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Abstract

We study perfect information bilateral bargaining game with an infinite
alternating-offers procedure, in which we add an assumption of history de-
pendent preference. A player will devalue a share which gives her strictly
lower discounted utility than what she was offered in earlier stages of the
bargaining, namely, a “worse off” outcome. In a strong version of the
assumption, each player prefers impasse to any “worse off” outcome. We
characterize the essentially unique subgame perfect equilibrium path under
the assumption. The equilibrium entails considerable delay and efficiency
loss. As the players become infinitely patient, the efficiency loss goes to one
half, and the equilibrium share goes to Nash solution. The assumption can
also be weakened. We provide a sufficient condition on the extent of deval-
uation under which the feature of the equilibrium from strong assumption
remains.
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1 Introduction

Rubinstein (1982) analyzed a bargaining model with an infinite alternating-offers
procedure, and established uniqueness of subgame perfect equilibrium (SPE)
when both parties’ time preferences are represented by exponential discount-
ing. He also showed that agreement is immediately reached. This contradicts
our daily observation that bargaining almost always takes some time, and rarely
appears to be efficient. Delays and even impasses are common in real bargaining.
Much theoretic work has been done to account for this, and most of it relies
on incomplete information as the driving force behind delays, i.e., the players
have incomplete information about the “fundamentals” of the bargaining, such
as the other party’s patience, outside option, etc.. Under incomplete informa-
tion settings, there are always multiple equilibria, and refinement criteria for the
equilibria becomes a major issue.
In this paper, we take a different approach to study delay in bargaining. We

assume that players have history dependent preferences, that is, players’ payoffs
not only depend on the outcome of the bargaining, but also depend on the specific
bargaining process leading to the outcome. What they get from a final agreement,
together with what they have been offered and rejected determine their current
payoff, which is then discounted due to impatience.
In our model, players still have intrinsic preferences over the outcome. As

usual, this preference admits a separable representation, i.e., a concave utility
function measuring current value of a share and a time-discounting term. This
representation allows us to introduce a strong version of history dependent pref-
erence. We shall assume each player prefers impasse to any outcome, which is
worse, in terms of discounted utility, than any offer she has rejected; and her
preference over improving outcome is always measured by the intrinsic utility
function. This preference is assumed to be common knowledge between the play-
ers. With such preferences, the players will strategically hold back in making
offers, because once an offer is rejected the proposer has to keep improving it in
order to reach agreement. Yet players are impatient, so they have a countervail-
ing incentive to reach an early agreement. These two counteracting forces induce
some interesting results. We still have essentially unique SPE, but it involves con-
siderable delay. The equilibrium has a flavor of reciprocity, that is, the players
will start from two extreme positions, each player will make some small conces-
sion at the beginning, after the opponent makes reciprocal responses, the step of
the concession will increase, and they finally reach an agreement somewhere in
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the middle. Equilibrium play thus exhibits realistic features.
A weaker version of history dependent preference will also be studied. Be-

fore we proceed, we provide two different interpretations of the history dependent
preferences, delegated bargaining with justification and reference dependent pref-
erence.
Many real life bargaining situations are delegated bargaining, for instance,

political bargaining. In such kind of situations, the agent usually has to justify
her performance ex post. For the agent, the most important thing is to convince
her principal that her performance was successful, and she has done the best given
the situation. Based on this, the agent also cares about the material outcome.
Basically, the justification is combined with a contract between the principal and
the agent. The contract is monotone, i.e., the better is the discounted utility of
the principal from the outcome of the bargaining, the better is the payment to
the agent. The monotone contract prevents the agent from simply taking the
first offer. About the justification, we think it is natural to consider a criterion
involving following rule: a performance is considered to be unsuccessful if the
agent has forgone an offer and ends up with a worse offer in terms of discounted
utility for the principal. Intuitively, the principal’s logic is: the agent did not do
a satisfactory job because she had chance(s) to get a better result, but did not
take it. The justification requirement gives the agent a commitment advantage,
which induces delay.
We borrow the concept of Justifiability from Spiegler (2002), but apply the

idea in a different way. In his model, the agent, who plays the game, has to
be able to justify her strategy choice based on a plausible conjecture of the op-
ponent’s strategy in an ex post debate-like justification procedure between the
agent and the principal. Being justifiable means that for any potential criticism
on the agent’s strategy, there is a counter-argument based on the same logic.
Spiegler applied a simplicity-based criterion on plausibility, and obtained inter-
esting outcomes for a number of finite horizon games with paradoxical SPEs, such
as chain-store game and centipede game.
We can also interpret the assumed preference as preference with loss aversion

as defined in Tversky and Kahneman (1991). Each player takes the best ever offer
in terms of discounted utility as her reference point. A share providing higher
discounted utility will be valued as before, but a share with lower discounted
utility, namely a loss, will be devalued. Our strong assumption corresponds to
an extreme case of devaluation of the shares in the region of loss, any such share
brings a negative payoff to the player. The magnitude of this negative payoff
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does not matter, the player simply prefer impasse to any loss. In other words,
the players here are assumed to be extremely loss averse.
One notable feature here is that the reference point evolves endogenously. An

improving offer from one side change the reference point of the other side in the
future play, and without the improving offer, the reference point changes over
time due to the discounting. There is a similar formation of reference level in
Barberis, et al. (2001). In their model, investor gets utility from fluctuations of
risky asset, and they take the reference level to be the current value of the asset
scaled up by the risk-free interest rate.
Under this interpretation, it is natural to weaken the strong assumption. We

can replace the discontinuity at the reference point by a kink. In the case of
linear utility, what we do is simply to give the utility function a larger slope rate
in the loss region. In section 4, we will show that when the kink is sharp enough,
or, the loss aversion effect is large enough, we can get similar unique SPE path
with considerable delay. Thus, the discontinuity in the strong assumption is not
necessary to obtain delay.

