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Abstract. In this paper, I develop a quasi empirical likelihood estimator that has good finite sam-

ple properties when there are many moment conditions. I show that the quasi empirical likelihood

estimator, which uses semiparametric efficient estimation, is an approximation to the empirical

likelihood estimator, which has been shown to have good statistical properties. The quasi empir-

ical likelihood estimator is a consistent estimator and has a normal asymptotic distribution. As

with the full-blown empirical likelihood estimator, the quasi empirical likelihood estimator reduces

finite-sample bias, but is much simpler to compute than the empirical likelihood estimator. Monte

Carlo experiments and a quick validation exercise confirm my theoretical results.

1. Introduction

Moment condition models arise frequently in applied economics, including the instrumental vari-

able estimation of supply or demand functions, Euler equations implied by dynamic optimization,

and even dynamic panel data models. The two-stage least squares (2SLS) and generalized method

of moments (GMM) estimators, not surprisingly, have received much attention in the literature

because, under fairly general regularity conditions, these estimators are consistent, efficient, and

asymptotically normal (Newey and McFadden, 1994). Recent work in this area, however, has called
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into question the validity of these statistical properties in the finite-sample setting (e.g., Bekker,

1994; Altonji and Segal, 1996; Staiger and Stock, 1997; Newey and Smith, 2004). In particular,

finite-sample bias can arise due to a large number of moment conditions or because of weak identifi-

cation (weak instruments, in the linear instrumental variables setting). This finite-sample bias can

result in misleading confidence intervals and potentially meaningless hypothesis testing. Therefore,

researchers must either implement alternatives to 2SLS and GMM or choose the number of moment

conditions so as to minimize some measure of badness (such as mean squared error) to reduce finite

sample bias.

Alternatives to 2SLS and GMM include the limited information maximum likelihood estimator

(LIML), the continuous updating estimator (CUE; Hansen, Heaton, and Yaron, 1996), the em-

pirical likelihood estimator (EL; Owen, 1988, 1990, 1991, 2001; Qin and Lawless (1994), and the

exponential tilting estimator (ET; Kitamura and Stutzer, 1997; Imbens, 1997; Imbens, Spady, and

Johnson, 1998). Newey and Smith (2004) show that CUE, EL, and ET, begin part of the class of

generalized empirical likelihood estimators, are as unbiased as infeasible GMM, in which the opti-

mal weight matrix is known a priori. Further, the EL estimator eliminates all bias asymptotically,

regardless of the number of moment conditions. An additional benefit of EL is that its empirical

likelihood ratio test is at least as powerful as any other overidentifying restrictions test under some

size constraint (Kitamura, 2001). Unfortunately, these estimators do not come without cost. EL

becomes computationally burdensome (and possibly even intractable) when the number of moment

conditions is even moderately large. LIML and CUE typically suffer from fat-tailed finite-sample

distributions.

In contrast to implementing an alternative estimation technique, Donald and Newey (2001)

suggest choosing the number of instruments (or, synonymously, moment conditions) to minimize

approximate mean squared error in order to reduce finite-sample bias. While this may indeed

be an improvement over the naive use of all available instruments, this approach may not prove

particularly useful in empirical applications for several reasons. First, even when the number of

instruments is chosen optimally, the number of instruments may still be large relative to the sample

size. Thus, finite-sample bias may still be a problem (see, for instance, Bekker, 1994). Second,

once one has chosen the optimal number of instruments, the choice among instruments is arbitrary.
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Researchers using the same data and following the same methodology can come to completely

different conclusions – all based on the selection of particular (sets of) instruments.

I therefore propose the quasi empirical likelihood estimator (QEL), which reduces finite-sample

bias in estimating moment condition models but is very simple to compute (much akin to two-

step GMM), even when the number of moment conditions is large. QEL approximates EL via

semiparametric efficient estimation (Brown and Newey, 1998). I show that QEL is nearly unbiased

under higher-order asymptotic theory. Because of this, QEL can drastically reduce finite-sample

bias, but at a fraction of the computational cost of EL. Further, because this result is robust to

the number of moment conditions, QEL eliminates the need to choose among moment conditions

arbitrarily. In addition, QEL has an intuitive GMM interpretation and is robust to general forms

of heteroskedasticity.

QEL, however, is not a perfect estimator. First, as with all estimators, QEL assumes that the

moment conditions hold. That is, the underlying moment conditions are assumed to hold in the

population. Second, QEL trades bias for variance. So even though bias is lower, variance is higher.

In general, however, the contribution of reduced bias in the mean squared error is larger than the

contribution of increased variance, leading to mean squared error gains. Finally, QEL relies on a

consistent initial estimator of the underlying population parameters. An initial estimator suffering

from finite-sample bias, for instance, may lead to increased biased or variance over infeasible QEL.

This suggests that QEL iterations could prove useful in reducing finite-sample bias and/or variance.

The remainder of this paper is organized as follows. Section 2 develops a conditional moment

model and reviews the estimators of interest. Section 3 describes Brown and Newey’s (1998)

approach to the efficient estimation of expectation functions under semiparametric assumptions.

Section 4 derives the new QEL estimator and Section 5 contains the higher-order asymptotic results

(proofs are contained in the Appendix). Section 6 provides Monte Carlo evidence as a check on the

robustness of my theoretical results and then validates the estimators against a well-known data

set. Section 7 concludes.

2. Conditional Moment Models and Estimators

The statistical model I consider is one with a large, but finite, number of moment conditions.

To describe the model, let Zi (i = 1, . . . , n) be i.i.d. observations on a data vector Z, β be a
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p× 1 parameter vector, and g(Zi, β) be an m× 1 vector of moment conditions, where m ≥ p. The

population has a true, unknown parameter β0 satisfying the moment condition

E[g(Zi, β0)] = 0, (2.1)

where E[·] denotes the expectation operator with respect to the distribution of Zi. Throughout the

remainder of this paper, let gi(β) = g(Zi, β), ḡ(β) = n−1
∑n

i=1 gi(β), and Ω̂(β) = n−1
∑n

i=1 gi(β)gi(β)′.

