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Abstract

In this paper, we study efficient dissolution of partnerships in a context of incomplete

information. We generalize the results of Cramton, Gibbons and Klemperer (1987) to situ-

ations where the partnership takes on a common value that may depend upon all partners’

types, so that each partner’s individual rationality constraint depends on types other than

his own. We show that in this case not only the distribution of ownership, emphasized in

the earlier literature, but also the distribution of control within an organization matter to

determine the possibility of efficient dissolution. We underscore this point by showing that

two-person partnerships where one partner exercises complete control cannot be dissolved

efficiently with any incentive compatible, individually rational mechanism, regardless of the

ownership structure.

JEL Code: C72, D82, L14
Keywords: Mechanism design, efficient trading, asymmetric control, partnerships.

1 Introduction

In 1999, Dave Aynes, 50% owner of Blue Sky Coffee in Athens, GA, wished to buy out his partner

Mark Fierer. According to their partnership agreement, dissolution was to occur by "Cowboy

Shootout," where either partner can make an offer at any time but where any partner’s offer for

the other’s shares is both a bid and ask. The responding partner can buy or sell at that price,

but must choose one of these options. Expecting to buy, Dave shaded his bid for Mark’s shares

a bit below his own valuation for the business. Things degenerated quickly.

Mark was living in Los Angeles, CA, more than 3,000 miles away, at the time. Since Blue

Sky was profitable, Mark’s nominal role as a 50% partner ensured him a steady flow of income.
∗Terry College of Business, University of Georgia, Fifth Floor, Brooks Hall, Athens, GA 30602-6254. Ornelas:
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Mark viewed Dave’s offer as too low, and thus decided to buy out Dave at his offer price. Upon

learning of the prospect of this potential buyout, some of Blue Sky’s vendors indicated that they

would be unwilling to maintain the same relationship with Blue Sky.1 This problem had not

been foreseen in the partners’ contractually specified dissolution mechanism. Ultimately, since

it was in fact efficient for Dave, who lived in Athens and had emerged over time as a superior

manager, to own Blue Sky, Dave renegotiated to buy out Mark, though at a higher price than

his original offer. In the process, substantial wasted effort had been undertaken and feelings had

been hurt.

At first glance, this case seems to illustrate the shortcomings of the Cowboy Shootout as a

dissolution mechanism.2 Since Mark’s value for the firm was above Dave’s bid (but almost surely

beneath Dave’s valuation), his attempt to buy out Dave reflects the inherent inefficiency of this

dissolution mechanism. However, as we argue in this paper, it is unlikely that any individually

rational dissolution mechanism would have worked efficiently in view of the way their partnership

was functioning. Specifically, provided that their valuations for Blue Sky under the partnership

were interdependent–as it would be the case if they valued the firm according to its flows

of profits–and since Dave was exercising virtually complete control over the management of

the firm, it would be impossible to design an individually rational mechanism that ensured an

efficient dissolution of the partnership.

Theoretical inquiries into the efficient dissolution of partnerships have shown that asymmetric

information and asymmetric ownership shares both make it difficult and sometimes impossible

to design individually rational mechanisms to implement efficient dissolution. Akerlof (1970)

provided the fundamental intuition for the effects of asymmetric information in an extreme-

ownership setting, and Myerson and Satterthwaite (1983) proved general impossibility results

for bilateral exchange under private information. Subsequent work, particularly that of Cram-

ton, Gibbons and Klemperer (1987, henceforth "CGK"), has shown that, among partners with

independent and identically distributed signals, the Myerson-Satterthwaite impossibility result

extends to partnerships where the partners’ shares are unbalanced though not necessarily ex-

treme. CGK point out, however, that equal-shares partnerships can always be dissolved effi-

ciently while unequal-shares partnerships can be dissolved efficiently provided that ownership is

not "too unbalanced."

In recent work, Jehiel and Pauzner (2002), Moldovanu (2002) and Fieseler, Kittsteiner and

Moldovanu (2003) consider instead the case of interdependent private valuations. They all show

that interdependent private valuations can affect the set of dissolvable partnerships significantly.

Fieseler et al. and Moldovanu find that, when information is ex-ante symmetric, a partnership

1For instance, Blue Sky’s landlord refused to negotiate a new lease in Mark’s name.
2Moldovanu (2002) refers to this type of mechanism as the "Texas Shootout;" McAfee (1992) proves that it is

generally inefficient.
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is more difficult to dissolve if a given partner’s valuation is increasing in the types of the other

partners, while the opposite is true if the partner’s valuation is decreasing in the signals of the

other partners. In the former case, the equal-shares partnership may not be dissolvable efficiently,

while in the latter case efficient bilateral exchange may be possible. Jehiel and Pauzner focus

on cases where only one partner is informed about the value of the co-owned asset. In such a

setting, they identify a wide class of situations where efficient dissolution is unachievable.

In the models of all papers cited above, individual rationality requires that any partner aware

of his private signal earns, via the dissolution mechanism, at least as much as his share times

his implied expected valuation. This modeling choice neglects one potentially crucial feature of

partnerships–that an entity’s gross value, from an individual partner’s perspective, may depend

on the very existence of the partnership. That is, for any partner, the entity/asset may take on

different gross values depending on whether it remains a partnership or it is dissolved.

Circumstances where this occurs are natural in many trading situations. Consider, for in-

stance, the case of a regular business whose value stems from the flow of profits it generates. In

such a case, the independent valuation of each partner would reflect the profits he could make

with full ownership–and thus complete control–of the business’s assets.3 Under a partnership,

by contrast, control is generally distributed among the partners, giving rise to a different admin-

istration and thus a distinct flow of profits. Such profits represent the value of the assets under

the partnership and are common to all partners. Individual rationality then requires that any

partner aware of his private signal earns, via the dissolution mechanism, at least as much as his

share times his expected valuation for the business were it to remain a partnership. This view

contrasts with the conventional notion in the literature, where valuations do not depend on the

distribution of control.4

Considering that partners are restricted to using individually rational, incentive compatible

mechanisms, in the tradition of the literature, we provide general conditions governing when

efficient dissolution of partnerships that share the features described above are possible. Specif-

ically, each partner has an independent type that represents his private valuation for the asset

if it is owned individually. Each partner draws his type from distributions that share a common

support, but we allow them to be otherwise different. Under the partnership, the asset provides

a common value for all partners, which may depend on their independent private valuations.

