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Implications of Quasi-Geometric Discounting on the Observable Sharpe Ratio

Abstract

In this paper, we study quantitative implications of quasi-geometric discounting for
stochastic properties of asset returns that can be observed in the financial market data.
In particular, we emphasize that the dividend income from an asset measured in a unit
of account may not reflect the whole dividend that consumers expect to obtain from the
asset in models with quasi-geometric discounting. We then show that allowing for such a
possibility in a stochastic growth model with quasi-geometric discounting enables one to
match the Sharpe ratio observed in the U.S. data.
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1 Introduction

In this paper, we study the role of time-inconsistent preferences on asset pricing in a dy-

namic stochastic general equilibrium model. The time-inconsistent preferences take place

because time discount rates of households are greater or smaller in the short-run than

in the long-run, as in the works of Strotz(1952), Pollak(1968), Phelps and Pollak(1968),

Laibson(1997), and Krusell and Smith(2003a, b).

In particular, we consider a stochastic growth model with quasi-geometric discounting,

while state contingent claims on consumption goods are not traded in markets. In such an

economic environment, consumers may obtain non-pecuniary payoffs as well as pecuniary

payoffs from capital holdings when their time discount rates are greater or smaller in the

short-run than in the long-run. The reason for the presence of non-pecuniary payoffs is

that when the time inconsistent preferences create strategic interaction between current

and future selves of an infinitely-lived consumer, the consumer can restrict his or her future

actions through the portfolio choices made at the current period. The strategic interaction

therefore may have consumers obtain dividends from their asset holdings, which are not

paid by issuers of assets.

The presence of the non-pecuniary payoffs from asset holdings indicates that the ob-

servable asset returns may not reflect the whole returns that consumers have from their

asset holdings. The break-down of an asset’s return into its observable and unobservable

components also leads one to construct a measure of risk-return trade-off in terms of the

observable return component. In particular, the measure of the risk-return trade-off is de-

fined as the ratio of the risk premium of the observable return component to its conditional

standard deviation, which can be interpreted as the observable Sharpe ratio in the context

of this paper. We then show that allowing for the presence of unobservable non-pecuniary

payoffs helps to match the trade-off between expected return and risk observed in financial

data.

The non-pecuniary payoffs from asset holdings are not new in models with quasi-

geometric discounting. Krusell and Smith(2003b) have shown that the marginal change

of the future capital stock in response to the marginal change of current period savings is

included in their generalized Euler equation. We interpret this term as the unobservable
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component of the whole investment return, which is absent if consumers with ordinary

geometric discount functions have time-consistent preferences. The difference here is that

we focus on testable implications for the Sharpe ratio in models with quasi-geometric dis-

counting, which is defined as the slope of the conditional mean-standard deviation frontier.

Shiller(1982) and Hansen and Jaganathan(1991) have shown that the Sharpe ratio can

be expressed as a function of the first and second moments of the stochastic discount

factor, defined as the intertemporal marginal rate of substitution. In the same vein, we

analyze the relationship between the Sharpe ratio and the stochastic discount factor, which

is implied by the stochastic growth model with quasi-geometric discounting. The charac-

terization of a link between the Sharpe ratio and the stochastic discount factor necessarily

involves a distinction between the stochastic discount factor and asset returns in the Euler

equations for asset holdings. In this paper, we define the whole return of an asset as a

weighted average of its observable and unobservable returns described above, while the

weight for the observable return is set equal to the measure of the short-run impatience of

consumers. Given the definition of the whole return of an asset, we show that a candidate

for the stochastic discount factor can be written as the intertemporal marginal rate of

substitution of consumers who behave as if they discount future utilities at a constant

rate.

We also show that the stochastic discount factor defined above turns out to be different

from the one used for converting only pecuniary payoffs obtained in the next period into

its current period value. The reason for this can be written as follows. In this paper,

we show that the generalized Euler equation includes the unobservable return as well as

the observable return from capital holdings in the absence of state contingent claims on

consumption goods. However, when households trade state contingent claims on consump-

tion goods in complete markets, one can use a no-arbitrage condition to price the capital

stock, taking into account only its pecuniary dividends. Therefore, in the presence of state

contingent claims, the conditional expectation of the stochastic discount factor times the

observable return equals one. As a result, the stochastic discount factor in the presence

of state contingent claims differs from the one used for pricing both observable and unob-

servable returns in the absence of state contingent claims. This explains the reason why

our results differ from Luttmer and Mariotti(2003), in which one-period state contingent
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claims on consumption goods are traded in sequentially complete markets.

We now ask if the observable Sharpe ratio generated by a neoclassical stochastic growth

model with quasi-geometric discounting can match the Sharpe ratio of the market portfolio

observed in the U.S. data. A reason why we are interested in a stochastic growth model is

that we can obtain a closed-form solution for the model under a specific parameterization

without relying on any approximation to equilibrium conditions. The specific parameteri-

zation involves additive separability between consumption and leisure, logarithmic utility

for consumption, and complete depreciation of the capital stock within a period, as has

been analyzed in Krusell and Smith(2003b).

Lettau and Uhlig(1997a, b) have demonstrated that stochastic growth models do not

match the Sharpe ratio observed in the U.S. data, under parameter values that have been

widely used in the literature. While our analysis complements their conclusion in terms of

the Sharpe ratio of the whole return, we also show that when discount rates of households

are greater in the short-run than in the log-run, the observable Sharpe ratio of stochastic

growth models can match the Sharpe ratio of the market portfolio observed in the U.S.

data. We do this without making the volatility of the intertemporal marginal rate of sub-

stitution arbitrarily high.

The reason why quasi-geometric discounting can help modify the standard lower bound

of the ratio of the second moment of the stochastic discount factor to its first moment can

be explained as follows. While the unobservable whole investment return is a weighted

average of observable and unobservable terms, the weight for the observable term decreases

as the short-run impatience of households rises. In addition, we show that the unobserv-

able term is less than the observable term in the stochastic growth model we analyze in

this paper. Given the observed level of the observable term, it thus means that a rise in

the short-run impatience of households leads to a fall in the size of the whole investment

return. Hence, when the unobservable Sharpe ratio is defined in terms of the unobservable

whole investment return, it falls as the short-run impatience of households rises. As a

result, we can find a value of the short-run impatience of household, which allows the un-

observable Sharpe ratio to equal the ratio of the second moment of the stochastic discount

factor to its first moment given the observed level of the observable term.