1.1 Related Literature

Experiments in game theory have been providing results inconsistent with game
theoretic predictions. It has been argued that human subjects do not behave
according to these predictions in many situations, and an alternative view is that
the preferences of the human subjects are not always determined by the material
outcome of the game. When two different plays bring the same material outcome
for a player, she may prefer one play over the other. Weibull (2004) introduced
a notion of “game protocol”, and analyzed context-dependent preference and
interpersonal preference dependence. Our preference assumption is in favor of
the latter view mentioned above. It can be viewed as a special form of context-
dependent preference.
Abreu and Gul (2000) introduced a small fraction of behavioral type into their

bargaining model and studied two-sided reputation formation in bargaining. The
behavioral bias they used was that the players might commit to a fixed share and
only accept that amount or higher1. There is a unique sequential equilibrium
in their model, and it entails delay, consequently efficiency loss. The type of
each player is not revealed before the bargaining, and the efficiency loss in their

1The behavioral type with obstinate demand was first introduced into a bargaining model
with one-sided reputation formation in Myerson (1991).
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model is effectively information-induced. The behavioral bias can be interpreted
as being caused by an aberration of preference.
Some work has been done to explain the strategic delay in bargaining with

complete information models. Ma and Manove (1993) studied a bargaining game
with deadline and imperfect control over the timing of offers. They obtained a
symmetric Markov-Perfect Equilibrium involving delay and positive probability
of impasse. Perry and Reny (1993) and Sakovics (1993) considered continuous
time case, simultaneous offer is the necessary condition to get delay in their mod-
els. More closely related, Fershtman and Seidman (1993) combined “endogenous
commitment” assumption and “deadline effect” in their model. When players
are sufficiently patient, there is unique and inefficient SPE, in which the agree-
ment is delayed until the last period, and no concessions are made before that.
A fair lottery determines one player who gets the whole pie in the last period.
The endogenous commitment assumption, a player cannot accept any offer lower
than what she has rejected, is similar to our assumption of history dependent
preference. The key difference is that we scale up the commitment levels by the
discount factors. More importantly, the “endogenous commitment” assumption
in their model itself cannot induce delay without “deadline effect”.
In our model, rejection of an offer from the opponent can also be view as a

commitment tactic. There are other theoretic models concerning the strategic
commitment, for example, Crawford (1982) and Muthoo (1996). The commit-
ment in our model is different from theirs. They both assumed that once a player
makes a demand for a specific share of the pie, she will have to pay a retreat
cost if she settles with a share lower than her original demand. Crawford (1982)
explained impasses in real bargaining based on this possibility of commitment,
and Muthoo (1996) studied how the retreat cost functions affect the equilibrium
share. In our model, the commitment comes from the rejection of offers. An offer
to the opponent also means a demand from the proposer, thus, the key difference
here is where the commitment power comes from. If we consider the behavior of
committing as a kind of reputation concern, the question will be which one hurts
the reputation more, retreat or regret? From our point of view, there is no yes
or no answer for this question, they are just different perspectives to understand
real life bargaining. Different commitment tactics work in different situations.
Another closely related paper is Admati and Perry (1991). Our model and

some of the main results under the strong assumption share features with their
contribution game. Both models have essentially unique SPE path and consid-
erable delay in the equilibrium. The way we characterize the equilibrium is also
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similar to theirs. One important difference between the two models is about the
inefficiency. In their model, the inefficiency is in the sense that the socially de-
sirable project may not be completed. The delay is not the major concern of
their model. Actually, given the convex investment cost functions, the delay is to
some extent socially desirable. In our model, we discuss the inefficiency only in
the sense of strategic delay as most of the bargaining literature does. Moreover,
we also consider a more general setting, in which the players may have different
concave utility functions and different discount factors.
More recently, Compte and Jehiel (2003) studied bargaining and contribution

games under the assumption of history dependent outside options. The ideas of
their paper and the current paper are similar, both explain not only the delay,
but also the important feature of gradualism in real bargaining.

The rest of the paper is organized as follows. In section 2, we lay out the
model. We obtain the main results under the strong version of history dependent
preference in section 3. Results under the weaker version of history dependent
preference is presented in section 4. Section 5 includes an informal discussion,
in which we explore, without the assumption of history dependent preferences,
the possibility of providing epistemic foundation for the equilibrium play we have
obtained. Section 6 concludes.

2 The Model

We analyze a perfect information bargaining game. Two players bargain over
a pie with size 1, the bargaining takes the infinite alternating-offers procedure
introduced by Rubinstein (1982). Each player in turn makes an offer to her
opponent, who decides to accept or reject. The bargaining ends if one player
accepts an offer from the other player. If no one ever accepts an offer, it is an
impasse. An offer is defined as the nominal share the proposer agrees to give to
her opponent, and the proposer gets whatever is left.
We call any play path a history. Every history leads to either a terminal node

or a decision node, and a decision node starts a subgame. A startegy specifies an
action at every decision node of a player. We call the part of the strategy in a
subgame as subgame strategy.
Initially, players have intrinsic utility functions u (·) and υ (·) defined on [0, 1],

u (·) and υ (·) are strictly increasing and concave, and we also normalize u (0) =
υ (0) = 0, u (1) = υ (1) = 1. The utility function specifies the current value of
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a share for the player. It is how the players value the share of the pie before
they start to bargain. We can also define the initial set of feasible utility pairs as
U =

©
(α, β) ∈ [0, 1]2 : u−1(α) + υ−1(β) ≤ 1ª .

