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Abstract 
 
This paper considers the performance a model of mixture normal distributions for 

dichotomous choice contingent valuation data, which allows the researcher to consider 

unobserved heterogeneity across the sample. The model is flexible and approaches a semi-

parametric model, since any empirical distribution can be represented by augmenting the 

number of mixture distributions. Bayesian inference allows for simple estimation of the 

model and is particularly appropriate for conducting inference with finite data sets. The 

proposed model is compared with other semi-parametric and parametric approaches using 

Monte Carlo simulation, under alternative assumption regarding heteroschedasticity and 

heterogeneity in sample observations. It is found that the mixture normal model reduces 

bias and improves performance with respect to an alternative semi-parametric model, 

particularly when the sample is characterized by heterogeneous preferences. 

 

Keywords. Bayesian inference, Contingent Valuation, Flexible distributions, Heterogeneity, 

Normal mixture, Willingness to pay. 
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1. Introduction 

 

The valuation of environmental goods requires appropriate methods to measure the benefits 

society receives from their preservation. Contingent valuation (CV) is one of such methods 

which is basically a survey approach to the study of individual preferences. The question 

format can be a binary request for a yes/no response to a given price randomly chosen from 

a set of prices and randomly distributed across the sample. This is also called the 

dichotomous choice method (DC), which was earlier proposed by Bishop and Heberlein 

(1979) and further developed by Hanemann (1984) and Cameron (1988). This format has 

also been supported by Arrow et al. (1993) as a protocol to measure the damages to passive 

use values.  

 

DC data can be statistically modeled by fitting a probability function and then integrating 

for the computation of the welfare measures represented by the mean and the median 

willingness to pay (WTP). Parametric models have the problem that they can fail to 

represent the empirical distribution leading to bias and inconsistent results (Yatchew and 

Griliches, 1984). Li and Mattson (1995) show that when the individuals are uncertain about 

their preferences, logit and probit models overestimate the variance of the error term. In 

addition, the welfare measures, particularly the mean, can be sensitive to the distribution 

assumption, as shown by Carson et al. (1994). These basic problems have led to the 

consideration of non-parametric approaches, such as Ayer´s (Kriström, 1991) and 

Turnbull’s (Carson et al., 1994) estimators. The former estimator is very simple from a 

computational point of view but fails to allow for the incorporation of covariates in 
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explaining individual WTP. The latter involves complex computations when covariates are 

included in the model. 

 

Semiparametric models allow for more flexible assumptions regarding the true distribution 

and permit the incorporation of explanatory variables besides the bid price. In general, 

these approaches decompose the response probability function into a cumulative 

distribution and an index or link function (Hanemann and Kanninen, 1999).  For instance, 

Coslett’s (1983) approach estimates the distribution function non-parametrically and then 

maximizes the likelihood function numerically for the link parameters. This estimator has 

been applied by Li (1996) showing that it reduces bias with respect to parametric 

approaches. Similar results are found by other approaches that assume a known form for 

the distribution function and a more flexible assumption for the link function. This is the 

case of An’s (2000) model based on the assumption of a Weibull distribution and a flexible 

link function. Similarly, Chen and Randall (1997) and Creel and Loomis (1997) considered 

the assumption of a logistic distribution and a Fourier flexible form for the index function, 

and Cooper (2002) proposes methods for the calculation of bounded willingness to pay 

measures with these approaches. 

 

Even though semiparametric models are more flexible than the parametric approaches and 

result in better performance against real data, they still require estimation of the error 

distribution, as commented by Lewbel and McFadden (1997), and some assumptions for 

either the cumulative distribution or the link function. In addition, they cannot provide 

exact inference for the predictive probability conditional on a particular observation of the 

covariates. On the other hand, Horowitz (1993) finds that misspecification errors in the 
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cumulative distribution could be more relevant when the assumptions of homoschedasticity 

and unimodality are not appropriate for the data.  