3Control represents in this paper what Aghion and Tirole (1997) have described as real authority. We employ
a distinct terminology to distinguish our paper from the literature spurred by Aghion and Tirole’s seminal paper,
since we focus on distinct issues from those emphasized in that line of research–e.g., we do not attempt to explain
how real authority is acquired or when it is likely to be detached from formal authority.

4A related but distinct approach is taken by Jehiel and Pauzner (2002), who allow for "increasing returns to
scale" in the ownership shares. That is, they allow each partner’s valuation for the asset to increase dispropor-
tionately with the partner’s share of the asset. In such a case, valuations depend on the ownership structure. We
posit that valuations may depend also on the firm’s structure of control, which may or may not be related with
the ownership structure.
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Thus, our structure can be viewed as a hybrid of the independent private values case stud-

ied by CGK and the interdependent valuations case examined by Jehiel and Pauzner (2002),

Moldovanu (2002) and Fieseler et al. (2003). The distinctive feature of our setting is that here

"sole proprietor" valuations are independent, while valuations under co-ownership are common.

In general, the common value of a partnership depends on how its assets are managed.

Since several forms of management are possible, co-owners must decide which to employ. Such

a decision may depend on a myriad of features related to the partnership–background and

experience of the partners, the distribution of shares among them, as well as the issues shaping

real authority mentioned by Aghion and Tirole (1997). Explaining this choice is, however,

beyond the scope of this paper, where we take the distribution of control, and the resulting

interdependent individual valuations for the partnership, as given.

While we provide general conditions for dissolvability of partnerships that share the char-

acteristics just described, we highlight our main point by focusing the balance of our analysis

on a particular form of arrangement, which is similar to that of Blue Sky. Specifically, one

partner runs the business independently, while the other partners share the profits but do not

have any influence on its management. We term this type of control structure (in the absence of

a better name) a "silent partnership," where one partner is "active" and all others are "silent"

(in the case of Blue Sky, Dave served as the "active" partner and Mark as the single "silent"

partner). In such a case, the gross value of the entity as a partnership, common to all partners,

is simply the active partner’s valuation, since his valuation corresponds to what he would obtain

by owning, and thus controlling, the entity solely.

We show that there is not any incentive compatible, individually rational mechanism that

can dissolve efficiently silent partnerships that consist of only two partners. While surprising in

view of previous results in the literature, this finding highlights how the distribution of control

in organizations can affect the prospects of dissolution. The asymmetry of control, emphasized

at the extreme in a silent partnership, thus emerges as another potential stumbling block for

efficient dissolution of partnerships.

We also find, however, that as the number of partners increases, the problems stemming

from asymmetry of control may be mitigated, making efficient dissolution "easier" (in a sense

to be made clear in Section 3) to achieve. In fact, with more than two partners even extreme

ownership partnerships can be dissolvable, as long as the effective owner of the business–the

one who owns all of its assets–is a silent partner; if the effective owner is instead the active

partner, the Myerson-Satterthwaite impossibility result obtains.

We also analyze how the relative "abilities" of partners affect dissolvability. We show that,

provided that the ownership share of the active partner is not too large, having a "better" active

partner makes dissolution more difficult, while having "better" silent partners makes dissolution

easier. We conclude with an example that illustrates each of our key results.
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The balance of this paper is structured as follows. In Section 2, we derive conditions gov-

erning efficient dissolution of partnerships when valuations are common under co-ownership

but independent otherwise. In Section 3, we apply our results to study the structure of silent

partnerships. Section 4 concludes.

2 The Model

The conventional notion of individual rationality is that any partner aware of his valuation of

the entity earns, via the dissolution mechanism, at least as much as his share (say ri) times his

valuation (say vi), namely Ui(vi) ≥ rivi. This notion of individual rationality is appropriate in

some situations but not in others,5 as for example when the partnership is a business whose

value derives from the flow of profits it generates for the partners. In situations like that, the

value of the assets for all partners under the partnership are likely to be interdependent–and

possibly common. At a general level, we can define this value as a common function of all

partners’ individual valuations, namely vP = vP (v1, ..., vn). Thus, to participate in a dissolution

mechanism, each partner will require at least his share ri of the firm’s value vP–which in general

is different from vi. That is, the individual rationality constraint that needs to be satisfied for

each partner is not Ui(vi) ≥ rivi, but Ui(vi) ≥ rivP .

The actual form of vP will ultimately depend on how the organization is managed by the

partners and how they interact in exercising control. We could have, in particular, either

vP > max{vi, ..., vn} or vP ≤ max{vi, ..., vn}. The former case corresponds to situations where
interaction among the partners creates a positive externality (i.e., there is "synergy"), while the

latter case may represent situations where the partners do not work well together, or where a

partner who is not the most capable "manager" among them detains full control. We develop

our general results for efficient dissolution of partnerships without restricting the form of vP . We

nevertheless note that it will be efficient to dissolve a partnership only when vP ≤ max{vi, ..., vn},
so the following analysis is relevant only to those circumstances. When that condition is met, a

dissolution mechanism will be efficient if it allocates the entity to the partner with the highest

valuation with probability one.

5For instance, suppose two individuals share the purchase price of a recreational motorboat as well as the
fees required to dock it in a marina that they both use. They furthermore divide the rights to use the boat
according to their shares. If they later decide to dissolve the partnership by having one partner sell out, the
conventional notion of individual rationality is sensible. In maintaining the partnership as it is, each partner
derives a particular enjoyment vi from the boat, and receives that enjoyment at any given moment with probability
ri. Therefore, for each partner’s participation in the dissolution mechanism to be individually rational, inequality
Ui(vi) ≥ rivi must hold.
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2.1 Preliminaries

A firm is jointly owned by n risk-neutral partners indexed by i ∈ {1, ..., n}. Partner i owns a
share ri ∈ [0, 1] of the partnership; shares sum to 1 (

Pn
i=1 ri = 1). Partner i has type vi, where

vi ∈ [v, v]. Each vi is drawn independently from distribution Fi, which is common knowledge

and has positive continuous density fi. Each type vi represents the firm’s flow of profits under

partner i’s sole administration. Intuitively, it can be understood as a measure of partner i’s

"managerial capacity."