Furthermore, we find that the unobservable Sharpe ratio for the competitive equilib-
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rium remains above that of the planner’s problem, if discount rates of households are

greater in the short-run than in the long-run. This in turn implies that the competitive

equilibrium requires a higher value of the short-run impatience of households to match

the observed Sharpe ratio than does the planner’s problem. The reason for this can be

explained as follows. Krusell, Kuruscu and Smith(2002) have shown that price-taking

behavior in the competitive equilibrium leads to a higher level of welfare than does the

planner’s problem. Specifically, when discount rates of households are greater in the short-

run than in the long-run, the price-taking behavior gives the household a higher benefit

from extra saving today than does the planner’s problem. This in turn implies that the

unobservable return from investment is smaller for the planner’s problem than for the com-

petitive equilibrium, given the observed level of the observable investment return. Since

the whole investment return is a weighted average of observable and unobservable terms, it

means that the whole investment return is greater for the competitive equilibrium than for

the planner’s problem. The unobservable Sharpe ratio is therefore higher for the compet-

itive equilibrium than for the planner’s problem. As a result, the competitive equilibrium

requires a higher level of short-run impatience of households than does the planner’s prob-

lem, in order to match the observed Sharpe ratio.

The rest of the paper is organized as follows. In section 2, we analyze closed form

solutions for the competitive equilibrium and the planner’s problem in a stochastic growth

model with quasi- geometric discounting. In section 3, we show that when the whole in-

vestment return is defined as a weighted average of observable and unobservable terms, a

lower bound of the ratio of the second moment of the stochastic discount factor to its first

moment is the Sharpe ratio constructed on the basis of the unobservable whole investment

return. We then consider a closed-form relationship between the observable and unob-

servable Sharpe ratios. We also show that when households are supposed to trade state

contingent claims in markets, quasi-geometric discounting does not help match observed

levels of the Sharpe ratio. Section 4 concludes.
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2 Stochastic Growth Models with Quasi-Geometric Discounting

We begin this section by considering a recursive competitive equilibrium in a stochastic

growth model with quasi-geometric discounting and then move onto the discussion of the

generalized Euler equation.

2.1 Competitive Equilibrium

In this section, we briefly highlight the competitive equilibrium for a stochastic growth

model with quasi-geometric discounting. The preference at period t of the representative

household is represented by the following utility function:

u(Ct, 1 − Ht) + θβ[
∞∑

k=0

βkEt[u(Ct+1+k, 1 − Ht+1+k)]], (2.1)

where Ct is consumption at period t and Ht is the hours worked at period t. The period

utility function u(Ct, 1 − Ht) is twice differentiable and concave in its arguments.

The household owns the capital stock, which is employed to produce output. In each

period t = 0, 1, · · ·, ∞, the capital stock is accumulated according to the following linear

technology:

Kt+1 = It + (1 − δ)Kt, (2.2)

where δ denotes a constant depreciation rate for capital, Kt denotes the capital stock at

period t, and It denotes the capital investment at period t. Furthermore, letting R̂t denote

the real rental rate at period t, the observable real return at period t of the capital stock

can be written as

Rt = 1 − δ + R̂t, (2.3)

where Rt denotes the observable return component at period t of holding a unit of the

capital stock from period t − 1 through period t. The period budget constraint at period

t of the household can be written as

Ct + Kt+1 = RtKt + WtHt, (2.4)

where Wt denotes the real wage at period t. Here, it should be noted that while we may

be able to include many different types of assets in the period budget constraint (2.4),
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we allow for only capital accumulation to focus its role on the observable Sharpe ratio.

In addition, markets for production inputs and final goods are assumed to be perfectly

competitive, so that an individual agent takes their prices as given when the agent makes

his or her decision making.

The representative household then maximizes its expected utility function (2.1) subject

to the period budget constraint (2.4) in each period t = 0, 1, · · ·, ∞, given an initial value

of capital K0 and sequences of real prices { Wt, Rt }∞t=0. The first-order conditions of the

representative household’s problem are then given by

u2(Ct, 1 − Ht)
u1(Ct, 1 − Ht)

= Wt. (2.5)

1 = βEt[
u1(Ct+1, 1 − Ht+1)

u1(Ct, 1 − Ht)
[θRt+1 + (1 − θ)

∂Kt+2

∂Kt+1
]]. (2.6)

Here, equation (2.5) states that the marginal rate of substitution between consumption

and leisure equals the real wage. Besides, equation (2.6) corresponds to the generalized

Euler equation in a model with quasi-geometric discounting. Appendix A shows how to

derive the Euler equation from the optimization of the household.

Furthermore, output from production for firm i, Yit, is determined by a constant returns

to scale production function of the form:

Yit = AtF (Kit, Hit), (2.7)

where At denotes the aggregate random technology disturbances at period t, Kit denotes

the capital stock rented by firm i, and Hit denotes the number of hours hired by firm i.

The logarithm of the total factor productivity follows an AR(1) process of the form:

at = ρaat−1 + et, (2.8)

where at = log At and et is an i.i.d. random variable with its mean zero and standard

deviation σa. Hence, the real wage and real rental rates in an equilibrium can be written

as

Wt = AtF2(K̄t, Ht); R̂t = AtF1(K̄t, Ht), (2.9)

where Fi denotes the partial derivative of the production function F with respect to ith

argument.
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Krusell, Kuruscu and Smith(2002) have emphasized that one needs to allow for the

difference between the capital holdings of an individual agent, denoted by Kt, and the

average capital holdings in the economy K̄t, in order to analyze a competitive equilibrium

in a growth model with quasi-geometric discounting. In particular, we assume that the

agent’s decision rule for capital holdings can be written as Kt+1 = g(Kt, K̄t, At), while the

law of motion for the aggregate capital stock is K̄t+1 = G(K̄t, At), for t = 0, 1, 2, · · ·, ∞.

A symmetric equilibrium then requires setting Kt = K̄t, which in turn leads to

g(K̄t, K̄t, At) = G(K̄t, At), (2.10)

for t = 0, 1, · · ·, ∞.

We now summarize a set of competitive equilibrium conditions in a stochastic growth

model with quasi-geometric discounting. First, the generalized Euler equation (2.6) can

be now rewritten in terms of the decision rule for the individual agent’s capital holdings:

1 = βEt[
u1(Ct+1, 1 − Ht+1)

u1(Ct, 1 − Ht)
[θRt+1 + (1 − θ)g1(K̄t+1, K̄t+1, At+1)]], (2.11)

where Rt is given by

Rt = 1 − δ + AtF1(K̄t, Ht). (2.12)

Also, substituting (2.9) into the utility maximization condition for labor supply (2.5) leads

to
u2(Ct, 1 − Ht)
u1(Ct, 1 − Ht)

= AtF2(K̄t, Ht). (2.13)

The social resource constraint is given by

Ct + K̄t+1 = AtF (K̄t, Ht) + (1 − δ)K̄t. (2.14)

In sum, one can compute a sequence of equilibrium quantities {Ct, Ht, K̄t+1}∞t=0 and a

sequence of equilibrium real prices {Wt, Rt}∞t=0 by solving a system of (2.9), (2.11), (2.12),

(2.13), and (2.14) in each period t = 0, 1, · · ·, ∞, given K0 and {At}∞t=0.

2.2 A Closed Form Solution for the Competitive Equilibrium

We now consider a closed form solution for the competitive equilibrium. We therefore

restrict preference and technology to specific functional forms. We also assume that capital
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depreciates completely within a period, so that we set δ = 1.