 

In this paper we consider the performance of a mixture normal distribution approach to 

modeling DC-CV data, similar to Geweke and Keane (1999). The mixture model allows us 

to represent any empirical data, while the normality assumption can be removed by 

increasing the number of distributions in the mixture. Mixture modeling provides an 

appropriate representation of individual heterogeneity by mixing on both the mean and 

variance parameters. The model is estimated by Bayesian techniques involving Gibbs 

sampling and data augmentation, which enables us to simulate the posterior distribution and 

conduct exact inference. The performance of the model is evaluated by Monte Carlo 

simulation against the seminonparametric approach by Creel and Loomis (1997). The 

results indicate that the mixture normal approach represents DC data more accurately than 

competing models.  

 

The mixture model approach allows us to model unobserved heterogeneity as arising from 

the empirical data. The number of mixture distributions is endogenously determined and 

reflects preference variation across different groups of individuals in the sample. There can 

be individuals who favor the environmental good in question, while others might oppose it 

or be indifferent. In the literature on CV methods, there are several ad hoc procedures 

which have attempted to model sample heterogeneity. For instance, McFadden (1994) and 

Kriström (1997) model zero responses with a probability mass at zero, or “spike”, while 

Habb (1999) consider a participation model. Huttala (2000) also consider a controversial 

policy where there are different opinions in favor and against the policy.  
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These approaches have in common the inclusion of additional questions in the market 

construct regarding individual attitudes, which could lead to strategic or starting point 

biases in the responses. That is, if the discriminating question comes after the valuation 

question, it could be influenced by the price offered, whereas if it comes before the 

valuation question, the subject might find it easier to reject the valuation scenario, opting to 

be out of the market for any positive price. The approach proposed in this paper does not 

rely on additional questions to model unobserved heterogeneity. This arises from the 

modeling process by considering a mixture of distributions which accurately reflects the 

various patterns of preferences showed by the empirical data. 

 

The paper is organized as follows. Section 2 presents the modeling approach based on 

Bayesian inference for mixture normal distributions. Section 3 compares the proposed 

model against alternative parametric and non-parametric models using Monte Carlo 

simulation. We consider alternative assumptions of the error distribution regarding 

heteroschedasticity and unobserved heterogeneity. Finally, section 4 summarizes the main 

conclusions. 

 

2. Model of mixture normal distributions 

 

Let us assume that the individual faces a change in a non-market or environmental good 

from q0 to q1 (with q1>q0). If the indirect utility function V after the change becomes higher 

then , where M is income and z is a vector of 000111 ),,(  ),,( εε >+ qzMVqzMV +
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socioeconomic variables and prices, andε , i=1,2 are error terms which reflect the change 

in unobserved non deterministic preferences. 

i

iε

iM

1 (i

,i z

, zi

(M

If the subject faces price Bi for the change in q, the answer would be “yes” if  

, and no in the opposite case. Thus,  000111 ),,(  ),,( iiiiiiii qzMVqzBMV ε ≥+− +

{ } { }000111 ),,(  ),,(  obPryes"" obPr iiiiiiii qzMVqzBV εε +≥+−=               (1) 

A monetary measure of the welfare change is given by the compensating variation, i.e. 

      V                                      (2) 11000 ),, ),,( iiiiiiii qzWTPMVqzM εε −=+ +

where WTP is the maximum willingness to pay that the subject gives to the change in q, 

and can be written as a function WTP . Let us denote the deterministic 

part  and the random part 

asε . The probability of an affirmative answer is given by: 

),,,,( 1010
iiii qqM εε

,( ),( 011 zMVqBM iiii −− ), ),,,,( 010 qVqqBzMV iiiiii =∆

01
ii εε −=i

             { } { } )(),,,,Probyes"" Prob 10 VFBqqzWTP iiiii ∆=>= εε                         (3) 

where Fε is the cumulative distribution function. The error distribution can be specified as 

some parametric form, and the model estimated by maximum likelihood (Hanemann and 

Kanninen, 1999). However, flexible forms and non-parametric methods provide better  

representations of the empirical data, reducing bias (Creel and Loomis, 1997). A way of 

introducing flexibility in the distribution is to consider a mixture of m normal distributions. 