Finally, let β̄ be some consistent preliminary estimator of β0 and let B denote the parameter space.

An important estimator of β0 is the optimal GMM estimator of Hansen (1982):

β̂GMM = arg min
β∈B

ḡ(β)′Ω̂(β̄)−1ḡ(β). (2.2)

In this setting, Ω̂(β̄) is the optimal weight matrix evaluated at a consistent preliminary estimate of

β0. When the moment condition is linear in β, as is the case with the linear simultaneous equations

model (for instance, yi = x′iβ + ui, xi = Π′zi + vi, and ui correlated with vi), the optimal two-step

GMM estimator takes the form

β̂2GMM = [X ′ZΩ̂(β̄)−1Z ′X]−1X ′ZΩ̂(β̄)−1Z ′Y, (2.3)

where X, Y , and Z are just the stacked versions of xi, yi, and zi, respectively. The 2SLS estimator

(Theil, 1953) assumes homoskedasticity of εi, so it uses the weight matrix n−1
∑n

i=1 ziz
′
i instead of

Ω̂, yielding

β̂2SLS = [X ′Z(Z ′Z)−1Z ′X]−1X ′Z(Z ′Z)−1Z ′Y. (2.4)

Another important estimator of β0 is the CUE of Hansen, Heaton, and Yaron (1996). The CUE

is analogous to GMM except that the objective function is also minimized over β in Ω̂(β)−1:

β̂CUE = arg min
β∈B

ḡ(β)′Ω̂(β)−ḡ(β), (2.5)

where A− denotes any generalized inverse of the matrix A satisfying AA−A = A. The LIML

estimator (Anderson and Rubin, 1949) can be computed as

β̂LIML = [X ′(I− γM)X]−1X ′(I− γM)Y, (2.6)
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where γ is the smallest characteristic root of W1W
−1, W = (Y, X)′M(Y, X), W1 = (Y, X)′M1(Y,X),

M = I−Z(Z ′Z)−1Z ′, M1 = I− ι(ι′ι)−1ι′, and ι is an n-vector of ones (in this case, where no exoge-

nous variables, save the constant, are included as explanatory variables). Some studies have shown

some equivalence between CUE and LIML.

EL (Owen, 1988, 1990, 1991, 2001; Qin and Lawless, 1994), in contrast to the estimators so far,

utilizes an alternative form of the analogy principle (Manski, 1988), minimizing a distance between

probability measures rather than the distance of the population moment conditions from their

sample counterparts. That is, EL assigns multinomial weights {pi}n
i=1 to each of the observations,

{Zi}n
i=1, so that

∑n
i=1 pigi(β) = 0. This allows EL to choose probabilities so that the sample

moment conditions hold exactly. The optimal pis maximize the empirical log-likelihood

1
n

n∑

i=1

ln(pi) (2.7)

subject to the sample moment conditions

n∑

i=1

pigi(β) = 0, (2.8)

and constraints on the EL probabilities

∑n
i=1 pi = 1,

and pi ≥ 0
(2.9)

for all i = 1, . . . , n. The optimal EL probabilities, {p∗i }n
i=1, can be shown to take the form

p∗i =
1
n

[1 + λ′gi(β)]−1, (2.10)

where λ is the m-vector of Lagrange multipliers for the sample moment condition constraints.

Substituting the optimal EL probabilities back into the empirical log-likelihood function yields

lnLEL = − 1
n

n∑

i=1

ln[1 + λ′gi(β)]. (2.11)

The EL estimator of β0 is then

β̂EL = arg min
β∈B

max
λ∈Λ

1
n

n∑

i=1

ln[1 + λ′gi(β)]. (2.12)
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The first-order necessary condition for an optimum of the empirical log-likelihood function are

1
n

n∑

i=1

[1 + λ̂
′
ELgi(β̂EL)]−1gi(β̂EL) = 0 (2.13)

with respect to λ and

1
n

n∑

i=1

{
[1 + λ̂

′
ELgi(β̂EL)]−1 ∂gi(β̂EL)

∂β

}′
λ̂EL = 0 (2.14)

with respect to β, where λ̂EL and β̂EL denote the implicit solutions to these first-order conditions.

Unfortunately, a closed-form solution exists for neither λ̂EL or β̂EL, so one must either solve the

first-order conditions numerically or optimize the empirical log-likelihood function directly.

Newey and Smith (2004) show that EL is asymptotically unbiased even when the number of

moment conditions is large. This is because EL implicitly estimates the optimal instruments. That

is, EL implicitly uses optimal estimates of the Jacobian and optimal weight matrices, G(β) =

E[∂gi(β)/∂β] and Ω(β) = E[gi(β)gi(β)′], respectively. By comparison, optimal GMM uses the

simple sample analogs of G(β) and Ω(β) – Ĝ and Ω̂, respectively. The QEL estimator of this paper

implements semiparametric efficient estimates of G(β) and Ω(β), which turn out to be weighted

averages, to mimic the properties of the EL estimator.

3. Semiparametric Efficient Estimation

Brown and Newey (1998) develop techniques to estimate expectation functions efficiently under

semiparametric assumptions. In particular, they consider three semiparametric assumptions: inde-

pendence (εi ⊥ zi), zero conditional mean (E[εi|zi] = 0), and zero unconditional mean (E[gi(β0)] =

0). The estimators we have considered thus far utilize the latter type of assumption. This section

therefore discusses the efficient estimation of G(β) = E[∂gi(β)/∂β] and Ω(β) = E[gi(β)gi(β)′] under

the semiparametric assumption E[gi(β0)] = 0.

