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Abstract

We introduce capacity constrained competition between market-making
intermediaries in a model in which agents can choose between trading with
intermediaries, joining a search market or remaining inactive. Recently,
market-making by a monopolistic intermediary has been analyzed by Rust
and Hall (2003) and Gehrig (1993). Market-makers set publicly observable
ask and bid prices. Because market-making involves price setting, without
further restrictions competition between market-making intermediaries is
Bertrand-like and yields the Walrasian outcome, where the ask-bid spread
is zero (Rust and Hall 2003, Gehrig 1993). However, positive ask-bid
spreads and competition between market-makers can be observed in re-
ality, e.g. in banking and in retailing. Following Kreps and Scheinkman
(1983) and Boccard and Wauthy (2000), we therefore introduce physical
capacity constraints. This allows for a gradual transition from monopolis-
tic to perfectly competitive intermediation as the number of intermediaries
increases. In particular, we show that given Cournot capacities, interme-
diaries will set Cournot bid and ask prices in the subsequent subgames,
so that the equilibrium of the intermediated market coincides with the
Walrasian equilibrium as the number of intermediaries becomes large.
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1 Introduction

In this paper, we analyze competition between market-making intermediaries.

These intermediaries set bid prices on the input market and ask prices on the

output market of intermediation. Our starting point is the model developed by

Gehrig (1993). According to this model, individual agents who are buyers or

sellers can join a search market, join the monopolistic intermediary or remain

inactive. In the search market, agents are randomly matched and the price at

which exchange takes place is set bilaterally. Because matching is random, the

search market does not exhaust all possible gains from trade. If agents join the

intermediary, buyers have to pay an ask price set in advance by the intermediary.

Likewise, if they decide to deal through the intermediary, sellers are paid the

bid price the monopolistic intermediary previously announced. The intermediary

trades simultaneously with both buyers and sellers. Gehrig shows that there is

an equilibrium in which the search market and the market of the monopolistic

intermediary are simultaneously open and where the intermediary makes positive

profits because he trades at a positive ask-bid spread. More precisely, the set of

individual agents is tripartite: High valuation buyers and low cost sellers deal

through the intermediary. Buyers and sellers with average valuations and costs

are active in the search market, and low valuation buyers and high cost sellers

remain inactive. This model can also be seen as an instance of competing ex-

changes. Full efficiency (i.e. the Walrasian or Marshallian market equilibrium)

of the more efficient exchange is not established due to limited (i.e. absence of)

competition among intermediaries. Two obvious applications are the labor and

the housing market, where typically intermediated and search markets co-exist.1

But we may also think of banks and retailers as providing, among other things,

the kinds of services intermediaries achieve in this type of model.

We extend the basic Gehrig model in two ways. (1) We impose a sequential

structure by requiring that intermediaries first have to buy the good from the

sellers (this is called the input market of intermediation) before it can be sold to

buyers on what we call the output market of intermediation. (2) We introduce ca-

pacity constraints and competition between capacity constrained intermediaries.

The most important consequence of (1) is that there is a unique subgame

1Another application: Foreign exchange market and POW-camp (Radford, 1945).
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perfect equilibrium with an active search market, in which the equilibrium ana-

lyzed by Gehrig is replicated on the equilibrium path (see Loertscher, 2003). The

rationale behind (2) is the following. As is well known, competition among price

setting firms is apt to lead to paradoxical results such as the one uncovered by

Bertrand, according to which ”two is enough for perfect competition.” The same

is true in our model. However, the problem arises not on the output market but

on the input market of intermediation, where without additional restrictions bid

price competition is (like in Stahl, 1988) a winner-takes-all competition for the

monopoly profit accruing on the output market. The most important contribu-

tion to solve the Bertrand paradox has been made by Kreps and Scheinkman

(1983, KS hereafter) who analyze a two stage game. In the first stage, two firms

set capacities and in the second stage, they compete as price setters on a product

market. For our purpose, it is therefore quite natural to follow this approach.

The regions of pure strategy equilibria in the bid price setting subgame are the

same as in KS and Boccard and Wauthy (2000, BW hereafter) (who extend the

KS setting to n firms). If no firm’s capacity is strictly larger than its Cournot

best response function, given the capacities of all other firms, then there is a pure

strategy equilibrium in which all firms set the input market clearing bid price.

Therefore, the problem studied by KS and our problem are very similar in that

respect.

[to be completed]

Apart from the model developed by Gehrig (1993), our paper is also related

to Spulber (1996), Spulber (1999), and to Rust and Hall (2003). The main

similarities and differences are best highlighted by briefly commenting on the

following quote, taken from Spulber (1996, p.579):

Intermediation between customers and suppliers often is the primary

economic activity of firms, whether they are merchants or manu-

facturers. The neoclassical model of the firm implicitly recognizes

that as intermediaries, firms coordinate input purchases, production,

distribution, and output sales. However, since the neoclassical firm

takes prices as given, the firm only intermediates on the quantity side

by transforming inputs into outputs. In the neoclassical framework,

market-making takes place outside the firm though exogenous price

adjustment represented by the Walrasian auctioneer. On the other
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hand, models of imperfect competition in the field of industrial orga-

nization have brought the price setting role of firms to center stage,

but ignore the intermediation role of firms by emphasizing competi-

tion in product markets.

We focus on the same problem as Spulber, but in a sense we want to go two

steps further by (i) introducing (imperfect) competition between a finite number

of market-making intermediaries and (ii) allowing prices to exert more power as

they are public rather than private signals.

The paper is structured as follows. Section 2 introduces the model. In section

3, we analyze the equilibrium of the output and the input market, and section 4

contains (preliminary) conclusions. Problems concerning the mixed strategy equi-

librium on the input market and some further considerations concerning Cournot

competition are in the Appendix.

2 The Model

There is a continuum of buyers willing to buy one unit of an indivisible good of

homogenous quality, which is known to every one. Their preferences are described

by reservation prices r which are uniformly distributed over the unit interval,

r ∼ U [0, 1]. If a buyer with reservation price r buys the product at price p

(where the volunteer nature of exchange and individual rationality require p ≤ r),

his utility gain is r − p. This generates an aggregate demand schedule D(p) =

1 − p, p ∈ [0, 1], which can be interpreted as a (Walrasian) market demand.

Analogously, sellers’ preferences are described by reservation prices or unit costs

of production s which are uniformly distributed on the unit interval [0, 1]. If

a seller with reservation price s sells the product at price p (where volunteer

exchange under individual rationality requires p ≥ s), his utility gain is p− s, so

that the aggregate (Walrasian) supply function is S(p) = p, p ∈ [0, 1]. A buyer

with reservation price r owns another good that he can exchange for the good

in question. This good is called money. We assume that buyers have and sellers

accept money in exchange for the good.

Walrasian (or Marshallian) Outcome Given the demand function D(p) =

1−p and the supply function S(p) = p, the Walrasian market outcome is charac-
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terized by price pW = 1
2

and quantity exchanged QW = 1
2
, and buyers with r ≥ 1

2

and sellers with s ≤ 1
2

participate in the market, while the other agents remain

inactive.

However, at the core of our model is the assumption that there is no benevolent

auctioneer quoting market clearing prices and coordinating trading activities at

zero costs. The purpose of our analysis is to study what allocation emerges if

agents establish this allocation themselves.

Buyers and sellers can either meet in a decentralized search market where

they are randomly matched and where they share the gains from trade evenly.

(Alternative bargaining procedures and their consequences are discussed in de-

tail by Loertscher (2003).) Or they can join intermediaries or remain inactive.

Intermediaries first set a physical capacity constraint. Then they set a bid price

at which they are willing to buy from the sellers, and finally they set an ask

price at which they are willing to sell what they have previously bought. In the

presence of intermediation, buyers and sellers face thus three decisions. They can

either join the intermediary, enter the search market or choose to remain inactive.

We denote by Iσ (Iβ) the set of all sellers (buyers) who join the intermediation

market. The set of sellers (buyers) active in the search market is denoted by Sσ

(Sβ), and the set of sellers (buyers) who decide not to be active is denoted by

Zσ (Zβ). Finally, we denote by Ωσ (Ωβ) the set of all sellers (buyers), so that by

definition Zσ ≡ Ωσ\(Iσ ∪ Sσ) and Zβ ≡ Ωβ\(Iβ ∪ Sβ). The (Lebesgue) measure

of these sets is denoted by υ(.), e.g. υ(Iσ) is the measure of sellers joining the

intermediated market.