Under the partnership, the firm generates aggregate profits that define a common gross

value for the partners, vP = vP (v1, ..., vn). This value will depend on the (exogenously given)

distribution of control and on the (quality of the) interaction among the partners effectively

controlling the firm. Profits are distributed to the partners according to their shares in the firm.

For example, partner i receives vP ri.

Using the revelation principle, we focus on a direct revelation game where partners re-

port simultaneously their valuations v = {v1, ..., vn} and a mechanism allocates shares s(v) =

{s1, ..., sn} and determines transfer payments t(v) = {t1, ..., tn} to the players. We restrict atten-
tion to mechanisms that are budget balanced–i.e., which satisfy

P
si(v) = 1 and

P
ti(v) = 0.

We refer to hs, ti as a trading mechanism.
Under the mechanism, partner i obtains utility visi+ ti. Let −i ≡ N\i and let E−i{·} denote

the expectation operator with respect to v−i. A generic partner i expects to receive shares

and transfers Si(vi) ≡ E−i{si(vi)} and Ti(vi) ≡ E−i{ti(vi)}, respectively. His expected utility
from the mechanism is therefore given by Ui(vi) = viSi(vi) + Ti(vi). By contrast, partner i’s

expected utility under the partnership is riPi(v), where Pi(v) ≡ E−i{vP (v)}. In the remainder
of this section, we provide the conditions for efficient dissolution of such partnerships. Since our

distinct set of individual rationality constraints does not require altering the CGK methodology

significantly, we follow it closely.

2.2 Conditions for Efficient Dissolution of a Partnership

We restrict attention to incentive compatible mechanisms. Incentive compatibility requires

Ui(vi) ≥ viSi(u) + Ti(u) for all i, vi, u ∈ [v, v]. (1)

In turn, a trading mechanism hs, ti is individually rational if each of the partners expects to
receive a non-negative net payoff from participating in the mechanism:

Ui(vi) ≥ riPi(v) for all i, vi ∈ [v, v]. (2)

This is the condition that distinguishes this paper from previous studies. Essentially, partners’
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valuations are interdependent if the partnership is kept but independent if the partnership is

dissolved. This perspective contrasts with the viewpoint of Myerson and Satterthwaite (1983)

and CGK, who consider valuations to be always independent, as well as with that of Fieseler

et al. (2003), Jehiel and Pauzner (2002) and Moldovanu (2002), who consider valuations to be

always interdependent.

In such a setting, the following lemmas specify necessary and sufficient conditions for a

mechanism to be incentive compatible and individually rational. First, since the conditions

required for incentive compatibility do not depend upon the individual rationality constraint,

they are the same as in CGK.

Lemma 1 A trading mechanism hs, ti is incentive compatible if and only if, for every i ∈ N ,

Si is increasing and

Ti(v
∗
i )− Ti(vi) =

Z vi

v∗i

udSi(u) (3)

for all vi, v∗i ∈ [v, v].

Proof. See CGK, pp. 626-27.

Henceforth, we require the following condition to be satisfied:

Condition 1 P 0i (v) ≡ dPi(v)/dvi ≥ 0 and P 00i (v) ≡ d2Pi(v)/dv
2
i < S0i(vi) ∀ i.

Condition 1 asserts that the expected value of the partnership is weakly increasing in each

partner’s type. Intuitively, this simply indicates that profits under the partnership tend to be

(weakly) higher when the owners are "more capable." The condition also asserts that Pi(.) must

be either concave or not "too convex" in each vi (since Lemma 1 requires S0i ≥ 0), so the function
displays either decreasing or not-too-increasing marginal returns.6

Condition 1 is necessary for our characterization of the worst-off type of trader for each

partner. Characterizing the worst-off type is important because it defines a lower bound for the

individual rationality constraint: if it pays for the worst-off type to participate in the mechanism,

it pays for all other types as well.

Lemma 2 Given an incentive compatible mechanism hs, ti such that the expected share function
is monotone increasing and continuous on [v, v], trader i0s net utility achieves a minimum at

v∗i , where v
∗
i is implicitly defined by

Si(v
∗
i ) = riP

0
i (v

∗
i , v−i). (4)

6Note that, under CGK’s standard notion of individual rationality, Pi(v) = vi, so Condition 1 is trivially
satisfied.
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Proof. The minimization of Ui(vi)− riPi(v) is characterized by first-order necessary condition

U 0i(vi) = riP
0
i (v). But from Lemma 1, it follows that U 0i(vi) = Si(vi). Hence, the net expected

gain from the mechanism is minimized at v∗i such that Si(v
∗
i ) = riP

0
i (v

∗
i , v−i), since the second-

order condition for a minimum, S0i(vi) > riP
00(v∗i ), is satisfied by Condition 1 and because

S0i(vi) ≥ 0 from Lemma 1.

In the present setting, the worst-off type may expect to be either a seller or a buyer under

the mechanism. Such an expectation depends on how P 0i (v
∗
i , v−i) compares with unity. If

P 0i (v
∗
i , v−i) = 1, as in CGK, the worst-type expects to be neither a seller nor a buyer. By

contrast, it expects to be a buyer (seller) whenever P 0i (v
∗
i , v−i) > 1 (< 1).

We can now establish necessary and sufficient conditions for individual rationality.

Lemma 3 An incentive compatible mechanism hs, ti is individually rational if and only if, for
all i ∈ N,

Ti(v
∗
i ) ≥ ri

£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤
. (5)

Proof. We need only check individual rationality for the worst-off types {v∗i }. The constraint
for the worst-type is

v∗i Si(v
∗
i ) + Ti(v

∗
i ) ≥ riPi(v

∗
i , v−i).

Using Lemma 2, it is straightforward to see that this condition is equivalent to equation 5.

We are now ready to characterize the set of dissolvable partnerships.

Lemma 4 For any share function s such that Si is increasing for all i ∈ N, there exists a

transfer function t such that hs, ti is incentive compatible and individually rational if and only if

nX
i=1

"Z v̄

v∗i

[1− Fi(u)]udSi(u)−
Z v∗i

v
Fi(u)udSi(u)

#
≥

nX
i=1

ri
£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤
. (6)

Proof. See appendix.