But first, consider the estimation of an arbitrary expectation function, E[mi(β)] when we assume

E[gi(β0)] = 0. Brown and Newey show that the semiparametric efficient estimator of E[mi(β)] takes

the form

m̃(β̄) =
1
n

n∑

i=1

[mi(β̄)− c(β̄)′Ω̂(β̄)−1gi(β̄)], (3.1)
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where

c(β̄) =
1
n

n∑

j=1

mj(β̄)gj(β̄) (3.2)

and Ω̂ and β̄ are defined as before. The semiparametric efficient estimator of the expectation

function may be written in a simpler, more intuitive form. Let

wi = 1− ḡ(β̄)′Ω̂(β̄)−1gi(β̄). (3.3)

Then the semiparametric estimator of E[mi(β)] is

m̃(β̄) =
1
n

n∑

i=1

wimi(β̄). (3.4)

The weights wi/n are the optimal probability weights of the discrete points of the empirical dis-

tribution. This is similar to the result reported in Back and Brown (1993), in which the sample

moment conditions are used to construct the implied probabilities associated with the empirical

distribution function. Indeed, as I now show, these weights are a first-order Taylor expansion of

the optimal EL probabilities.

Proposition 1. The weights wi/n proposed by Brown and Newey (1998) are a first-order Taylor

expansion of the optimal empirical likelihood probabilities, p∗i .

The weights wi ≡ 1−qi, where qi = ḡ(β̄)′Ω̂(β̄)−1gi(β̄), have an intuitive interpretation. Suppose,

for a moment, that ḡ(β̄) < 0 and m = 1 (only one moment condition). Observations with gi(β̄) <

0, thus contributing to ḡ(β̄) being negative, have qi > 0. Thus wi < 1 for these observations.

Observations with gi(β̄) > 0, however, have qi < 0 and wi > 1. Therefore, the method proposed by

Brown and Newey gives less weight to observations that contribute to the sample moment conditions

not holding, while giving more weight to observations that can cause the sample moment conditions

to hold more closely. An analogous result holds for the case in which ḡ(β̄) > 0. This mechanism

will cause the sample moment conditions to hold exactly for a given β̄.

Proposition 2. If wi = 1− ḡ(β̄)′Ω̂(β̄)−1gi(β̄) then n−1
∑n

i=1 wigi(β̄) = 0.

Note that m̃(β̄) = m̄(β̄)− m̆(β̄), where m̄(β̄) = n−1
∑n

i=1 mi(β̄) and m̆(β̄) = n−1
∑n

i=1 qimi(β̄).

The Brown and Newey weights therefore make a linear adjustment to m̄(β̄).
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The efficient estimators of G(β) = E[∂gi(β)/∂β] and Ω(β) = E[gi(β)gi(β)′] under the semipara-

metric assumption E[gi(β0)] = 0 are thus

G̃(β̄) =
1
n

n∑

i=1

wi
∂gi(β̄)

∂β
(3.5)

and

Ω̃(β̄) =
1
n

n∑

i=1

wigi(β̄)gi(β̄)′, (3.6)

where again, β̄ is a consistent initial estimator of β0. Under certain conditions (most notably

E[g3
i ] 6= 0), Brown and Newey show that these weighted averages are semiparametric efficient

relative to their sample average counterparts, since the latter do not use the information contained

in the moment conditions. Thus, I expect higher-order gains from using the weighted averages over

using the simple averages. I now show how the semiparametric estimation of expectation functions

provides a link between GMM and EL estimation.

4. Quasi Empirical Likelihood Estimation

Recall that a closed-form solution exists for neither λ̂EL nor β̂EL, even if gi(β) is linear in β.

The first-order condition with respect to λ may be rewritten as

1
n

∑n
i=1

1

1+λ̂
′
ELgi(β̂EL)

gi(β̂EL)′ = 1
n

∑n
i=1

1+λ̂
′
ELgi(β̂EL)−λ̂

′
ELgi(β̂EL)

1+λ̂
′
ELgi(β̂EL)

gi(β̂EL)′

= ḡ(β̂EL)′ − λ̂
′
EL

1
n

∑n
i=1

1

1+λ̂
′
ELgi(β̂EL)

gi(β̂EL)gi(β̂EL)′

= ḡ(β̂EL)′ − λ̂
′
EL

1
n

∑n
i=1 p∗i gi(β̂EL)gi(β̂EL)′ = 0.

(4.1)

Similarly, the first-order condition with respect to β is

1
n

n∑

i=1

[
p∗i

∂gi(β̂EL)
∂β

]′
λ̂EL = 0. (4.2)

Given that the Brown and Newey weights provide a good approximation for the optimal EL prob-

abilities, I propose using an estimate of these weights in the EL first-order conditions instead. This

substitution results in the quasi empirical likelihood first-order conditions

0 = ḡ(β̄)′ − λ̂
′
QEL

1
n

∑n
i=1 wigi(β̄)gi(β̄)′

= ḡ(β̄)′ − λ̂
′
QELΩ̃(β̄)

(4.3)



QUASI EMPIRICAL LIKELIHOOD ESTIMATION OF MOMENT CONDITION MODELS 9

with respect to λ and

0 = 1
n

∑n
i=1

[
wi

∂gi(β̄)
∂β

]′
λ̂QEL

= G̃(β̄)′λ̂QEL

(4.4)

with respect to β. Solving the QEL first-order condition with respect to λ for λ̂QEL yields

λ̂QEL = Ω̃(β̄)−1ḡ(β̄). (4.5)

Finally, substitute this into the QEL first-order condition with respect to β to obtain the concen-

trated QEL first-order condition:

G̃(β̄)′Ω̃(β̄)−1ḡ(β̄) = 0. (4.6)

Note that the optimal GMM estimator uses the first-order condition

Ĝ(β̄)′Ω̂(β̄)−1ḡ(β̄) = 0, (4.7)

the components of which are based on simple averages, rather than the semiparametric efficient

weighted averages of the QEL estimator.

