[vt(θ)
3|Ft−1]

= yt−1E[exp(
3

2
wt)r

3
yz

3
t |Ft−1]

= yt−1r
3
yE(z3

t |Ft−1)E[exp(
3

2
wt)|Ft−1]

= yt−1r
3
yE(z3

t )E[exp(
3

2
wt)]

= 0 , (A.79)

from which it follows that E[ut(c1)
3yt−1] = 0 , ∀t ∈ N\{0}.

A little algebra yields for a finite positive integer r that:

E|ut(c1)
3yt−1|r = E|zt|3r|ry|3rE[exp(

3r

2
wt)]E|yt−1|r

≤ E|zt|3r|ry|3r exp(
9r2

8

r2
w

1− a2
1

)Kr ≡ Br < ∞ (A.80)

according to equations (A.76), (A.72) and (A.73). Further, E|ut(c1)
3yt−1|r =

E|ut(c1)
3yt−1|1+θ < ∞ for θ = r − 1 > 0 from which it follows that

lim
M→∞

E

(
|ut(c1)

3yt−1|1|ut(c1)3yt−1|≥M

)
= 0

[see James Davidson, (1994), p.190, Theorem 12.10]. And this holds for all t ∈ N\{0}.
Thus the collection {ut(c1)

3yt−1 , t ∈ N\{0}} is uniformly integrable.
Second, the process {ut(c1)

3yt−1 , t ∈ N\{0}} which is a m.d.s. w.r.t. Ft can be
described as a L1-mixingale w.r.t. Ft with ξ0 = 1, and ξm = 0 for m ≥ 1. Setting
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ηt = E|ut(c0)
3yt−1|, we can see at the light of equation (A.80) with r = 1 that

lim
T→∞

1

T

T∑
t=1

ηt ≤ lim
T→∞

1

T

T∑
t=1

B1 = B1 < ∞ .

Finally, by the L.L.N. for L1-mixingale we establish that:

1

T

T∑
t=1

ut(c1)
3yt−1

P→ E(ut(c1)
3yt−1) = 0 . (A.81)

c) To prove (3.23), we need to check that the conditions required by the L.L.N.
for L1-mixingales are met for this process. Note that E(u2

t (c1)ut−1(c1)yt−2) =
E(yt−2)E(u2

t ut−1) = 0 since E(yt−2) = 0. The proof is structured as follows. In
a first step we show that the process u2

t (c1)ut−1(c1)yt−2 is a L1-mixingale. To do so,
we need to show that

E|E[u2
t (c1)ut−1(c1)yt−2|Ft−m]| ≤ ηtξm

with limm→∞ ξm = 0. Let us first compute E[u2
t (c1)ut−1(c1)yt−2|Ft−m] for m ≥ 3, i.e.

E[u2
t (c1)ut−1(c1)yt−2|Ft−m] = E[u2

t ut−1(c
m−2
1 yt−m + cm−3

1 ut−m+1 + cm−4
1 ut−m+2 + . . .

+c1ut−3 + ut−2)|Ft−m]

= E[cm−2
1 yt−mu2

t ut−1 + cm−3
1 u2

t ut−1ut−m+1 + cm−4
1 u2

t ut−1ut−m+2

+ . . . + c1u
2
t ut−1ut−3 + u2

t ut−1ut−2|Ft−m]

= 0 (A.82)

since E(zt−1|Ft−m) = E(zt−1) = 0.
Similarly, we also have that E[u2

t (c1)ut−1(c1)yt−2|Ft−2] = 0. Therefore,

E|E[u2
t (c1)ut−1(c1)yt−2|Ft−m]| = 0 , m ≥ 2

Now for m = 1 we have:

E[u2
t ut−1yt−2|Ft−1] = ut−1yt−2E[r2

yz
2
t exp(a1wt−1 + rwvt)|Ft−1]

= ut−1yt−2r
2
yE(z2

t |Ft−1) exp(a1wt−1)E[exp(rwvt)|Ft−1]

= ut−1yt−2r
2
y exp(a1wt−1)E(z2

t )E[exp(rwvt)]

= ut−1yt−2r
2
y exp(a1wt−1) exp(

1

2
r2
w) . (A.83)
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Then, we have:

E|E[u2
t ut−1yt−2|Ft−1]| = E|ryzt−1 exp(wt−1/2)yt−2r

2
y exp(a1wt−1) exp(

1

2
r2
w)|

= E

(
exp[(a1 +

1

2
)wt−1] exp(

1

2
r2
w)|r3

y||zt−1||yt−2|
)

= |r3
y| exp(

1

2
r2
w)

√
2

π
E|yt−2| exp[

(a1 + 1
2
)2

2

r2
w

1− a2
1

]

≤ |r3
y| exp(

1

2
r2
w)

√
2

π
K1 exp[

(a1 + 1
2
)2

2

r2
w

1− a2
1

] ≡ B

(A.84)

recalling that E|yt−2| ≤ K1 and E|zt−1| =
√

2
π
. A similar calculation yields also that

E|E[u2
t ut−1yt−2|Ft]| = E|u2

t ut−1yt−2| ≤ B .

Then, the process {u2
t ut−1yt−2} is a L1-mixingale with ηt = E|u2

t ut−1yt−2|, ∀t, ξm = 1
for m = 0, 1, and ξm = 0 for m ≥ 2, and limT→∞ 1

T

∑T
t=1 ηt ≤ B < ∞.

On the other hand, we show that the process {u2
t ut−1yt−2} is uniformly integrable.

To do this, we shall compute E|u2
t ut−1yt−2|r for r = 1, 2, 3, . . ..

E|u2
t ut−1yt−2|r = E|r2

yz
2
t exp(wt)ryzt−1 exp(wt−1/2)yt−2|r

= E|r3
yz

2
t zt−1yt−2 exp(a1wt−1 + rwvt) exp(wt−1/2)|r

= E

(
|r3

y||z2
t ||zt−1||yt−2| exp[(a1 +

1

2
)wt−1] exp(rwvt)

)r

= |r3
y|rEz2r

t E|zt−1|rE|yt−2|r exp[
r2(a1 + 1

2
)2

2

r2
w

1− a2
1

] exp(
r2r2

w

2
)

≤ |r3
y|r

(2r)!