2.1 The Dynamic Intermediation Game

We now describe the dynamic intermediation game with capacity constrained

intermediaries. We speak interchangeably of intermediaries and firms. There

are n profit maximizing intermediaries, indexed by i = 1, .., n. Each of them is

endowed with a physical capacity constraint qi.
2 These capacity constraints are

such that intermediary i can trade any quantity q ≤ qi at zero marginal costs,

whereas trading any quantity greater than qi is prohibitively costly. An example

2It would be very desirable if the choice of capacity could be endogenized as e.g. in Kreps
and Scheinkman (1983). However, the mixed strategy equilibrium has turned out to be too
complicated to allow for this. See Appendix A.
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for a physical capacity constraint is the number of counters of an intermediary

or his storage capacity for the input purchased.

The capacities of all firms are observed by all other firms and all individual

agents. Given these observations, intermediaries then set simultaneously bid

prices bi, which can subsequently not be changed. The legal arrangement is

such that each intermediary is obliged to buy any quantity up to the capacity

constraint qi sellers are willing to sell to him at bid price bi. Having observed qi

and bi for all i, sellers decide whether or not to join the intermediated market.

The market where sellers interact with intermediaries is called the input market

(of intermediation). All bid prices are public information. If more than qi sellers

want to sell to intermediary i the qi sellers with the lowest cost can sell to i.

In other words, we assume that an efficient rationing rule applies. Those sellers

who get rationed by intermediary i can then join any other intermediary where

again an efficient rationing rule applies. However, joining the intermediation

market is an irreversible decision so that sellers who have decided to try to sell

to any intermediary but who were rationed cannot subsequently go back to the

search market. We assume that agents who cannot expect positive utility gain

from joining the intermediated market will not join it. In exchange for the good

sellers get money from the intermediary to whom they sell. We assume that all

intermediaries have enough money and that sellers are aware of this.3 When all

intermediaries have finished buying, the quantity bought qb
i by each intermediary

i is observed by all agents. From what has just been said we know that qb
i ≤ qi.

The sets of sellers joining the intermediary is denoted as Iσ and its (Lebesgue)

measure is denoted as υ(Iσ). For reasons of tractability, we assume also that the

set of sellers joining the intermediated market is observed by all agents remaining

in the game.

In the second stage, each intermediary i sets the publicly observable ask price

ai and buyers decide whether to join the intermediated market. As with sellers,

buyers who have joined the intermediated market cannot go back to the search

market in case they are rationed. In case rationing occurs, an efficient rationing

3The quantity of money an intermediary holds can be regarded as his short-term capital,
while his long-term or fixed capital is embedded in his physical capacity constraint qi. In a
richer model, one could endogenize the money or short-term capital an intermediary holds.
Thus, short-term capital would be a strategic variable in addition to the capacity constraint
and might be used a signalling device to attract customers. Section ?? provides a motivation
why such an extension might be enriching.
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rule applies. The market where buyers interact with intermediaries is called the

output market (of intermediation). The legal arrangement is such that at the ask

price ai intermediary i is obliged to sell any quantity q ≤ qb
i buyers are willing to

buy from him. If an intermediary cannot sell its whole stock qb
i he can dispose of

the excess quantity for free. However, as on the input market intermediaries are

committed to the prices they set. We assume that the set Iβ is observable. Like

sellers, intermediaries accept money in exchange for the good they sell.

In the third and last stage, sellers and buyers who have not joined the inter-

mediated market decide simultaneously whether to join the search market. We

assume that agents join the search market only if their expected utility from

doing so is positive. This prevents the search market from being overcrowded

with agents who never engage in trade. The set of sellers (buyers) joining the

search market is denoted by Sσ(Sβ), and their (Lebesgue) measure is denoted by

υ(Sσ) (υ(Sβ)). The matching technology is such that if the number of buyers and

sellers is the same, each buyer (seller) is matched with probability λ to a seller

(buyer), where λ ∈ [0, 1]. If the number (or measure) of, say, sellers active in the

search market is larger than that of buyers, the probability of being matched to

a buyer is correspondingly adjusted downwards, while the probability of a match

for buyers is still λ. That is, the traders on the long side of the search market

are matched with probability γiλ, where γi =
υ(Ij)

υ(Ii)
< 1 with i = σ, β, j 6= i.

There is no further possibility to trade after a match has been established. For

those who are not matched, the game is over. As observed by Spulber (1999, p.

561), the search market is static in the sense that search market participants are

randomly and pairwise matched at most once. If a buyer with reservation price

r and a seller with cost s are matched they share the gain from trade evenly if

r − s > 0. That is, they agree on the price p = r−s
2

. After that, the game is

over. If r − s ≤ 0, the game is over for these agents without trade taking place.

Finally, the sets of inactive sellers (buyers) is denoted as Zσ(Zβ).

Let us summarize the time structure of the dynamic intermediation game.

This structure departs from the one in previous versions of the model (Gehrig,

1993; Freixas and Rochet, 1997; Spulber, 1999), where the game is played in

simultaneous moves, but it is the same as in Loertscher (2003). The dynamic

intermediation game has three stages.

1. Input Market: There are n intermediaries indexed by i = 1, ..n. They are
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endowed with capacity constraints qi. Before setting bid prices bi on the

input market, qi is observed by all i and by all sellers and buyers. Up to

qi, intermediary i is obliged to buy any quantity sellers want to sell to him

at bid price bi. After observing bi (and qi) sellers decide simultaneously

whether to join the intermediated market. For all those sellers who join

the intermediated market, the game is over, regardless of whether they

can actually sell or not. The quantity bought by each intermediary, qb
i is

public information, and the set of sellers joining the intermediary is public

information, too.

2. Output Market: On the output market, intermediary i sets an ask price

ai at which he has to sell any quantity buyers want to buy up to his whole

stock qb
i . In case there is rationing, an efficient rationing rule applies. For

buyers who decide to join the intermediary the game is over, regardless of

whether they can buy or get rationed. The set of buyers who have joined

the intermediary, Iβ is observed by all players remaining in the game.

3. Search Market: Sellers and buyers who have not joined the intermediary

may join the search market. Those who participate in the search market

are randomly matched. The matching technology is such that all traders

in the search market are matched with probability λ ∈ [0, 1] if the set of

sellers and buyers active in the search market have the same measure. A

buyer r and a seller s who are successfully matched share the gains from

trade evenly by agreeing on the price r−s
2

if r− s > 0. If r− s ≤ 0, they do

not exchange the good. After that, the game is over.

2.2 Strategies

There are three types of agents, sellers s, buyers r and intermediaries i = 1, .., n.

Let q denote the n-tuple of capacities (q1, ..., qn), let qb be the n-tuple of quanti-

ties bought (qb
1, ..., q

b
n), and let b = (b1, ..., bn) and a = (a1, ..., an) be the n-tuples

of bid and ask prices, respectively. Finally, as with quantities and capacities, we

use the subscripts i and −i to indicate the variable chosen by i and all firms other

than i, respectively. For example, bi is intermediary i’s bid price and b−i are the
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bid prices of all firms.4 Given these conventions, a strategy for a seller s is

τs = (Is(b,q); Ss(a,b,q, Iσ, Iβ)) . (1)

Similarly, for a buyer a strategy is

ρr = (Ir(a,b,q, Iσ, ), Sr(a,b,q, Iσ, Iβ)) (2)

where the functions Ik(.) and Sk(.) specify the conditions under which agent k

joins the intermediary or the search market, respectively, k = s, r. Note that

both for sellers and buyers, we do not have to specify the decision to be inactive,

because it is contained in the case where an agent decides to join neither the

intermediary nor the search market. Finally, for intermediary i, a (pure) strategy

is

ϕi =
(
bi(q); ai(q

b,b, Iσ)
)
, (3)

where the qi’s are a real positive numbers and bi(q) and ai(q
b, Iσ) are real val-

ued functions. In general, strategies for this game are cumbersome expressions

because there are so many states of the world for which each agent must have a

complete contingent plan. For example, every small change in the set of sellers

deciding to join the intermediary will require a different optimal response by all

other players in subsequent periods. Since there is an infinity of such contingen-

cies, it would not be possible to write down these strategies in closed forms in

general. However, as we show next, the space over which these strategies have to

defined can be reduced considerably.

2.2.1 Partitioning of Buyers and Sellers

As it turns out, in any equilibrium with an active search market, the set of

individual agents is tripartite: High valuation buyers and low cost sellers deal

through an intermediary. Buyers and sellers with average valuations and costs

are active in the search market, and low valuation buyers and high cost sellers

remain inactive.5 This result is due to Gehrig (1993) and stated formally in

the following Proposition. It is important because it allows us to consider only

strategies that are defined for such tripartite sets.

4Note that in contrast to the case of quantities or capacities, where q−i ≡
∑n

j 6=i qj , b−i is
not a sum but a (n− 1)-tuple.