In what follows, it will be assumed that the aggregate production function takes a

Cobb-Douglas form:

Yt = AtK̄
α
t H1−α

t , (2.15)

where α denotes the output elasticity of capital. In addition, the period utility function

of the household is given by

u(Ct, 1 − Ht) = log Ct + b log(1 − Ht), (2.16)

where b is a positive constant.

Krusell, Kuruscu, and Smith(2002) show that an individual household has a saving

function in a growth model with quasi-geometric discounting, which is linear in his or

her capital holdings. We therefore assume that the policy function for an individual

household’s capital holdings is assumed to be of the form:

g(Kt, K̄t, At) =
Kt

K̄t
G(K̄t, At). (2.17)

We also assume that the equilibrium division of output between consumption and invest-

ment is assumed to be

K̄t+1 = sαYt; Ct = (1 − sα)Yt, (2.18)

where s is a positive constant which will be determined.

It is important to note that Kt = K̄t in an equilibrium. It thus follows from (2.17)

that the partial derivative of the policy function for the individual household with respect

to his or her capital stock can be written as

g1(K̄t+1, K̄t+1, At+1) =
K̄t+2

K̄t+1
. (2.19)

Hence, given functional forms of utility and production functions described in (2.15) and

(2.16), the Euler equation specified in (2.6) can be rewritten as

K̄t+1

Ct
= θαβ + βEt[(αθ + 1 − θ)

K̄t+2

Ct+1
]. (2.20)

In addition, note that equation (2.18) leads to K̄t+1

Ct
= sα

1−sα . We, therefore, set K̄t+1

Ct
=

sα
1−sα in (2.20) and then solve the resulting equation for s, which in turn leads to

s =
θβ

1 − β(1 − θ)
. (2.21)
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Here, one can see from (2.21) that 0 < β < 1 leads to 0 < s < 1, to the extent that θ > 0.

Furthermore, we can show that the equilibrium number of hours is constant in each

period t = 0, 1, · · ·, ∞. Note that, given functional forms of utility and production

functions described in (2.15) and (2.16), the equilibrium condition for labor (2.13) can be

rewritten as
bCt

1 − Ht
= (1 − α)

Yt

Ht
. (2.22)

Then, setting Ct
Yt

= 1 - sα in (2.22), we can see that the equilibrium number of hours is a

constant satisfying
bH

1 − H
=

(1 − α)
1 − sα

. (2.23)

Hence, substituting (2.21) into (2.18), the policy function for the average capital holdings

in the economy can be written as

K̄t+1 =
αθβ

1 − β(1 − θ)
AtK̄

α
t H1−α. (2.24)

As a result, one can use equations (2.15), (2.18), and (2.24) to compute a closed form

solution for the competitive equilibrium allocation { Ct, Yt, K̄t+1 }∞t=0 given K̄0 and { At

}∞t=0.

2.3 The Generalized Euler Equation in the Planner’s Problem

Having described a closed form solution for the competitive equilibrium, we turn to the

discussion of the generalized Euler equation for the social planner’s problem. The reason

why we are concerned with the social planner’s problem is that the marginal benefit from

a marginal change in the planner’s saving differs from that of a competitive household’s

saving.

Specifically, the social planner’s problem can be written as

max{u(Ct, 1 − Ht) + θβ[
∞∑

k=0

βkEt[u(Ct+k, 1 − Ht+k)]]}, (2.25)

subject to

Ct + K̄t+1 − (1 − δ)K̄t ≤ AtF (K̄t, Ht), (2.26)
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for t = 0, 1, 2, · · ·, ∞ and given K̄0 and { At }∞t=0. The generalized Euler equation for the

social planner’s problem is then given by

1 = βEt[
u1(Ct+1, 1 − Ht+1)

u1(Ct, 1 − Ht)
[θ(1−δ+AtF1(K̄t+1, Ht+1))+(1−θ)G1(K̄t+1, At+1)]]. (2.27)

In order to obtain a closed form solution for the social planner’s problem, we now

continue to restrict preference and technology to the same functional forms analyzed in

the previous section. We also continue to assume that capital depreciates completely within

a period, so that we set δ = 1. The generalized Euler equation for the social planner’s

problem can be therefore rewritten as

K̄t+1

Ct
= θαβ + βEt[(αθ + (1 − θ)εk(K̄t+1, At+1))

K̄t+2

Ct+1
], (2.28)

where εk(K̄t+1, At+1) denotes the elasticity of the next period’s capital stock with respect

to the current period’s capital stock:

εk(K̄t+1, At+1) =
∂K̄t+2

∂K̄t+1

K̄t+1

K̄t+2
. (2.29)

We then use a ‘guess and verify method’ to compute a closed form solution for the

model. Specifically, suppose that the elasticity of the next period’s capital stock with

respect to the current period’s capital stock is constant over time, so that εk(K̄t+1, At+1)

= εk in each period t = 0, 1, · · ·, ∞. A successive forward iteration of (2.28) then leads to

K̄t+1 =
αβθ

1 − β(αθ + (1 − θ)εk)
Ct, (2.30)

where the following terminal condition is satisfied:

lim
T→∞

(β(αθ + (1 − θ)εk))T Et[
K̄t+T+1

Ct+T
] = 0.

Substituting Ct = Yt - K̄t+1 into (2.30) and rearranging, we have

K̄t+1 =
αβθ

1 − β(1 − θ)εk
Yt. (2.31)

Notice that firms produce output using a Cobb-Douglas production function. Hence, one

can see from (2.29) and (2.31) that εk = α. In addition, the number of hours worked

is constant for the planner’s problem if one assumes logarithmic utility function, Cobb-

Douglas production function and complete depreciation of capital. Hence, substituting
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(2.30) into (2.26) and then setting εk = α in the resulting equation, we can see that the

capital stock at the next period therefore can be written as

K̄t+1 =
θαβ

1 − αβ(1 − θ)
AtK̄

α
t H̄1−α, (2.32)

where H̄ is defined as

H̄ =
(1 − α)(1 − αβ(1 − θ))

b(1 − αβ) + (1 − α)(1 − αβ(1 − θ))
. (2.33)

As a result, one can use equations (2.30), (2.31), and (2.32) to compute a closed form

solution for the planner’s problem { Ct, Yt, K̄t+1 }∞t=0 given K̄0 and { At }∞t=0.

Next, we turn to the discussion of the relationship between observable and unobservable

terms in the generalized Euler equation. It is here important to note that quasi-geometric

discounting generates an unobservable term in the generalized Euler equation, which is

absent in the case of ordinary geometric discounting. More explicitly, the unobservable

term for the planner’s problem corresponds to G1(K̄t, At), while competitive equilibrium

creates g1(K̄t, K̄t, At). We then show that the complete depreciation of capital makes the

unobservable term proportional to the observable return for both of the competitive equi-

librium and the planner’s problem, given the functional forms of preference and technology

(2.15) and (2.16).