An agreement can be reached at t = 0, 1, 2, .... The players are impatient,
and the nominal utility from the share of the pie will be discounted over periods
by 0 < δ1, δ2 < 1, i.e., the discounted utility for player 1 (resp. player 2) from a
share x (resp. y) attained in tth period is δt1u (x) (resp. δt2υ (y)). As usual, the
(discounted) utility from an impasse is simply zero. The key difference we have
in the current model is that the payoff to the players will be history dependent.
Basically, we do not always take the discounted utility from the share of the pie
as the payoff of a player.
We assume that if a player ends up with a share which gives her the highest

discounted utility from whatever she has been offered, her payoff is just the
discounted utility from that share. But if the player ends up with a share strictly
worse in terms of discounted utility than any offer she rejected along the history
path, i.e., a “worse off” outcome or an unsuccessful bargaining performance, her
payoff will be negative. The payoff from impasse is zero. Therefore, impasse
is strictly preferred to any “worse off” outcome. We can also put it this way,
the players have lexicographic preferences over the outcomes of the bargaining,
in which a 0/1 indicator of being successful or not is the first argument, the
discounted utility is the second argument, and the first one has the higher priority.
We think it makes sense in many political bargaining situations. Under such
setting, it is obvious that in a possible subgame perfect equilibrium, each player
will never accept an offer which gives her lower discounted utility than what
she was offered before. This is what we call the Strong Assumption of History
Dependent Preference. Before we formally state the assumption, we need one
more notation, the state variables for the bargaining game.

Definition State variable xt (resp. yt) at tth period of the bargaining game
is the smallest share player 1 (resp. player 2) needs to keep her discounted utility
not lower than what she could get from any previous offer.

We denote by cis the offer made by player i in s
th period, then

xt = max(s<t){u−1[u(c2s)/δt−s1 ]}, for any odd number s < t;
yt = max(s<t){v−1

£
v(c1s)/δ

t−s
2

¤}, for any even number s < t;
and x0 = y0 = 0.
In our model, all relevant information in a specific history is included in the

state variables. We can denote a subgame starting with a decision node for one
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of the players to make an offer as (xt, yt)i, the subscript i ∈ {1, 2} refers to the
player who makes the first offer in the subgame.
Now we can give the Strong Assumption of History Dependent Preference

formally as following.

Strong Assumption of History Dependent Preference
At tth period of the bargaining game, the (current) utility functions from the

share of the pie are:

Player 1: eut(x) = ( u(x)

−ε < 0
if x ≥ xt,
if x < xt;

Player 2: evt(y) = ( v(y)

−ε < 0
if y ≥ yt,
if y < yt.

What we do here is to truncate the utility functions, u(·) and v(·), according
to the state variables every period. This is equivalent to putting a dynamic
restriction on the feasible set of actions. It can be either one of the following two
alternatives.

1. A player is not allowed to accept any offer which is worse (for
herself) than what she has rejected along the history path in terms of
discounted utility.

2. A player is not allowed to make any offer which is worse (for
her opponent) than what she has offered and been rejected along the
history path in terms of discounted utility.

It is obvious that this different way to make the assumption has no effect on
the SPE path. We would like to make the assumption on the preference instead
of on the feasible action set because it is more natural to weaken the assumption
as we will do in section 4.

3 Equilibrium under the Strong Assumption

3.1 A Simple Case

In this section, we discuss the benchmark case, i.e., two players have linear initial
utility function, u(x) = x and υ(y) = y, and they also have common discount
factor, δ ∈ (0, 1). In this case, we simply have xt = max

£
c2s/δ

t−s¤, for any odd
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number s < t; yt = max
£
c1s/δ

t−s¤ , for any even number s < t; and x0 = y0 = 0.
cis is the offer made by player i in s

th period.
Our purpose now is to characterize the SPE(s). The following straightforward

lemmas lead to the main result.

Lemma 1 Impasse is not a SPE outcome.

Both players get zero payoff from impasse, while player 1 can simply offer
anything larger than δ at the beginning, it will not be rejected and bring both
players positive payoffs.

Lemma 2 In the subgame (xt, yt)i with xt+ yt ≤ 1, the highest offer i will make
in a SPE is max [δ − xt, yt] for i = 1, max [δ − yt, xt] for i = 2.
Proof. We consider i = 1, it is the same for i = 2.
It is obvious that in any subgame (xt, yt)i with xt+yt > 1, impasse is the only

SPE outcome. Thus, when xt+yt > δ, it is infeasible to get an agreement in next
period, and player 2 will accept any offer higher or equal to yt. Thus,it is optimal
for player 1 to make offer yt.
When xt + yt ≤ δ, any feasible agreement in next period has to give player

1 a share no lower than xt/δ, by which player 2 gets the highest possible share
1 − xt/δ. In terms of discounted utility, such a share is equivalent to a current
share δ − xt. In other words, player 2 will not reject any offer higher than δ − xt
in a SPE, thus, it is also the upper bound of the offer player 1 will make.
Finally, xt + yt ≤ δ is just yt ≤ δ − xt.

Lemma 3 Any strategy involving acceptance of a non-highest offer is not a SPE
strategy.

Proof. This is also straightforward. We only need to consider a subgame
(xt, yt)1 with xt + yt < δ, if player 1 offers c1t , with yt ≤ c1t < δ − xt, player 2 will
reject because she can at least counteroffer with max [δ − c1t/δ, xt/δ] , the highest
offer at t+ 1th period, and get a payoff higher than c1t .
To see this, if δ−c1t/δ ≥ xt/δ, player 2’s payoff in terms of utility in tth period

is
δ(1− (δ − c1t/δ)) = δ − δ2 + c1t > c

1
t ;

if δ − c1t/δ < xt/δ, it is δ(1− x1t/δ) = δ − xt > c1t . Thus, player 2 will reject any
offer lower than δ − xt in a SPE.
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We notice that the lower bound of the offer not being rejected coincides with
the upper bound of the offer being rejected. We name this offer as ‘clinching
offer’2 with respect to the corresponding subgame. Obviously, a SPE of the
bargaining game will end with a clinching offer being made and accepted. We
are now ready for the main result of this section.