5Spulber (1996) and Rust and Hall (2003) report the same result in similar contexts.
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Proposition 1 (Gehrig (1993), Proposition 1) In any equilibrium with an

active search market,6 there are critical reservation values r and r, such that the

set of buyers can be partitioned into three subsets . If r ∈ [0, r), then r ∈ Zβ;

if r ∈ [r, r], then r ∈ Sβ and if r ∈ (r, 1], then r ∈ Iβ. In any equilibrium with

an active search market, there are critical unit costs s and s, such that the set of

sellers can be partitioned into three subsets. If s ∈ [0, s), then s ∈ Iσ; if s ∈ [s, s],

then s ∈ Sσ and if s ∈ (s, 1], then s ∈ Zσ.

The Proposition is proved with the help of the following three Lemmas.

Lemma 1 (Gehrig (1993), Lemma 1) For any positive ask bid spread a−b >

0, some traders will be active in the search market.

Proof : Buyers with r < a and sellers with s > b can expect positive utility

gains from search market participation.¥

Lemma 2 (Gehrig (1993), Lemma 2) In equilibrium, the sets of inactive buy-

ers and sellers, Zβ and Zσ, are closed and convex sets such that 0 ∈ Zβ and

1 ∈ Zσ.

Proof : Let buyer r be inactive and suppose r̃ < r is active. Then r could

imitate r̃ and get at least his payoff, whereas his payoff when inactive is zero.

Completely symmetric reasoning applies for sellers. Finally, buyer 0 and seller 1

remain inactive because they never expect a positive gain from trade.¥

Lemma 3 (Modification of Lemma 3, Gehrig (1993)) In any equilibrium

with an active search market (i.e. Sσ 6= ∅, Sβ 6= ∅),
(i) r0 ∈ Sβ ⇒ r /∈ Iβ for r < r0 and

(ii) s0 ∈ Sσ ⇒ s /∈ Iσ for s > s0.

Proof : Parts of the proof very closely mimic the one by Gehrig (1993) and

Loertscher (2003). We denote by γi, i = σ, β a seller’s and a buyer’s probability

of being successfully matched in the search market with probability λ. Thus, for

6We have added this phrase because there is also an equilibrium where no one joins the
search market. If no one goes to the search market, unilateral deviation to join the search
market does obviously not pay. However, as long as there is no fix cost of joining the search
market, in this equilibrium, two continua of agents play weakly dominated strategies.
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example a seller is matched with probability λγσ = λ min[
υ(Sβ)

υ(Sσ)
, 1]. Since each

agent has measure zero, γi for i = σ, β can be taken as given by every individual

agent.

We first consider (ii) of Lemma 3. Because there are n intermediaries ra-

tioning can occur either at the level of the individual intermediary i and/or at

the intermediated market as a whole. At the individual level, rationing occurs

whenever the number (measure) of sellers willing to sell to intermediary i at bid

price bi exceeds i’s capacity constraint qi. Because rationing is assumed to be

efficient, the qi sellers with the lowest cost who want to sell to intermediary i can

do so in this case. At the market level, rationing occurs if and only if the mea-

sure of sellers joining the intermediated market exceeds aggregate capacity, i.e. iff

υ(Iσ) >
∑n

i qi. Since we must not restrict ourselves to the case where all interme-

diaries set the same bid prices, rationing at the individual level may always occur.

Thus, we are left with the cases with and without rationing at the market level.

We first consider the case without. First note that s0 ∈ Sσ ⇔ γσUσ(s0) ≥ bi− s0,

where Uσ(s0) is the expected utility gain of seller s0 of search market participation

for υ(Sβ) = υ(Sσ) and where bi is the bid price s0 would get when joining the in-

termediated market. Note also that due to efficient rationing, s > s0 would get a

bid price bj ≤ bi when joining the intermediated market, implying bi−s0 > bj−s.

Let F (r) be the cumulative distribution function of buyers active in the search

market. Then, we have

Uσ(s0) = λ

∫

s0≤r

r − s0

2
dF (r), and (4)

Uσ(s) = λ

∫

s≤r

r − s

2
dF (r). (5)

Because s > s0, Uσ(s0) > Uσ(s). Subtracting (5) from (4) we get

Uσ(s0)− Uσ(s) = λ

∫

s0≤r

s− s0

2
dF (r)− λ

∫

s0≤r≤s

sdF (r), or

Uσ(s) = Uσ(s0)− λ

∫

s0≤r

s− s0

2
dF (r) + λ

∫

s0≤r≤s

sdF (r).

Since s > 0, λ
∫

s0≤r≤s
sdF (r) > 0, so that

Uσ(s) > Uσ(s0)− λ

∫

s0≤r

s− s0

2
dF (r).
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Because λ
∫

s0≤r
s−s0

2
dF (r) < s− s0,

Uσ(s) > Uσ(s0)− (s− s0).

Multiplying both sides by γσ, 0 < γσ ≤ 1, we get γσUσ(s) > γσUσ(s0)−γσ(s−s0),

so that

γσUσ(s) > γσUσ(s0)− (s− s0).

However, since s0 ∈ Sσ ⇔ γσUσ(s0) ≥ bi − s0,

γσUσ(s) > (bi − s0)− (s− s0) = bi − s ≥ bj − s,

where bj − s is the utility gain for s of joining the intermediated market. Thus,

s > s0 will not join the intermediated market if s0 joins the search market, which

proves part (ii) in the case without rationing (at the market level). For buyers,

the case (i) without rationing at the market level is completely analogous and

will not be treated here.

Now the case with rationing at the market level can be treated fairly easily.

Again, consider (ii) and assume first that s0 would get get bi > s0 at the interme-

diated market. That is, s0 would not get rationed at the intermediated market.

Then s > s0 would get at most bj ≤ bi at the intermediated market and at worst

0, the worst case occurring when s is one of the sellers who get rationed. Since s

gets at most bj−s < bi−s0, exactly the same reasoning applies as above. Finally,

assume that s0 would get rationed when joining the intermediated market. Due

to efficient rationing, s would then get rationed, too, so that their utility gain

from joining the intermediated market is zero. Thus, they will not join it (recall

the assumption made in subsection 2.1 that agents who expect zero gain from

joining the intermediated market will not do so), and we have s /∈ Iσ. Again, the

case for buyers being completely symmetric, it will not be treated here. ¥
Proof of Proposition 1: These three Lemmas state that the sets of inactive

buyers and sellers and the sets of buyers and sellers active in the search market

are convex and directed sets. Therefore, only buyers with high reservation prices

and sellers with low costs can potentially gain by trading with the intermediary.

¥
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2.3 Input Supply and Output Demand Functions

For a > b, Lemma 1 implies that all buyers with r ∈ [s, r] and all sellers with s ∈
[s, r] are active in the search market so that Sβ = Sσ = [s, r].7 Therefore, in any

equilibrium with a > b, γβ = γσ = 1. Moreover, because reservation prices of all

agents are uniformly distributed on the unit interval, we know that for r ∈ Sβ, r ∼
U [s, r] and for s ∈ Sσ, s ∼ U [s, r]. Therefore, dF (r) = 1

r−s
dr and dG(s) = 1

r−s
ds,

where F (r) and G(s) are the cumulative distribution functions of buyers and

sellers active in the search market. Since all previous actions are assumed to be

observable, s and r will be known when agents decide whether to join the search

market. Therefore, it suffices to condition this decision on s and r, so that a

strategy for seller s can be written as τs =
(
Is(b,q); Ss(a,b,qb, s, r)

)
. Similarly,

for a buyer a strategy can be written as ρr =
(
Ir(a,b,qb, s); Sr(a,b,qb, s, r)

)
,

and for an intermediary i, a strategy simplifies to ϕi =
(
bi(q); ai(s,q

b)
)
. This

allows us to compute explicitly the expected utility gains from search market

participation and to characterize completely agents’ equilibrium strategies in the

game. This is what we do next.

We begin by briefly describing the equilibrium of the bargaining subgame.