First, we consider the unobservable term in the planner’s problem. We then show that

the partial derivative of the decision rule for the average capital holdings is proportional

to the marginal product of capital, which is denoted by R∗
t . Specifically, we can see from

(2.17) and (2.32) that the observable term in the generalized Euler equation is given by

G1(K̄t, At) = s∗R∗
t , (2.34)

where s∗ is defined as

s∗ =
θαβ

1 − αβ(1 − θ)
. (2.35)

We now turn to the case of the competitive equilibrium. In the case of the competitive

equilibrium, one can use equations (2.17) and (2.24) to obtain the following relationship

between observable and unobservable returns:

g1(K̄t, K̄t, At) =
G(K̄t, At)

K̄t
= sRt, (2.36)
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where s is given by

s =
θβ

1 − β(1 − θ)
. (2.37)

We can see from generalized Euler equations for the competitive household and the so-

cial planner (2.11) and (2.27) that when unobservable terms are considered as parts of

investment returns, the investment return includes observable and unobservable terms as

its components. It also follows from (2.35) and (2.37) that proportionality constants s

and s∗ are less than 1 if 0 < α < 1, 0 < β < 1 and 0 < θ < 1. Hence, households may

have a smaller size of investment return under quasi-geometric discounting than under

ordinary geometric discounting. In the next section, therefore, we will discuss implications

of quasi-geometric discounting on the Sharpe ratio of investment return.

3 Implications of Quasi-geometric Discounting for Asset Pricing

Having derived the Euler equation (2.11), we now show that time-inconsistent preferences

can help modify the standard bound on the coefficient of variation of the ratio of marginal

utilities of consumption across periods.

3.1 The Relationship between the Sharpe Ratio and the Stochastic Discount
Factor under Quasi-geometric Discounting

In this section, we discuss the relationship between the Sharpe ratio of investment and

the stochastic discount factor under quasi-geometric discounting. In doing so, we empha-

size that generalized Euler equations for the competitive household and the social planner

(2.11) and (2.27) include unobservable terms respectively. The presence of such unobserv-

able terms is a product of strategic interaction between the consumer’s current and future

selves, given time inconsistent preferences. We also consider the unobservable terms as

parts of investment returns. Hence, investment under quasi-geometric discounting creates

observable and unobservable returns.

We then show that a candidate for the stochastic discount factor in a stochastic growth

model with quasi-geometric discounting is the intertemporal marginal rate of substitution

of a consumer in models with ordinary geometric discounting. Specifically, let Mt+1 de-

note the intertemporal marginal rate of substitution between consumptions at periods t
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and t + 1 of consumers that behave as if they discount future utilities at a constant rate:

Mt+1 = β
u1(Ct+1, 1 − Ht+1)

u1(Ct, 1 − Ht)
. (3.1)

Consider the generalized Euler equation for a competitive household. It will be shown that

given the definition of the stochastic discount factor (3.1), one can use the Euler equation

(2.11) to decompose the whole investment return into its observable and unobservable

components. In order to see this, let Ri,t+1 and Xi,t+1, respectively, denote the observable

and unobservable investment returns at period t + 1, which are defined as

Ri,t+1 = 1 − δ + R̂t+1; Xi,t+1 = g1(K̄t+1, K̄t+1, At+1). (3.2)

The whole investment return at period t + 1 is then defined as a weighted average of its

observable and unobservable components:

R̃i,t+1 = θRi,t+1 + (1 − θ)Xi,t+1, (3.3)

where R̃i,t+1 denotes the whole investment return at period t + 1 that consumers expect

to obtain when they hold it for one period. The weight for the observable return is

the measure of the short-run impatience, θ. Substituting (3.1) and (3.3) into (2.11), the

generalized Euler equation can be rewritten as

1 = Et[Mt+1R̃i,t+1]. (3.4)

It is well-known in the literature on asset pricing that the expected value of the stochastic

discount factor times the return of an asset is equal to one in a consumption-based asset

pricing model. Given definitions of the discount factor Mt+1, and the observable and

unobservable investment returns Ri,t+1 and R̃i,t+1, we can see from equation (3.4) that

the generalized Euler equation leads to such a basic formula for asset pricing.

In the case of the planner’s problem, define Ri,t+1 and Xi,t+1 as

Ri,t+1 = R∗
t+1; Xi,t+1 = G1(K̄t+1, At+1), (3.5)

where R∗
t+1 denotes the observable return for the planner’s problem, defined by

R∗
t+1 = 1 − δ + AtF1(K̄t+1, Ht+1) (3.6)
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Then, one can see that the generalized Euler equation (2.27) leads to the basic formula

for asset pricing (3.4).

We now turn to the discussion of an expected risk-premium on the investment return.

In order to do so, we assume that there is a portfolio whose return has a zero covariance

with the stochastic discount factor. Specifically, let Rz,t+1 denote the return at period t+1

of the zero covariance portfolio. It then follows from (3.4) that the relationship between

the conditional expectation of the stochastic discount factor and the expected return of

the zero covariance portfolio can be written as

1 = Et[Mt+1]Et[Rz,t+1]. (3.7)

Then, following the literature on asset pricing, equations (3.4) and (3.7) can be solved to

show that the expected excess return on any asset i satisfies

Et[R̃i,t+1] − Et[Rz,t+1] = −covt(Mt+1, R̃i,t+1)
Et[Mt+1]

, (3.8)

where covt(x, y) denotes the conditional covariance of random variables x and y conditional

on the information set at period t. The characterization of the expected excess return

described in (3.8) indicates that the expected excess return of investment is determined

by its risk, as measured by the negative covariance with stochastic discount factor divided

by the expected stochastic discount factor.

Because the absolute value of the correlation between the stochastic discount factor

and an asset’s return must be less than one, the negative covariance in equation (3.8) must

be less than the product of the standard deviations of the asset’s return and the stochastic

discount factor. It thus implies that we have

Et[R̃i,t+1] − Et[Rz,t+1]
σt(R̃i,t+1)

≤ σt(Mt+1)
Et[Mt+1]

, (3.9)

where σt(x) denotes the conditional standard deviation of a variable x. The ratio of the

expected excess investment return to its standard deviation puts a lower bound on the ratio

of the second moment to the first moment of the stochastic discount factor, as analyzed

in the works of Shiller(1982) and Hansen and Jaganathan(1991).
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3.2 The Observable and Unobservable Sharpe Ratios under Quasi-geometric
Discounting

It is important to note that the whole investment return is unobservable. It means that

equation (3.9) itself is not useful to see whether time-inconsistent preferences help modify

the bound on the coefficient of variation on the stochastic discount factor. To get around

such a problem, one can rewrite (3.9) in terms of the observable Sharpe ratio. Specifically,

let S̃Ri,t denote the Sharpe ratio of the asset i in terms of its whole return, which is defined

as the asset’s risk premium divided by its return’s standard deviation:

S̃Ri,t =
Et[R̃i,t+1] − Et[Rz,t+1]

σt(R̃i,t+1)
. (3.10)

The observable Sharpe ratio of the asset is then defined in terms of its observable return:

SRi,t =
Et[Ri,t+1] − Et[Rz,t+1]

σt(Ri,t+1)
. (3.11)

Substituting (3.3) into (3.10) and rearranging, we have

S̃Ri,t =
σt(Ri,t+1)
σt(R̃i,t+1)

SRi,t − (1 − θ)
Et[Ri,t+1] − Et[Xi,t+1]

σt(R̃i,t+1)
. (3.12)

Thus, we can see that the unobservable Sharpe ratio has a linear relationship with the

observable Sharpe ratio.