In the linear simultaneous equations model, gi(β) = zi(yi − x′iβ) so that Gi(β) = −zix
′
i. We can

then solve the concentrated QEL first-order condition for β:

β̂QEL =
[
G̃(β̄)′Ω̃(β̄)−1 1

n

n∑

i=1

zix
′
i

]−1
G̃(β̄)′Ω̃(β̄)−1 1

n

n∑

i=1

ziyi, (4.8)

where, once again, β̄ is a consistent initial estimator of β0. The QEL estimator is the estimator

whose asymptotic properties I consider throughout the remainder of this paper.

5. Asymptotic Results

The following assumptions are necessary to show consistency of the QEL estimator.

Assumption 1. β0 ∈ B is the unique solution to E[g(Zi, β)] = 0, g(Zi, β) is continuous at each

β ∈ B, Ω is nonsingular, B is compact, and β̄ is a consistent estimator of β0.

These are typical assumptions for showing consistency of the two step GMM estimator.

Theorem 1. If Assumption 1 is satisfied then β̂QEL
p−→ β0.

The following assumptions are necessary to show asymptotic normality of the QEL estimator.
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Assumption 2. β0 ∈ int(B), rank(G) = m ≥ p, and g(Zi, β) is continuously differentiable in a

neighborhood N of β0.

As with the consistency assumptions, these assumptions are typical for showing asymptotic

normality of the two step GMM estimator.

Theorem 2. If Assumptions 1 and 2 are satisfied then
√

n(β̂QEL − β0)
d−→ N(0, Σ), where Σ =

(G′Ω−1G)−1.

Theorem 3. If Assumptions 1 and 2 are satisfied then Bias(β̂QEL) = BI + B∗̄
β
.

Newey and Smith show that GMM has asymptotic bias of the form BI + BG + BΩ + Bβ̄, where

BI is the inescapable bias resulting from using the true optimal instruments, BG is the bias arising

from the estimation of Gi, BΩ is the bias due to the estimation of Ω, and Bβ̄ is the bias resulting

from the choice of the initial estimator. Newey and Smith also show that EL has asymptotic

bias BI , i.e., EL eliminates three sources of bias. I show that QEL eliminates two sources of bias

(BG and BΩ) while mitigating the extent of the third (B∗̄
β
≤ Bβ̄), thereby nearly replicating the

performance of EL but at a much lower cost.

6. Monte Carlo Studies and Validation

I use a simple, linear simultaneous equations model to examine the finite-sample properties of

various estimators in a Monte Carlo experiment. The dependent variable, yi ∈ R, is linearly related

to a single endogenous explanatory variable, xi ∈ R, subject to statistical error, εi ∈ R so that

yi = x′iβ + ui. (6.1)

The endogenous explanatory variable is related to a set of exogenous instrumental variables, zi ∈
Rm, subject to statistical error, vi ∈ R:

xi = Π′zi + vi. (6.2)

ui and vi have a variance-covariance matrix with σ2
u and σ2

v along the diagonal and σuv on the

off-diagonal.

For the Monte Carlo experiments in this paper, I consider various sample sizes (n = 250, 1000),

number of moment conditions or instrumental variables (m = 10, 50), and degrees of endogeneity



QUASI EMPIRICAL LIKELIHOOD ESTIMATION OF MOMENT CONDITION MODELS 11

(σuv = 0.3, 0.9). I choose the first-stage R2 to be 0.30, thereby pinning down Π (since I assume

that Π = c× ι) and avoiding the weak instruments case. I set σ2
u, σ2

v, and σ2
z equal to one and β0

equal to zero. I then draw 1,000 replicates of the error terms and the instrumental variables from

the standard normal distribution. The key restriction with this setup is that E[ziεi] = 0, where

εi = ui − v′iβ0.

As shown in Tables 1-4, finite-sample bias can indeed be a problem for the 2SLS and GMM

estimators. This bias tends to increase with the number of instruments, the degree of endogeneity,

small sample sizes, and (in results not reported here) the weakness of the instrument set. Even

though the 2SLS and GMM estimators have the smallest variances, finite-sample bias can offset

their finite-sample distributions enough that coverage probabilities can be adversely affected. The

LIML, CUE, EL, and QEL estimators, however, do not suffer as much from finite-sample bias, but

have slightly larger variances than do 2SLS and GMM. Because the bias reduction is so much larger

than the variance increase, LIML, CUE, EL, and QEL tend to perform better than 2SLS or GMM

in terms of mean-squared error or median absolute error, especially when the number of moment

conditions is large, the sample size is small, or when the degree of endogeneity is high. Also, LIML,

CUE, EL, and QEL generally exhibit coverage probabilities closer to nominal than do 2SLS and

GMM. The QEL estimator seems to do quite well in approximating EL, but at a much lower time

cost. Relative to 2SLS and GMM, QEL reduces finite-sample bias while increasing variance and

competes well against the LIML and EL estimators.

In all, these simulations support the theoretical results of this and other papers. 2SLS and GMM

can exhibit substantial finite-sample bias. LIML, CUE, EL, and QEL reduce this finite-sample bias

greatly. However, the reduction in bias generally comes at the cost of increased variance. But in

terms of root mean squared error of median absolute error, LIML, EL, and QEL tend to do best.

This is particularly the case when the number of moment conditions is large, the sample size is

small, or the degree of endogeneity is large.

6.1. Heteroskedasticity. As an additional experiment, I take the linear simultaneous equations

model and introduce multiplicative heteroskedasticity of the form εi = uiz
2
1,i − v′iβ0. Due to their

ability to accommodate heteroskedasticity, GMM, CUE, EL, and QEL have a distinct theoretical

advantage over 2SLS and LIML in the presence of heteroskedasticity, since 2SLS and LIML assume

homoskedastic errors. This effect shows up clearly in Table 5, in which I assume m = 50 and
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σuv = 0.90 – all other parameters are specified as before. 2SLS and GMM again exhibit finite-

sample bias, affecting their coverage probabilities. But now 2SLS and LIML do not have the best

variance properties among these estimators. Taking into account both bias and variance, CUE,

EL, and QEL tend to do best in terms of root mean squared error and median absolute bias. This

result is not surprising since these estimators reduce finite-sample bias and are first-order efficient

even under heteroskedasticity.