A mechanism hs, ti is ex-post efficient if the partnership is sold to the partner with the
highest private valuation. Thus, we have the following modified version of CGK’s Theorem 1:

Theorem 1 A partnership with ownership rights {ri} and types {vi} independently drawn from
Fi can be dissolved efficiently if and only if

nX
i=1

"Z v̄

v∗i

[1− Fi(u)]udGi(u)−
Z v∗i

v
Fi(u)udGi(u)

#
≥

nX
i=1

[riPi(v
∗
i , v−i)− v∗iGi(v

∗
i )] , (7)

where v∗i ∈ arg min
vi∈[v,v]

[Ui(vi)− riPi(v)] and Gi(vi) ≡
Q
j 6=i

Fj (vi) .
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Proof. See appendix.

Theorem 1 characterizes the set of dissolvable partnerships. Within our framework, the

results of CGK form an important special case in which the right-hand side of equation 7 is nil

and distributions Fi are identical for all i. We next introduce the notion of silent partnerships

and study the circumstances when their efficient dissolution can be accomplished.

3 Asymmetric Control and The Silent Partnership

There are many possible situations in which one partner exercises disproportionate control of

the partnership’s operations. The simplest and perhaps most common occurs when, in order to

finance a venture, an entrepreneur sells equity in his venture to investors who have little interest

in managing the partnership.7 To analyze the impact of asymmetric control on dissolvability,

we focus on an important benchmark case, which we term the "silent partnership."

3.1 Definition and Basic Rationale

In a silent partnership, one "active" partner has full control over the business, managing it on

behalf of himself and the other "silent" partners. Each partner has an independent private signal

that represents what the value for the firm would be if he were to be its sole proprietor. Because

of the silent partnership structure, however, the value of the firm as a partnership is given by

the active partner’s signal, since he alone controls the firm’s operation.

Definition 1 (Silent Partnership - SP hn, r, F1, F2i) Let partner 1 have full control over the
jointly owned business; call him the "active" partner and all other n − 1 partners the "silent"
partners. Let r denote the active partner’s share of the partnership; thus, the silent partners’

shares sum to (1 − r). Let the active partner’s signal v1 be drawn from distribution F1 and

the silent partners signals {v2, ..., vn} be each drawn from distribution F2. All vi are drawn

independently. Furthermore, distributions F1 and F2 have a mutual support [v, v]. The value of

the firm under the partnership is defined as vP (v1, ..., vn) = v1.

Under this structure, whenever the signal of any silent partner is higher than the active

partner’s signal, an efficient dissolution of the partnership is Pareto improving. Generally, if

the active partner’s private valuation is high (low), he will wish to buy out (sell to) the silent

partners. A silent partner with a high valuation will also wish to buy out his partners. However,

if his valuation is low, he does not wish to sell; rather, he prefers to keep the partnership intact.

7This was, in fact, the original reason why Mark Fierer became a partner in Blue Sky.
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Thus, given the partners’ potential contrasting incentives to seek dissolution, it is important to

strive for efficient mechanisms to accomplish this.

Note that, under our structure, the active partner’s signal may have a different distribution

than the silent partners’ signals. As such, our main impossibility results are robust to situations

where the active partner is believed to be a "better" or "worse" manager than the silent part-

ners as well as to situations where the partners have had the opportunity to learn about the

active partner’s skills. Moreover, this allows us to analyze whether more capable partners make

dissolution easier.

In an SP , P1(v∗1, v−1) = v∗1 and Pi(v
∗
i , v−i) =

R v
v udF1(u) for all i 6= 1. Moreover, v∗1 = G−11 (r)

and v∗i = v for all i 6= 1. Using this information, we can apply Theorem 1 to find that a silent

partnership can be efficiently dissolved when:(Z v

G−11 (r)
[1− F1(u)]udG1(u)−

Z G−11 (r)

v
F1(u)udG1(u)

)
+ (n− 1)

Z v

v
[1− F2(u)]udG2

≥ (1− r)

Z v

v
udF1(u), (8)

where G1(u) = F2(u)
n−1 and G2(u) = F1(u)F2(u)

n−2. The terms on the left-hand side of the

inequality give the sum of the expected transfers to the worst-off types of partners. Not including

possible side payments, the term in braces is the expected transfer (T ∗1 ) to the worst-off type

of active partner (G−11 (r)). Note that this type of active partner will be, on average, neither

a buyer nor a seller under the mechanism. This property holds for all worst-off types in the

setting analyzed by CGK. Intuitively, this type is the worst-off because he would reveal his type

truthfully without any incentives and thus receives no informational rent.

The worst-off type of silent partner (v), on the other hand, is independent of the distribution

of shares. As such, the sum of the expected transfers to the worst-off types of silent partners,

not including side payments, is just (n−1) times the expected transfer to any one of them. Note
that the worst-off type of any silent partner expects to sell his shares with certainty.

The term on the right-hand side of the inequality is the sum of the expected profits that

would accrue to the silent partners were the partnership to remain intact. Note that only the

size, and not the distribution, of the (1− r) share of the partnership among the silent partners

matters for dissolvability. Since the worst-off type of silent partner sells his shares with certainty,

this term equals exactly the minimum total compensation that the silent partners need to receive

under the mechanism to be willing to participate.

In proving our results, we make frequent use of the following Lemma, which presents a

simplified version of condition 8.
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Lemma 5 An SP hn, r, F1, F2i can be dissolved efficiently if and only ifZ v

G−11 (r)
[r −G1(u)] du+

Z v

v

©
1− r − (n− 1)F2(u)n−2 [1− F2(u)]

ª
F1(u)du ≥ 0 (9)

Proof. See Appendix.

3.2 Impossibility Results

Under the partnership structure SP hn, r, F1, F2i, the inherent asymmetry of control affects
crucially the possibility of constructing efficient dissolution mechanisms. In particular, when

there are only two partners, efficient dissolution is impossible regardless of the distribution of

ownership shares. In addition, as in Myerson and Satterthwaite (1983) and CGK, extreme

asymmetric ownership makes efficient dissolvability/exchange more difficult to achieve. In our

setting, when the active partner owns the entire firm (r = 1), efficiency cannot be achieved.

However, efficiency becomes possible when a silent partner owns the entire firm. We present

each set of results in turn.

Proposition 1 An SP hn = 2, r, F1, F2i cannot be dissolved efficiently with an incentive com-
patible, individually rational mechanism.

Proof. We will show that inequality 9 does not hold in this case. Note that in a SP with n = 2,
G1(u) = F2(u). Thus, when n = 2, we can rewrite condition 9 asZ v

F−12 (r)
[r − F2(u)] du+

Z v

v
[F2(u)− r]F1(u)du ≥ 0.