In order to get insights about the role of quasi-geometric discounting, we now turn to

the discussion of a closed form relationship between unobservable and observable Sharpe

ratios, which is implied by closed form solutions for the competitive equilibrium and the

planner’s problem. Given the logarithmic utility function for consumption specified in

(2.16), it follows from (3.1) that the stochastic discount factor is given by

Mt+1 = β
Ct

Ct+1
. (3.13)

It also follows from (2.34) and (2.36) that the unobservable investment return is propor-

tional to the observable investment return:

Xi,t+1 = φRi,t+1, (3.14)

where φ is a positive constant. More explicitly, φ = s for the competitive equilibrium and

φ = s∗ for the planner’s problem. The whole investment return then becomes proportional

15



to the observable return:

R̃i,t+1 = (θ + (1 − θ)φ)Ri,t+1. (3.15)

Substituting (3.14) and (3.15) into (3.12), the whole Sharpe ratio of the asset i can be

written as

S̃Ri,t =
1

θ + (1 − θ)φ
(SRi,t − (1 − θ)(1 − φ)

Et[Ri,t+1]
σt(Ri,t+1)

). (3.16)

Next, we turn to the discussion of sufficient conditions for S̃Ri,t < SRi,t. In order to

do this, we compute the difference between the unobservable and observable Sharpe ratios

by subtracting SRi,t from both sides of (3.16):

S̃Ri,t − SRi,t =
(1 − θ)(1 − φ)
θ + (1 − θ)φ

(SRi,t − Et[Ri,t+1]
σt(Ri,t+1)

). (3.17)

Then, substituting (3.11) into the right-hand side of (3.17) and setting Et[Rz,t+1] = 1
Et[Mt+1]

in the resulting equation, we have

S̃Ri,t − SRi,t = −{(1 − θ)(1 − φ)
θ + (1 − θ)φ

} 1
σt(Ri,t+1)Et[Mt+1]

. (3.18)

Therefore, to the extent that σt(Ri,t+1) > 0 and Et[Mt+1] > 0, equation (3.18) implies

that sufficient conditions for S̃Ri,t < SRi,t can be written as

0 < θ < 1; 0 < φ < 1. (3.19)

It is now important to note that under a quasi-geometric discounting, a lower bound of

the coefficient of variation on the stochastic discount factor is S̃Ri,t, while the lower bound

under ordinary geometric discounting corresponds to SRi,t. Therefore, the sufficient con-

ditions for S̃Ri,t < SRi,t described in (3.19) raise the possibility that quasi-geometric

discounting can help modify the standard lower bound on the coefficient of variation of

the stochastic discount factor.

In order to see this, note that the investment return under quasi-geometric discount-

ing is a weighted average of unobservable and observable terms, with the weight for the

observable term θ. It thus implies that if the unobservable investment return is less than

the observable investment return, the whole investment return should remain below the

observable return. Specifically, 0 < φ < 1 guarantees that the unobservable term in the

generalized Euler equation is less than the observable term. In addition, it follows from
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(2.35) and (2.37) that φ = s for the competitive equilibrium and φ = s∗ for the planner’s

problem. We also know that both s and s∗ are less than 1, given the closed form solutions

described above. It thus follows from (3.15) that a rise in the short-run impatience of

households decreases the whole investment return, given a level of the observable return.

This in turn implies that the absolute value of the conditional covariance between the

stochastic discount factor and the whole investment return can take a smaller value under

quasi-geometric discounting than under ordinary geometric discounting for a range of val-

ues of the short-run impatience of households. Hence, to the extent that the closed form

solutions hold, we find that when discount rates of households are greater in the short-

run than in the long-run and capital depreciates completely within a period, investment

creates a smaller size of the expected risk premium under quasi-geometric discounting

than under ordinary geometric discounting. Therefore, the unobservable Sharpe ratio for

the investment under quasi-geometric discounting remains below the observable Sharpe

ratio. As a result, we can conclude that the lower bound of the coefficient variation of

the stochastic discount factor is smaller under quasi-geometric discounting than under

ordinary geometric discounting, if the conditions specified in (3.19) are satisfied.

3.3 The Computation of the Unobservable Sharpe Ratio

Having described the relationship between the unobservable and observable Sharpe ratios,

we will compute the unobservable Sharpe ratio on the basis of the observable Sharpe ratio.

In particular, we will assume that technology shocks follow a normal distribution. This

in turn implies that the observable return follow a log-normal distribution, so long as

the closed form solutions analyzed in the previous section hold. It also follows from the

log-normality of the observable return that the ratio of the conditional expectation of the

observable return to its conditional standard deviation can be written as

Et[Ri,t+1]
σt(Ri,t+1)

= (exp(σt(ri,t+1)2) − 1)−
1
2 , (3.20)

where σt(Ri,t+1) denotes the conditional standard deviation of the observable return and

ri,t+1 = log Ri,t+1. Therefore, substituting (3.20) into (3.16), we have

S̃Ri,t =
SRi,t

θ + (1 − θ)φ
− (1 − θ)(1 − φ)

θ + (1 − θ)φ
(exp(σt(ri,t+1)2) − 1)−

1
2 . (3.21)
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Note that in the case of complete depreciation of capital, the observable return equals the

marginal product of capital. Thus, given that we have the closed form solutions for the

competitive equilibrium and the planner’s problem described above, the logarithm of the

observable return can be written as

ri,t = log α + (1 − α) log H̄ + at − (1 − α) log K̄t. (3.22)

The conditional standard deviation of the logarithm of the observable return therefore is

given by

σt(ri,t+1)2 = σ2
a. (3.23)

As a result, substituting (3.23) into (3.21), we have a closed form relationship between the

unobservable and observable investment returns:

S̃Ri,t =
SRi,t

θ + (1 − θ)φ
− (1 − θ)(1 − φ)

θ + (1 − θ)φ
(exp(σ2

a) − 1)−
1
2 . (3.24)

Having discussed the unobservable Sharpe ratio, we now turn to the discussion of how

to compute the ratio of the second moment of the stochastic discount factor to its first

moment. First, under the assumption of the log-normality, we can write the coefficient of

variation of the stochastic discount factor as follows:

σt(Mt+1)
Et[Mt+1]

= (exp(σt(mt+1)2) − 1)
1
2 , (3.25)

where mt+1 = log Mt+1. It also follows from the logarithmic utility function for consump-

tion that the conditional standard deviation of the logarithm of the stochastic discount

factor equals that of the logarithm of consumption growth for both the competitive equi-

librium and the planner’s problem. We also use equations (2.18) and (2.24) for the com-

petitive equilibrium and equations (2.30) and (2.32) for the planner’s problem respectively,

in order to show that the conditional standard deviation of the logarithm of consumption

growth equals that of the technology shock. As a result, the coefficient of variation of the

stochastic discount factor can be written as

σt(Mt+1)
Et[Mt+1]