Proposition 1
(i) There exists an essentially unique subgame perfect equilibrium (SPE) path.

When δ >
√
5−1
2

(the golden number), there is delay in SPE.
(ii) The SPE delay, measured as the number n of time periods until agreement

is reached, is a non-decreasing function of the common discount factor δ. As δ

goes to 1, n converges to infinity.
(iii) The SPE share to player 1 (who makes the first offer) is x = 1 − δn+1,

while player 2 receives the share y = δn+1. The associated payoffs are thus δn −
δ2n+1 and δ2n+1, respectively.
(iv) As δ goes to 1, δn (where n is a function of δ) converges to 1/2 from

above, i.e., the efficiency loss converges to 1/2.

Proof. (i) From the lemmas, we know any SPE ends the bargaining with
acceptance of the clinching offer with respect to the state variables, thus, we
need to see when it is optimal for a player to make the clinching offer.
When xt + yt > δ, it is obvious that players would make the clinching offer

defined as above.
When xt + yt ≤ δ, by making the clinching offer, the proposer, say, player 1

gets a current share 1− (δ−xt); if player 1 does not make the clinching offer, the
best outcome for her is to get a share δ−yt/δ, the clinching offer, in next period.
Then it is obvious that when xt + yt ≥ δ2 + δ− 1, for the current proposer3, it is
better, in terms of discounted utility, to make the clinching offer (being accepted
immediately) than to wait for the clinching offer in next period. Therefore when
the state variables get into this grid (See Figure 1), say, grid 1, the corresponding
subgame will end with an immediate agreement in any SPE. We define grid 1 as

G1 =
©
(α, β) ∈ [0, 1]2 : δ2 + δ − 1 ≤ α+ β ≤ 1ª .

Formally speaking, any subgame (xt, yt)i with (xt, yt) ∈ G1 has unique SPE,
in which the clinching offer is made by i, and accepted by −i. Moreover, the

2Credit goes to Jeff Ely for the use of this intuitive term.
3An important point here is that the condition is same for both players, which differs with

the general case we will discuss later.
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Figure 1: Simple Case

equilibrium share will be (1− δ + xt, δ − xt) when xt+ yt < δ and it is player 1’s
turn (i = 1) to make an offer, and vice versa.
When (xt, yt) is outside G1, the current proposer, say, player 1, will compare

the following two choices: one is to make the smallest offer such that (xt+1, yt+1)
will be inG1; the other is to make the basic offer, yt, or a lousy offer, lower than yt,
and in the next period player 2 makes an offer such that (xt+2, yt+2) will be in G1.
We know once a proposer realizes she is in G1, she is willing to make the clinching
offer in any SPE. It is easy to see when δ(δ2+ δ− 1) ≤ xt+ yt < δ2+ δ− 1, there
is no difference between the two alternatives; and when δ4 + δ3 − δ ≤ xt + yt <
δ(δ2 + δ − 1), the former choice gives a higher discounted utility. Thus we can
again define grid 2 as

G2 =
©
(α,β) ∈ [0, 1]2 : δ4 + δ3 − δ ≤ α+ β < δ2 + δ − 1ª

For (xt, yt)1 ∈ G2, the SPE path will start with player 1’s making offer
max

£
δ(δ2 + δ − 1− xt/δ), yt

¤
and for player 2, it is still to reject any non-clinching

offer. After the rejection from player 2, we will have (xt+1, yt+1)2 ∈ G1. If
xt + yt < δ(δ2 + δ − 1), the equilibrium share will be

¡
1− δ2 + xt/δ, δ

2 − xt/δ
¢
.

The analysis will be similar for (xt, yt)2 ∈ G2.
By doing this recursively, we can find a series of such grids with critical values

of form An = δ2n + δ2n−1 − δn−1, i.e.,
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Gn =
©
(α,β) ∈ [0, 1]2 : An ≤ α+ β < An−1

ª
.

When (xt, yt)1 ∈ Gn, the SPE path will start with player 1’s making offer

max
h
δ(δ2(n−1) + δ2(n−1)−1 − δn−2 − xt/δ), yt

i
,

and rejection of any non-clinching offer by player 2, then we have (xt+1, yt+1)2 ∈
Gn−1, and so on. When

xt + yt < δ(δ2(n−1) + δ2(n−1)−1 − δn−2),

the equilibrium share will be
¡
1− δn + xt/δ

n−1, δn − xt/δn−1
¢
. The analysis will

be similar for (xt, yt)2 ∈ Gn.
Now we can characterize the equilibrium path as following:
(a) If for some n, we have

δ2n + δ2n−1 − δn−1 > 0 > δ2(n+1) + δ2(n+1)−1 − δn,

player 1 makes her first offer c10 = δ(δ2n + δ2n−1 − δn−1), which makes x1 = 0
and y1 = δ2n + δ2n−1 − δn−1, then it follows the SPE path we have defined. In
this case, it is the unique SPE path4;
(b) If we have δ2(n+1) + δ2(n+1)−1 − δn = 0, in addition to the SPE path we

specified in (a), we have another SPE path, in which player 1’s first offer is c10 = 0,
followed by the previous SPE path starting with player 2. Indifference of player
1 between the two outcomes may induce one more period of delay.
When δ2+ δ− 1 > 0, i.e., δ >

√
5−1
2
, there will be at least one period of delay.