2rr!
E|zt−1|rKr exp[

r2(a1 + 1
2
)2

2

r2
w

1− a2
1

] exp(
r2r2

w

2
)

< ∞ for r < ∞ . (A.85)

Noting that:
E|u2

t ut−1yt−2|r = E|u2
t ut−1yt−2|1+θ < ∞

for θ = (r − 1) > 0 i.e. r > 1, r a finite integer, then it follows that

lim
M→∞

E(|u2
t ut−1yt−2|1|u2

t ut−1yt−2|≥M) = 0 ,
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[see Davidson (1994, p.190, Theorem 12.10)]. And this holds for any t ∈ N\{0, 1}.
Then, the collection {u2

t ut−1yt−2 , t ∈ N\{0, 1}} is uniformly integrable.
Finally, by the L.L.N. for L1-mixingales we deduce that:

1

T

T∑
t=1

u2
t ut−1yt−2

P→ Eu2
t ut−1yt−2 = 0 .

d) Finally, to prove (3.24), we need to show that the process {utu
2
t−1yt−1} is on

one hand a L1-mixingale w.r.t. the subfield Ft and on the other hand uniformly
integrable for the L.L.N for L1-mixingales to hold. Let us show first that the process
{utu

2
t−1yt−1} is a L1-mixingale w.r.t. Ft. More precisely, it is a m.d.s. w.r.t. Ft since:

E[ut(c1)u
2
t−1(c1)yt−1|Ft−1] = u2

t−1(c1)yt−1E[ut(c1)|Ft−1]

= u2
t−1(c1)yt−1E[ryzt exp(wt/2)|Ft−1]

= ryu
2
t−1(c1)yt−1E[zt|Ft−1]E[exp(wt/2)Ft−1]

= 0 , (A.86)

since zt
iid∼ N(0, 1). Hence, we deduce that E(ut(c1)u

2
t−1(c1)yt−1) = 0. Therefore,

the process {utu
2
t−1yt−1} which is a m.d.s. w.r.t. Ft can be described as a specific

L1-mixingale w.r.t. Ft with ξ0 = 1 and ξm = 0 for m ≥ 1.
On the second hand we show that this process is uniformly integrable. Using once

again the c̃r-inequality [see Loève (1963, p.155)] we can state that:

E|ut(c1)u
2
t−1(c1)yt−1|r = E|r3

yztz
2
t−1 exp(

wt

2
+ wt−1)c1yt−2 + r4

yztz
3
t−1 exp(

wt + 3wt−1

2
)|r

≤ c̃r

{
|c1|rE|yt−2|r|r3

y|rE|zt|rE|z2
t−1|r exp

[
r2

8
(2 + a1)

2 r2
w

1− a2
1

]

exp(
r2r2

w

8
) + |r4

y|rE|zt|rE|z3
t−1|r exp

[
r2

8
(3 + a1)

2 r2
w

1− a2
1

]

exp(
r2r2

w

8
)

}

≤ c̃r

{
|c1|rKr|ry|3rγr

(2r)!

2rr!
exp

[
r2

8
(2 + a1)

2 r2
w

1− a2
1

]
exp(

r2r2
w

8
)

+|ry|4rγrγ3r exp

[
r2

8
(3 + a1)

2 r2
w

1− a2
1

]
exp(

r2r2
w

8
)

}

≡ Br < ∞ (A.87)

where it has been shown earlier that E|yt−2|r ≤ Kr by equation (A.76), that γr ≡
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E|zt|r, γ3r ≡ E|zt−1|3r, and E|z2
t−1|r = Ez2r

t−1 = (2r)!
2rr!

since zt ∼ N(0, 1), and γr

and γ3r are given by equations (A.72), (A.73). Noting that E|ut(c1)u
2
t−1(c1)yt−1|r =

E|ut(c1)u
2
t−1(c1)yt−1|1+θ < ∞ with θ = r − 1 > 0, i.e. 1 < r < ∞, it follows that

lim
M→∞

E

(
|ut(c1)u

2
t−1(c1)yt−1|1|ut(c1)u2

t−1(c1)yt−1|≥M

)
= 0 .

And this holds for all t ∈ N\{0}. Hence, the collection {ut(c1)u
2
t−1(c1)yt−1 , ∀ t ∈

N\{0}} is uniformly integrable. Besides, taking ηt = E|ut(c1)u
2
t−1(c1)yt−1| which

corresponds to equation (A.87) with r = 1 yields

lim
T→∞

1

T

T∑
t=1

ηt ≤ lim
T→∞

1

T

T∑
t=1

B1 = B1 < ∞ .

We can finally apply the L.L.N. for L1-mixingales to state that:

1

T

T∑
t=1

ut(c1)u
2
t−1(c1)yt−1

P→ E(ut(c1)u
2
t−1(c1)yt−1) = 0 . (A.88)

Proof of Proposition 3.5
The asymptotic equivalence of the function:

√
T (ḡT (Û)− µ(θ)) =




1√
T

∑T
t=1(û

2
t − µ2(θ))

1√
T

∑T
t=1(û

4
t − µ4(θ))

1√
T

∑T
t=1(û

2
t û

2
t−1 − µ2,2(1)(θ))


 (A.89)

to
√

T (ḡT (θ)− µ(θ)) will be shown component by component.

1. The component 1√
T

∑T
t=1(û

2
t − µ2(θ))

Recall that u2
t (c) ≡ (yt − cyt−1)

2 and û2
t ≡ u2

t (ĉT ). Noting that:

u2
t (ĉT )− u2

t (c1) = (ĉ2
T − c2

1)y
2
t−1 − 2(ĉT − c1)ytyt−1

= −2(ĉT − c1)yt−1ut(c1) + y2
t−1(ĉT − c1)

2 ,

(A.90)

we deduce after aggregation:
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1√
T

T∑
t=1

(u2
t (ĉT )−µ2(θ)) =

1√
T

T∑
t=1

(u2
t (c1)−µ2(θ))−

√
T (ĉT−c1)

2

T

T∑
t=1

yt−1ut(c1)

+
√

T (ĉT − c1)(ĉT − c1)
1

T

T∑
t=1

y2
t−1 . (A.91)

By Lemmas 3.3,3.4 the last two terms of the right-hand side of equation (A.91)
are both op(1) variables. Hence, equation (A.91) is equivalent to

1√
T

T∑
t=1

(û2
t − µ2(θ))#

1√
T

T∑
t=1

(ut(c1)
2 − µ2(θ))

asymptotically.

2. The component 1√
T

∑T
t=1(û

4
t − µ4(θ)) Noting that:

u4
t (ĉT )− u4

t (c1) = −4yt−1u
3
t (c1)(ĉT − c1) + 6y2

t−1u
2
t (c1)(ĉT − c1)

2 − 4y3
t−1ut(c1)(ĉT − c1)

3

+y4
t−1(ĉT − c1)

4 (A.92)

yields after aggregation:

1√
T

T∑
t=1

(u4
t (ĉT )− µ4(θ)) =

1√
T

T∑
t=1

(ut(c1)
4 − µ4(θ)) + RT (A.93)

where

RT ≡ − 4

T

T∑
t=1

yt−1ut(c1)
3
√

T (ĉT − c1) + 6
√

T (ĉT − c1)
2 1

T

T∑
t=1

y2
t−1u

2
t (c1)

−4
√

T (ĉT − c1)
3 1

T

T∑
t=1

y3
t−1ut(c1) +

√
T (ĉT − c1)

4 1

T

T∑
t=1

y4
t−1 . (A.94)

We shall show here that RT is an op(1)-variable. To do so, let us first focus on
the second component of RT . Set

XT =
1

T

T∑
t=1

y2
t−1u

2
t (c1) ,

so |XT | = XT and
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E(XT ) =
1

T

T∑
t=1

E[y2
t−1u

2
t (c1)] =

1

T

T∑
t=1

E(y2
t−1)E(u2

t (c1)) = µY 2µ2(θ) < ∞ .