With even sharing, a buyer r and a seller s who are matched in the search

market share the gains from trade r−s equally, provided r−s > 0. We will refer

to seller s and buyer r as the critical seller and buyer. The expected utility gain

for seller s with s ∈ [s, r] from search market participation is then

Uσ (s) = λ

∫ r

s

(r − s)

2
dF (r) =

λ

2

1

r − s

∫ r

s

(r − s)dr

=
λ

2

[
r2

2
− rs

]r

s

r − s
=

λ

4

(r − s)2

r − s
,

which is the same as that derived by Gehrig under the alternative bargaining

schedule with take-it-or-leave-it offers. Thus, for the critical seller s we have

Uσ (s) =
λ

4
(r − s) . (6)

7More precisely, because only agents who can expect positive utility gain from search market
participation are assumed to enter the search market, sellers (buyers) with s = r (r = s) will
not participate in the search market, and we should write Sβ = (s, r] and Sσ = [s, r) or
Sβ = [s+, r] and Sσ = [s, r−], where superscript ”+” (”-”) means marginally ”greater (smaller)
than”. Nonetheless, the search market would be balanced because υ(Sβ) = υ(Sσ), implying
γσ = γβ = 1.
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Likewise, for a buyer with reservation price r ∈ [s, r] the expected utility gain

from being active in the search market is

Uβ (r) = λ

∫ r

s

(r − s)

2
dG(s) =

λ

2

1

r − s

∫ r

s

(r − s)ds

=
λ

4

(r − s)2

r − s
,

so that for the critical buyer

Uβ (r) =
λ

4
(r − s) = Uσ (s) . (7)

Now, the utilities of critical buyers and sellers participating in the search market

in equation (7) can be used to derive the reservation prices of these agents for

joining the intermediated market.8 If buyer r has to pay the ask price A to get

the good from an intermediary with certainty, he is indifferent between joining

the intermediated market and the search market if and only if

r − A =
λ

4
(r − s). (8)

Likewise, if seller s is paid the bid price B with certainty when joining the in-

termediated market, he is indifferent between joining the intermediated and the

search market if and only if

B − s =
λ

4
(r − s). (9)

Solving equations (8) and (9) yields

A (r, s) =
4− λ

4
r +

λ

4
s and B (s, r) =

4− λ

4
s +

λ

4
r. (10)

Thus, A (r, s) and B (s, r) are reservation prices of buyer r and seller s for joining

the intermediated market, given all s < s and all r > r have joined the intermedi-

ated market and provided there is no rationing (at the market level). In general,

the ask (or bid) prices set by the intermediaries will not be the same. Therefore,

the reservation prices in (10) are to be interpreted as follows. Due to Proposition

1, all agents (including buyer r) know that if r joins the intermediated market,

all r > r will join the intermediated market, too. Thus, if quantities bought and

8Throughout, we assume that all agents - buyers, sellers and intermediaries - are risk neutral.
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ask prices are such that r can buy the good at the ask price ai = A and if all

buyers with higher reservation prices join the intermediated market, too,9 buyer

r would be indifferent between joining the intermediated market and entering the

search market. An analogous interpretation applies for the reservation price B.

Throughout we use upper case letters A and B to denote the (inverse) demand

and supply functions, and lower case letters ai and bi to denote the prices set by an

individual intermediary i. Similarly, we denote aggregate quantities or aggregate

capacities by upper case letters. For example, Q ≡ ∑n
i=1 qi denotes aggregate

capacity and Qb ≡ ∑n
i=1 qb

i is aggregate quantity bought. Note that Qb is the

quantity bought by intermediaries. We make also use of the notational convention

that subscript i denote the variable of intermediary i and subscript −i denote

the variable for all intermediaries other than i. Thus e.g. qi is intermediary i’s

capacity and q−i of all intermediaries other than i, so that by definition Q ≡
qi + q−i.

For there to be no rationing on the input market aggregate capacity Q has

to be at least as great as s. On the other hand, the quantity intermediaries sell

on the output market cannot exceed the quantity bought on the input market,

Qb. Clearly, we thus have Qb = min[s, Q], so that without rationing on either

market r ≥ 1−Qb. Because there are 1− r buyers whose reservation prices are

greater than or equal to r quantity demanded if all intermediaries set a = A (r, s)

is therefore 1 − r. Let Qd ≡ 1 − r denote this quantity and note that this is

quantity demanded at the intermediaries. For the same reasons as for buyers,

there are s sellers who are willing to sell at bid price b (r, s), provided the buyer

with the highest reservation price in the search market is buyer r. Therefore, s

is equal to the quantity the intermediaries can buy at the bid price b (r, s) (if

capacities allow them to do so), which is Qb. If we replace r by 1−Qd and s by

Qb in equation (10), we get the inverse output demand and inverse input supply

functions

A
(
Qd, Qb

)
=

4− λ

4
− 4− λ

4
Qd +

λ

4
Qb (11)

and

B
(
Qd, Qb

)
=

λ

4
− λ

4
Qd +

4− λ

4
Qb. (12)

9This is the case if ai = maxj [aj ], j = 1, ..., n and if aggregate capacity is equal to or greater
than 1−r, which is the quantity demanded at the intermediated market when r is the indifferent
buyer.
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The output demand and the input supply functions are

D
(
a,Qb

)
= 1− 4

4− λ
a +

λ

4− λ
Qb, (13)

and

S
(
b,Qd

)
= − λ

4− λ
+

4

4− λ
b +

λ

4− λ
Qd, (14)

respectively. The ask price elasticity of output demand, given Qb, is

ε
(
a,Qb

)
= − 4a

4− λ− 4a + λQb
. (15)

Finally, note also that these functions are valid only under the provision that there

is an active search market from which some agents can expect positive utility

gains. This requires that r > s. If r ≤ s, agents lose the outside option of search

market participation. In this case, seller s would join the intermediated market

whenever b > s and a buyer r will buy from the intermediaries whenever a < r.

Graphically, therefore, beyond the point of intersection of the (inverse) output

demand function A
(
Qd, Qb

)
with the (inverse) Walrasian demand function 1−Qd,

the willingness to pay for intermediated trade is given by the (inverse) Walrasian

demand function. Therefore, the reservation prices of buyers for intermediated

trade are actually given by the maximum of these two functions

min
[
A

(
Qd, Qb

)
, 1−Qd

]
. (16)

It is easy to verify that the intersection of A
(
Qd, Qb

)
with 1−Qd is at the point

where 1−Qd = Qb. Analogously, the (inverse) input supply function B
(
Qd, Qb

)

in equation (12) is valid only to the left of the intersection with Qb. Beyond that

point, expected utility gain from search market participation in not positive,

and the reservation prices for trading through the intermediary are given by the

(inverse) Walrasian supply function. Hence, the sellers’ reservation prices the

intermediary faces are given by the maximum of these two functions

max
[
B

(
Qd, Qb

)
, Qb

]
. (17)

Again, the point of intersection is where 1 − Qd = Qb. Finally, when quantity

bought equals quantity sold, i.e. Qd = Qb = Q, we say that trade in the interme-

diated market is balanced. In this case, the inverse demand and supply functions

are

A (Q) =
4− λ

4
− 2− λ

2
Q (18)
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B (Q) =
λ

4
+

2− λ

2
Q. (19)

Below it will be useful to have an expression for the input supply function under

balanced trade. This function is

S (b) =
4b− λ

2 (2− λ)
, (20)

so that under balanced trade the inverse output demand function can be written

as a function of b only

A
(
Qb (b)

)
= 1− b. (21)

Figure ?? depicts the Walrasian demand and supply functions and the search

constrained output demand and input supply functions for the intermediaries,

under the assumption that intermediated trade is balanced.

[INSERT FIGURE 1 ROUND HERE]

3 Equilibrium

In this section, we show that the dynamic intermediation game with capacity

constraints has a subgame perfect equilibrium which replicates the Cournot out-

come if firms are given Cournot capacities. We proceed as follows. In section 3.1,

we briefly review the basic concepts of Cournot competition and translate their

meaning so that they fit to our model. Then in section 3.2, we analyze the output

market subgame for any aggregate quantities bought Qb ≤ 1
2

= QW , the quantity

traded under Walrasian conditions. In the unique equilibrium of this subgame,

all firms set the market clearing ask price. In section 3.3 we show that the input

market subgame has a unique equilibrium if all firms i = 1, .., n have capacities

qi smaller than or equal to the capacities given by the Cournot reaction function.

In this equilibrium, all firms set a market clearing bid price. In the Appendix,

we show that there is no pure strategy equilibrium if one firm has a larger ca-

pacity than given by the Cournot reaction function. A proof for the existence

of an equilibrium in the mixed strategy region as well as further considerations

concerning Cournot competition are also relegated to the Appendix.

