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Abstract

This paper studies how the arrival of more precise information affects welfare in an economy with
incomplete and differential information. We consider a single period, pure exchange economy with
aggregate uncertainty in which agents show different attitudes towards risk: wealthy individuals are
‘de facto’ less risk averse than poor individuals. The first ones can then partially insure the last
ones, allowing for mutual gains from trade. Agents ignore the actual probability distribution over
the states. Instead, they learn from the market price and private signals, which in fact accounts for
the presence of heterogeneous beliefs. In equilibrium, the dispersion in beliefs introduces an adverse
effect: risk-taking agents are more pessimistic than the rest. This limits the possibilities to share
risks and has a negative impact on welfare. The arrival of more precise information has therefore a
double effect: it weakens the adverse effect on trade (as risk-taking agents become more optimistic,
they offer more insurance) at the same time that it strengthens the Hirshleifer effect (agents are no
longer able to insure against news that have already arrived). The first effect fosters and the second
one discourages risk-sharing trades. The paper discusses in detail a case where the positive effect on
trade offsets the negative effect. This lets us conclude that in an economy with partial information,
agents’ welfare may increase upon the receipt of more precise information. Even though the result
looks intuitive, most of the previous literature has focused on the case with homogeneous beliefs. In
such a framework, only the Hirshleifer effect is at work, and thus better information typically leads
to a decrease in welfare.
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1 Introduction

Thanks to the explosive development of the Internet and the World Wide Web, the last decade has

witnessed a dramatic change in the technology to access information. At the same time, the advances in

the computer technology has made possible to process a significantly larger amount of information than

it was possible a few years ago. The changes are particularly shocking when we look at financial markets.

Nowadays, any individual can get access to specialized reports, series of data or the latest news before

trading. Thus, no one would question that market participants have become much more sophisticated

compared to what they were twenty years ago. The question remains whether these changes have been

accompanied by an increase in welfare. The intuition suggests that more precise information should lead

to better decisions and hence, should be welfare improving. The examples below, however, challenge

this common sense view and illustrate cases where the receipt of more information may be harmful.

Lerman et al. (1996) describe the results of a survey conducted among members of families with

BRCA1-linked hereditary breast-ovarian cancer.1 They find that 57 % of the individuals interviewed

declined to take a free BRCA1 test. One of the reasons listed against being tested was the possibility of

losing health insurance. Quaid and Morris (1993) reports a similar behavior in a sample of individuals

who were offered a free test of Huntington’s disease.

Since 1994 the Federal Reserve announces interest rate changes at pre-scheduled and publicly avail-

able dates. The decisions are made public after the meetings of the Federal Open Market Committee.

The Fed deviated from this scheme in January and April of 2001, when it decided to cut interest rates

well before the next scheduled meeting. Banerjee and Seccia (2002) find evidence of abnormal volumes

of trade in interest rate futures the day before the scheduled meeting, but they find no evidence of excess

trade before the two unscheduled announcements. They conclude that the two unexpected interest rate

cuts might have had a negative impact on welfare, if a fraction of the abnormal trade is motivated by

hedging purposes. In those two opportunities, agents did not have the possibility to insure against inter-

est rate changes. This example illustrates a theoretical result in Sulganik and Zilcha (1996). They argue

that when future markets are available, in which case agents can share risks, the value of information

may not always be positive. A similar conclusion is obtained by Drees and Eckwert (2003). They argue
1The isolation of the BRCA1 gene allows to learn if the individual carries a cancerpredisposing mutation that increases

the probability of developing breast or ovarian cancer.
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that more transparency in the foreign exchange market may reduce welfare when agents can hedge the

currency risk.

The previous papers illustrate a general principle: the arrival of more accurate information may be

harmful if it precludes risk sharing trades, agents cannot insure against events that are not longer uncer-

tain. Drèze (1960) was the first to identify the possibility that information may have a negative value,

but the result is commonly known in the literature as the ‘Hirshleifer effect’. Hirshleifer (1971) formal-

ized Drèze’s argument using a general equilibrium framework. Consider an Edgeworth box economy

with one good, two agents and two states of the world. The state probabilities are common knowledge.

In such a framework, if markets open before the state realization is known, agents trade to a point on

the contract curve. But if markets open after the state of the world has been publicly disclosed, no

trade takes place. In that case, better information leads to a worse consumption allocation.