This assumption eliminates the normality assumption, approaching a semi-parametric 

model. By increasing the number of normal distributions in the mixture, any distribution 
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can be approximated (Titterington et al., 1985).  The stochastic terms adopt the following 

form: 
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where vector X contains the variables which influence utility (z, M, q0, q1), β is a k x 

1vector of parameters and Φ(.) is the standard normal distribution. The median Me(WTP) 

is given by the following equality: 

                             (6) ( )[ ] 5.0 
)(

0 

'2/1

1
∫ ∑ =









−−Φ
=

ECMe

ijij

m

j
j dBXBhp βα

The likelihood function across the sample under the mixture assumption is:  
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Maximum likelihood estimators of the parameters can be obtained by accordingly 

optimizing this function using some non-linear method. Bateman et al. (2001) point out that 

dichotomous choice models require relatively larger samples than other elicitation methods 

to obtain comparable efficiency levels. In addition, asymptotic properties of ML estimators 

do not need to be maintained with small and finite samples2. Anderson and Richardson 

(1979) and Griffiths et al. (1987) found out relevant biases with numerical simulations of 

probit and logit models with small samples, while Copas (1988) utilize Taylor series 

expansions to define the bias obtained for a logit model with small samples. 

Bayesian methods as developed by Chib (1992) and Albert and Chib (1993) are capable of 

providing exact inference with small samples. The prior distributions are defined as 

follows:  
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)( pp  ∼ Beta(r) 

where , and( )mrrr ,...,1= ),...,( 1 mααα = αH is an m x m matrix. The last two matrixes are 

positively defined. The posterior distribution is difficult to evaluate by conventional 

multiple integration methods. This problem can be bypassed by using a Gibbs sampling 

algorighm. This involves sampling from the conditional posterior distributions when they 

are known in a feasible form. Thus, even though WTP = (WTP1, WTP2, ..., WTPn)’ is not 

observed, it is possible its simulation from available information. Thus, given Y = (y1, y2, 

..., yn)’ and  θ = (β, α, h, p), the posterior distribution following data augmentation 

π(θ|Y,WTP) and the conditional density of the latent variable f(WTPi|Y,θ) are known in a 

manageable form. The posterior distribution of θ is simulated by sampling from these 

conditional distributions. The latent variable is distributed as 

                               WTPi  ∼ ( )1' , −+′
iLii hexN αβ                           (8) 
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2 See Amemiya (1985) or Huber (1981) for a more detailed discusión of the asymptotic proporties 
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where φ(.) I[a,b] is the truncated normal density function in [a,b], T  and ,  

represent the chi-squared and Beta density functions respectively. It can be shown that the 

posterior means are
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Taking the starting value θ, θ(0) = (β(0), α(0), h(0), p(0)), the Gibbs sampling algorithm obtains 

iterated samples from each of the posterior conditional distributions. The algorithm is 

carried on t times leading to the simulated vector (WTP(t), β(t), α(t), h-1(t), p(t)) obtained from 

the joint distribution (WTP, β, α, h-1,p)|Y. These series of algorithms of size t are repeated 

over H times, leading to H values for each parameter which are simulated from the 

posterior distribution, i.e. [WTPh
(t), βh

(t), αh
(t), hh

-1(t), ph
(t))]H

h=1. The moments of interest are 

obtained from these simulated values. 

                                                                                                                                                     
of ML estimators.  
3 This restriction guarantees the identification of the model (Geweke and Keane, 1999)   
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3. Monte Carlo experiment 

The performance of the mixture distribution model can be compared with alternative 

parametric and semi-parametric models utilizing Monte Carlo simulation4. The objective is 

to measure the potential errors which can be obtained under alternative modeling 

approaches when there is misspecification in the model, i.e. when the estimated model does 

not conform with the model developing the empirical data. The crucial question is whether 

flexible approaches such as seminonparametric or mixture distribution models are capable 

of reducing these misspecification errors when the data are contaminated by 

heteroschedasticity or cross-sectional heterogeneity. 

Let us assume that WTP for a change from q0 to q1 is as follows: 

                            WTPi = xi’β + εi ;       with Var (WTPi) = σ2
   (14)  

where variables in xi and parameters {β, σ}are known from an empirical experiment. 

Consider that there are only two covariates as follows: 

 

2
521   and  )1,0( χ∼∼ xNiidx . 