3.1 Preliminary: The Cournot Outcome

Since Cournot competition typically refers to competition on a product market

organized by a Walrasian auctioneer we have to make clear what we mean by
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Cournot competition and Cournot outcome in the present setting. When speak-

ing of Cournot competition we henceforth mean that the intermediation industry

is organized as a Cournot market. Both on the input and on the output market

of intermediation a (Walrasian) auctioneer quotes market clearing ask and bid

prices, given the quantities intermediaries want to buy and sell and given the

inverse supply and demand functions, constrained by the agent’ outside option

of search market participation. Under Cournot conditions, every intermediary

quotes the quantity he wants to trade, and the auctioneer then sets market clear-

ing prices. As a Cournot competitor, each intermediary i thus maximizes his

profits by choosing his optimal quantity q∗i , given the quantities of all other in-

termediaries, q−i and given the (inverse) supply and demand functions B(Q)

and A(Q). Let πi(qi, q−i) denote firm i’s profits when setting quantity qi. The

maximization problem for i thus is

max
qi

πi(qi, q−i) = (A(Q)−B(Q)) qi

= (A(qi + q−i)−B(qi + q−i)) qi, (22)

which yields the following first order condition

0 = (A′(q∗i + q−i)−B′(q∗i + q−i)) q∗i + A(q∗i + q−i)−B(q∗i + q−i). (23)

The solution q∗i is called i’s best response or reaction function and denoted as

r(q−i). It is implicitly defined as

r(q−i) =
A(r(q−i) + q−i)−B(r(q−i) + q−i)

− (A′(r(q−i) + q−i)−B′(r(q−i) + q−i))
. (24)

Because A(Q) has a negative slope and is (weakly) concave and B(Q) is positive

sloped and (weakly) convex the maximization problem (22) is a concave problem

so that the solution in (24) is the unique (interior) maximum. The corner solution

with r(q−i) = 0 arises only if q−i is so large that A(q−i)−B(q−i) ≤ 0.

At this point it is convenient to define the spread function Z(Q) ≡ A(Q) −
B(Q). Note that because of the properties of A(Q) and B(Q) just mentioned,

Z(Q) is negatively sloped and weakly concave. If we differentiate (23) with

respect to q−i and set the result equal to zero, we can solve for dr(q−i)
dq−i

to get

r′(q−i) =
−Z ′′ − Z ′

rZ ′′ + 2Z ′ , (25)
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where we have dropped arguments of r(.) and Z(.). The property r′ < 0 is readily

established for any concave function Z. To see this, note that −Z ′′−Z ′ > 0 and

rZ ′′ + Z ′ < 0. Moreover, if Z is a linear function, we have Z ′′ = 0, implying that

r′ > −1 and d(r(q−i)+q−i)
dq−i

> 0.

In our setting, Z(Q) = 2−λ
2
− (2−λ)Q, so that r(q−i) = 1

2
− q−i− r(q−i). This

permits the explicit definition

r(q−i) =
1

4
− 1

2
q−i. (26)

An equilibrium under Cournot competition is reached if and only if all interme-

diaries i = 1, .., n trade a quantity equal to their best responses, i.e. if

qi = r(q−i)∀i. (27)

By symmetry, we have qi = qj = q in any equilibrium. Therefore, q−i = (n−1)qi =

(n− 1)q, so that (27) can be written as

q = r((n− 1)q)∀i. (28)

Because the left-hand side begins at zero and is increasing in q while the right-

hand side begins at r(0) > 0 and decreases in q, there is a unique q such that this

equality is satisfied. Denote by qC the value of q such that equality (28) holds.

Plugging this into (26) and solving yields qC = 1
2(n+1)

. Thus, QC = 1
2

n
(n+1)

,

so that ZC = 2−λ
2
− 2−λ

2
n

(n+1)
, AC = 4−λ

4
− 2−λ

4
n

(n+1)
and BC = λ

4
+ 2−λ

4
n

(n+1)
.

Note that as n gets arbitrarily large, QC −→= 1
2
≡ QW , ZC +→ 0, AC +→ 1

2
and

BC =
−→ 1

2
, where ”

−→ (
+→)” means ”approaches from below (above)”. Or put

in words: As the number of competing intermediaries gets large, the outcome of

Cournot competition converges to the Walrasian market outcome. Finally, note

also that for n = 1, QC = 1
4
, AC = 3

4
− λ

8
and BC = λ

8
+ 1

4
, which is the equilibrium

analyzed by Gehrig (1993).

3.2 The Output Market Subgame

We first prove a Lemma that says that in equilibrium, the quantity traded by

intermediaries cannot exceed the Walrasian quantity. This seems very intuitive.

The proof, though, is not straightforward. The following Lemma is useful because

it allows us to concentrate on aggregate quantity bought Qb ≤ 1
2
.
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Lemma 4 There is no equilibrium in which aggregate quantity bought Qb exceeds

the Walrasian quantity QW = 1
2
.

Proof : Consider a monopolistic intermediary. He would sell his quantity

bought Qb at the ask price am, which is defined as the ask price for which the

(ask) price elasticity of output demand, ε(a,Qb), is minus one if his quantity

bought allows him to sell that much (i.e. if Qb is large enough). Otherwise, he

would set the market clearing price for Qb, which is above am. Setting ε(a,Qb)

in equation (15) equal to minus one and solving for a yields

am =
1

2
− λ

8
(1−Qb), (29)

which is smaller than 1
2

for Qb < 1 and λ > 0. But in order to be able to sell

all that is demanded at am, Qb has to be larger than 1
2
. As observed above, for

1 − Qd < Qb, the relevant inverse demand function is A = 1 − Qd because the

search market shuts down. The elasticity of A = 1 − Qd is -1 at a = 1
2
. Thus,

for Qb > 1
2
, the monopolistic intermediary would set am = 1

2
, and the search

market shuts down for Qb > 1
2
. Therefore, the relevant inverse supply function

is B = Qb in this range. Because under efficient rationing aggregate quantity

bought is equal to the aggregate supply S(.) at the lowest bid price for which

Qb(.) > 0, all firms must therefore pay a bid price greater than 1
2

in order to

buy Qb > 1
2
.10 But the aggregate revenue of competing intermediaries whose

aggregate quantity bought exceeds 1
2

will not be larger than the revenue of a

monopolistic intermediary with such a large quantity bought. The monopoly’s

revenue is 1
4
(= 1

2
× 1

2
), while the expenditure needed to acquire Qb is at least

Qb × Qb > 1
4
. Therefore Qb > 1

2
implies that the intermediation industry makes

negative profits. Because each intermediary has the outside option of making

zero profits (e.g. by quoting b = 0), this cannot be an equilibrium. ¥
Now let us turn to the question what the equilibrium of the ask price setting

subgame is, given Qb ≤ 1
2
. But because Qd ≤ Qb, for Qb the relevant inverse

demand function, i.e. min[A(Qd, Qb), 1 − Qd] as defined in (11), is A(Qd, Qb).

We first show that ask prices ai < A(Q) (where A(Q) is as defined in (18)) will

not be set in equilibrium. The reason for this is that these prices are strictly

10This is true only under the condition that no intermediary sets a bid price greater than
the one at which aggregate capacity clears, but in equilibrium this condition is satisfied (see
section 3.3).
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dominated: At the price ai firm i sells qb
i , no matter what ask prices the other

firms set, whereas by setting a∗ = A(Q) intermediary i would earn a∗qb
i > aiq

b
i

regardless of the prices the other firms set. Thus, ask prices ai < A(Q) can be

ruled out.

What we have not yet shown is whether higher prices than a∗ can occur in

equilibrium. That is, whether in equilibrium intermediated trade can be unbal-

anced with Qd < Qb. We now show that this is not the case. To see that,

suppose that all firms other than i set a−i = A(Q) and consider what the best

response of i is. As we have seen in the proof of Lemma 4, the ask price elasticity

of output demand is smaller than minus one for Qb ≤ 1
2
. Therefore increasing

the ask price by one percent will result in a decrease of quantity demanded by

more than one percent. Therefore, increasing ai will not pay for i. Note that

this is the case regardless of whether a proportional or an efficient rationing rule

applies.11 It is also quite intuitive to see that this equilibrium is unique. Sup-

pose that one firm j sets the ask price aj > a∗, where a∗ is clearing price, i.e.

a∗ = A(Q). Then, if Qd(a−j ) ≷ qb
−j, the remaining firms’ best response will be

to set a−j = A(q−j)
(
a−j = a−j

)
. In either case, aj is not optimal for j. In the

former case, j sells nothing, in the latter, he could discontinuously increase his

profits by underbidding the competitors’ price a−j because he would sell (discon-

tinuously) more while the loss due to the lower price is small. Thus, there is no

other equilibrium (see also Vives, 1999, ch.5).

The fact that in the unique equilibrium of the output market subgame each

intermediary sets the market clearing price a∗ is very useful for us because it

allows us to treat the output market subgame as a parameterized function that

depends only on the (aggregate) quantity bought Qb.

3.3 The Input Market Subgame

We now turn to the analysis of the bid price setting (or input market) subgame.

We show that there is a unique Nash equilibrium in the bid price setting subgame

if all intermediaries have capacities no greater than the Cournot capacities. In

this equilibrium all intermediaries i play the pure strategy bi = b∗ ≡ B(Q).

11For a brief description and discussion of these rules see e.g. Vives (1999) or the appendix
in Loertscher (2003).
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3.3.1 Pure Strategy Equilibrium for Cournot capacities

Given the (observed) capacity constraints for all i = 1, .., n firms, on the input

market each firm sets a bid price bi with the aim of maximizing his profits.