In the case with delay, the equilibrium path is basically that the players take turn
to jump from the lower boundary of one grid to another.
(ii) When

δ2n + δ2n−1 − δn−1 > 0 ≥ δ2(n+1) + δ2(n+1)−1 − δn,

n is the number of periods delayed in the essentially unique SPE path (the more
efficient one in case of two). In other words, in the SPE, it takes n+1 periods of
offering and counteroffering to reach an agreement.

4We call it the unique SPE path instead of SPE because off equilibrium path, when a player
only need to make basic offer (specified by state variables) to get into next grid in next period,
she can also make any lousy offer, say, the offers lower than the state variable. It has no effect
on the outcome.
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Claim n is a nondecreasing function of δ.
Suppose not, ∃ 1 > δ1 > δ2 > 0, and n1 < n2, that is,

δ2n21 + δ2n2−11 − δn2−11 ≤ 0 and δ2n22 + δ2n2−12 − δn2−12 > 0,

then
δn21 ≤

1

1 + δ1
and δn22 >

1

1 + δ2
.

Since δ1 > δ2, we have a contradiction.
It is straightforward to show that number of periods delayed goes to infinity

as δ goes to 1.
(iii)&(iv)
It is easy to see the equilibrium shares will be 1−δn+1 and δn+1 for player 1 and

2 respectively, and the payoffs are δn− δ2n+1 and δ2n+1. Moreover, δn > 1
1+δ

> 1
2
,

as δ goes to one, δn goes to 1
2
from above. The delay, or, the efficiency loss

in the current model is substantial. More specifically, when the players become
infinitely patient, half of the pie will be wasted due to delay5.
In Rubinstein’s model, the equilibrium share for this simple case is

¡
1
1+δ
, δ
1+δ

¢
;

and in our model, the equilibrium share lies between
¡
1
1+δ
, δ
1+δ

¢
and

¡
δ
1+δ
, 1
1+δ

¢
.

δ
1+δ

is the lower bound of player 1’s equilibrium share, and 1
1+δ

is the upper bound.
Thus, there is no first mover advantage in our model. There is not necessarily first
mover disadvantage either. When the (0, 0) is close to or on the lower boundary
of Gn, there is first mover disadvantage; when it is close to the upper boundary,
the first mover disadvantage gets smaller and even becomes advantage. As δ goes
to 1, both δ

1+δ
and 1

1+δ
go to 1

2
, which indicates that in the limit the equilibrium

share goes to Nash solution.
The equilibrium play we characterized is indeed a concession process. We can

treat the bargaining game as a continuous concession game. The two players
start from two extreme positions, and take turn to make concession. If the
total amounts of concessions reach 1 in finite time, there is an agreement with
corresponding delay; otherwise it is an impasse. It is not difficult to see that the
step of the concession is increasing. This is intuitive, the higher is the current
offer, the higher is the waiting cost from the proposer’s point of view since she has
to keep her opponent at least the same discounted utility to get an agreement.
Thus, players have incentive to improve their offers by increasing steps. We
think it is also a realistic prediction. In political bargaining, we always observe

5Although the efficiency loss converges to 1
2 from below as δ goes to 1, it is not an increasing

function of δ due to the reason that the number of delay, n, is not strictly increasing with δ.
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two parties start from two extreme positions, and at the beginning they are very
insistent on their positions, as times goes by, they start to make small concessions,
the step of concession tends to increase over time until they meet somewhere in
the middle.

3.2 General Case

We have studied the case with homogeneous and risk neutral players. We wonder
if the main result is robust to the introduction of asymmetry and risk aversion.
Thus, we consider a general case now, in which two players have different concave
utility functions and different discount factors. We will follow the same logic as in
the benchmark model. Given any subgame (xt, yt)i , we first specify the clinching
offer in the following lemma. Same as in the simple case, clinching offer is the
lower bound of the offers, which the opponent cannot reject in a SPE; and it
is also the upper bound of the offers, which the opponent always rejects in a
SPE. Any SPE path ends the bargaining with a clinching offer being made and
accepted.

Lemma 4 For any subgame (xt, yt)i , with u
−1(u(xt)/δ1) + υ−1(υ(yt)/δ2) ≤ 16,

the clinching offer is:

υ−1(δ2υ(1− u−1(u(xt)/δ1))), if i = 1;
u−1(δ1u(1− υ−1(υ(yt)/δ2))), if i = 2.

For tractability, we focus on the family of concave power functions, i.e.,

u (x) = xλ1 and υ (y) = yλ2 , λ1, λ2 ∈ (0, 1].
The set of feasible utility pairs now is

U =
n
(α,β) ∈ [0, 1]2 : α 1

λ1 + β
1
λ2 ≤ 1

o
.

The discount factors remain as δ1, δ2 ∈ (0, 1). Now we pin down the condi-
tions on the state variables under which the players will make the clinching of-
fer. For player 1, making the clinching offer means payoff is u(1 − υ−1(δ2υ(1 −
u−1(u(xt)/δ1)))), waiting for the clinching offer in next period means payoff is
δ21u(1−υ−1(υ(yt)/δ22)). Comparing the payoffs, we can define the grid 1 for player
1, i.e., G11.

6This condition means that without making any further concession in the current period,
an agreement is still feasible in next period.
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G11 ≡
½
(α, β) ∈ [0, 1]2 : A11 ≤ δ

3
λ2
2 α

1
λ1 + δ

3
λ1
1 β

1
λ2 ≤ 1

¾
,

where

A11 = δ
1
λ1
1 δ

3
λ2
2 + δ

2
λ2
2 δ

3
λ1
1 − δ

1
λ1
1 δ

2
λ2
2 .

For player 2, making the clinching offer means payoff is υ(1 − u−1(δ1u(1 −
υ−1(υ(yt)/δ2)))), waiting for the clinching offer in next period means payoff is
δ22υ(1−u−1(u(xt)/δ21)). Comparing the payoffs, we can define the grid 1 for player
2, i.e., G21.