 

Other specifications for the covariates were also considered but did not produce relevant 

changes in the results. The true values of the parameters were assumed from empirical data 

as . Thus, the deterministic part of true WTP which 1985y  005.0,1500 2
21 === σββ
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responds to observed heterogeneity is known, and there is only need to specify the 

stochastic part i.e. the distribution Fε, which can be influenced by unobserved heterogeneity 

across the sample. 

 

Non-market valuation data can be generated under alternative assumptions. Let us consider 

six alternative distribution structures as specified in Table 1: i) homocedastic logistic ii) 

normal, ii) Normal or probit heterocedastic, iii) heterocedastic logit, iv) heterocedastic 

probit, v) weak preference heterogeneity (winners and indifferent) and vi) strong preference 

heterogeneity (winners, losers and indifferent). The latter two assumptions reflect different 

positions about the value of the environmental good, which can respond to different 

preferences or ethical beliefs. 

 

In order to measure the sensitivity of the results to the sample size, the data development 

process involves generating 300 samples of sizes 150 and 800 for the true and estimated 

WTP according to the following steps: 

 

i) Take a sample of size 1000 of the covariates xi and generate WTP from 

equation (14) assuming the true parameters {β, σ} and fit a normal 

distribution to these WTP data. A four bid vector design (B1, B2, B3, B4) is 

generated by calculating the percentiles of the inverse F-1(ϕ/ϕ +1), where F 

is the fitted normal distribution with the estimated mean and variance, and 

ϕ=1,..,4. 

                                                                                                                                                     
4 The computer codes in GAUSS program utilized for estimation and simulations are available from 
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ii) Generate a sample for the explanatory variables xi for i=1,…nJ (nJ =150, 

800). These samples (one for each sample size) are used to fix the 

deterministic part xi’β  in equation (14). 

iii) Generate 300 samples of the true WTP of size nJ =150, 800 by randomizing 

from each of the specification of the random part in Table 1 and assuming 

WTPi = xi’β + εi.  

                                                                                                                                                    

iv) For each sample size nJ generate a random sample of the bid vector (B1, B2, 

B3, B4) following a multinomial distribution MN(nJ, 0.25, 0.25, 0.25, 0.25). 

v) The binary choice responses (yi) are generated such that a yes is obtained if 

WTPi < Bi and no in the opposite case. 

vi) The binary choice data is utilized to estimate models under the alternative 

distribution structures and sample sizes utilizing maximum likelihood for the 

rigid parametric logit, and the alternative flexible models of the semi-

parametric (SNPDF) approach by Creel and Loomis (1997)5, and the 

Bayesian mixture distribution (BMNP) approach6. The number of mixtures 

m for the BMNP is determined by grid search from 1 to 10 and choosing the 

model with the lowest Bayesian information criteria (BIC). 

 
the authors upon request. 
5 The truncation point was chosen according to the lowest mean squared error. 
6 The starting values for the Gibbs sampling simulations were taken from maximum likelihood and 
the number of iterations was 12000. The computation of the posterior moments involved a burn-in 
period of 1500 draws. 
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vii) For each sample and estimated model we compute the mean squared error 

(MSE) as the goodness of fit statistics. The bias resulting from the difference 

between the estimated and true mean WTP is also generated, and therefore 

the variance for each estimated model. 

Tables 2 to 4 present the simulation results assuming alternative specifications of the error 

term in the true model generating the data. The best number of mixtures for the BMNP 

varied according to the type of simulated data. For homocedastic data this was m=1, while 

for heterocedastic and heterogeneous data the m parameter varied between 3 and 4 in most 

cases. The MSE, bias and variance are all expressed as a percentage of the true WTP. Table 

2 focuses on the data generated from homocedastic Logit and Probit models. The 

misspecification error according to the MSE is not large if a logit model is utilized to fit 

data generated from a normal distribution with constant variance. Horowitz (1993) showed 

that these differences are not significant at the 95% level. For this reason, we do not present 

here the estimation results with the normal distribution.  