Recall that on the output market no firm will ever set a price below the one at

which market clears (see Subsection 3.2). Very similarly, in the bid price setting

subgame, no firm will ever want to set a bid price b > B(Q). An obvious (and in

fact the only)12 candidate for a pure strategy equilibrium is the market clearing

bid price b∗ = B(Q). To see whether bi = B(Q) ≡ b∗ for all i is indeed an

equilibrium, suppose that all firms other than j set b−j = B(Q), and consider

whether (or when) deviation from b∗ pays for j. Bid prices above B(Q) being

strictly dominated, we only have to consider ”downward” deviation. As j sets

bj < b∗, he faces a residual supply of max[S(bj) − q−j, 0], which will be his

quantity bought qb
j . Note that for qb

i > 0, aggregate quantity bought will just

be S(bj). This is convenient, because the ask price resulting from behavior on

the input market will affect the outcome on the output market. Since the unique

equilibrium of the ask price setting game is to set ai = A(Qb), the equilibrium

price on the output market is a direct function of bj. If we assume that all other

agents do not change their behavior, i.e stick to bi = b∗, it is a function only

of j’s bid price. If bj is such that qb
j > 0, then A(Qb) = A(S(bj)), while for

qb
j = S(bj)− q−j = 0, A(Qb) = A(q−j). But the latter case will not matter much

to j, since with qb
j = 0, his profits are zero independently of A(.). Therefore,

assuming bj is such that qb
j > 0, j’s profits when deviating from b∗ are given by

the following equation:

πj(bj) = [A(S(bj))− bj]
(
S(bj)− q−j

)
. (30)

Maximizing with respect to bj yields

0 = [A′(S(bj))S
′(bj)− 1]

(
S(bj)− q−j

)
+ (A(S(bj))− bj) S ′(bj). (31)

Dividing by S ′(bj) 6= 0 yields

0 =

[
A′(S(bj))− 1

S ′(bj)

] (
S(bj)− q−j

)
+ A(S(bj))− bj. (32)

12Vives (1999, p.129) shows this for the case of capacity constrained price setting under a
concave demand function.
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Define by x(q−j) the optimal quantity j buys when all other firms set b∗ and have

capacities q−j. Obviously, x(q−j) = S(bj)− q−j as given in equation (32). Noting

that with x(q−j) thus defined, bj = B(x(q−j) + q−j), S ′(bj) = 1
B′(x(q−j)+q−j)

and

making the appropriate substitutions, we can write (32) as

0 =
[
A′(x(q−j) + q−j)−B′(x(q−j) + q−j)

]
x(q−j)

+A(x(q−j) + q−j)−B(x(q−j) + q−j). (33)

As noted above, the spread, defined as Z(y) ≡ A(y) − B(y), is a decreasing,

(weakly) concave function in y. Therefore we can rewrite the above equation to

get

0 = Z ′(x(q−j) + q−j)x(q−j) + Z(x(q−j) + q−j), (34)

from where it becomes clear that x(q−j) is j’s Cournot best response function

(with no production cost), i.e. x(q−j) ≡ r(q−j) because x(.) in (34) is defined

by exactly the same condition as r(q−j) in equation (24) above. That is, x(q−j)

is the best response function if both the input and the output market were or-

ganized in Cournot-Walras manner. Put differently, if intermediaries brought

binding pledges how much they are willing to buy (and subsequently to sell)

to the Walrasian auctioneer and the auctioneer then set market clearing prices,

intermediaries’ best responses were given by the function x(.) defined above.

Therefore, from now on we write r(.) for the Cournot reaction function with zero

production cost on the spread Z(.).

Let us now come back and finally answer the question under what conditions it

pays firm j to underbid if all other firms set b∗. Then, whenever B(r(q−j)+q−j) ≥
b∗ = B(Q), j’s best response is to set bj = b∗ since bid prices above b∗ are strictly

dominated: If firm j could, it would buy r(qj), but because this is more than qj,

it cannot buy that much. Therefore, it does not pay for j to set a price higher

than b∗. Clearly, we therefore have an equilibrium where all firms set b∗ if for all

firms i, qi ≤ r(q−i).
13 The argument needed to establish uniqueness is analogous

to the one of the output market subgame. Bid prices above b∗ = B(Q) being

strictly dominated, the only alternative candidates for an equilibrium are bid

prices smaller than b∗. However, whenever a firm i sets a bid price bi < b∗, at

13This condition is exactly the same that has to hold in Kreps and Scheinkman (1983) for
there to be pure strategy equilibrium in region I.
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least one other firm, say, j will optimally set a price above bi (but below b∗) so

that firm i’s profits would discontinuously increase by setting a slightly higher

price than j does. Thus, there is no other equilibrium.

Let qC ≡ qC denote the Cournot capacity as defined in (28). Then we can

neatly summarize our findings as follows:

Proposition 2 For capacities qi ≤ qC for all i = 1, .., n, there is a unique Nash

equilibrium in the input market subgame, in which all intermediaries set the mar-

ket clearing bid price b∗ = B(Q).

Proof : The proof follows directly from the above analysis.¥

Equilibrium for the full game A question of great interest is of course

whether setting Cournot capacities is an equilibrium (or more precisely, part

of a subgame perfect equilibrium strategy profile) for the full game. In order to

show this we must investigate whether firm i has an incentive to deviate from

setting the capacity constraint qC if all −i set q−i = qC . It is clear from the

results of Cournot competition that deviation to qi < qC will not pay. Why?

Recall from the two previous subsections that in this case, equilibrium prices

both on the input and on the output market will be market clearing. Since this

is the situation prevailing under Cournot competition, the deviation qi < qC will

not be profitable. Thus the only candidate deviation we have to consider entail

qi > qC . In this case, the equilibrium in the bid price setting subgame involves

(non-degenerate) mixed strategies. However, as it turns out it is very hard to

characterize the equilibrium revenue (and more so to characterize the equilibrium

strategies) for a deviating firm, and thus far we have not been able to pin down

this revenue (see also Appendix A).

4 Conclusions

In this paper, we have introduced capacity constrained competition between

market-making and price setting intermediaries. Capacity constraints prevent

competition between price setters to degenerate into Bertrand-style perfect com-

petition. We have shown that intermediaries endowed with Cournot capacities

(or with smaller than Cournot capacities) set market clearing bid and ask prices
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on the input and output market. Therefore, given Cournot capacities, firms set

the same prices and trade the same quantities on the subgame perfect equilibrium

path of our game as would be set and traded if input and output market were

organized by a Walrasian auctioneer. A corollary of this is that the equilibrium

outcome of our model coincides with the Walrasian perfect competition outcome

when the number of intermediaries with Cournot capacities becomes large.

The fact that the search market only shuts down completely if the number of

intermediaries approaches infinity and if there is no cost associated with inter-

mediating may seem somewhat odd. Assuming that these two conditions hold is

certainly not less demanding than the the assumptions underlying the Walrasian

model. However, this problem can be easily mended by introducing a fix cost to

search market participation. Then, the search market shuts down for a quantity

traded smaller than the Walrasian one, and firms can make positive profits (or

at least set positive ask-bid spreads) in the absence of an active search market.

The paper can also be seen as an attempt to analyze competition between

exchange mechanism that differ with respect to their efficiency. In a next step,

we consider introducing a minimal size for the search market to be operational.

[To be completed]

Appendix

A Region of Mixed Strategy Equilibria

We first show that for capacities qi > qC and q−i = qC , there is no equilibrium in

pure strategies. The reason is as follows. Recall from subsection 3.3 that given

b−i = b∗ = B(Q), intermediary i’s best response is to set bi = B(r(q−i) + q−i) <

B(Q). Note that B(r(q−i)+q−i) > B(q−i) because for q−i = (n−1)qC , r(q−i) > 0

and denote the bid price B(r(q−i) + q−i) as b. Now, given that i sets b, setting

b−i = b∗ is not a best response for the other firms since each of them can buy

the same quantity qb = qC by setting a lower price. Because b > B(q−i), the

lowest bid price at which this is possible is b+ for bi = b. But with b−i = b+,

i’s profits increase if he sets a bid price slightly larger than b+ since by doing

so he can buy a discontinuously larger quantity while the loss due to the higher

price is negligible. Because this type of reasoning applies for any constellation of
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bid prices, there is no equilibrium in pure strategies for capacities qi > qC and

q−i = qC .

This raises the question whether there is an equilibrium in mixed strategies.