6.2. Labor Supply for Married, Working Women. The empirical application I consider comes

from Mroz (1987) as presented in Wooldridge (2002). They consider a labor supply function for

working, married women in the United States during 1975 and specify a linear labor supply function,

hours = γ12ln(wage) + δ10 + δ11edu + δ12age + δ13clt6 + δ14cge6 + δ15nwinc + u, (6.3)

and a linear wage offer function,

ln(wage) = γ21hours + δ20 + δ21edu + δ22exp + δ23exp2 + v, (6.4)

where clt6 is the number of children under age 6, cge6 is the number of children older than age

6, and nwinc is non-wife labor income. The set of instrumental variables include the explanatory

variables from the wage offer equation and from the labor supply equation, except for ln(wage).

These variables are largely exogenous because of their fixed nature, at least in the short run. The

moment conditions are therefore

E[ziεi] = 0, (6.5)

where zi is the m-vector instrumental variables for observation i, and εi is the reduced-form residual

from the labor supply equation. Table 6 contains parameter estimates using various estimators.

While all the estimators produce similar quantitative results, CUE, EL, and QEL depict a labor

supply function that is more responsive to wages, education, age, young children, and non-wife

labor income – but less responsive to older children – relative to 2SLS, GMM, and LIML.1

1Note that we have only one overidentifying restriction, which is one potential reason why the parameter estimates

look so similar across estimators.
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7. Conclusions

In this paper, I propose the quasi empirical likelihood (QEL) estimator that reduces finite-sample

bias in estimating moment condition models but remains computationally simple (much akin to

two-step GMM) even when the number of instruments is large. The QEL estimator approximates

the method of empirical likelihood via semiparametric efficient estimation. I show that the QEL

estimator is nearly unbiased under a higher-order asymptotic approach. QEL, therefore, retains the

unbiasedness of EL, but at a fraction of the computational cost. Further, because QEL is robust

to the inclusion of many instrumental variables, QEL eliminates the need to choose instruments

arbitrarily. QEL also has an intuitive GMM interpretation and is robust to general forms of

heteroskedasticity. Simple Monte Carlo experiments confirm these theoretical results.

QEL, however, is not the perfect estimation technique. First, as with all instrumental variable

estimators, QEL assumes that the moment conditions hold. That is, the underlying structural errors

must be mean independent of the instrumental variables. Second, the QEL estimator essentially

trades bias for variance. So even though it reduces finite-sample bias, it is not, in general, efficient.

Finally, QEL relies on a consistent initial estimator of the underlying population parameters. A

poor initial estimate can lead to increased asymptotic bias or variance, suggesting that iteration of

the QEL estimator could prove beneficial.

The QEL estimator proves particularly useful when I validate the estimators against a well-known

data set. Mroz (1987) and Wooldridge (2002) examine married, working women labor supply in the

United States during 1975. They specify a linear labor supply function and a wage offer function.

To the extent that we believe the theoretical finite-sample results, the 2SLS and GMM estimators

do seem to exhibit some finite-sample bias in this application, as evidenced by departure from the

EL parameter estimates. QEL, on the other hand, seems to eliminate most of this bias.

Several topics for future research are apparent. First, a test of overidentifying restrictions in

the QEL context would be useful. This would enable the testing of the validity of the moment

conditions. One possible solution is to compare the empirical log-likelihood at the QEL parameter

estimates to the unrestricted (no moment conditions) empirical log-likelihood. This test would

behave much like the traditional likelihood ratio test. Second, an estimator that achieves Hahn’s

many-instruments efficiency bound would prove particularly useful. This would require the for-

mulation of a ‘Bekker-optimal’ weight matrix, in the GMM and QEL context, that minimizes the
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asymptotic variance of the estimator under Bekker’s (1994) asymptotic approach. Lastly, dynamic

panel data models offer a very interesting context for QEL estimation. As the panel lengthens

(time dimension increases), the number of moment conditions increases at a geometric rate (see,

for instance, Alvarez and Arellano, 2003). Since the number of time periods (and especially the

number of moment conditions) is typically large when compared to the number of countries, for

instance, QEL would be a natural choice for empirical dynamic panel data applications.
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Appendix A. Proofs of Main Results

Proof. Proposition 1: The weights wi/n proposed by Brown and Newey (1998) are a first-order

Taylor expansion of the optimal empirical likelihood probabilities, p∗i .

Brown and Newey’s weights take the form wi = 1−qi, where qi = ḡ(β̄)′Ω̂(β̄)−1gi(β̄) and β̄
p−→ β0.

The optimal empirical likelihood probabilities take the form p∗i = n−1(1 + qi)−1. The Taylor series

approximation of p∗i around β0 is n−1(1−qi)+O(q2
i /n) = wi/n+O(q2

i ) ≈ wi/n. Thus, the first-order

Taylor series approximation of the optimal empirical likelihood probabilities is simply the weighting

proposed by Brown and Newey (1998). A similar result holds for the optimal exponential tilting

weights of Kitamura and Stutzer (1997). ¤

Proof. Proposition 2: If wi = 1− ḡ(β̄)′Ω̂(β̄)−1gi(β̄) then n−1
∑n

i=1 wigi(β̄) = 0.

1
n

∑n
i=1 wigi(β̄) = 1

n

∑n
i=1 gi(β̄)

[
1− gi(β̄)′Ω̂(β̄)−1ḡ(β̄)

]

= 1
n

∑n
i=1 gi(β̄)− 1

n

∑n
i=1 gi(β̄)gi(β̄)′Ω̂(β̄)−1ḡ(β̄)

= ḡ(β̄)− Ω̂(β̄)′Ω̂(β̄)−1ḡ(β̄)

= ḡ(β̄)− ḡ(β̄) = 0.