This inequality can be re-arranged as

Z v

F−12 (r)
[r − F2(u)] [1− F1(u)] du+

Z F−12 (r)

v
[F2(u)− r]F1(u)du ≥ 0. (10)

It is easy to see that both terms in the left-hand side of this inequality are non-positive and at

least one must be strictly negative. Specifically, since F2(u) > r when u > F−12 (r),Z v

F−12 (r)
[r − F2(u)] [1− F1(u)] du ≤ 0,

where the inequality is strict if r < 1. Similarly, since F2(u) < r when u < F−12 (r),

Z F−12 (r)

v
F1(u) [F2(u)− r] du ≤ 0,
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where the inequality is strict if r > 0. Therefore, for r ∈ [0, 1], neither term in the left-hand side

of inequality 10 is positive and at least one is strictly negative. It follows that Theorem 1 does

not hold for an SP hn = 2, r, F1, F2i.

Intuitively, dissolution is impossible here precisely because the worst-off type of silent partner

expects to sell to the active partner with certainty. He will only wish to participate if he

expects to be paid a price (per share) that is at least as large as the active partner’s (expected)

valuation. But since it is impossible to get truthful revelation from the active partner without

giving him some informational rent, a positive outside subsidy is necessary to make participation

individually rational for all types.

Such a subsidy is also necessary to achieve efficient "dissolution" when the active partner

owns the entire firm.

Proposition 2 An SP hn, r = 1, F1, F2i cannot be dissolved efficiently with an incentive com-
patible, individually rational mechanism.

Proof. When r = 1, condition 9 reduces to

−(n− 1)
Z v

v
F1(u)F2(u)

n−2 [1− F2(u)] du ≥ 0, (11)

which is a contradiction, thus completing the proof.

Notice that expression 11 is, for n = 2, identical to Myerson and Satterthwaite’s (1983)

equation 7. In our setting, this also represents the minimum outside subsidy necessary to

facilitate efficient dissolution. Indeed, dissolution is impossible in this particular case for precisely

the same reasons as in Myerson and Satterthwaite (1983). Intuitively, any incentive compatible

mechanism requires a transfer to be made regardless of whether the active partner sells the firm.

Thus, when the active partner is the worst-off type (v), he knows that, under the mechanism,

he must make a payment despite the fact that he will maintain full ownership with certainty.

The expected gains to the worst-off types of silent partners are not large enough to produce a

big enough side payment from the silent partners to the active partner to induce the worst-off

active partner to participate.

In contrast to Myerson and Satterthwaite (1983) and CGK, however, when the partnership

is owned entirely by one silent partner (r = 0), efficient "dissolution" may be possible. This is

seen as a simple consequence of our finding that, for r < 1, dissolvability is always possible if n

is large enough.

Proposition 3 Any SP hn, r < 1, F1, F2i can be dissolved efficiently with an incentive compat-
ible, individually rational mechanism for sufficiently large n.

12



Proof. We will show that condition 9 can always be satisfied when n becomes arbitrar-

ily large and r < 1. In that case, G−11 (r) ≡
¡
Fn−1
2

¢−1
(r) becomes arbitrarily close to v,

G1(r) ≡ Fn−1
2 (u) becomes arbitrarily close to zero and the first integral in 9 vanishes. Further-

more, since limn→∞(n− 1)F2(u)n−2 [1− F2(u)]F1(u) = 0, the second integral in 9 specializes toR v
v (1− r)F1(u)du. Thus, when n→∞ (and r < 1), condition 9 simplifies to

(1− r)

Z v

v
F1(u)du ≥ 0,

which is satisfied for any distribution F1(u).

If r = 0, the worst-off type (v) is the same for all partners, and each of these types expects to

sell their shares with certainty. When n > 2, there are at least two silent partners. Thus, if there

is a full-ownership silent partner and he happens to be the worst-off type, he expects to sell to

the active partner with some probability and expects to sell to one of the other silent partners

with some probability. Thus, in any efficient mechanism, he sells at a price that exceeds, in

expected terms, the active partner’s valuation. Hence, his expected payoff may, after factoring

in informational rents, exceed his payoff from his continued ownership. The worst-off type of

active partner, knowing that with certainty he will not buy the firm, needs no incentives to

participate in the mechanism.

It is worth noting that when n increases, the additional "partners" need not own positive

shares in the firm. In fact, they may simply represent additional bidders for the partnership.

Interestingly, then, for r < 1 it may be possible to overcome the impossibility result for n = 2 if

the two owners are willing to permit outsiders to buy the firm.

Note, however, that while any SP with r < 1 can be dissolved for large enough n, it is not

always the case that dissolvability becomes easier with a larger n. In particular, when r is near

1 and n is small, it is straightforward to find distributions of the partners’ signals such that

dissolvability becomes more difficult with an additional partner. We explore this issue further

with an example in subsection 3.4.

3.3 Comparative Statics

When n > 2 and r < 1, whether a silent partnership is dissolvable depends upon the number

of partners n, the active partner’s share r and the distribution of the partners’ signals F1 and

F2. In this and the next subsection, we show how changes in each of these primitives affect

dissolvability. When characterizing the set of dissolvable partnerships, we will refer frequently

to the following definition.

Definition 2 Given two silent partnerships SP and SP ∗, we say that SP ∗ is "easier" to dissolve

13



than SP if and only if the left-hand side of inequality 9 (in Lemma 5) is larger for SP ∗.

Thus, if SP is dissolvable and SP ∗ is easier to dissolve, then SP ∗ must also be dissolvable.

By the same token, if SP ∗ is easier to dissolve than SP but SP ∗ is not dissolvable without a

positive outside subsidy, then SP requires a larger outside subsidy to be dissolvable.

Given this definition, in the setting of CGK the equal-shares partnership is the easiest to

dissolve. This is not typically true in a silent partnership, although it is still true that the

extreme-ownership settings (r = 0 and r = 1) are never the easiest to dissolve.

Proposition 4 Let µ1 ≡
R v
v udF1(u). If partnership SP hn, r, F1, F2i can be dissolved efficiently

for some r, then partnership SP hn, r = G1(µ1), F1, F2i can be dissolved efficiently too. Simi-
larly, if partnership SP hn, r = G1(µ1), F1, F2i cannot be dissolved efficiently, then partnership
SP hn, r, F1, F2i cannot be dissolved efficiently for any r.