(A.95)

Hence by Markov inequality we have:

P [XT ≥ ε] ≤ E(XT )

ε
< ∞ ∀ε > 0.

Now for the third component of RT , set:

XT = − 4

T

T∑
t=1

y3
t−1ut(c1) ,

so that

|XT | ≤ 4

T

T∑
t=1

|y3
t−1ut(c1)|

=
4

T

T∑
t=1

|y3
t−1 exp(wt/2)|ry||zt| (A.96)

which yields:

E|XT | ≤ 4

T

T∑
t=1

E|yt−1|3|ry|E|zt|E exp(wt/2) < ∞ , (A.97)

by equations (A.73), (A.76) and by E exp(wt/2) = exp[r2
w/(8(1 − a2

1))] < ∞ .
Once again by Markov inequality, we have:

P [|XT | ≥ ε] ≤ E|XT |
ε

< ∞ ∀ε > 0.

Similarly, for the fourth component of RT , set:

XT =
1

T

T∑
t=1

y4
t−1 ≥ 0

so that |XT | = XT and EXT = 1
T

∑T
t=1 y4

t−1 = µY 4 < ∞, we can say by Markov
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inequality that:

P [XT ≥ ε] ≤ E(XT )

ε
< ∞ ∀ε > 0.

Finally, by Lemmas 3.3 and 3.4, we can conclude that RT is an op(1)-variable
which yields that

1√
T

T∑
t=1

(û4
t − µ4(θ))#

1√
T

T∑
t=1

(ut(c1)
4 − µ4(θ))

asymptotically.

3. The component 1√
T

∑T
t=1(û

2
t û

2
t−1 − µ2,2(1|θ))

Noting that:

u2
t (ĉT )u2

t−1(ĉT )−u2
t (c1)u

2
t−1(c1) = −2(ĉT−c1)[ut(c1)u

2
t−1(c1)yt−1+u2

t (c1)ut−1(c1)yt−2]

+ (ĉT − c1)
2[y2

t−1u
2
t−1(c1) + y2

t−2u
2
t (c1) + 4yt−1yt−2ut(c1)ut−1(c1)]

− 2(ĉT − c1)
3[y2

t−1yt−2ut−1(c1) + y2
t−2yt−1ut(c1)] + (ĉT − c1)

4y2
t−1y

2
t−2

(A.98)

yields after aggregation

1√
T

T∑
t=1

(u2
t (ĉT )u2

t−1(ĉT )−µ2,2(1|θ)) =
1√
T

T∑
t=1

(ut(c1)
2ut−1(c1)

2−µ2,2(1|θ))+RT

(A.99)
where

RT = −2
√

T (ĉT − c1)
1

T

T∑
t=1

[ut(c1)u
2
t−1(c1)yt−1 + u2

t (c1)ut−1(c1)yt−2]

+
√

T (ĉT − c1)
2 1

T

T∑
t=1

[y2
t−1u

2
t−1(c1) + y2

t−2u
2
t (c1) + 4yt−1yt−2ut(c1)ut−1(c1)]

−2
√

T (ĉT−c1)
3 1

T

T∑
t=1

[y2
t−1yt−2ut−1(c1)+y2

t−2yt−1ut(c1)]+
√

T (ĉT−c1)
4 1

T

T∑
t=1

y2
t−1y

2
t−2

(A.100)
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Let us focus on the following components of RT :

1

T

T∑
t=1

{
y2

t−1u
2
t−1(c1) + y2

t−2u
2
t (c1) + 4yt−1yt−2ut(c1)ut−1(c1) + y2

t−1yt−2ut−1(c1)

+ y2
t−2yt−1ut(c1) + y2

t−1y
2
t−2

}
(A.101)

If we can show that the expectation of the absolute value of each one of these
components is finite, then by Markov inequality we will be able to state that
these quantities are bounded in probability and then conclude that RT is an
op(1)-variable by Lemmas 3.3 and 3.4. In this aim, let us compute the expec-
tation of the absolute value of corresponding quantities. Set:

XT =
1

T

T∑
t=1

y2
t−1u

2
t−1(c1) ≥ 0 (A.102)

so that |XT | = XT and

EXT =
1

T

T∑
t=1

E[(c1yt−2 + ut−1(c1))
2u2

t−1(c1)] = c2
1µY 2µ2(θ) + µ4(θ) < ∞

by Assumptions 2.2 and 2.3. Similarly,

E

[
1

T

T∑
t=1

y2
t−2u

2
t (c1)

]
= µY 2µ2(θ) < ∞ .

Now, set:

XT =
4

T

T∑
t=1

yt−1yt−2ut(c1)ut−1(c1)

and replacing yt−1 by c1yt−2 +ut−1(c1) yields after taking the expectation of the
absolute value :

E|XT | ≤ 4

T

T∑
t=1

{
E|c1y

2
t−2ut(c1)ut−1(c1)|+ E|yt−2u

2
t−1(c1)ut(c1)|

}

=
4

T

T∑
t=1

{
E|c1y

2
t−2|E| exp(wt/2)r2

yztzt−1 exp(wt−1/2)|
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+E|yt−2|E| exp(wt−1)r
2
yz

2
t−1 exp(wt/2)ryzt|

}

(A.103)

where the equality comes from replacing the perturbations by their expression.
Then, exploiting the log-normality of the perturbations exp(wt), the indepen-
dence property of the innovations and Assumption 2.2, we get:

E|XT | ≤ 4

T

T∑
t=1

{
|c1|µY 2r

2
y exp[(

(a1 + 1)2

8
)

r2
w

1− a2
1

] exp(
r2
w

8
)E|zt|E|zt−1|

+ K1|ry|3 exp[1/2(1 + a1/2)2 r2
w

1− a2
1

] exp(
r2
w

8
)E|zt|

}

(A.104)

where the summation symbol disappears (the quantities inside do not depend
on t any more by Assumption 2.3) and where µY 2 = Ey2

t−2, K1 = E|yt−2| < ∞
by equation (A.76) and E|zt| < ∞ by equation (A.73). Hence E|XT | < ∞.