G21 ≡
½
(α, β) ∈ [0, 1]2 : A21 ≤ δ

3
λ2
2 α

1
λ1 + δ

3
λ1
1 β

1
λ2 ≤ 1

¾
,

where

A21 = δ
1
λ1
2 δ

3
λ2
1 + δ

2
λ2
1 δ

3
λ1
2 − δ

1
λ1
2 δ

2
λ2
1 .

This is the main difference between the current case and the benchmark case,
G11 does not coincide with G

2
1. Nevertheless, there is still an inclusion relation

between G11 and G
2
1, which depends on A

1
1 ≷ A21. Without loss of generality, we

assume A11 > A
2
1, then G

1
1 ⊂ G21. For any subgame (xt, yt)i , with (u(xt), υ(yt)) ∈

G11, the SPE path will start with that player i makes the clinching offer, which
will be accepted by player −i. For (xt, yt)i , with (u(xt), υ(yt)) ∈ G21\G11, if i = 2,
it is still that player 2 makes the clinching offer, and player 1 accepts; if i = 1,
player 1 will choose to wait, i.e., making an offer equal to yt or less, and player
2 will reject and make the clinching offer in the following period. Similar to
the simple case, we can define two families of grids, G1n and G

2
n, recursively as

following:

G1n ≡
½
(α,β) ∈ [0, 1]2 : A1n ≤ δ

3n
λ2
2 α

1
λ1 + δ

3n
λ1
1 β

1
λ2 < min[A1n−1, A

2
n−1]

¾
,

and

G2n ≡
½
(α,β) ∈ [0, 1]2 : A2n ≤ δ

3n
λ2
2 α

1
λ1 + δ

3n
λ1
1 β

1
λ2 < min[A1n−1, A

2
n−1]

¾
,

where

A1n = δ
2n−1
λ1
1 δ

3n
λ2
2 + δ

2n
λ2
2 δ

3n
λ1
1 − δ

2n−1
λ1
1 δ

2n
λ2
2 ,

A2n = δ
2n−1
λ1
2 δ

3n
λ2
1 + δ

2n
λ2
1 δ

3n
λ1
2 − δ

2n−1
λ1
2 δ

2n
λ2
1 .
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Figure 2: General Case

The inequality between A1n and A
2
n, thus, the inclusion relation between G

1
n

and G2n, will not change with n. This is given in the following Lemma.

Lemma 5 A1n > A2n for any n if and only if δ
1
λ1
1 > δ

1
λ2
2 .

Proof. See appendix.

Given the inclusion relation of G1n and G
2
n, we can specify the SPE path

for any subgame (xt, yt)i. Here we only consider the case with G
1
n ⊂ G2n. If

(u(xt), υ(yt)) ∈ G1n, player i will make the offer such that (u(xt+1), υ(yt+1)) is
on the lower boundary of G2n−1,player −i will reject the offer unless n = 1. If
(u(xt), υ(yt)) ∈ G2n\G1n, and i = 2, it is same to the above; if i = 1, player
1 will now choose to wait, i.e., making an offer no larger than yt, and it will
become the same as above from next period. Finally we can find some n such
that (0, 0) ∈ Gin+1, and define the essentially unique SPE path for the whole
game as before. When (0, 0) is on the lower boundary of G1n and G

1
n ⊂ G2n, we

have two SPE paths with player 1’s choice of waiting or not at the beginning of
the game.
Another important feature (See Figure 2) is that for each n, the lower bound-

aries of G1n and G
2
n are parallel, but they are not parallel to the boundary of the

set of feasible utility pairs. The leaning of the lower boundaries will keep to the

same direction as n increases, and the direction of leaning depends on δ
1
λ1
1 ≶ δ

1
λ2
2 .
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From Figure 2, we can see that the direction of the leaning is in favor of the

player with the larger δ
1
λi
i in terms of the final share in the SPE. The inclusion

relation between G1n and G
2
n also has this effect. It is therefore natural to take

δ
1
λi
i as the measure of ’bargaining power’. It is increasing with respect to both δi
and λi.
The results for the general case are summarized in the following Proposition.

Proposition 2
(i) There is an essentially unique SPE path, the SPE strategies are specified

as above given the location of (x0, y0) or (0, 0);
(ii) Either δ1 or δ2 goes to 1, the number of periods delayed goes to infinity;
(iii) If G1n+1 ⊆ G2n+1, when (0, 0) ∈ G1n+1, the equilibrium share is (1 −

δ
n+1
λ2
2 , δ

n+1
λ2
2 ) with n periods of delay; when (0, 0) ∈ G2n+1\G1n+1, the equilibrium is

(δ
n+1
λ1
1 , 1− δ

n+1
λ1
1 ) with n+ 1 periods of delay. If G2n+1 ⊆ G1n+1 and (0, 0) ∈ G1n+1,

the equilibrium share is (1− δ
n+1
λ2
2 , δ

n+1
λ2
2 ) with n periods of delay.

4 Results under Weaker Assumption

In this section, we explore the possibility of obtaining similar results under weaker
assumption. Under the interpretation of loss aversion, we are interested in the
effects on the SPE path of weakening the assumption from the extremely loss
aversion to some moderate level of loss aversion. For the sake of simplicity, we
work with linear utility function and common discount factor.
Given the state variables (xt, yt), the (current) utility functions from the share

of the pie are:

Player 1: eut(x) = ( x

xt + β(x− xt)
if x ≥ xt,
if x < xt;

Player 2: evt(y) = ( y

yt + β(y − yt)
if y ≥ yt,
if y < yt.