Since there are no equilibria in pure strategies and because strategies are contin-

uous while firms’ payoffs are discontinuous, it is not a priori clear that the game

has an equilibrium.14 Speaking somewhat loosely, we may say that Dasgupta and

Maskin (1986) (DM hereafter) show that sufficient conditions for the existence of

a mixed strategy equilibrium in discontinuous games are that

1. discontinuities arise only at particular strategy combinations (e.g. in the

Bertrand model when both firms set the same price)

2. the sum of payoff functions is upper semi-continuous (which is the case e.g.

in the Bertrand model, where in the absence of production costs aggregate

profits are piD(pi) no matter what price firm j sets, provided only pj ≥ pi)

3. individual payoff function are bounded and weakly lower semi-continuous

(as defined by Dasgupta and Maskin (1986, p.7)

It can be shown that these conditions hold in the present model. However,

since we wish to compute expected profits in the region with mixed strategy

equilibria, it will not do to know that an equilibrium exists. Rather, we would

have to determine the equilibrium strategies, or more precisely, the expected

equilibrium revenues in this region (which is in principle possible without an

explicit characterization of the equilibrium strategies).

A.1 Existence of an Equilibrium

In order to show that the game we consider has an equilibrium, we must show

that the conditions of Theorem 5 of DM are satisfied.

14Nash (1950, 1951)’s proof guaranteed the existence of a (mixed strategy) equilibrium for
finite games, that is for games with a finite number of strategies for each player and finite
number of players. Debreu (1952), Fan (1952) and Glicksberg (1952) then proved the existence
of an equilibrium for a wider class of games, and some authors, notably the above-mentioned
Levitan and Shubik (1972), proved the existence of an equilibrium for particular games. See
Dasgupta and Maskin (1986) or Fudenberg and Tirole (1991) for more details. However, general
and sufficient conditions for the existence of an equilibrium in discontinuous games had to await
the seminal contribution by Dasgupta and Maskin (1986).
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We prove existence only for n = 2 firms. The proof for any n goes along the

same line, but necessitates a some additional notation.

Recall that a pure strategy of player i is choice of bi ∈ [0,∞), so that for n = 2,

the strategy space is [0,∞)× [0,∞) ⊂ R2. Translated to our setting, Theorem 5

of DM states that sufficient conditions for our game to have an equilibrium are

1. πi(b1, b2) is discontinuous in bi for i = 1, 2 only on a subset of {b1, b2 | b1 =

b2}

2.
∑

i πi(b1, b2) is upper semi-continuous (u.s.c.) and πi(b1, b2) is bounded and

weakly lower semi-continuous (w.l.s.c.).

Condition (1) is easily seen to hold. Consider profits of firm 1. Then, for b1 <

min[B(q2), b2], π1(b1, b2) = 0, which is continuous. For b1 ∈ [B(q2), b2),π1(b1, b2) =

(A(b1)−b1)(S(b1)−q2), which is continuous because both A(b1)−b1 and S(b1)−q2

are continuous functions. Finally, for b1 > b2, profits of firm 1 are π1(b1, b2) =(
A(min[b2, B(Q)]− b1)

)
min[q1, S(b1)], which is a continuous function in b1.

It takes a bit more to establish that condition (2) is met. However, a sufficient

condition for upper semi-continuity of the sum of profits is that the sum of profits

is continuous, which is quite easily seen. Since discontinuities of individual profits

occur only if both firms set the same bid price, we have to investigate the sum of

profits only at points where b1 = b2 = b.

For simplicity, consider first the case, where b and capacities are such that

mini[qi] ≥ S(b)
2

and that maxi[qi] < S(b). Then, for b1 = b, profits of 1 and 2 are

(A(b)− b)S(b)
2

, so that the sum of profits is (A(b)− b)S(b). Now assume that firm

1 sets b1 > b2. Then π1(b1, b) = (A(b)−b1)q1 and π2(b1, b) = (A(b)−b)(S(b)−q1),

so that the sum of profits is (A(b)− b)S(b)− (b1 − b)q1. As b1 approaches b, this

is (A(b)− b)S(b), which is continuous.

Let us now turn to the other cases, where b and qi are not such that mini[qi] ≥
S(b)

2
and/or max[qi] < S(b).15 Assume without loss of generality that q1 ≥ q2. If

min[q1, 2q2] > S(b), then
∑

i πi(b, b) = (A(b) − b)S(b) as above. But q1 > S(b)

implies π2(b1, b) = 0 for b1 only slightly larger than b, so that
∑

i πi(b1, b) =

π1(b1, b) = (A(b1) − b1)S(b1). Again, therefore, limb1→b

∑
i πi(b1, b) = (A(b) −

b)S(b) =
∑

i πi(b, b). Thus, we are left with the case, where q2 < S(b)
2

. There

are two possibilities in this case. Either (a) Q ≤ S(b) or (b) Q > S(b). If (a) is

15But for this to be a mixed strategy equilibrium, min[qi] < QW must still hold, of course.
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the case, then quantity bought will be Q at b and b1. Thus, inverse demand will

be A(B(Q)) regardless of whether 1 sets b or b1, and aggregate profits will be

(A(B(Q))− b)Q if both firms set b. For b1 > b, aggregate profits are (A(B(Q))−
b1)q1 + (A(B(Q)) − b)q2, so that, again, limb1→b

∑
i πi(b1, b) =

∑
i πi(b, b). In

case (b),
∑

i πi(b, b) = (A(b)− b)S(b) and
∑

i πi(b1, b) = (A(b)− b1)q1 + (A(b)−
b)(S(b)− q1), implying as before limb1→b

∑
i πi(b1, b) =

∑
i πi(b, b).

To see that πi(b1, b2) is bounded, let b̂ denote the highest admissible price.

Then π1(b1, b2) ≥ (A(B(Q)) − b̂)q1 and π1(b1, b2) ≤ (A(B(r(0)))− B(r(0)))r(0).

Similarly, π2(b1, b2) ≥ (A(B(Q))−b̂)q2 and π2(b1, b2) ≤ (A(B(r(0)))−B(r(0)))r(0).

Thus, πi(.)is bounded for i = 1, 2. Finally, we turn to weakly lower semi-

continuity. In order to do so, we first apply Definition 6 of DM to our problem.

Definition 1 (DM Definition 6) π1(.) is called weakly lower semi-continuous

(w.l.s.c.) in b1 if for all b′1, b
′
2 for which π1(.) is discontinuous, there is a λ ∈ [0, 1]

such that

λ lim inf
b1
−→b′1

π1(b1, b
′
2) + (1− λ) lim inf

b1
+→b′1

π1(b1, b
′
2) ≥ π1(b

′
1, b

′
2)

16

For π2(.), w.l.s.c. is defined in complete analogy.

To see that both functions satisfy w.l.s.c., note that whenever πi(.) is dis-

continuous, i’s profits strictly increase by either underbidding or overbidding the

other player’s bid price. Accordingly, let λ be one in the former and zero in the

latter case, and w.l.s.c. is established.

Therefore, Theorem 5 of DM applies, from which we conclude that our game

has a (mixed strategy) equilibrium.

A.2 Expected revenue in the mixed strategy equilibrium

Recall (once more) from above that i’s best response when the other firms sets

b−i = B(Q) is to set b ≡ B(r(q−i) + q−i). Interestingly, setting bj = B(r(q−j) +

q−j) is the optimal bid price for any intermediary j who is certain that he sets the

lowest bid price, j = 1, ..., n. That is, if b−j > bj for all −j, then j’s best response

is to set B(r(q−j) + q−j). To see this, note that when j sets the lowest bid price,

aggregate quantity bought will be S(bj).
17 Because everything that is bought on

16As above, −→ ( +→) means that b1 approaches b′1 from the left (right).
17This is of course true only under the condition that bj is such j can buy something.
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the input market will subsequently be sold on the output market at the market

clearing ask price (see section 3.2) the equilibrium ask price intermediary j (and

any other intermediary) will get is a function of S(bj) and thus a function of bj

only. Therefore, j’s expected profits in this case are

πj(bj | bj > bj,q) = (A(S(bj))− bj)
(
S(bj)− q−j

)
, (35)

where
(
S(bj)− q−j

)
= qb

j . From section 3.3 we know that the solution to this

maximization problem is to choose bj such that qb
j = r(q−j), implying that the

optimal bid price bj is equal to B(r(q−j) + q−j). Let us denote this price by bj.

Because in a mixed strategy equilibrium, agents are indifferent between the pure

strategies over which they randomize this firm’s expected equilibrium revenue is

the revenue accruing when setting this bid price, which is the Stackelberg follower

revenue.

The main problem for determining the expected equilibrium revenue of the

deviating firm is that it is not easily possible to say whih firm sets bj. The

reason for this that it is hard to determine the upper bound of prices over which

firms randomize in the mixed strategy equilibrium. This is in contrast to the

procedure applied by Kreps and Scheinkman (1983) and Deneckere and Kovenock

(1996), where both bounds of the support are quite ”easy” to identify and where

these bounds are used to determine which firm(s) get(s) the Stackelberg follower

revenue.