Now, consider:

XT =
1

T

T∑
t=1

y2
t−1yt−2ut−1(c1) ,

then

E|XT | ≤ 1

T

T∑
t=1

E|y2
t−1yt−2ut−1(c1)|

=
1

T

T∑
t=1

E|c2
1y

3
t−2ut−1(c1) + 2c1y

2
t−2u

2
t−1(c1) + yt−2u

3
t−1(c1)|

≤ 1

T

T∑
t=1

{
c2
1E|yt−2|3E|ut−1(c1)|+ 2|c1|Ey2

t−2Eu2
t−1(c1) + E|yt−2|E|ut−1(c1)|3

}

(A.105)

where the summation symbol disappears (the quantities inside do not depend
on t any more by Assumption 2.3) and we know that

E|ut−1(c1)| = E| exp(wt−1/2)ryzt−1| = |ry| exp(
r2
w

8(1− a2
1)

)E|zt−1| < ∞
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and
E|ut−1(c1)|3 = |ry|3 exp(

9r2
w

8(1− a2
1)

)E|zt−1|3 < ∞

since E|zt−1|2n+1 < ∞ by equation (A.73) and E|yt−2|r = kr < ∞ by equation
(A.76), we can deduce that E|XT | < ∞.

The proof is similar for

XT =
1

T

T∑
t=1

y2
t−2yt−1ut(c1)

yielding that:

E|XT | ≤ 1

T

T∑
t=1

{
|c1|E|yt−2|3 exp(

r2
w

8(1− a2
1)

)|ry|E|zt|

+ µY 2r
2
y exp[

(a1 + 1)2

8

r2
w

1− a2
1

] exp(
r2
w

8
)E|zt−1|E|zt|

}

(A.106)

which is finite by the same arguments as above. Now, if we set

XT =
1

T

T∑
t=1

y2
t−1y

2
t−2 ≥ 0

then |XT | = XT and

EXT =
1

T

T∑
t=1

E[y2
t−1y

2
t−2]

=
1

T

T∑
t=1

E[(c1yt−2 + ut−1(c1))
2y2

t−2]

= c2
1µY 4 + µY 2µ2(θ) < ∞ . (A.107)

Therefore all the quantities appearing in equation (A.101) have a finite expec-
tation of the absolute value, hence by Markov inequality we can say that they
are bounded in probability to finally conclude by Lemmas 3.3 and 3.4 that RT

is an op(1)-variable.

38



Therefore, we have the asymptotic equivalence below.

1√
T

T∑
t=1

(û2
t û

2
t−1 − µ2,2(1)(θ))#

1√
T

T∑
t=1

(ut(c1)
2ut−1(c1)

2 − µ2,2(1)(θ)) .

Thus,



1√
T

∑T
t=1(û

2
t − µ2(θ))

1√
T

∑T
t=1(û

4
t − µ4(θ))

1√
T

∑T
t=1(û

2
t û

2
t−1 − µ2,2(1)(θ))




asy

#




1√
T

∑T
t=1(u

2
t (c1)− µ2(θ))

1√
T

∑T
t=1(u

4
t (c1)− µ4(θ))

1√
T

∑T
t=1(u

2
t (c1)u

2
t−1(c1)− µ2,2(1)(θ))




(A.108)
and from equation (3.8) we know that ut(c1) = vt(θ) ∀ t then we have the asymptotic
equivalence √

T (ḡT (Û)− µ(θ))
asy

#
√

T (ḡT (θ)− µ(θ)) ,

with ḡT (θ) defined as in equation (3.18)

Proof of Lemma 3.6
Here we derive the covariances of the components of Xt = (X1t, X2t, X3t)

′ that is

γ1(τ) = Cov(X1t, X1,t+τ ) = E[(v2
t (θ)− µ2(θ))(v

2
t+τ (θ)− µ2(θ))]

= E(v2
t (θ)v

2
t+τ (θ))− µ2

2(θ)

= r4
yE exp(wt + wt+τ )− µ2

2(θ)

= r4
y exp(

r2
w

1− a2
1

(1 + aτ
1))− µ2

2(θ)

= µ2
2(θ)[exp(γaτ

1)− 1] , (A.109)

where γ = r2
w

1−a2
1
. Similarly,

γ2(τ) = Cov(X2t, X2,t+τ ) = E[(v4
t (θ)− µ4(θ))(v

4
t+τ (θ)− µ4(θ))]

= E(v4
t (θ)v

4
t+τ (θ))− µ2

4(θ)

= 9r8
yE exp[2(wt + wt+τ )]− µ2

4(θ)

= 9r8
y exp(4

r2
w

1− a2
1

(1 + aτ
1)− µ2

4(θ))

= µ2
4(θ)[exp(4γaτ

1)− 1] . (A.110)
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Finally,

γ3(τ) = Cov(X3t, X3,t+τ ) = E[(v2
t (θ)v

2
t−1(θ)− µ2,2(1|θ))(v2

t+τ (θ)v
2
t+τ−1(θ)− µ2,2(1|θ))]

= E(v2
t (θ)v

2
t−1(θ)v

2
t+τ (θ))v

2
t+τ−1(θ)− µ2

2(θ)

= r8
yE exp(wt+τ + wt+τ−1 + wt + wt−1)− µ2

2(θ)

= r8
y exp[2(1 + a1)γ] exp[γ(aτ−1

1 + 2aτ
1 + aτ+1

1 )]− µ2
2(θ)

= µ2
2,2(θ){exp[γ(aτ−1

1 + 2aτ
1 + aτ+1

1 )]− 1}
= µ2

2,2(θ){exp[γ(1 + a1)
2aτ−1

1 ]− 1} (A.111)

for all τ ≥ 2.

Proof of Proposition 3.7

In order to establish the asymptotic normality of
√

T (ḡT (θ)−µ(θ)) we shall use a
Central Limit Theorem (C.L.T) for dependent processes [see Davidson (1994, p.385,
Theorem 24.5)]. For that purpose, we shall first verify the conditions under which
this C.L.T holds. If we define:

Xt ≡



v2
t (θ)− µ2(θ)

v4
t (θ)− µ4(θ)

v2
t (θ)v

2
t−1(θ)− µ2,2(1|θ)




= gt(θ)− µ(θ) , (A.112)

ST =
T∑

t=1

Xt =
T∑

t=1

gt(θ)− µ(θ) , (A.113)

and the subfields Ft = σ(st, st−1, . . .) where st = (yt, wt)
′, we need to verify three

conditions, i.e.:
a) {Xt,Ft} is stationary and ergodic
b) {Xt,Ft} is a L1-mixingale of size −1
c)

lim sup
T→∞

T−1/2E|ST | < ∞ (A.114)

in order to get that T−1/2ST =
√

T (ḡT (θ)−µ(θ))
D→ N(0, Ω∗) [see Davidson (1994,

p.385, Theorem 24.5)].
a) By Propositions 5 and 17 from Carrasco,Chen (1999) we can say that

i) if {wt} is geometrically ergodic, then {(wt, ln |vt|)} is Markov geometrically
ergodic with the same decay rate as that of {wt};
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ii) if {wt} is stationary β-mixing with a certain decay rate, then {ln |vt|} is β-
mixing with a decay rate at least as fast as that of {wt}.