= (exp(σ2
a) − 1)

1
2 . (3.26)

As a result, given that equation (3.24) for the unobservable Sharpe ratio holds, the re-

lationship between the unobservable Sharpe ratio and the coefficient of variation of the
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stochastic discount factor specified in equation (3.9) can be rewritten as

S̃Ri,t ≤ (exp(σ2
a) − 1)

1
2 . (3.27)

Having written the relationship between the unobservable and observable Sharpe ratios,

we will compute the relationship between the unobservable Sharpe ratio and the short-run

impatience of households, given observed values of the observable Sharpe ratio. We do

this, in order to see if quasi-geometric discounting can generate a significant change in the

lower bound of the stochastic discount factor. We therefore need to calibrate values for

parameters α, β, θ, σa, ρa. Specifically, the steady state Euler equation is used to set a

value of the long-run discount factor:

β =
1

(θ + (1 − θ)φ)R
, (3.28)

where R denotes the long-run average value of the observable return. Notice from (2.35)

and (2.37) that φ = s for the competitive equilibrium and φ = s∗ for the planner’s problem.

Therefore, values of long-run time discount factor for the competitive equilibrium and the

planner’s problem, respectively, are given by

β =
1

θR + 1 − θ
; β∗ =

1
θR + α(1 − θ)

, (3.29)

where β∗ denotes the long-run time discount factor for the planner’s problem. The per-

sistence parameter of the logarithm of the total factor productivity is set to be ρa = 0.95

and the standard deviation of technology shock is σa = 0.00785, which are taken from

Hansen(1985). In addition, the labor income share is given by sH = 0.58, which corre-

sponds to setting α = 0.42, following King, Plosser, and Rebelo (1988a, b). The parameter

values used in this paper are reported in Table 1.

Table 2 reports annual average values of returns on stocks and bonds and their stan-

dard deviations over the sample period from 1947 through 1996, which are taken from

Cochrane(1997). For example, the annual average return from the value weighted NYSE

portfolio is 9.1 %, which corresponds to R = 1.0225. The standard deviation of the real

return on the value weighted NYSE portfolio is 16.7 %. In addition, when the Sharpe

ratio is defined as the ratio of the average excess return of stocks to the standard deviation

of stock return, it is 0.497 for the value weighted NYSE portfolio, 0.561 for S&P 500,
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and 0.459 for the equally weighted NYSE portfolio. Table 2 therefore indicates that the

Sharpe ratios for the three measures of real returns on stocks and bonds are near 0.5 in

the postwar U.S. data.

Figures 1 and 2 report the relationship between the short-run impatience of house-

holds and the unobservable Sharpe ratio for the competitive equilibrium and the planner’s

problem respectively, while the short-run impatience is represented by θ. The value of

the observable Sharpe ratio is set equal to the Sharpe ratio of the value weighted NYSE

portfolio, the equally weighted NYSE portfolio and S&P 500 respectively. Figures 1 and

2 demonstrate that as the short-run impatience of households increases, the unobservable

Sharpe ratio falls.

Comparing Figure 1 with Figure 2, one can see that the unobservable Sharpe ratio

for the competitive equilibrium remains above that of the planner’s problem. Specifically,

the unobservable Sharpe ratio for the competitive equilibrium can match the coefficient of

variation of the stochastic discount factor at θ = 0.827, 0.805, and 0.841 for the equally

weighted NYSE, S&P 500, and the value weighted NYSE respectively, given parameter

values described above. However, the planner’s problem requires θ = 0.994, 0.993, and

0.994, for the equally weighted NYSE, S&P 500, and the value weighted NYSE respec-

tively, in order to match the coefficient of variation of the stochastic discount factor.

The reason why the competitive equilibrium generates a higher level of the unobserv-

able Sharpe ratio than the planner’s problem can be explained as follows. It follows from

decision rules for capital holdings specified in (2.17) and (2.32) that the planner’s deci-

sion rule is decreasing in capital holdings, while the competitive equilibrium consumer’s

decision rule is linear in his or her capital holdings. Therefore, when discount rates of

households are greater in the short-run than in the long-run, the competitive equilibrium

consumer sees a higher benefit from extra saving today than does the planner. Therefore,

everything else equal, the planner sees another unit of savings as yielding a smaller increase

in future savings than does the competitive equilibrium consumer, as discussed in Krusell,

Kuruscu, and Smith(2002). This in turn implies that when the observable return is taken

as given, the unobservable return from investment is smaller for the planner’s problem

than for the competitive equilibrium. Since the whole investment return is a weighted av-

erage of observable and unobservable terms, it means that the whole investment return is
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greater for the competitive equilibrium than for the planner’s problem. The unobservable

Sharpe ratio is thus higher for the competitive equilibrium than for the planner’s problem.

As a result, the competitive equilibrium requires a higher level of short-run impatience of

households in order to make the unobservable Sharpe ratio equal the coefficient of variation

of the stochastic discount factor.

3.4 The Relationship between the Observable Sharpe Ratio and the Stochas-
tic Discount Factor in the Presence of State Contingent Claims

In this section, we consider an example in which quasi-geometric discounting may not

help to modify the standard lower bound on the coefficient of variation of the stochastic

discount factor, unless the unobservable return from investment analyzed in the previous

section is taken into account. The sole difference from the previous section is the presence

of one-period ahead state contingent claims in sequentially complete markets, while the

previous section assumes that state contingent claims are not traded in markets. We then

derive the relationship between the observable Sharpe ratio and the stochastic discount

factor in the presence of state contingent claims on consumption goods in sequentially

complete markets. In particular, we focus on a closed-form solution for the competitive

equilibrium in the presence of state contingent claims. Hence, we continue to restrict pref-

erence and technology to the same functional forms employed in the previous section.