Proof. It is sufficient to show that the left-hand side of condition 9 is maximized when r =

G1(µ1). Differentiating that expression with respect to r, we find

dLHS(9)

dr
=

Z v

G−11 (r)
du+

dG−11 (r)

dr

£
r −G1

¡
G−11 (r)

¢¤
−
Z v

v
F1(u)du (12)

= v −G−11 (r)− (v − µ1)

= µ1 −G−11 (r).

Since this expression is decreasing in r (dG−11 (r)/dr > 0), the left-hand side of condition 9 is

maximized when µ1 = G−11 (r)–or equivalently, when r = G1(µ1), completing the proof.

Hence, for given n, F1 and F2, the partnership with r = G1(µ1) is the easiest to dissolve.

Ownership shares affect dissolution in two different ways in this setting. On the one hand, a

greater r decreases the expected transfer to the worst-off type of active partner at a rate G−11 (r),

just as it would do under CGK’s setting. The worst-off type of silent partners are, however,

qualitatively distinct. Their expected transfers do not increase with r [i.e. as their (1− r) share

decreases], as they would under CGK’s setting. Rather, their participation costs fall with r, at

a constant rate µ1. Conditions for efficient dissolution are facilitated at the extreme when these

two rates are equalized, as proved above.8

In a sense, this insight resembles a key result from CGK, namely that efficient dissolution

tends to become easier to achieve as the ownership structure becomes less extreme. Indeed, it

is clear that, for any finite n and non-degenerate F2 distribution, 0 < G1(µ1) < 1, so the most

8 In CGK, the two correspondent rates (for the 2-player case) would be G−1(r) and G−1(1 − r)–recall that
they consider identical distributions. Thus, dissolution is facilitated at the extreme when G−1(r) = G−1(1− r),
which occurs when r = 1

2
.
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extreme-ownership settings are indeed never the easiest to dissolve. However, it is also clear that

the equal-shares partnership will not generally be the easiest to dissolve, as G1(µ1) depends on

F1, F2 and n.

Since the impossibility of dissolving two-person silent partnerships is due, essentially, to

possible free-riding by the silent partner, it is to be expected that, as the benefits from free-riding

increases, dissolution would become more difficult. Intuitively, free-riding by silent partners

becomes a more attractive option for them as the distribution of the active partner’s signal

becomes "better" or as the distribution of the silent partner’s signal becomes "worse." We now

analyze these effects in turn.

First, we show that the presence of an active partner who is a "better" manager makes

dissolution more difficult whenever r is not too large.

Proposition 5 Consider distributions F ∗1 and F1 such that F ∗1 first-order stochastically dom-

inates F1 and define er(n) ≡ 1 −
³
n−2
n−1

´n−2
. If partnership SP hn > 2, r ≤ er(n), F ∗1 , F2i can

be dissolved efficiently, then partnership SP hn > 2, r ≤ er(n), F1, F2i can be dissolved efficiently
too. Similarly, if partnership SP hn > 2, r ≤ er(n), F1, F2i cannot be dissolved efficiently, then
partnership SP hn > 2, r ≤ er(n), F ∗1 , F2i cannot be dissolved efficiently either.
Proof. See Appendix.

When v1 is drawn from F ∗1 instead of F1, where F
∗
1 first-order stochastically dominates F1,

there is no change from the perspective of an active partner of a given type. By contrast, for the

silent partners, incentive compatibility becomes less costly while individual rationality becomes

more costly to achieve. The former effect occurs because the informational rents required to

induce truth-telling by the silent partners fall when v1 is drawn from F ∗1 instead of F1.
9 The latter

effect occurs because the participation costs are higher under F ∗1 than under F1. Intuitively,

when the active partner draws from a first-order stochastically dominating distribution, his

expected signal is higher, and so is the value he engenders into the firm. As a result, the worst-

off type of silent partner becomes more content to free ride off the efforts of the active partner,

making his participation in the dissolution mechanism more costly.

The change in the informational rents is independent of r, but the change in the participation

costs is inversely related to r. Thus, when r approaches 1, the reduction in informational rents

predominates over the increase in participation costs, making the partnership easier to dissolve.

By contrast, for moderate values of r (i.e., when r < er), the increase in participation costs
dominates and the partnership becomes more difficult to dissolve when v1 is drawn from F ∗1
instead of F1.

9To see this, note that a silent partner with type vs obtains informational rents equal to
R vs
v

F1(u)F2(u)
n−2du,

which is clearly lower under F ∗1 than under F1.
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Note also that, as the active partner’s expected signal increases, the gains from dissolving

the partnership fall, since it becomes less likely that a silent partner will be more efficient than

the active partner in controlling the business. This rationale highlights a more general feature

of silent partnerships: they tend to be more difficult to dissolve precisely when dissolution is less

desirable, from an efficiency perspective.

It is interesting to note that the increase in participation costs always predominates in the

benchmark case of equal-shares partnerships, as the corollary below shows.

Corollary 1 Consider distributions F ∗1 and F1 such that F
∗
1 first-order stochastically dominates

F1. If an equal-shares partnership SP
­
n > 2, r = 1

n , F
∗
1 , F2

®
can be dissolved efficiently, then

partnership SP
­
n > 2, r = 1

n , F1, F2
®
can be dissolved efficiently too. Similarly, if partnership

SP
­
n > 2, r = 1

n , F
∗
1 , F2

®
cannot be dissolved efficiently, then partnership SP

­
n > 2, r = 1

n , F1, F2
®

cannot be dissolved efficiently either.

Proof. See Appendix.

We now analyze the intuitive counterpart to Proposition 5–i.e., the conditions where a

"worse" silent partner makes dissolvability more difficult. We show that this will happen when-

ever r is not too large.

Proposition 6 Consider distributions F ∗2 and F2 such that F ∗2 first-order stochastically domi-

nates F2 and define r implicitly byZ v

G−11 (r)
F2(u)

n−2du = −
Z v

v
F1(u)F2(u)

n−2 £(n− 2)F2(u)−1(1− F2(u))− 1
¤
du. (13)

r is greater than zero and may be greater than one. If partnership SP hn > 2, r ≤ r, F1, F2i can
be dissolved efficiently, then partnership SP hn > 2, r ≤ r, F1, F

∗
2 i can be dissolved efficiently too.