The SNPDF model reduces MSE both in large and small samples, but these reductions are 

due to the decrease in the estimated variance when the samples are small, and to the 

reduction in bias when they are large. This is also the case for the BMNP but with a larger 

reduction in MSE, particularly for small samples. Thus, the BMNP is largely more exact 

with small samples than the SNPDF model, either when the data is generated from logit or 

from probit. The reduction in MSE for the BMNP model is about 33% with respect to the 

rigid structure, while it is only of 15% and 5% for true logit and probit respectively with the 

SNPDF model. 
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Table 3 shows the results under the true assumption of heterocedastic models. For the 

probit heterocedastic data we find that MSE raises for all estimated models above those 

obtained in Table 2 for the probit homocedastic data. These impacts on MSE are due to 

largest bias and become higher (40%) if we use the logit model to fit these data, while they 

stay much moderate for the alternative flexible models (10%) and with larger samples. It is 

interesting that with heterocedastic data there are not larger differences between the SNPDF 

and the BMNP models, since MSE are quite closed for all situations but for the small 

samples in the probit case.  

In all flexible models with heterocedastic data, although MSE are rather close, the bias is 

always smaller with the BMNP model than with the SNPDF model. The logit model as 

applied to these data structure, although it shows up much larger MSEs than the flexible 

approaches, this is due to the largest variance. The bias is smaller, particularly with small 

samples. Thus, the BMNP model shows smaller bias than the SNPDF model, approaching 

the bias level obtained with the rigid logit model. On the other hand, when the flexible 

models are applied to the logit heterocedastic data, the results do not deviate as much from 

those obtained with the logit homocedastic data, with a slight improvement for the SNDPF 

model. 

Table 4 presents the modeling results for the data generated under the assumption of weak 

and strong unobserved heterogeneity across the sample. In all models and with all sample 

sizes the MSEs rise above those obtained in previous results. This reflects the difficulty in 

modeling this type of data. The MSE is always larger under weak heterogeneity than under 

strong heterogeneity. This is clearly due to the larger bias and estimated variance obtained 

with the logit and SNPDF models applied to the former data sets. However, for the BMNP 
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model the differences in MSE between both types of data are due to the larger variance 

under weak heterogeneity in the case of small samples and larger bias in the case of large 

samples.  

The MSE obtained with the SNPDF is comparable to the logit model with small samples 

for both types of heterogeneity, with a small improvement with large samples. The BMNP 

model performs better than the competing models in both contexts of heterogeneity, both 

for small and large samples. It can be seen that these improvements in the MSE are more 

influenced by the reduction in biases with respect to the true WTP, although the variances 

are also smaller in three of the cases. The reduction in MSE is about 30% with respect to 

the SNPDF model in all situations, while the reduction in bias is even larger for small 

samples, but more moderate for large samples. 

 

4. Conclusions 

Dichotomous choice models have become a common approach to measure the value of 

non-market goods utilizing the CV method. The use of rigid parametric structures could 

lead to misspecification biases in welfare estimates. Flexible and seminonparametric 

approaches could be useful to check whether the data complies with rigid functional forms, 

and are capable of providing a more accurate representation of the empirical distribution 

given by sample responses. In this paper we have considered a Bayesian normal mixture 

distribution approach which approaches a semiparametric model as the number of 

distributions in the mixture is increased.  

 17 



The mixture distribution model has the advantage of being able to represent unobserved 

heterogeneity by increasing the number of mixture distributions responding to different 

groups of individuals with different positions regarding the value of the environmental 

good. This also introduces flexibility in the modeling approach since it is capable of 

considering multimodal empirical distributions. In the limit, any distribution can be 

represented with an infinite number of mixtures.  

The mixture model has been compared with the rigid logit model as well as with the 

seminonparametric approach by Creel and Loomis (1997). The results of the MC 

simulations for the alternative modeling approaches show that when the data is 

homocedastic both the SNPDF and the BMNP models are capable to improve performance 

against the logit model, with somewhat lower MSE for the BMNP model. This model 

overcomes SNPDF in small samples because the lower bias, while biases are comparable 

for large samples. However, the Bayesian mixture model does not show a great 

improvement against the competing modes with homocedastic data. 