When β = 1, it is the standard setting in Rubinstein(1982); when β goes to
infinity, it goes to the case with strong assumption as we discussed in section
3. We are now interested in the case with 1 < β < ∞. Basically, what we
are doing here is to replace the discontinuity of the utility function under the
strong assumption by a kink. Reducing the sharpness of the kink is equivalent
to weakening the assumption, or reducing the extent of the loss aversion. Our
next Proposition says when β is large enough, we can still have essentially unique
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SPE path with considerable delay, which is similar to the case under the strong
assumption.

Proposition 3
When β ≥ 1

1−δ ,there is an essentially unique SPE path with considerable delay.
The equilibrium share and the number of periods delayed is same to the case under
the strong assumption for the same δ.

Proof. For β ≥ 1
1−δ , we have

β−1
βδ
≥ 1.

Given the current utility functions with loss aversion, impasse is the only SPE
in a subgame (xt, yt)i with

β−1
β
(xt + yt) > 1. For subgame (xt, yt)i with

β−1
β
(xt +

yt) = 1, we have either impasse or the immediate agreement (
β−1
β
xt,

β−1
β
yt), both

have payoff (0, 0).
Consider a possible clinching offer (A(xt)−xt) for player 1 in (xt, yt)1 , where

δ ≤ A(xt) < 1.
If βδ

β−1 < A(xt) < 1 :

A(xt)− xt will be accepted since β−1
β
(xt+1+ yt+1) =

β−1
β

A(xt)
δ
> 1. (Impasse if

rejected)
If δ ≤ A(xt) ≤ βδ

β−1 :
if rejected, player 2 has to offer β−1

β
xt
δ
(zero payoff) in next period, which will

not be rejected by player 1 since there will be impasse in following period. Player
2 then has y∗ = 1− β−1

β
xt
δ
. Choose minimum A(xt) such that y∗ ≤ [A(xt)−xt]

δ
, we

get A(xt) ≥ δ + xt/β.

Now we can specify the clinching offer as following: A(xt)− xt,
where

A(xt) =

(
δ + xt/β

xt

if xt ≤ βδ
β−1

if xt ≥ βδ
β−1 .

In any (xt, yt)1 , once the offer A(xt) − xt is made by player 1, player 2 will
accept immediately. On the other hand, any offer lower will be rejected because
a similar counteroffer by player 2 in next period will not be rejected by player 1,
and the payoff will be better for player 2. Similar clinching offer can be defined
for player 2.
When will a player make the clinching offer?
Given (xt, yt)i :

1− [A(xt)− xt] ≥ δ[A(yt/δ)− yt/δ], for i = 1,
1− [A(yt)− yt] ≥ δ[A(xt/δ)− xt/δ], for i = 2.
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We get the following condition:

xt + yt ≥ β

β − 1(δ
2 + δ − 1).

After this, it will be same to the case under strong assumption. A family of
grids can be defined recursively as following:

Gn =
©
(α,β) ∈ [0, 1]2 : An ≤ α+ β < An−1

ª
,

where
An =

β

β − 1(δ
2n + δ2n−1 − δn−1).

Therefore, we get essentially unique SPE path again.
It is easy to check the equilibrium share and the number of periods delayed

are the same as before.

It is natural to ask the following questions now: (1) Will there be delay on
SPE path when β is small? (2) Will the SPE path converge to Rubinstein’s
result when β goes to 1? We do not have clean results on these questions. Our
conjecture is that at least for not very large β, and for some δ, there is still delay
in the bargaining game parameterized by (β, δ).

5 Discussion

One interesting observation is that the equilibrium play we obtain has a flavor
of forward induction. When a player strongly believes that her opponent is a
Bayesian maximizer, she has a reason to believe that her opponent is looking
forward to a better payoff after observing a rejection, therefore, it is also likely
that she believes that she has to improve the offer in order to reach an agreement.
However, this is not exactly the forward induction as stated in Van Damme
(1989). In his informal definition, if a player chooses between an outside option
and a subgame with a unique and viable equilibrium, which is strictly better
than the outside option, the equilibrium with players’ playing the subgame is
the only self-enforcing one. The SPE in Rubinstein’s model satisfies this forward
induction requirement, and an important reason is that the bargaining game in his
model is isomorphic at every decision node where an offer is made. The reason
that uniqueness is needed is that there maybe a coordination problem in the
subgame. Our bargaining model is a perfect information game, this should not
be a problem. The viability concerns the situation, in which there maybe further
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moves by both players in the subgame after the deviation from the outside option.
In the bargaining game with infinite alternating-offers procedure, if we want to
justify the deviation, i.e., the rejection of the SPE offer in Rubinstein’s model, as
a signal about future play, the viability requirement cannot be satisfied. Another
problem is that there exists an outcome in the subgame, which is indifferent
with the current offer for the player who has to decide to accept or not. To
incorporate the forward induction analysis into bargaining model is not new.
Dekel (1990) discussed the power of forward induction and stability in a two-
period simultaneous bargaining game. We want to understand how the idea of
forward induction could work in an infinite horizon game such as the bargaining
game with alternating-offers procedure.
One closely related issue is about the common belief of rationality in extensive

games. It is well known that we have counterintuitive SPEs in many cases, for
example, the chain-store paradox in Selten (1978) and the centipede game in
Rosenthal (1981). Kreps et al. (1982) obtain considerable cooperations in a
finitely repeated prisoner’s dilemma game by adding a small dose of “Tit-for-
Tat” players. An exogenous lack of common belief of rationality results in a
rational play which is inconsistent with the SPE. Reny (1992) argued that even
there is common belief of rationality at the beginning of the game, it might
still be possible to have a rational play inconsistent with the SPE. The lack of
common belief of rationality may arise endogenously. In a perfect information
game, the concept of SPE depends on the assumption of common knowledge of
rationality, or, common belief of rationality at every information set. Reny (1992)
showed that in the games with paradoxical SPEs, such as the “Take it or leave
it” game, once a player deviates from the SPE path, it is impossible to retain
common belief of rationality. Reny (1993) showed that in most two-player games
with perfect information, it is impossible to have common belief of rationality
everywhere. This challenged the salience of the concept of SPE and the theory
of rationalizability in extensive form games developed by Bernheim (1984) and
Pearce (1984) as well.
We think it is also reasonable to include the bargaining game into this family