Similarly, if partnership SP hn > 2, r ≤ r, F1, F
∗
2 i cannot be dissolved efficiently, then partner-

ship SP hn > 2, r ≤ r, F1, F2i cannot be dissolved efficiently either.

Proof. See Appendix.

Proposition 6 shows that "worse" silent partners tend to make it more difficult to dissolve

a partnership whenever the share owned by the active partner is not too high (r ≤ r). When

the silent partners’ signals are drawn from F2 instead of F ∗2 , where F
∗
2 first-order stochastically

dominates F2, there is no change in the individually rationality constraints. By contrast, the

incentive compatibility constraints of all partners are affected. For the silent partners, incentive

compatibility becomes more costly to achieve, since the informational rents required to induce

truth-telling by the silent partners increase when their signals are drawn from F2 instead of F ∗2

16



(this follows straightforwardly from footnote 9). This change is independent of r. For the active

partner, on the other hand, the change in incentive compatibility will generally depend on r.10

When r = 0, the effect is unambiguous: informational rents increase for all partners, and

dissolution becomes more difficult when the silent partners’ signals are drawn from a first-order

stochastically dominated distribution function. The same applies when r is sufficiently small

(r ≤ r), but not necessarily otherwise.

3.4 Examples

To further illuminate these results, we consider the class of examples where distributions display

the following forms:

F1(v1) = vα1 for v1 ∈ [0, 1], α > 0

F2(vi) = vβi for vi ∈ [0, 1], β > 0 .

In this case, condition 8 becomes:

(n− 1)

⎧⎨⎩β

⎡⎣ 1

β(n− 1) + 1 −
1

α+ β(n− 1) + 1 −
r
β(n−1)+1
β(n−1)

β(n− 1) + 1

⎤⎦
+ (β(n− 2) + α)

∙
1

α+ β(n− 2) + 1 −
1

α+ β(n− 1) + 1

¸¾
≥ (1− r)

α

1 + α
(14)

Note that when α = β = 1, all partners’ valuations are iid uniform on [0, 1]. Condition 14

then reduces to

(n− 1)
Ã

1

1 + n
− r

n
n−1

n

!
≥ 1− r

2
. (15)

The curved surface in Figure 1 plots the left-hand side minus the right-hand side of the above

expression, for r ∈ [0, 1] and n = {2, 3, ..., 100}. The flat plane is at zero for all r and n. Hence,

when the surface is above the plane, the inequality is satisfied.

When n = 2, inequality 15 is not satisfied for any distribution of shares. When n = 3, all

partnerships with r ≤ 9
16 are dissolvable, while all partnerships with r > 9

16 are not. Note that,

in contrast to CGK, the range of dissolvable partnerships is not symmetric about the equal-

shares partnership. As such, there are ownership structures where partnerships are dissolvable

here but not dissolvable in the setting of CGK and vice-versa. Most notably, the inequality

above is always satisfied when n > 2 and r = 0, so this "extreme ownership" partnership is

10To see this, note that an active partner with type v1 obtains informational rents equal to
R v1
G−11 (r)

[G1(u) −
r]du+ rv1. It can be easily shown that, when we replace F ∗2 by F2, the change in this expression decreases with
r if and only if v1 ≥ v∗1 .
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Figure 1: Efficient Dissolution with Uniform Distributions

dissolvable unless n = 2.11 On the other hand, even though the upper bound of the range of

dissolvable partnerships increases with n, it is not satisfied for any n when r = 1.

Now, to illustrate Proposition 5 and Corollary 1, we fix β = 1 and analyze changes in α.

Note that when α > (<)1, the active partner is expected to have a higher (lower) signal than

any silent partner. Focusing on the case of equal-shares partnerships (r = 1
n), the inequality

above is satisfied, when n = 3 if and only if α ≤ 1.8 (approximately). In this case, the higher is
α (the more capable is the active partner), the more difficult the partnership is to dissolve.

To illustrate Proposition 6, we fix α = 1 and analyze changes in β. Note that when β > (<)1,

all silent partners are expected to have a higher (lower) signal than the active partner. For the

equal-shares partnerships (r = 1
n), the inequality above is satisfied, when n = 3, if and only if

β ≥ .64 (approximately). In this case, the lower is β (the less capable are the silent partners),

the more difficult the partnership is to dissolve.

In this class of examples, for most values of r, partnerships become easier to dissolve with

additional silent partners. This is true for both of the cases just discussed. When r = 1
3 , α = 1.8

and β = 1, partnerships with n = 4 are easier to dissolve than partnerships with n = 3. The

same holds if α = 1 and β = .64. However, for large r, this is not necessarily true. For the latter

11By contrast, the partnership with ownership shares {r1 = 5
8
, r2 =

3
8
, r3 = 0} is dissolvable under CGK but

not dissolvable here, since 5
8
> 9

16
.
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case, if r = .95, a subsidy of approximately .124 is necessary to dissolve the partnership if n = 3,

but .125 is needed if n = 4.

4 Conclusion

We have demonstrated another potential obstacle to efficient dissolution of partnerships, namely

asymmetry of control of a firm’s operations. Our results suggest that partnerships in which one

partner dominates the active management of the firm will often encounter problems when they

attempt to dissolve. This problem is most acute if there is only one "silent" partner. On the

other hand, firms can mitigate this problem if they are willing, during the dissolution process,

to entertain bidding by outsiders. The intuition from this case is likely to extend to less extreme

control structures.

Numerous papers have addressed the determinants of real authority/control structure within

organizations. Other papers have studied the forces shaping the efficient dissolution of partner-

ships. However, none of the contributions in each of these lines of research has analyzed the

effects of the structure of control on the design of efficient dissolution mechanisms. This paper

starts to fill this gap. We provide a general framework for analysis and explore in detail a form of

partnership that is characterized by an extreme but common form of control structure. Our gen-

eral framework can nevertheless be applied to numerous other partnership structures. Further

applications will likely help us access in more detail how the allocation of control within orga-

nizations may affect the prospects of efficient dissolution. We look forward to further progress

in this area.

Appendix

Proof of Lemma 4. Only if. CGK (pp. 627-28) shows that incentive compatibility (Lemma

1) implies
nX
i=1

Ti(v
∗
i ) =

nX
i=1

"Z v

v∗i

[1− Fi(u)]udSi(u)−
Z v∗i

v
Fi(u)udSi(u)

#
.

Individual rationality (Lemma 3) implies, in turn, that

nX
i=1

Ti(v
∗
i ) ≥

nX
i=1

ri
£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤
.