When the original data is characterized by heteroschedasticity, the simulation results show 

that the logit model presents the largest MSE because the large variance, while it is more 

accurate than the competing flexible models, which are more efficient. There are no large 

differences in MSE between the SNPDF and the BMNP. In general, the SNPDF slightly 

overcomes the BMNP for large samples, but the opposite is true for small samples. 

However, the BMNP model always produces lower bias, comparable to the rigid logit 

model in the case of large samples. In conclusion, the BMNP is more accurate than the 

SNPDF and more efficient than the logit model for heterocedastic data. 
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In the case of heterogeneous data the Bayesian mixture model overcomes their counterparts 

by a larger margin. This is the type of data which reflects a variety of preferences in the 

sample, with subjects who may be in favor of the policy option while others oppose to it. 

The results of the simulations show that the BMNP substantially reduces MSE against both 

logit and SMNP models, and this reduction is particularly due to the decrease in bias in the 

case of small samples and the fall in variance in the case of large samples. These results are 

valid for both types of heterogeneity (weak and strong), although the latter type of data 

leads to better performance of the models. The improvements in bias with the BMNP 

model are larger for small samples. 
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Table 1. Specification of the error terms in true WTP models 

MODEL Distribution Especification of εi 

Model 1 Logistic (Logit) εi ∼ iid Logistic 

Model 2 Normal (Probit) εi ∼ iid N(0,σ2) 

Model 3 Logit Heterocedastic ( )βε '1 iii xv +×= , where vi ∼ iid Logistic 

Model 4 Probit Heterocedastic ( )βε '1 iii xv +×= , where vi ∼ iid N(0,σ2) 

Model 5 Weak heterogeneity     
(favour and indifferent) ii vp×=ε , where vi ∼ iid N(0,σ2) and p=0.7 

Model 6 
Strong heterogeneity    

(favour, indifferent and 
against) 

iii vpvp 2211 ×+×=ε , where p1=0.5 ; p2= 0.2;   
v1i ∼ iid N(0,σ2) and v2i ∼ iid N(-2 1

'βix ,σ2)(*); 

 (*) with β1 = (1300, 0.003) 
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Table 2. Monte Carlo ressults assuming rigid structures for true Fε 

 

True models 
 

Logit  

 

Probit 

Estimated models n=150 n=800 n=150 n=800 

MSE 0.74 0.40 0.68 0.44 

Bias 0.19 -0.56 0.18 0.53 Logit 

Variance 0.70 0.08 0.65 0.16 

MSE 0.62 0.48 0.65 0.42 

Bias -0.39 -0.34 -0.43 -0.28 SNPDF 

Variance 0.46 0.36 0.47 0.35 

MSE 0.50 0.39 0.43 0.31 

Bias -0.21 0.33 -0.27 0.25 BMNP 

Variance 0.45 0.28 0.36 0.25 
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Table 3. Monte Carlo ressults assuming heteroschedascity for true Fε 

 

True models 
 

Heteroc. Logit 

 

Heteroc. Probit 

Estimated models n=150 n=800 n=150 n=800 

MSE 0.93 0.66 1.23 0.74 

Bias 0.14 -0.28 0.22 -0.22 Logit 

Variance 0.90 0.58 1.18 0.69 

MSE 0.58 0.36 0.72 0.46 

Bias 0.38 0.42 -0.69 -0.43 SNPDF 

Variance 0.44 0.18 0.25 0.27 

MSE 0.50 0.39 0.53 0.48 

Bias 0.31 0.24 0.34 0.28 BMNP 

Variance 0.40 0.32 0.41 0.40 
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Table 4. Monte Carlo ressults with heterogeneity for true Fε 

 

True models 
 

Weak heterog. 

 

Strong heterog. 

Estimated models n=150 n=800 n=150 n=800 

MSE 1.47 1.01 0.99 0.90 

Bias 0.60 0.50 -0.37 0.46 Logit 

Variance 1.11 0.76 0.85 0.68 

MSE 1.41 0.87 0.95 0.84 

Bias -0.62 -0.47 0.38 -0.32 SNPDF 

Variance 1.02 0.65 0.80 0.73 

MSE 1.15 0.67 0.65 0.51 

Bias -0.23 0.41 -0.20 0.25 BMNP 

Variance 1.09 0.50 0.61 0.45 
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