(A.1)

¤

Lemma 1. If Assumption 1 is satisfied then G̃(β̄)
p−→ G(β0) = E[∂gi(β)/∂β|β=β0

] and Ω̃(β̄)
p−→

Ω(β0) = E[gi(β0)gi(β0)′].

Proof. Note that for some generic function m(β̄), m̃(β̄) = m̄(β̄)−m̆(β̄), where m̄(β̄) = n−1
∑n

i=1 mi(β̄)

and m̆(β̄) = n−1
∑n

i=1 qimi(β̄). Assumption 1 gives β̄
p−→ β0. So by the continuous mapping

theorem, m̄(β̄) − m̄(β0) = op(1) and m̆(β̄) − m̆(β0) = op(1). By the law of large numbers,

m̄(β0)
p−→ m(β0) = E[mi(β0)]. It remains to be shown that m̆(β0)

p−→ 0. To show this, write

m̆(β0) as

1
n

∑n
i=1 qimi(β0) = 1

n2

∑n
i=1

∑n
j=1 gj(β0)′Ω(β0)−1gi(β0)mi(β0)

= 1
n2

∑n
i=1 gi(β0)′Ω(β0)−1gi(β0)mi(β0)

+ 2
n2

∑n
i=1

∑
j<i gj(β0)′Ω(β0)−1gi(β0)mi(β0).

(A.2)

The first term vanishes asymptotically as long as E[g′iΩ
−1gimi] is bounded. Then the first term

is n−2nOp(1) = Op(n−1) = op(1) so that n−2
∑n

i=1 gi(β0)′Ω(β0)−1gi(β0)mi(β0)
p−→ 0. The second
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term also vanishes asymptotically, but all that is needed here is independence across observa-

tions. Thus, the second term is n−2n2op(1) = op(1) which implies (via V-statistic theorems) that

n−2
∑n

i=1

∑
j<i gj(β0)′Ω(β0)−1gi(β0)mi(β0)

p−→ 0. Therefore, since the two terms both converge

in probability to zero, m̆(β0)
p−→ 0. Finally, since m̄(β0)

p−→ m(β0) = E[mi(β0)] and m̆(β0)
p−→ 0,

m̃(β̄) = m̄(β̄) − m̆(β̄)
p−→ m(β0) = E[mi(β0)]. Substituting G and Ω in for m yields the desired

result. ¤

Proof. Theorem 1: If Assumption 1 is satisfied then β̂QEL
p−→ β0.

Write β̂QEL as

β̂QEL =
[
G̃(β̄)′Ω̃(β̄)−1Ĝ(β̄)

]−1
G̃(β̄)′Ω̃(β̄)−1 1

n

∑n
i=1 ziyi

=
[
G̃(β̄)′Ω̃(β̄)−1Ĝ(β̄)

]−1
G̃(β̄)′Ω̃(β̄)−1 1

n

∑n
i=1 zi(x′iβ0 + εi)

= β0 +
[
G̃(β̄)′Ω̃(β̄)−1Ĝ(β̄)

]−1
G̃(β̄)′Ω̃(β̄)−1 1

n

∑n
i=1 ziεi

= β0 +
[
G̃(β̄)′Ω̃(β̄)−1Ĝ(β̄)

]−1
G̃(β̄)′Ω̃(β̄)−1ḡ(β0).

(A.3)

As shown in Lemma 1, G̃(β̄)
p−→ G(β0) and Ω̃(β̄)

p−→ Ω(β0). Also, ḡ(β0)
p−→ E[gi(β0)] by the law of

large numbers. Thus, β̂QEL
p−→ [G′Ω−1G]−1G′Ω−1E[gi(β0)] = 0. ¤

Proof. Theorem 2: If Assumptions 1 and 2 are satisfied then
√

n(β̂QEL − β0)
d−→ N(0,Σ).

Write
√

n(β̂QEL − β0) as

√
n(β̂QEL − β0) =

[
G̃(β̄)′Ω̃(β̄)−1Ĝ(β̄)

]−1
G̃(β̄)′Ω̃(β̄)−1√nḡ(β0). (A.4)

As shown in Lemma 1, G̃(β̄)
p−→ G(β0) and Ω̃(β̄)

p−→ Ω(β0). Also,
√

nḡ(β0)
d−→ N(0, Ω) by the central

limit theorem. Thus,
√

n(β̂QEL − β0)
d−→ (

G′Ω−1G
)−1

G′Ω−1N(0,Ω) (A.5)

and
√

n(β̂QEL − β0)
d−→ N(0, (G′Ω−1G)−1) ≡ N(0, Σ). (A.6)

Note that this is the same asymptotic covariance matrix as GMM. ¤

Proof. Theorem 3: If Assumptions 1 and 2 are satisfied then Bias(β̂QEL) = BI + B∗̄
β
.

Forthcoming. ¤
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Appendix B. Tables

Table 1: Monte Carlo Results (m = 10, σuv = 0.50)

Mean Median

β0 = 0 Estimator Bias Bias Std.Dev. RMSE MAE CovProb Time

n = 250 2SLS .0289 .0306 .0958 .1001 .0666 .945 0:01

GMM .0284 .0312 .0992 .1032 .0698 .947 0:02

CUE -.0130 -.0063 .1137 .1144 .0762 .959 0:20

LIML -.0116 -.0088 .1060 .1066 .0712 .955 0:03

EL -.0129 -.0069 .1121 .1128 .0733 .960 0:26

QEL -.0121 -.0074 .1106 .1113 .0718 .960 0:03

GMM* .0268 .0287 .0937 .0975 .0656 .951 0:01

QEL* -.0113 -.0086 .1109 .1114 .0740 .957 0:02

n = 1000 2SLS .0073 .0097 .0464 .0470 .0330 .946 0:03

GMM .0073 .0099 .0465 .0471 .0318 .941 0:05

CUE -.0032 .0006 .0480 .0481 .0294 .950 1:02

LIML -.0031 -.0009 .0477 .0478 .0305 .953 0:09

EL -.0032 .0002 .0479 .0480 .0297 .949 1:17

QEL -.0032 -.0001 .0479 .0480 .0298 .949 0:07

GMM* .0072 .0097 .0457 .0463 .0311 .941 0:02

QEL* -.0032 -.0001 .0480 .0481 .0298 .950 0:04

*=Infeasible estimator of β0.
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Table 2: Monte Carlo Results (m = 10, σuv = 0.90)