The present paper analyzes how the receipt of more precise information affects welfare in a pure

exchange economy with incomplete information and one round of trading. The model has two main

features: there is uncertainty about the state that will be realized in the future; and agents are affected

asymmetrically in different states. The latter allows them to share risks and partially insure against the

states where they are unlucky. The structure of the model captures an important feature of financial

markets: agents trade to share risks, but also because they have different expectations about the assets

being traded.

We consider a pure exchange economy where agents can invest in two assets: a risk free bond and a

risky asset, namely a tree. The tree pays either high or low dividends. The ex-ante probabilities of these

events are not known, but each agent receives private signals about the tree. Each signal can be either

good or bad. The probability of receiving a good signal depends on the probability that the tree pays

high dividends. The last feature is what makes the signals informative. Agents also receive a riskless

endowment that may take either a high or low value. The fraction of agents receiving a high riskless

endowment, the rich ones, is also unknown. We assume agents share the same preferences, which can be

represented by a concave utility function with decreasing coefficient of absolute risk aversion. Thus, rich

individuals are ‘de-facto’ less risk averse than poor individuals, so the former tend to insure the latter.

Markets open before the tree pays off. The equilibrium price of the risky asset depends on two variables:

the probability of high dividends (which determines the distribution of signals across agents) and the
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fraction of rich agents. Agents face a nontrivial signal extraction problem: they see a price but cannot

infer its two underlying determinants. Their posterior belief is based on three pieces of information:

the price, the private signals about the tree and the individual realization of the riskless endowment. If

agents could observe the fraction of rich agents before trading, they would be able to use the equilibrium

price to infer the actual probability with which the tree pays high dividends. In our framework, however,

agents are not able to infer that probability because the distribution of endowments is also unknown.

In the extreme case where everyone is fully informed, the model predicts that rich agents insure

poor agents by purchasing risky assets and selling risk free bonds. This prediction may not hold in the

partial information economy considered in the present paper. The reason is the following one. If an

agent receives a low endowment, he infers that the fraction of poor agents in the economy is relatively

high. In other words, agents who are hit with a shock that induces them to sell stocks (i.e. a low

endowment), believe that there are many others in the same situation. So a low endowment serves as a

signal that the excess demand of stocks is low. Conversely, rich agents believe that the excess demand

of stocks is high. This leads to different interpretations of the market price. For a given price, poor

(rich) agents perceive there are more (less) agents who dislike risks, so they infer that the reason why

agents demand stocks is because they offer a ‘high’ (low) expected return. In summary, agents who are

hit with a low endowment tend to be more ‘optimistic’ than agents with high endowments. This effect

dampens the incentives to share risks. As agents become more sophisticated and acquire more precise

information, i.e. more signals, the dispersion of the beliefs shrinks, which tends to offset the previous

negative effect.

We find that more precise information about the underlying source of risk can enhance or reduce the

possibilities to share risks among agents, leading to a increase or decrease in welfare, respectively. The

Hirshleifer effect is still present in our model, but there is another channel through which information

affects the equilibrium allocation: the dispersion of beliefs. The model describes a case where beliefs’

heterogeneity is such that discourages trading. In those cases, better information reduces the dispersion

of beliefs and hence, has a positive welfare effect.

If the asymmetric information assumption were abandoned and agents received common signals,

instead of private signals, the model would belong to the set of economies studied in Schlee (2001). We

would expect therefore to observe a decrease in individual welfare after the arrival of better information.
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The present paper, however, offers a different conclusion, showing that Schlee’s result depends crucially

on the homogeneity of beliefs and do not extend to economies with differential information.

1.1 Related Literature

Several authors have studied more general frameworks to test the validity of Hirshliefer’s result. Marshall

(1974) analyzes the value of public information when individuals can trade before and after the arrival

of information. He concludes that:

If the impact of information is insured before its arrival, that insurance precludes further
trade based on the news. ... In all, the information has no impact on distribution, no impact
on satisfaction, and hence, no value.

In the contrary case when the news must arrive before its impact is insured in a prelim-
inary market, the information is harmful. People can afford to pay something to suppress
the news or to delay its arrival. ... Public information in this situation is harmful; at best
its impact can be counteracted by prior insurance. 2

A similar conclusion is obtained in Ng (1975) and Green (1981). Hakansson et al. (1982) provide

sufficient and necessary conditions for public information to have positive social value. 3 Their results,

though, rely on the fact that agents can trade prior to the arrival of information. If that market is

missing, they cannot rule out the possibility that better information may decrease social welfare. Schlee

(2001) focuses on the last case, where individuals trade after the receipt of information. He concludes

that better information typically reduces every agent’s welfare in any of the following situations: there is

no aggregate risk; some agents are risk neutral; or the economy behaves as if there were a representative

agent.