of extensive form games with counterintuitive SPEs. The unique SPE in Ru-
binstein’s bargaining game also depends on the common belief of rationality at
every decision node. This point can be made clear by looking at the concept
of iterated conditional dominance and its application on Rubinstein’s bargaining
game introduced in Fudenberg and Tirole (1991). By iterative elimination of
conditional dominated actions, the unique SPE can be obtained in Rubinstein’s
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bargaining game. If we state the belief about rationality explicitly, the logic will
be like this: player 1 believes player 2 is rational, thus she will not make an offer
higher than δ; player 1 believes that player 2 believes player 1 is rational, thus
she will not make an offer lower than δ(1− δ); etc. This logic goes as an infinite
sequence, the unique SPE will be the convergent point, which corresponds to the
argument, player 1 believes player 2 believes player 1...is rational, with infinite
length. Since the common belief of rationality gives the unique prediction of the
play, the SPE path, the deviation from it will be the violation of the common
belief of rationality, it will not hold any more. Once there is no common belief
of rationality, it will be an important issue that how the players update their
belief, belief about belief, etc., then given a specific belief updating rule, it may
be rational to choose a play inconsistent with the SPE at the first place7. It will
be of our interest for further study to formally model the idea included in this
discussion. Our inclination now is that the relation between the Abreu and Gul
(2000) and this possible line of research on bargaining will be parallel to that
between Kreps et al. (1982) and the sequel papers by Reny (1992a, 1992b and
1993).

6 Conclusion

In this paper, we provide an explanation for the delay in real life bargaining as
an alternative of the usual incomplete information approach. Our point of view
is that in many real life bargaining situation, information asymmetry may not
be the main underlying force for the delay, endogenous preferences or strategic
commitment effects should be taken into consideration. Our preference assump-
tion will be taken as incredible threat in classic analysis, and we try to provide
a rationale for such kind of preference to make the incredible threat credible.
We think both delegated bargaining with justification and preference with loss
aversion have some explaining power.
The equilibrium play we obtain has some appealing features, especially, it

has a flavor of forward induction. We also want to explore the possibility of
providing epistemic foundation for such a play without relying on the preference
assumption. This will involve the issues about rationality, belief system, and
belief updating. The pioneering work on these topics focused on finite extensive
form games, while as the bargaining game has two dimensional infinity, infinite

7In Rubinstein’s model, there is no such updating, the common belief of rationality retains
after any history, we take it as an extreme case of the belief updating.
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horizon and infinite actions at each decision node for an offer to be made. This
imposes the great difficulty on analysis. However, it will be important to extend
the analysis to infinite horizon games, for example, the forward induction reason-
ing in Rubinstein’s bargaining game or infinitely repeated games. We leave it for
further investigation.

22



APPENDIX

Proof of Lemma 4

Let θ1 = δ
1
λ1
1 , θ2 = δ

1
λ2
2 .

A1n −A2n
= (θ3n1 θ2n2 − θ3n2 θ2n1 ) + (θ

2n−1
1 δ3n2 − θ2n−12 θ3n1 )− (θ2n−11 θ2n2 − θ2n−12 θ2n1 )

Divide both sides by θ2n−11 θ2n−12 > 0

(A1n −A2n)/θ2n−11 θ2n−12

= (θn+11 θ2 − θn+12 θ1) + (θ1 − θ2)− (θn+11 − θn+12 )

= θ1θ2(θ1 − θ2)
Pn−1

i=0 θi1θ
n−1−i
2 + (θ1 − θ2)− (θ1 − θ2)

Pn
i=0 θ

i
1θ
n−i
2

= (θ1 − θ2)(θ1θ2
Pn−1

i=0 θi1θ
n−1−i
2 + 1−Pn

i=0 θ
i
1θ
n−i
2 )

= (θ1 − θ2)(
Pn−1

i=0 θi+11 θn−i2 −Pn
i=0 θ

i
1θ
n−i
2 )

= (1) = (θ1 − θ2)(
Pn−1

i=0 (θ
i+1
1 θn−i2 − θi1θ

n−i
2 ) + 1− θn1)

= (θ1 − θ2)(
Pn−1

i=0 θi1θ
n−i
2 (θ1 − 1) + (1− θ1)

Pn−1
i=0 θn−1−i1 )

= (θ1 − θ2)(1− θ1)
Pn−1

i=0 (θ
n−1−i
1 − θi1θ

n−i
2 )

or = (2) = (θ1 − θ2)(
Pn−1

i=0 (θ
i+1
2 θn−i1 − θi2θ

n−i
1 ) + 1− θn2)

= (θ1 − θ2)(
Pn−1

i=0 θi2θ
n−i
1 (θ2 − 1) + (1− θ2)

Pn−1
i=0 θn−1−i2 )

= (θ1 − θ2)(1− θ2)
Pn−1

i=0 (θ
n−1−i
2 − θi2θ

n−i
1 )

If θ1 ≥ θ2, (A
1
n −A2n)/θ2n−11 θ2n−12 ≥ 0 by (1);

if θ1 < θ2, (A
1
n −A2n)/θ2n−11 θ2n−12 < 0 by (2).

Thus, A1n > A2n for any n if and only if δ
1
λ1
1 > δ

1
λ2
2 .
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