The preference at period t of the representative household is represented by the fol-

lowing utility function:

log(Ct) + b log(1 − Ht) + θβ[
∞∑

k=0

βkEt[log(Ct+1+k) + b log(1 − Ht+1+k)]]. (3.30)

The period budget constraint at period t of the representative household is also given by

Ct + Et[Qt,t+1Bt+1] + Kt+1 ≤ Bt + WtHt + RtKt, (3.31)

where Qt,t+1 denotes the stochastic discount factor for computing the price at period t of

one unit of consumption goods at period t+1. Here, Bt+1 denotes one-period ahead state

contingent bond, which delivers one unit of consumption goods at period t + 1 only if a

specific state occurs at period t + 1 and gives nothing otherwise. Let Nt denote the real
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wealth of the representative household, which is defined by

Nt = Bt + RtKt. (3.32)

In addition, no-arbitrage condition implies that the following equality holds:

1 = Et[Qt,t+1Rt+1]. (3.33)

Substituting (3.32) and (3.33) into (3.31), we can see that the period budget constraint of

the consumer can be rewritten as

Ct + Et[Qt,t+1Nt+1] ≤ WtHt + Nt. (3.34)

Having described the period budget constraint of the household in terms of his or her

real wealth, we now turn to the discussion of the behavior of the household. In order to

do this, let V (Nt, N̄t, At) be the value function at period t, which satisfies

V (Nt, N̄t, At) = {log Ct + b log(1 − Ht) + βEt[V (Nt+1, N̄t+1, At+1)]}, (3.35)

subject to the constraint (3.34). Here, N̄t denotes the average real wealth at period t in the

economy. The optimization of the current self at period t of the representative household

then can be written as

F (Nt, N̄t, At) = max
{Ct,Nt+1}

{log Ct + b log(1 − Ht) + θβEt[V (Nt+1, N̄t+1, At+1)]}, (3.36)

subject to the period budget constraint (3.34). Here, F (Nt, N̄t, At) denotes the value

function of the current self at period t. The first-order condition for Nt+1 is given by

Qt,t+1(
1
Ct

) = θβV1(Nt+1, N̄t+1, At+1), (3.37)

which holds at every state in period t + 1. The first-order condition for labor supply is

Wt = b
Ct

1 − Ht
. (3.38)

The envelope condition for (3.36) is

F1(Nt, N̄t, At) =
1
Ct

. (3.39)
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Combining (3.35) with (3.36), we have

θV (Nt, N̄t, At) = F (Nt, N̄t, At) − (1 − θ)(log Ct + b log(1 − Ht)). (3.40)

Differentiating (3.40) then leads to

θV1(Nt, N̄t, At) = F1(Nt, N̄t, At) − (1 − θ)(
1
Ct

)(1 − Et[
∂Nt+1

∂Nt
Qt,t+1]). (3.41)

Substituting (3.39) into (3.41) also leads to

θV1(Nt, N̄t, At) =
1
Ct

(θ + (1 − θ)Et[
∂Nt+1

∂Nt
Qt,t+1]). (3.42)

Combining (3.37) and (3.42), the first-order condition for the current self at period t can

be rewritten as

Qt,t+1 = β
Ct

Ct+1
(θ + (1 − θ)Et+1[

∂Nt+2

∂Nt+1
Qt+1,t+2]). (3.43)

In order to characterize the competitive equilibrium in terms of decision rules for real

wealth, it is now useful to distinguish between decision rules for the individual consumer’s

real wealth and the average real wealth in the economy. Specifically, the decision rule for

the individual consumer’s real wealth is given by

Nt+1 = x(Nt, N̄t, At), (3.44)

while the decision rule for the average real wealth is

N̄t+1 = X(N̄t, At), (3.45)

where N̄t denotes the average real wealth in the economy. We assume that the decision

rule for the individual consumer’s real wealth is given by

x(Nt, N̄t, At) =
Nt

N̄t
X(N̄t, At). (3.46)

Then, the partial derivative of the decision rule for the individual consumer’s real wealth

with respect to his or her wealth can be written as

∂Nt+1

∂Nt
=

X(N̄t, At)
N̄t

. (3.47)

Next, we will analyze a closed form solution for the competitive equilibrium. We then

use it to compute the stochastic discount factor in the presence of state contingent claims.
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In doing so, we assume that the consumer consumes a constant fraction of his or her

wealth at the beginning of each period. Hence, the equilibrium level of consumption is

proportional to the average real wealth in the economy:

Ct = ωN̄t. (3.48)

Since all households are the same, Bt = 0 should hold in an equilibrium. In addition, when

capital depreciates completely within a period, the real return on investment equals the

marginal product of capital:

Rt = α
Yt

Kt
. (3.49)

It thus follows from (3.32) and (3.49) that the average real wealth in the economy is given

by

N̄t = αYt. (3.50)

Substituting (3.48) and (3.50) into the social resource constraint, we can see that the next

period’s capital stock is proportional to the average real wealth in the economy:

Kt+1 =
1 − αω

α
N̄t. (3.51)

The labor income is also given by

WtHt =
1 − α

α
N̄t (3.52)

The law of motion for the average real wealth in the economy is

N̄t+1 = α(
1 − αω

α
)αH1−αAtN̄

α
t , (3.53)

where H satisfies

H =
1 − α

1 − α + αωb
.

Substituting (3.48), (3.51), and (3.52) into the period budget constraint, we have

Et[Qt,t+1
N̄t+1

N̄t
] = (

1
α
− ω). (3.54)

Note that consumption is proportional to the average real wealth in the economy. The

first-order condition can be rewritten as

Qt,t+1
N̄t+1

N̄t
= β(θ + (1 − θ)εEt+1[Qt+1,t+2

N̄t+2

N̄t+1
]),
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where ε denotes the elasticity of the decision rule for the individual consumer’s real wealth

with respect to his or her real wealth. Taking conditional expectation to both sides of this

equation and substituting (3.54) into the resulting equation, we have

(
1
α
− ω) = β(θ + (1 − θ)ε(

1
α
− ω)). (3.55)

Solving this equation for ω leads to

ω =
1 − β(αθ + (1 − θ)ε)

α(1 − β(1 − θ)ε)
.

This in turn implies that

1 − αω =
αβθ

1 − β(1 − θ)ε
.

Substituting this equation into the first-order condition for the current self at period t and

rearranging, one can see that one period state contingent price can be written as

Qt,t+1 = { βθ

1 − β(1 − θ)ε
} Ct

Ct+1
.

In particular, we can see from (3.46) that ε = 1 at an equilibrium in which Nt = N̄t. Hence,

when state contingent claims on consumption goods are traded in sequentially complete

markets, the stochastic discount factor is given by

M̄t+1 = { βθ

1 − β(1 − θ)
} Ct

Ct+1
, (3.56)

where M̄t+1 denotes the stochastic discount factor. It then follows from (3.33) and (3.56)

that the basic formula for asset pricing is given by

1 = Et[M̄t+1Ri,t+1], (3.57)

were Ri,t+1 denotes the observable investment return, so that Ri,t+1 = Rt+1. Here, we can

see from equation (3.57) that the conditional expectation of the stochastic discount factor

times the observable return from investment equals one. This is in contrast with equation

(3.4), which tells that the conditional expectation of the stochastic discount factor times

the unobservable whole return from investment equals one.

We have discussed two alternative representations of the basic formula for asset pric-

ing, both of which are derived from the same competitive equilibrium. It, however, does
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not mean that we have two different sets of competitive equilibrium conditions for the

same economy considered in this paper. In particular, we can show that equations (3.4)

and (3.57) are the two alternative representations for the same equilibrium condition, de-

pending on whether to allow for the unobservable investment return in a stochastic growth

model with quasi-geometric discounting. In order to see this, substituting (3.13) and (3.15)

into (3.4) and setting φ = s in the resulting equation, we have

1 = Et[{ βθ

1 − β(1 − θ)
} Ct

Ct+1
Ri,t+1], (3.58)

Given the definition of the stochastic discount factor specified in (3.56), we can see that

equation (3.58) is equivalent to equation (3.57). As a result, we can see that equations (3.4)

and (3.57) are the two alternative representations for the same equilibrium condition.