If the initial value v0 follows the stationary distribution, then {ln |vt|} is strictly sta-
tionary β-mixing with an exponential decay rate. Since this property is preserved
by any continuous transformation, {vt} and hence {vk

t } and {vk
t v

k
t−1} are strictly sta-

tionary and exponential β-mixing. We can then deduce that Xt is strictly stationary
and exponential β-mixing.

b) Moreover, a mixing zero-mean process is an adapted L1-mixingale with re-
spect to the subfields Ft provided it is bounded in the L1-norm [see Davidson
(1994,p.211,Theorem 14.2 )]. To see that {Xt} is bounded in the L1-norm, we note
that:

E|v2
t − µ2(θ)| ≤ E(|v2

t |+ |µ2(θ)|)
= 2µ2(θ) < ∞ ,

E|v4
t − µ4(θ)| ≤ 2µ4(θ) < ∞

and
E|v2

t v
2
t−1 − µ2,2(1|θ)| ≤ 2µ2,2(1|θ) < ∞.

We now need to show that the L1-mixingale {Xt,Ft} is of size −1. Since Xt is
β−mixing, it has mixing coefficients of the type βn = cρn , c > 0, , 0 < ρ < 1. In
order to show that {Xt} is of size −1, we need to show that its mixing coefficients
βn = O(n−φ), with φ > 1.

Indeed,

ρn

n−φ
= nφ exp(n log ρ)

= exp(φ log n) exp(n log ρ)

= exp(φ log n + n log ρ) .

It is known [see Rudin (1976, p.57, Theorem 3.20d)] that limn→∞ φ log n + n log ρ =
−∞ which yields

lim
n→∞

exp(φ log n + n log ρ) = 0 .

And this holds in particular with φ > 1.
c) Now, the last condition to verify before applying the Central Limit Theorem
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for dependent processes is to show that

lim sup
T→∞

T−1/2E|ST | < ∞

where

ST
def
=

T∑
t=1

Xt =
T∑

t=1




v2
t (θ)− µ2(θ)

v4
t (θ)− µ4(θ)

v2
t (θ)v

2
t−1(θ)− µ2,2(1|θ)


 .

It is known by Cauchy-Schwarz inequality that:

E|T−1/2ST | ≤ [E(T−1S2
T )]1/2 (A.115)

so that to show equation (A.114) is equivalent to show that lim supT→∞ T−1E(S2
T ) <

∞.
We shall prove that:

lim sup
T→∞

T−1E(S2
T ) = lim sup

T→∞
E

[
(

1√
T

ST )2

]

= lim sup
T→∞

V ar

[
1√
T

ST

]
< ∞ (A.116)

i) The first component of ST .
Set ST1 =

∑T
t=1 X1,t where X1,t ≡ v2

t (θ)− µ2(θ). We compute:

V ar

[
1√
T

ST1

]
=

1

T

[ T∑
t=1

V ar(X1,t) +
T∑

t=1
s6=t

Cov(X1,s, X1,t)

]

=
1

T

[
Tγ1(0) + 2

T∑
τ=1

(T − τ)γ1(τ)

]

= γ1(0) + 2
T∑

τ=1

(1− τ

T
)γ1(τ) , (A.117)

where γ ≡ r2
w/(1−a2

1). We must prove that
∑T

τ=1(1− τ
T
)γ1(τ) converge as T →∞. By

lemma 3.1.5 in Fuller (1976, p.112), it is sufficiant to show that
∑∞

τ=1 γ1(τ) converge.
Using the results of Lemma 3.6 we have:

γ1(τ) = µ2
2(θ)[exp(γaτ

1)− 1]
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= µ2
2(θ)

[
1 +

∞∑

k=1

(γaτ
1)

k

k!
− 1

]

= µ2
2(θ)

[
γaτ

1

∞∑

k=1

(γaτ
1)

k−1

k!

]

= µ2
2(θ)

[
γaτ

1

∞∑

k=0

(γaτ
1)

k

(k + 1)!

]

≤ µ2
2(θ)γaτ

1

∞∑

k=0

(γaτ
1)

k

k!

= µ2
2(θ)γaτ

1 exp(γaτ
1). (A.118)

Therefore, the series

∞∑
τ=1

γ1(τ) ≤ µ2
2(θ)γ

∞∑
τ=1

aτ exp(γaτ ) ≤ µ2
2(θ)γ exp(γa)

∞∑
τ=1

aτ

= µ2
2(θ)

aγ exp(γa)

1− a
< ∞ (A.119)

converges. We deduce by Cauchy-Schwarz inequality that

lim sup
T→∞

T−1/2E|
T∑

t=1

(
v2

t (θ)− µ2(θ)

)
| < ∞ .

The proof is very similar for the second component of ST . We will skip to the
third component of ST .

ii) The third component of ST .
Likewise, we just have to show that

∑∞
τ=1 γ3(τ) < ∞ in order to prove that

lim sup
T→∞

T−1/2E|∑T
t=1

(
v2

t (θ)v
2
t−1(θ)− µ2,2(θ)

)
| < ∞.

By lemma 3.6 we have for all τ ≥ 2:

γ3(τ) = µ2
2,2(1|θ)[exp(γ(1 + a1)

2aτ−1
1 )− 1]

= µ2
2,2(1|θ)

{
1 +

∞∑

k=1

[γ(1 + a1)
2aτ−1

1 ]k

k!
− 1

}

= µ2
2,2(1|θ)[γ(1 + a1)

2aτ−1
1 ]

∞∑

k=1

[γ(1 + a1)
2aτ−1

1 ]k−1

k!
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= µ2
2,2(1|θ)[γ(1 + a1)

2aτ−1
1 ]

∞∑

k=0

[γ(1 + a1)
2aτ−1

1 ]k

(k + 1)!

≤ µ2
2,2(1|θ)[γ(1 + a1)

2aτ−1
1 ]

∞∑

k=0

[γ(1 + a1)
2aτ−1

1 ]k

k!

= µ2
2,2(1|θ)[γ(1 + a1)

2aτ−1
1 ] exp[γ(1 + a1)

2aτ−1
1 ] , (A.120)

such that :
∞∑

τ=1

γ3(τ) ≤ γ3(1) + µ2
2,2(1|θ)γ(1 + a1)

2

∞∑
τ=2

aτ−1
1 exp[γ(1 + a1)

2aτ−1
1 ]

≤ γ3(1) + µ2
2,2(1|θ)γ(1 + a1)

2 exp[γ(1 + a1)
2a1]

∞∑
τ=2

aτ−1
1

= γ3(1) + µ2
2,2(1|θ)γ(1 + a1)

2 exp[γ(1 + a1)
2a1]

∞∑
τ=1

aτ
1

= γ3(1) + µ2
2,2(1|θ)γ(1 + a1)

2 exp[γ(1 + a1)
2a1]

a1

1− a1

< ∞ .