Hence, any hs, ti that is incentive compatible and individually rational must satisfy equation 6.
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If. Following CGK (p. 628), consider a transfer of the form

ti(v) = ci −
Z vi

v
udSi(u) +

1

n− 1
X
j 6=i

Z vj

v
udSj(u),

where
Pn

i=1 ti(v) = 0 implies
Pn

i=1 ci = 0. After changing the order of integration, we obtain

Ti(vi) = ci −
Z vi

v
udSi(u) +

1

n− 1
X
j 6=i

Z vj

v
[1− Fi(u)]dSj(u).

This guarantees that the mechanism is incentive compatible.

Individual rationality requires

Ti(v
∗
i ) ≥ ri

£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤
.

Since equation 6 asserts that

nX
i=1

Ti(v
∗
i ) ≥

nX
i=1

ri
£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤
,

we can choose

ci = ri
£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤
+
1

n

nX
i=1

©
Ti(v

∗
i )− ri

£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤ª
+

Z v∗i

v
udSi(u)du−

1

n− 1
X
j 6=i

Z v̄

v
[1− Fi(u)]udSj(u),

which results in

Ti(v
∗
i ) = ri

£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤
+
1

n

nX
i=1

©
Ti(v

∗
i )− ri

£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤ª
≥ ri

£
Pi(v

∗
i , v−i)− v∗i P

0
i (v

∗
i , v−i)

¤
,

completing the proof.

Proof of Theorem 1. Efficiency requires the partner with the highest independent private

valuation to buy the firm. The probability that an individual partner’s vi is the highest is

Fi(vi)
n−1. This imposes the following restriction on the share function: Si(vi) = Gi(vi) =

Fi(vi)
n−1. The worst-off type v∗i is defined according to Lemma 2.
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Proof of Lemma 5. Rewrite condition 9 asZ v

G−11 (r)
udG1(u) +

Z v

v
u {(n− 1) [1− F2(u)] dG2(u)− F1(u)dG1(u)− (1− r)dF1(u)} ≥ 0.

Integrating by parts each of the integrals above, the inequality can be rearranged as"
v −G−11 (r)r −

Z v

G−11 (r)
G1(u)du

#

+

∙Z v

v

©
1− r − (n− 1)F2(u)n−2 [1− F2(u)]

ª
F1(u)du− (1− r)v

¸
≥ 0,

or equivalently asZ v

G−11 (r)
[r −G1(u)] du+

Z v

v

©
1− r − (n− 1)F2(u)n−2 [1− F2(u)]

ª
F1(u)du ≥ 0,

thus proving the lemma.

Proof of Proposition 5. Since distribution F ∗1 first-order stochastically dominates distri-

bution F1, F ∗1 (u) ≤ F1(u) for all u. Note now that, in condition 9, only the second integral

depends on F1, where F1 enters multiplying the term in braces. The term in braces, in turn, is

positive if and only if

r ≤ 1− (n− 1)F2(u)n−2 [1− F2(u)] ≡ h(F2(u)).

Function h(F2(u)) achieves a minimum at

F2(u) =
n− 2
n− 1 ,

when it equals

h

µ
n− 2
n− 1

¶
= 1−

µ
n− 2
n− 1

¶n−2
≡ er(n).

Hence, the second integral in condition 9 is always positive when r ≤ er(n) and its value increases
with F1(u). This implies that, when r ≤ er(n), the left-hand side of condition 9 is greater under F1
than under F ∗1 . It follows that, if SP hn, r < er(n), F ∗1 , F2i is dissolvable, SP hn, r < er(n), F1, F2i
is dissolvable too. Similarly, if SP hn, r < er(n), F1, F2i is not dissolvable, SP hn, r < er(n), F ∗1 , F2i
is not dissolvable either.

Proof of Corollary 1. We need to show only that equal-shares partnerships fit the condition

required in Proposition 5 about r. This is the case if 1n ≤ er(n) ≡ 1 − ³n−2n−1

´n−2
when n > 2.
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Rewriting this inequality as
³
n−2
n−1

´n−2
n

n−1 ≤ 1, it is easy to see that its left-hand side decreases
with n. Since the inequality is satisfied when n = 3 (34 ≤ 1), the proof is complete.

Proof of Proposition 6. Since distribution F ∗2 first-order stochastically dominates distribu-

tion F2, F ∗2 (u) ≤ F2(u) for all u. Note now that, as F2(u) increases at the margin for all u, the

change in the left-hand side of condition 9 (LHS-9) corresponds to

dLHS-9
dF2(u)

=

− (n− 1)
Z v

G−11 (r)
F2(u)

n−2du− (n− 1)
Z v

v
F1(u)F2(u)

n−2 £(n− 2)F2(u)−1(1− F2(u))− 1
¤
du,

which is negative iffZ v

G−11 (r)
F2(u)

n−2du ≥ −
Z v

v
F1(u)F2(u)

n−2 £(n− 2)F2(u)−1(1− F2(u))− 1
¤
du ≤ 0. (16)

When r = 0, this inequality becomes simplyZ v

v
F2(u)

n−2 £(n− 2)F2(u)−1(1− F2(u))F1(u) + 1− F1(u)
¤
du ≥ 0,

so it clearly holds in that case. More generally, it is negative whenever r ≤ r. To see this, it

suffices to note that G−11 (r) increases with r, so it follows from definition 13 that r ≤ r implies

inequality 9.

Thus, by continuity, LHS-9(r ≤ r, F ∗2 ) ≥ LHS-9(r ≤ r, F2). It follows that LHS-9(r ≤
r, F ∗2 ) ≤ 0 implies LHS-9(r ≤ r, F2) ≤ 0, so if partnership SP hn > 2, r ≤ r, F1, F

∗
2 i cannot

be dissolved efficiently, partnership SP hn > 2, r ≤ r, F1, F2i cannot be dissolved efficiently ei-
ther. Similarly, LHS-9(r ≤ r, F2) ≥ 0 implies LHS-9(r ≤ r, F ∗2 ) ≥ 0, so if partnership

SP hn > 2, r ≤ r, F1, F2i can be dissolved efficiently, partnership SP hn > 2, r ≤ r, F1, F
∗
2 i can

be dissolved efficiently too.
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