Mean Median

β0 = 0 Estimator Bias Bias Std.Dev. RMSE MAE CovProb Time

n = 250 2SLS .0576 .0655 .0913 .1079 .0829 .919 0:01

GMM .0576 .0635 .0943 .1105 .0824 .915 0:02

CUE -.0166 -.0051 .1134 .1146 .0735 .956 0:23

LIML -.0153 -.0081 .1061 .1072 .0683 .949 0:03

EL -.0162 -.0069 .1118 .1129 .0725 .955 0:29

QEL -.0199 -.0102 .1116 .1133 .0708 .954 0:03

GMM* .0542 .0601 .0891 .1043 .0772 .912 0:01

QEL* -.0158 -.0073 .1156 .1166 .0764 .954 0:02

n = 1000 2SLS .0148 .0181 .0458 .0481 .0336 .939 0:03

GMM .0148 .0171 .0459 .0483 .0334 .938 0:06

CUE -.0039 .0005 .0480 .0482 .0296 .949 1:04

LIML -.0038 -.0002 .0476 .0478 .0300 .948 0:07

EL -.0039 .0000 .0478 .0480 .0298 .949 1:17

QEL -.0042 .0000 .0479 .0481 .0298 .950 0:09

GMM* .0146 .0167 .0451 .0474 .0328 .937 0:02

QEL* -.0040 .0002 .0485 .0487 .0305 .948 0:04

*=Infeasible estimator of β0.
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Table 3: Monte Carlo Results (m = 50, σuv = 0.50)

Mean Median

β0 = 0 Estimator Bias Bias Std.Dev. RMSE MAE CovProb Time

n = 250 2SLS .1558 .1572 .0752 .1730 .1572 .449 0:09

GMM .1561 .1573 .0842 .1774 .1573 .534 0:19

CUE -.0087 .0130 .2037 .2039 .1222 .943 5:07

LIML -.0089 .0009 .1273 .1276 .0754 .948 0:08

EL .0014 .0144 .1680 .1680 .0981 .0946 18:38

QEL .0475 .0501 .1359 .1440 .0998 .942 0:29

GMM* .1117 .1118 .0672 .1304 .1118 .633 0:09

QEL* .0368 .0444 .1335 .1384 .0999 .951 0:19

n = 1000 2SLS .0477 .0501 .0434 .0644 .0515 .0820 0:30

GMM .0477 .0501 .0459 .0662 .0522 .821 1:01

CUE -.0053 -.0011 .0540 .0543 .0365 .941 12:59

LIML -.0053 -.0028 .0495 .0498 .0321 .944 0:27

EL -.0053 -.0016 .0531 .0534 .0356 .943 32:17

QEL -.0053 -.0019 .0530 .0533 .0355 .943 1:31

GMM* .0435 .0459 .0422 .0606 .0478 .0820 0:29

QEL* -.0048 -.0014 .0534 .0536 .0361 .946 0:59

*=Infeasible estimator of β0.
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Table 4: Monte Carlo Results (m = 50, σuv = 0.90)

Mean Median

β0 = 0 Estimator Bias Bias Std.Dev. RMSE MAE CovProb Time

n = 250 2SLS .2821 .2852 .0581 .2880 .2852 .004 0:09

GMM .2829 .2864 .0666 .2906 .2864 .019 0:18

CUE -.0228 .0029 .1789 .1803 .1058 .941 5:51

LIML -.0118 -.0008 .1115 .1121 .0683 .952 0:09

EL -.0104 .0011 .1559 .1563 .0894 .0953 22:15

QEL .0568 .0625 .1195 .1323 .0921 .919 0:27

GMM* .2122 .2122 .0580 .2200 .2122 .050 0:09

QEL* .0702 .0782 .1335 .1508 .1137 .924 0:18

n = 1000 2SLS .0889 .0919 .0404 .0977 .0919 .393 0:30

GMM .0890 .0911 .0429 .0988 .0911 .440 1:01

CUE -.0059 -.0011 .0524 .0527 .0356 .945 15:19

LIML -.0059 -.0032 .0482 .0486 .0319 .948 0:27

EL -.0079 -.0045 .0521 .0527 .0355 .944 33:09

QEL -.0118 -.0090 .0526 .0539 .0350 .942 1:30

GMM* .0814 .0837 .0397 .0906 .0837 .446 0:29

QEL* -.0049 -.0017 .0551 .0553 .0377 .947 0:58

*=Infeasible estimator of β0.
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Table 5: Monte Carlo Results (Heteroskedasticity, m = 50, σuv = 0.90)

Mean Median

β0 = 0 Estimator Bias Bias Std.Dev. RMSE MAE CovProb Time

n = 250 2SLS .2285 .2267 .0674 .2382 .2267 .066 0:10

GMM .1766 .1751 .0599 .1865 .1751 .162 0:20

CUE -0.0069 -.0065 .1296 .1298 .0770 .948 7:04

LIML -0.0181 -0.0088 .1233 .1246 .0779 .941 0:09

EL -.0029 -.0031 .1912 .1912 .1071 .956 41:04

QEL -.0023 -.0025 .1130 .1130 .771 .947 0:30

GMM* .1249 .1251 .0494 .1343 .1251 .281 0:10

QEL* -.0071 -.0087 .1275 .1277 .1023 .948 0:19

n = 1000 2SLS .0717 .0753 .0434 .0838 .0753 .606 0:30

GMM .0639 .0662 .0403 .0756 .0662 .634 1:01

CUE -.0042 -.0020 .0489 .0490 .0328 .954 14:45

LIML -.0065 -.0044 .0509 .0513 .0331 .939 0:28

EL -.0019 -.0017 .0539 .0539 .0332 .953 36:19

QEL -.0017 -.0014 .0546 .0546 .0338 .948 1:29

GMM* .0587 .0606 .0376 .0698 .0606 .643 0:29

QEL* -.0018 -.0015 .0612 .0612 .0406 .951 0:57

*=Infeasible estimator of β0.
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Table 6: Labor Supply Function Estimation Results