(A.121)

Since lim supT→∞ T−1/2E|∑T
t=1 Xt| < ∞ we can therefore apply Theorem 24.5,

p.385 [see Davidson (1994)] to the process {Xt,Ft} defined in equation (A.112) with
Ft = σ(Xt, Xt−1, . . .), and establish that

T−1/2ST = T−1/2

T∑
t=1

Xt =
√

T (ḡT (θ)− µ(θ))
D→ N(0, Ω∗) , (A.122)

where

Ω∗ = lim
T→∞

E[(T−1/2ST )2]

= lim
T→∞

E[(
√

T (ḡT (θ)− µ(θ)))2]

= lim
T→∞

E

[
1√
T

T∑
t=1

(gt(θ)− µ(θ))

]2

. (A.123)

Proof of Proposition 3.8
The method-of-moments estimator θ̂T (Ω) is solution of the following optimization
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problem:
min

θ
MT (θ) = min

θ
(µ(θ)− ḡT (Û))′Ω̂(µ(θ)− ḡT (Û)) (A.124)

where we recall that

ḡT (Û) =




1
T

∑T
t=1 û2

t
1
T

∑T
t=1 û4

t
1
T

∑T
t=1 û2

t û
2
t−1


 , (A.125)

or else ḡT (Û) = 1
T

∑T
t=1 gt(Û) and ût = ut(ĉT ), and µ(θ)′ = (µ2(θ), µ4(θ), µ2,2(1|θ)).

The first order conditions (F.O.C) associated with this problem are:

∂µ′

∂θ
(θ̂T )Ω̂(µ(θ̂T )− ḡT (Û)) = 0 .

An expansion of the F.O.C above around the true value θ yields

∂µ′

∂θ
(θ̂T )Ω̂

(
µ(θ) +

∂µ

∂θ′
(θ)(θ̂T − θ)− ḡT (Û)

)
' 0

after rearranging the equation we have

√
T (θ̂T (Ω)− θ) '

(
∂µ′

∂θ
(θ)Ω

∂µ

∂θ′
(θ)

)−1
∂µ′

∂θ
(θ)Ω

√
T (ḡT (Û)− µ(θ)) .

Using then, propositions 3.5 and 3.7 we get the asymptotic normality of θ̂T (Ω) with
asymptotic covariance matrix W (Ω) as specified in proposition 3.9.

Proof of Proposition 4.1
The proofs derived here follow the lines of Gourieroux,Monfort,Renault (1993). The
parameter θ such that θ′ = (a, ry, rw) is partitioned into two subvectors

θ =

(
θ1

θ2

)

with θ1 = a and θ′2 = (ry, rw) . The null hypothesis is defined by H0 : {θ1 = 0} which
corresponds to test the absence of long memory in the model, i.e. a = 0.

The expansion given earlier can be rewritten under the null hypothesis with the
optimal metric Ω∗−1:

√
T

[
θ̂1T

θ̂2T − θ2

]
∼

[(
∂µ′
∂θ1

∂µ′
∂θ2

,

)
Ω∗−1(

∂µ

∂θ′1
,

∂µ

∂θ′2
)

]−1
(

∂µ′
∂θ1

∂µ′
∂θ2

,

)
Ω∗−1

√
T (ḡT (Û)− µ(θ))
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√
T θ̂1T ' (A11 − A12A

−1
22 A21)

−1(
∂µ′

∂θ1

− A12A
−1
22

∂µ′

∂θ2

)Ω∗−1
√

T (ḡT (Û)− µ(θ)) .

We note that:
∂µ′

∂θ1

− A12A
−1
22

∂µ′

∂θ2

=
∂µ′

∂θ1

[Id−M2]
′

where

M2 =
∂µ

∂θ′2

[
∂µ′

∂θ2

Ω∗−1 ∂µ

∂θ′2

]−1
∂µ′

∂θ2

Ω∗−1 (A.126)

and Aij = ∂µ′
∂θi

Ω∗−1 ∂µ
∂θj

which yields

√
T θ̂1T ' (A11 − A12A

−1
22 A21)

−1 ∂µ′

∂θ1

[Id−M2]
′Ω∗−1

√
T (ḡT (Û)− µ(θ0)) . (A.127)

Thus,

V aras(
√

T θ̂1T ) = (A11−A12A
−1
22 A21)

−1 ∂µ′

∂θ1

[Id−M2]
′Ω∗−1[Id−M2]

∂µ

∂θ′1
(A11−A12A

−1
22 A21)

−1

and we show that ∂µ′
∂θ1

[Id−M2]
′Ω∗−1[Id−M2]

∂µ
∂θ′1

= (A11 − A12A
−1
22 A21) yielding

W1 ≡ V aras(
√

T θ̂1T ) = (A11 − A12A
−1
22 A21)

−1 . (A.128)

Indeed,

∂µ′

∂θ1

[Id−M2]
′Ω∗−1[Id−M2]

∂µ

∂θ′1
=

∂µ′

∂θ1

(
Id− ∂µ

∂θ′2

[
∂µ′

∂θ2

Ω∗−1 ∂µ

∂θ′2

]−1
∂µ′

∂θ2

Ω∗−1

)′
Ω∗−1

(
Id− ∂µ

∂θ′2

[
∂µ′

∂θ2

Ω∗−1 ∂µ

∂θ′2

]−1
∂µ′

∂θ2

Ω∗−1

)
∂µ

∂θ′1

=
∂µ′

∂θ1

(
Id−Ω∗−1 ∂µ

∂θ′2

[
∂µ′

∂θ2

Ω∗−1 ∂µ

∂θ′2

]−1
∂µ′

∂θ2

)
Ω∗−1

(
Id− ∂µ

∂θ′2

[
∂µ′

∂θ2

Ω∗−1 ∂µ

∂θ′2

]−1
∂µ′

∂θ2

Ω∗−1

)
∂µ

∂θ′1

=

(
∂µ′

∂θ1

Ω∗−1 − ∂µ′

∂θ1

Ω∗−1 ∂µ

∂θ′2
A−1

22

∂µ′

∂θ2

Ω∗−1

)

(
∂µ

∂θ′1
− ∂µ

∂θ′2
A−1

22

∂µ′

∂θ2

Ω∗−1 ∂µ

∂θ′1

)
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=
∂µ′

∂θ1

Ω∗−1 ∂µ

∂θ′1
− ∂µ′

∂θ1

Ω∗−1 ∂µ

∂θ′2
A−1

22

∂µ′

∂θ2

Ω∗−1 ∂µ

∂θ′1
= A11 − A12A

−1
22 A21 .