We now use (3.57) to obtain an expected risk-premium on the investment return.

Specifically, we assume that there is a risk-free asset, which gives one unit of consumption

goods, no matter what state occurs at period t + 1. It then follows from (3.57) that the

gross rate of return on the risk-free asset, denoted by Rf,t+1, can be written as

1 = Et[M̄t+1]Rf,t+1. (3.59)

Then, as discussed earlier, we can solve equations (3.57) and (3.59) to show that the

relationship between the observable Sharpe ratio and the coefficient of variation of the

stochastic discount factor can be written as

Et[Ri,t+1] − Rf,t+1

σt(Ri,t+1)
≤ σt(M̄t+1)

Et[M̄t+1]
. (3.60)

Furthermore, given that technology shocks follow a normal distribution, we have

σt[M̄t+1]
Et(M̄t+1)

= (exp(σt(m̄t+1)2) − 1)
1
2 , (3.61)

where m̄t = log M̄t. It also follows from (2.18) and (2.24) that the conditional standard

deviation of the logarithm of the stochastic discount factor in the competitive equilibrium

is σt(m̄t+1) = σa. Thus, the coefficient of variation of the stochastic discount factor is

given by
σt[M̄t+1]
Et(M̄t+1)

= (exp(σ2
a) − 1)

1
2 . (3.62)
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Having described how to compute the coefficient of variation of the stochastic discount

factor, we will see if the relationship between the observable Sharpe ratio and the coefficient

of variation of the stochastic discount factor specified in (3.60) holds. Table 2 demonstrates

that the observed Sharpe ratio is around 0.5. In addition, as noted earlier, we set σa =

0.00785. Given these parameter values, we can see from (3.60) and (3.62) that in the

presence of state contingent claims on consumption goods, allowing for quasi-geometric

discounting does not help to modify the lower bound of the coefficient of variation of the

stochastic discount factor.

4 Conclusion

In this paper, we have investigated the quantitative implications of quasi-geometric dis-

counting for the risk-return trade-off observed in the actual economy. It has been empha-

sized in recent literature that the current self of a consumer has to rely on its consumption

and savings decisions to affect its future self, if conflict between current and future selves

exists because of time inconsistent preferences and if commitments on future actions are

not feasible. In such an economic environment, consumers can have extra dividends from

their asset holdings, which are not paid by issuers of assets. We therefore allow for the

possibility that the dividend observed in the financial data may not reflect all the dividend

that consumer expect to obtain from their asset holdings, when consumers have greater

discount rates in the short-run than in the long-run. We then demonstrate that allowing

for such a possibility in stochastic growth models with quasi-geometric discounting may

help to give a better understanding of the risk-return trade-off observed in the actual econ-

omy without making a large increase in the volatility of the stochastic discount factor. In

particular, we have shown that the measure of short-run impatience may not be included

in the stochastic discount factor if non-pecuniary payoffs as well as pecuniary payoffs are

to be priced in the valuation of assets. Thus, this implies that if the Sharpe ratio is defined

in terms of the whole return of an asset, it is not likely to explain the risk-return trade-

off observed in the actual economy, as shown in many consumption-based asset pricing

models. We, however, have demonstrated that when both observable and unobservable re-

turns are priced in the absence of state contingent claims, the observable Sharpe ratio can
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match the trade-off between expected return and risk observed in financial data. In sum,

our conclusion suggests that allowing for non-pecuniary payoffs would be a mechanism to

create the observed magnitude of risk-return trade-offs in consumption-based asset pricing

models.
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Table 1
Parameter values

Parameter Values Description and definitions

α 0.42 Output elasticity of capital
R 1.0225 Quarterly average rate of gross return on stocks
δ 1 Depreciation rate of capital
H 0.2 Average fraction of the hours worked
ρa 0.95 Persistence parameter for the logarithm of technology process
σa 0.00785 Standard deviation of technology shocks
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Table 2
Annual real returns on stocks and bonds for 1947 - 1996, U.S.A.

Value weighted S&P500 Equally weighted 3-month
NYSE NYSE Treasury bills

Average return 9.1 9.5 11.0 0.8
Standard deviation 16.7 16.8 22.2 2.8
Sharpe ratio 0.497 0.561 0.459 0

Notes: Average and standard deviation of real returns are percentage.

Sources: Data on average and standard deviation are from Table 1 in Cochrane(1997).
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Appendix

A The Generalized Euler Equation for the Competitive Equilibrium

Let L(Kt, K̄t, At) denote the value function for the following dynamic programming prob-

lem:

L(Kt, K̄t, At) = max
Ct,Ht,Kt+1

u(Ct, 1 − Ht) + βEt[L(Kt+1, K̄t+1, At+1)], (A.1)

subject to the period budget constraint (2.4) in each period t = 0, 1, · · ·, ∞. Let

Φ(Kt, K̄t, At) denote the value function of the optimization problem at period t of the

representative household. Then, substituting (2.4) into (2.1), one can obtain an expres-

sion of Φ(Kt, K̄t, At) of the form:

Φ(Kt, K̄t, At) = max
Ht,Kt+1

u(RtKt+WtHt−Kt+1, 1−Ht)+θβEt[L(Kt+1, K̄t+1, At+1)]. (A.2)

The first-order conditions for this optimization problem are then given by

u1(Ct, 1 − Ht) = θβEt[L1(Kt+1, K̄t+1, At+1)], (A.3)

u1(Ct, 1 − Ht)Wt = u2(Ct, 1 − Ht). (A.4)

Hence, differentiating Φ(Kt, K̄t, At) with respect to Kt and substituting (A.3) and (A.4)

into the resulting equation yields

Φ1(Kt, K̄t, At) = u1(Ct, 1 − Ht)Rt. (A.5)

In addition, substituting (A.1) into (A.2) leads to

θL(Kt, K̄t, At) = Φ(Kt, K̄t, At) − (1 − θ)u(Ct, 1 − Ht). (A.6)

This in turn implies that, given that the first-order conditions described in (A.3) and (A.4)

hold, the partial derivative of L(Kt, K̄t, At) with respect to Kt is

θL1(Kt, K̄t, At) = Φ1(Kt, K̄t, At) − (1 − θ)u1(Ct, 1 − Ht)(Rt − ∂Kt+1

∂Kt
). (A.7)

Therefore, substituting (A.5) into (A.7), one can rewrite (A.7) as follows:

θL1(Kt, K̄t, At) = u1(Ct, 1 − Ht)(θRt + (1 − θ)
∂Kt+1

∂Kt
). (A.8)
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As a result, substituting (A.8) into (A.3), one can obtain an expression of the generalized

Euler equation of the form:

1 = βEt[
u1(Ct+1, 1 − Ht+1)

u1(Ct, 1 − Ht)
(θRt+1 + (1 − θ)

∂Kt+2

∂Kt+1
)]. (A.9)
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