Estimator Const ln(wage) edu age clt6 cge6 nwinc

OLS 2114.7 -17.4 -14.4 -7.7 -342.5 -115.0 -4.2

(340.1) (54.2) (18.0) (5.5) (100.0) (30.8) (3.7)

2SLS 2432.2 1544.8 -177.4 -10.8 -210.8 -47.6 -9.2

(594.2) (480.7) (58.1) (9.6) (176.9) (56.9) (6.5)

GMM 2421.9 1638.3 -184.8 -10.8 -229.8 -44.3 -9.7

(611.2) (592.9) (66.5) (10.6) (203.2) (56.4) (5.2)

CUE 2482.3 1838.6 -205.0 -11.9 -228.3 -37.4 -10.3

(690.1) (670.2) (75.3) (11.9) (227.5) (63.7) (5.9)

LIML 2449.3 1629.1 -186.2 -10.9 -203.7 -43.9 -9.5

(615.6) (498.1) (60.2) (9.9) (183.3) (59.0) (6.7)

EL 2479.0 1828.0 -204.1 -11.7 -221.3 -37.8 -10.3

(694.4) (694.7) (78.0) (11.9) (224.2) (63.5) (6.1)

QEL 2474.3 1839.1 -205.3 -11.6 -221.5 -37.5 -10.4

(600.8) (537.7) (61.8) (10.2) (202.4) (55.8) (5.2)



QUASI EMPIRICAL LIKELIHOOD ESTIMATION OF MOMENT CONDITION MODELS 23

References

[1] Altonji, J. and L.M. Segal (1996), ‘Small sample bias in GMM estimation of covariance structures,’ Journal of

Business and Economic Statistics, 14, 353-366.

[2] Alvarez, J. and M. Arellano (2003), ‘The time series and cross-section asymptotics of dynamic panel data

estimators,’ Econometrica, 71, 1121-1159.

[3] Anderson, T.W. and H. Rubin (1949), ‘Estimator of the parameters of a single equation in a complete system

of stochastic equations,’ Annals of Mathematical Statistics, 20, 46-63.

[4] Back, K. and D.P. Brown (1993), ‘Implied probabilities in GMM estimators,’ Econometrica, 61, 971-975.

[5] Bekker, P.A. (1994), ‘Alternative approximations to the distributions of instrumental variable estimators,’ Econo-

metrica, 62, 657-681.

[6] Brown, B.W. and W.K. Newey (1998), ‘Efficient semiparametric estimation of expectations,’ Econometrica, 66,

453-464.

[7] Donald, S.G. and W.K. Newey (2001), ‘Choosing the number of instruments,’ Econometrica, 69, 1161-1191.

[8] Hahn, J. (2002), ‘Optimal inference with many instruments,’ Econometric Theory, 18, 140-168.

[9] Hansen, L.P. (1982), ‘Large sample properties of generalized method of moments estimators,’ Econometrica, 50,

1029-1054.

[10] Hansen, L.P., J. Heaton, and A. Yaron (1996), ‘Finite-sample properties of some alternative GMM estimators,’

Journal of Business and Economic Statistics, 14, 262-280.

[11] Imbens, G.W. (1997), ‘One-step estimators for over-identified generalized method of moments models,’ Review

of Economic Studies, 64, 359-383.

[12] Imbens, G.W., R.H. Spady, and P. Johnson (1998), ‘Information theoretic approaches to inference in moment

condition models,’ Econometrica, 66, 333-357.

[13] Kitamura, Y. (2001), ‘Asymptotic optimality of empirical likelihood for testing moment restrictions,’ Economet-

rica, 69, 1661-1672.

[14] Kitamura, Y. and M. Stutzer (1997), ‘An information theoretic alternative to generalized method of moments

estimation,’ Econometrica, 65, 861-874.

[15] Manski, C.F. (1988), Analog Estimation Methods in Econometrics, New York: Chapman and Hall.

Mroz, T.A. (1987), ‘The sensitivity of an empirical model of married women’s hours of work to economic and

statistical assumptions,’ Econometrica, 55, 765-799.

[16] Newey, W.K. and D. McFadden (1994), ‘Large sample estimation and hypothesis testing,’ in Engle, R. and D.

McFadden, eds., Handbook of Econometrics, Vol. 4, New York: North Holland.

[17] Newey, W.K. and R.J. Smith (2004), ‘Higher order properties of GMM and generalized empirical likelihood

estimators,’ Econometrica, 72, 219-255.

[18] Owen, A.B. (2001), Empirical Likelihood, New York: Chapman and Hall.

[19] Owen, A. (1991), ‘Empirical likelihood for linear models,’ Annals of Statistics, 19, 1725-1747.



24 SHANE M. SHERLUND

[20] Owen, A. (1990), ‘Empirical likelihood ratio confidence regions,’ Annals of Statistics, 18, 90-120.

[21] Owen, A. (1988), ‘Empirical likelihood ratio confidence intervals for a single functional,’ Biometrika, 75, 237-249.

[22] Qin, J. and J. Lawless (1994), ‘Empirical likelihood and general estimating equations,’ Annals of Statistics, 22,

300-325.

[23] Staiger, D. and J.H. Stock (1997), ‘Instrumental variable regression with weak instruments,’ Econometrica, 65,

557-586.

[24] Theil, H. (1953), ‘Repeated least-squares applied to complete equation systems,’ mimeo, The Hague: Central

Planning Bureau.

[25] Wooldridge, J.M. (2002), Econometric Analysis of Cross Section and Panel Data, Cambridge (MA): MIT Press.