Thus, the Wald statistic
ξW
T = T θ̂′1T Ŵ−1

1 θ̂1T

is asymptotically equivalent to:

ξW
T = T (ḡT (Û)− µ(θ))′Ω∗−1[Id−M2]

∂µ

∂θ′1
(A11 − A12A

−1
22 A21)

−1

(A11 − A12A
−1
22 A21)

{
∂µ′

∂θ1

[Id−M2]
′Ω∗−1[Id−M2]

∂µ

∂θ′1

}−1

(A11 − A12A
−1
22 A21)(A11 − A12A

−1
22 A21)

−1 ∂µ′

∂θ1

[Id−M2]
′Ω∗−1(ḡT (Û)− µ(θ)) ,

that is

ξW
T = T (ḡT (Û)− µ(θ))′Ω∗−1[Id−M2]

∂µ

∂θ′1{
∂µ′

∂θ1

[Id−M2]
′Ω∗−1[Id−M2]

∂µ

∂θ′1

}−1
∂µ′

∂θ1

[Id−M2]
′Ω∗−1(ḡT (Û)− µ(θ)) .

The score statistic is based on the gradient of the objective function with respect
to θ1 evaluated at the constrained estimator θ̂

′c
T = (0, r̂c

y, r̂
c
w) i.e.

DT =
∂µ′

∂θ1

(θ̂c
T )Ω∗−1(µ(θ̂c

T )− ḡT (Û))

' ∂µ′

∂θ1

(θ)Ω∗−1

(
µ(θ) +

∂µ

∂θ′2
(θ)(θ̂c

2T − θ2)− ḡT (Û)

)

' −∂µ′

∂θ1

(θ)Ω∗−1

(
ḡT (Û)− µ(θ0)− ∂µ

∂θ′2
(θ)(θ̂c

2T − θ2)

)

' − 1√
T

∂µ′

∂θ1

(θ)Ω∗−1

(√
T (ḡT (Û)− µ(θ))− ∂µ

∂θ′2
(θ)
√

T (θ̂c
2T − θ2)

)

Given that

√
T (θ̂c

2T − θ2) '
(

∂µ′

∂θ2

(θ)Ω∗−1 ∂µ

∂θ′2
(θ)

)−1
∂µ′

∂θ2

(θ)Ω∗−1
√

T (ḡT (Û)− µ(θ))
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we have

DT ' − 1√
T

∂µ′

∂θ1

(θ)Ω∗−1

(√
T (ḡT (Û)− µ(θ))− ∂µ

∂θ′2
(θ)A−1

22

∂µ′

∂θ2

(θ)Ω∗−1
√

T (ḡT (Û)− µ(θ))

)

' − 1√
T

∂µ′

∂θ1

(θ)(Id−M2)
′Ω∗−1

√
T (ḡT (Û)− µ(θ))

where M2 has been defined at equation (A.126). Finally, from equation (A.127) we
have

DT ' −(A11 − A12A
−1
22 A21)θ̂1T . (A.129)

There is asymptotically a one-to-one linear relationship between DT and the unre-
stricted estimator θ̂1T and this shows that the score test is asymptotically equivalent
to the Wald test and

V aras(DT ) = A11 − A12A
−1
22 A21 . (A.130)

On the other hand, the difference between the two optimal values of the objective
function (the constrained minus the unconstrained one) is such that

ξC
T ' T (ḡT (Û)− µ(θ))′[Id−M2]

′Ω∗−1[Id−M2](ḡT (Û)− µ(θ))

−(ḡT (Û)− µ(θ))′[Id−M ]′Ω∗−1[Id−M ](ḡT (Û)− µ(θ))

where M2 = ∂µ
∂θ′2

A−1
22

∂µ′
∂θ2

Ω∗−1 and M = ∂µ
∂θ′2

(
∂µ′
∂θ

Ω∗−1 ∂µ
∂θ′

)−1
∂µ′
∂θ

Ω∗−1 . Thus,

ξC
T ' T (ḡT (Û)− µ(θ))′Ω∗−1[Id−M2](ḡT (Û)− µ(θ))

−(ḡT (Û)− µ(θ))′Ω∗−1[Id−M ](ḡT (Û)− µ(θ))

' T (ḡT (Û)− µ(θ))′Ω∗−1[M −M2](ḡT (Û)− µ(θ)) .

A classical argument of block inverse gives

Ω∗−1[M −M2] = Ω∗−1[Id−M2]
∂µ

∂θ′1

(
∂µ′

∂θ1

[Id−M2]
′Ω∗−1[Id−M2]

∂µ

∂θ′1

)−1

∂µ′

∂θ1

[Id−M2]
′Ω∗−1

and the asymptotic equivalence between ξC
T and ξW

T follows.

48



References
Andersen, T., G. (1994): “Stochastic Autoregressive Volatility: A Framework for

Volatility Modelling.,” Mathematical Finance, 4(2), 75–102.

Andersen, T., and B. Sorensen (1996): “GMM Estimation of a Stochastic Volatil-
ity Model: A Monte Carlo Study,” Journal of Economics and Business Statistics,
14(3), 328–352.

Andersen, T. G., H.-J. Chung, and B. E. Sørensen (1999): “Efficient Method
of Moments Estimation of a Stochastic Volatility Model: A Monte Carlo Study,”
Journal of Econometrics, 91, 61–87.

Andrews, D. (1987): “Asymptotic Results for Generalized Wald Tests,” Economet-
ric Theory, 3, 348–358.

Baillie, R., and H. Chung (2001): “Estimation of GARCH Models from the Auto-
correlations of the Squares of a Process,” Journal of Time Series mAnalysis, 22(6),
631–650.

Bansal, R., A. R. Gallant, R. Hussey, and G. E. Tauchen (1995): “Non-
parametric Estimation of Structural Models for High-Frequency Currency Market
Data,” Journal of Econometrics, 66, 251–287.

Barnard, G. A. (1963): “Comment on “The Spectral Analysis of Point Processes"
by M. S. Bartlett,” Journal of the Royal Statistical Society, Series B, 25, 294.

Berger, A., and S. Wallenstein (1989): “On the Theory of C(α) tests,” Statistics
and Probability Lettres, 7, 419–424.

Birnbaum, Z. W. (1974): “Computers and Unconventional Test-Statistics,” in Re-
liability and Biometry, ed. by F. Proschan, and R. J. Serfling, pp. 441–458. SIAM,
Philadelphia, PA.

Bollerslev, T. (1986): “Generalized Autoregressive Conditional Heteroscedastic-
ity,” Journal of Econometrics, 51, 307–327.

Carrasco, M., and X. Chen (1999): “β-mixing and Moment Properties of Various
GARCH, Stochastic Volatility and ACD Models,” Discussion paper, London School
of Economics.

Chen, M., and G. Chen (2000): “Geometric ergodicity of nonlinear autoregressive
models with changing conditional variances,” The Canadian Journal of Statistics,
28(3), 605–613.

49



Danielsson, J. (1994): “Stochastic Volatility in Asset Prices: Estimation with Sim-
ulated Maximum Likelihood,” Journal of Econometrics, 61, 375–400.

Danielsson, J., and J.-F. Richard (1993): “Accelerated Gaussian Importance
Sampler with Application to Dynamic Latent Variable Models,” Journal of Applied
Econometrics, 8, S153–S173.