B The Cournot Model

What we call the Cournot model (or Cournot auctioneer model)18 is the following.

There are n ≥ 1 producers of a homogenous good who seek to maximize their

own profits. They know each others’ cost function and the downward sloping

demand function P (.).19 These n firms produce simultaneously before bringing

their produce to the common market place, where they give it into the hands

of a benevolent agent, the so called (Walrasian) auctioneer. The task of this

auctioneer consists of organizing the market, that is, he collects the quantities

18Of course, the label ”Cournot auctioneer” model is ahistorical since the auctioneer due to
Walras. Nonetheless, we use this label because we think it is an accurate description.

19For technical reasons, and depending on the firms’ cost functions, a negative slope is not a
sufficient condition, so the function is also often required not to be too convex.
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produced by all the n firms and then sets the price at which the market clears.

After the market has cleared, it is shut down and further trade is made impossible.

This last assumption is often not made explicitly, but it is a necessary one because

in Cournot equilibrium with a finite number of firms, the market clears at a price

above marginal costs. Since there remain buyers willing to pay a price above

marginal costs after market clearing has taken place, firms have incentives to

serve these buyers and to increase their profits.

At least some of the assumptions underlying the Cournot auctioneer model

are overtly fictitious and have been heavily criticized. Most prominent is the

classical criticism by Bertrand (1883) who pointed out that as a matter of fact,

firms actually do set prices and not merely quantities. Nonetheless, the Cournot

model is intellectually appealing, though not because of its assumptions but for

the predictions it makes. This appeal is neatly formulated in the following quote,

taken from Mas-Collel et al. (1995, p.394):

...[M]any economists have thought that the Cournot model gives the

right answer for the wrong reasons.

In our judgement, what makes it particularly valuable is that it contains the

whole range of market outcomes. Basically, as the number of firms is one, the

market price (and profits) are high. When this number increases, price and

profits fall, until in the limit profits are zero and the market outcome is that of

perfect competition. The appeal of the Cournot model is not least witnessed in

the large and still growing literature (spanning now over more than a century),

which makes an effort to find the right reasons for the right predictions, if we want

to paraphrase Mas-Collel et al. (1995). Undoubtedly, the most spectacular and

influential contribution into this direction has been made by KS, with which we

deal extensively below.20 After this brief introduction to the Cournot (auctioneer)

model, we discuss next the basic concepts of this model.

B.1 The reaction function

The most important concept is the (Cournot) reaction or best response function.

20A more detailed and accurate description would at this point also refer to the classical
treatment of the problem by Edgeworth (1897) and to Levitan and Shubik (1972). Dealing
with a simple example with linear demand, the latter authors derived the pure and the mixed
strategy equilibria when firms set prices, given capacity constraints.
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There are n ≥ 1 firms indexed as i = 1, .., n. We denote by qi the quantity

produced by firm i and by Q =
∑n

j qj the aggregate quantity produced. Finally,

let q−i denote the aggregate quantity produced by all firms other than i, i.e.

q−i = Q− qi. Note that Q = qi + q−i by definition and that dq−i/dqi = −1.

Under Cournot competition, profits of firm i when the other firm sells quantity

qj and when i’s cost of production are zero are qiP (Q) = qiP (qi + q−i). The (zero

production cost) reaction function r(q) when all other firms produce q is defined

r(q) ∈ arg max rP (r + q),

implying

0 = rP ′(r + q) + P (r + q), (36)

so that r(q) is implicitly given by

r(q) =
P (r(q) + q)

−P ′(r(q) + q)
. (37)

Note that because D(p) and P (Q) are (weakly) concave, the second derivative

of rP (r + q) with respect to r is always negative (i.e. the function r(Pr + q) is

concave, too). Therefore, the set of arg max rP (r + q) contains a single element,

and thus the solution r(q) in equation (38) is unique.

It turns out to be very useful to know two properties about the slope of r(q).

Therefore, let us differentiate equation (36) with respect to q, set this equal to

zero and solve for r′(q) to get21

r′ =
−rP ′′ − P ′

rP ′′ + 2P ′ , (38)

where for notational simplicity and because it does not give way to confusion, we

have dropped the arguments.

First, we note that r′ < 0, which follows from the fact that P (.) is (weakly)

concave, and therefore the denominator is negative and the nominator positive.

Second, r′ > −1. To see this, multiply −rP ′′−P ′
rP ′′+2P ′ > −1 by the denominator and

cancel terms to get 1 < 2 (keep in mind that the denominator is negative, so

that the sign changes after the multiplication). The fact that r′ > −1 implies

that r(q) + q strictly increases in q, which is a result that will repeatedly be used

below.
21The idea behind this is that equation (36) holds for any q. Therefore, as q changes, r(q)

must change in such a way that equality (36) still holds.
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It is also useful to have an expression for the revenue of firm i with zero

production costs as a function of the quantity of all firms other than i when i

uses its best response r(q−i). This revenue is R(q−i) := r(q−i)P (r(q−i) + q−i).

Note that this is firm i’s maximal revenue as a function of the quantity set

by all other firms. If for example n = 2, then firm 1’s maximal revenue is

R(q−1) := r(q−1)P (r(q−1) + q−1) = r(q2)P (r(q2) + q2).

Cournot-Nash Equilibrium An equilibrium is thus defined as a quantity q∗

such that r(q∗)− q∗ = 0.
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Bertrand, J. L. F. (1883). Théorie de la richesse. Journal des Savants 67, 499–508.

Boccard, N. and X. Wauthy (2000). Bertrand competition and cournot outcomes:

Further results. Economics Letters 68 (3), 279–85.

Dasgupta, P. and E. Maskin (1986). The existence of equilibrium in discontinuous

economic games, 1: Theory. Review of Economic Studies 53, 1–26.

Debreu, G. (1952). A social equilibrium existence theorem. Proceedings of the

National Academy of Sciences 38, 886–893.

Deneckere, R. A. and D. Kovenock (1996). Bertrand-edgeworth duopoly with

unit cost asymmetry. Economic Theory 8, 1–25.

Edgeworth, F. Y. (1925 [1897]). Papers Relating to Political Economy. Volume

I, The Pure Theory of Monopoly. Macmillan.

Fan, K. (1952). Fixed point and minimax theorems in locally convex topological

linear spaces. Proceedings of the National Academy of Sciences 38, 121–126.

Freixas, X. and J.-C. Rochet (1997). Microeconomics of banking. MIT Press,

Cambridge, Massachusetts.

Fudenberg, D. and J. Tirole (1991). Game Theory. MIT Press, Cambridge,

Massachusetts.

Gehrig, T. (1993). Intermediation in search markets. Journal of Economics &

Management Strategy 2, 97–120.

Glicksberg, I. (1952). A further generalization of the kakutani fixed point theo-

rem with application to nash equilibrium points. Proceedings of the American

Mathematical Society 38, 170–174.

Kreps, D. M. and J. A. Scheinkman (1983). Quantity precommitment

and bertrand competition yield cournot outcomes. Bell Journal of Eco-

nomics 14 (2), 326–337.

Levitan, R. and M. Shubik (1972). Price duopoly and capacity constraints. In-

ternational Economic Review 13 (1), 111–122.



REFERENCES 34

Loertscher, S. (2003). Monopolistic Intermediation in the Gehrig (1993) Search

Revisited. Working Paper, University of Bern.

Mas-Collel, A., M. D. Whinston, and J. R. Green (1995). Microeconomic Theory.

Oxford University Press.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the

National Academy of Sciences of the USA 36 (2), 48–49.

Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics 54 (2), 286–

295.

Radford, R. (1945). The economic organization of a p.o.w. camp. Economica,

189–201.

Rust, J. and G. Hall (2003). Middlemen versus market makers: A theory of

competitive exchange. Journal of Political Economoy 111 (2), 353–403.

Spulber, D. F. (1996). Market making by price-setting firms. Review of Economic

Studies 63, 559–580.

Spulber, D. F. (1999). Market Microstructure: Intermediaries and the Theory of

the Firm. Cambridge University Press, Cambridge.

Stahl, D. O. (1988). Bertrand competition for inputs and walrasian outcomes.

American Economic Review , 189–201.

Vives, X. (1999). Oligopoly Pricing. MIT Press, Cambridge, Massachusetts.



 

A(Q)  (Walrasian) 
Supply P 

(Walrasian) 
Demand 1-P B(Q)  

Search constrained 
Input Supply  

Search constrained 
Output Demand  

Price  

1 

1 

Quantity  
Figure 1:  
The search market constrained supply and demand functions. Note 
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