Davidson, J. (1994): Stochastic Limit Theory, Advanced Texts in Econometrics.
Oxford University Press Inc., New York.

Duffie, D., and K. J. Singleton (1993): “Simulated Moments Estimation of
Markov Models of Asset Prices,” Econometrica, 61, 929–952.

Dufour, J.-M. (1995): “Monte Carlo Tests with Nuisance Parameters: A General
Approach to Finite-Sample Inference and Nonstandard Asymptotics in Economet-
rics,” Discussion paper, C.R.D.E., Université de Montréal.

Dufour, J.-M., L. Khalaf, J.-T. Bernard, and I. Genest (2001): “Simulation-
Based Finite-Sample Tests for Heteroscedasticity and ARCH Effects,” Discussion
Paper 08-2001, Universitè de Montrèal, C.R.D.E.

Dufour, J.-M., and A. Trognon (2001): “Invariant tests based on M-estimators,
estimating functions, and the generalized method of moments,” Discussion paper,
CIREQ, University of Montreal.

Dwass, M. (1957): “Modified Randomization Tests for Nonparametric Hypotheses,”
Annals of Mathematical Statistics, 28, 181–187.

Engle, R. F. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates
of the Variance of United Kingdom Inflation,” Econometrica, 50, 987–1007.

Foutz, R. V. (1980): “A Method for Constructing Exact Tests from Test Statistics
that have Unknown Null Distributions,” Journal of Statistical Computation and
Simulation, 10, 187–193.

Fuller, W. A. (1976): Introduction to statistical Time Series. John Wiley and Sons,
New York.

Gallant, A., D. Hsieh, and G. Tauchen (1995): “Estimation of Stochastic
Volatility Models with Diagnostics,” Discussion paper, Duke University.

Gallant, A. R., and G. Tauchen (1996): “Which Moments to Match?,” Econo-
metric Theory, 12, 657–681.

50



Ghysels, E., A. Harvey, and E. Renault (1996): “Stochastic Volatility,” in
Statistical Methods in Finance, ed. by C. Rao, and G. Maddala, Holland. North-
Holland.

Goffe, W. L., G. D. Ferrier, and J. Rogers (1994): “Global Optimization
of Statistical Functions with Simulated Annealing,” Journal of Econometrics, 60,
65–99.

Gouriéroux, C. (1997): ARCH Models and Financial Applications, Springer Series
in Statistics. Springer-Verlag, New York.

Gouriéroux, C., and A. Monfort (1995): Simulation Based Econometric Meth-
ods, CORE Lecture Series. CORE Foundation, Louvain-la-Neuve.

Gouriéroux, C., A. Monfort, and E. Renault (1993): “Indirect Inference,”
Journal of Applied Econometrics, 8S, 85–118.

Gradshteyn, I., and I. Ryzhik (1980): Table of integrals, series, and products.
Corrected and enlarged edition. Academic Press inc.

Hamilton, J. (1994): Time Series Analysis. Princeton University Press Inc., New
Jersey.

Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moments
Estimators,” Econometrica, 50, 1029–1054.

Harvey, A., E. Ruiz, and N. Shephard (1994): “Multivariate Stochastic Variance
Models,” Review of Economic Studies, 61, 247–264.

Harvey, A., and N. Shephard (1996): “Estimation of an asymmetric stochastic
volatility model for asset returns,” Journal of business and Economic statistics, 14,
429–434.

Jacquier, E., N. Polson, and P. Rossi (1994): “Bayesian Analysis of Stochastic
Volatility Models (with discussion),” Journal of Economics and Business Statistics,
12, 371–417.

Kim, S., and N. Shephard (1994): “Stochastic Volatility: Optimal Likelihood
Inference and Comparison with ARCHModels,” Discussion paper, Nuffield College,
Oxford, unpublished paper.

Kim, S., N. Shephard, and S. Chib (1996): “Stochastic Volatility: Likelihood
Inference and Comparison with ARCHModels,” Discussion paper, Nuffield College,
Oxford, unpublished paper.

51



(1998): “Stochastic volatility : Likelihood inference and comparison with
ARCH models,” Review of economic studies, 65, 361–393.

Kocherlakota, S., and K. Kocherlakota (1991): “Neyman’s C(α) test and
Rao’s efficient score test for composite hypotheses,” Statistics and Probability Let-
tres, 11, 491–493.

Loève, M. (1963): Probability Theory. Van Nostrand Reinhold, LTD., third edn.

Mahieu, R., and P. Schotman (1998): “An Empirical application of stochastic
volatility models,” Journal of Applied Econometrics, 13, 333–360.

Marriott, F. H. C. (1979): “Barnard’s Monte Carlo Tests: How Many Simula-
tions?,” Applied Statistics, 28, 75–77.

Melino, A., and S. Turnbull (1990): “Pricing Foreign Currency Options with
Stochastic Volatility,” Journal of Econometrics, 45, 239–265.

Monfardini, C. (1997): “Estimating Stochastic volatility Models through Indirect
Inference,” Discussion paper, European University Institute.

Nelson, D. (1988): “Times series behavior of stock market volatility and returns,”
unpublished Ph.P dissertation, Massachusetts Institute of technology, Economics
Dept.

Newey, W. K., and K. D. West (1987a): “Hypothesis Testing with Efficient
Method of Moments Estimators,” International Economic Review, 28, 777–787.

(1987b): “A Simple, Positive Semi-Definite, Heteroskedasticity and Auto-
correlation Consistent Covariance Matrix,” Econometrica, 55, 703–708.

Ronchetti, E. (1987): “Robust C(α)-type tests for linear models,” Sankhya: The
Indian journal of Statistics, 49(Series A), 1–16.

Rudin, W. (1976): Principles of Mathematical Analysis. McGraw-Hill, Inc.

Ruiz, E. (1994): “Quasi-maximum likelihood estimation of stochastic variance mod-
els,” Journal of Econometrics, 63, 284–306.

Shephard, N. (1996): “Statistical Aspects of ARCH and Stochastic Volatility,” in
Time Series Models in Econometrics, Finance and Other Fields, ed. by D. Cox,
O. Barndorff-Nielsen, and D. Hinkley. Chapman & Hall, London.

Tauchen, G. (1996): “New Minimum Chi-Square Methods in Empirical Finance,”
Discussion paper, Department of Economics, Duke University.

52



Taylor, S. (1986): Modelling Financial Time Series. John Wiley, Chichester.

(1994): “Modelling Stochastic Volatility,” Mathematical Finance, 4, 183–204.

Wong, C. (2002a): “Estimating stochastic volatility:new method and comparison,”
Discussion paper, University of Oxford, Ph.d. Thesis.

(2002b): “The MCMC method for an extended stochastic volatility model,”
Discussion paper, University of Oxford, Ph.d. Thesis.

53