It must be said that with the exception of Green (1981), the papers described before assume there

is a common signal in the economy. Agents update their beliefs after the signal is announced and then

trade. The common signal assumption simplifies the analysis considerably as agents do not need to learn

from the prices. In effect, the latter do not convey any information that is not contained in the signal.

This simplifies the analysis considerably but, as the present paper shows, it may bias the conclusions.

Besides, the assumption that individuals hold homogeneous beliefs lacks empirical support.
2Marshall (1974), p 380.
3They show that if the initial endowments are an equilibrium allocation without information, then the arrival of

public information leads to a Pareto superior consumption allocation in any of the following cases: the marginal rates of
substitutions are not equalized across agents, or there is sufficient asymmetry in the posterior beliefs.
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The assumption that prices reveal valuable information has been extensively studied in the literature.

The first generation of models developed by Grossman (1976), Grossman and Stiglitz (1980), Hellwig

(1980), Diamond and Verrecchia (1981), Verrecchia (1982), and Admati (1985) prevents prices from

fully revealing the fundamentals of the economy by assuming the existence of liquidity traders. The

latter display a random behavior and distort the information conveyed by the price. Even though these

models have allowed to obtain valuable insights in many areas, the assumption of liquidity traders makes

them unsuitable for welfare analysis. Among the papers that have been able to obtain partially revealing

prices without resorting to noise traders, we should mention Ausubel (1990a). Since the structure of

our model share some similarities with his work, we defer a more detailed discussion until the end of

section 2.

There is another family of models, considered in Bhattacharya and Matthew (1991), Rahi (1996)

and Maŕın and Rahi (2000), that also allow for the existence of partially revealing equilibria without

assuming the presence of noise traders. These models introduce an asymmetry in the information held

by agents, i.e., they assume there is a group that is more informed than the rest. This generates

and adverse selection effect: uninformed agents reduce their participation in the market because of

their informational disadvantage. In that framework, the receipt of more precise information not only

strengthens the Hirshleifer effect but also dampens the adverse selection effect. Thus, more information

does not necessarily lead to a decrease in welfare. Even though the conclusion is similar to the one

described in the present paper, the mechanisms explaining the result are different. The disparities in

the level of information appears as a sensible assumption when we consider trades on assets issued by

private companies, in which case there may be leakages of privileged information. However, it is a

harder assumption to justify when we look at trades on assets linked to aggregate variables, like interest

rates or exchange rates futures. Besides, the modelling strategy followed in the present paper allows for

a straightforward comparison with the existing literature. In fact, our model could be mapped into the

set of economies considered by Schlee (2001) if agents received public signals instead of private signals.

Among the papers that have explicitly analyzed the relationship between welfare and information

in economies with partially revealing equilibria, we find Berk (1997). He analyzes a simple dynamic

game and concludes that it is possible for an equilibrium to exist in which agents choose to purchase

information even if all agents, including the agents who purchased the information, are made strictly
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worse off from an ex ante perspective.

Citanna and Villanacci (2000) study a class of models with partially revealing prices, multiple goods,

asymmetric information and heterogeneous wealth. They find that welfare may increase after the arrival

of more precise information. The reason is that wealth effects due to price changes may outweigh the

Hirshleifer effect. Gottardi and Rahi (2001) also analyze a model with asymmetric information and

reach a similar conclusion. Besides, they are able to disentangle the different channels through which

the arrival of better information affects welfare.4

The present paper also utilizes a model with partially revealing prices and asymmetric information

to assess the value of public information. Unlike Citanna and Villanacci (2000), the beliefs’ updating

scheme is endogenous and is interlinked across agents. Also, their results cannot be extended to the

present paper, since they depend on a countable number of states and more than two goods.

Finally, we should mention that a positive relationship between the precision of public information

and welfare can also be observed once the endowment economy framework is abandoned. In a model

with production, the early arrival of public information has an additional effect: it may allow for

better investment decisions. In order to relativize the negative impact of information, Hirshleifer (1971)

provides an example where the last effect dominates and better information is welfare enhancing. In a

recent paper, Eckwert and Zilcha (2003) study more formally the value of information in an economy

with production. They assume that the production function is subject to a productivity shock that

consists of the sum of two random variables. Agents have partial information about the realization

of one of these variables and trade on that information. The authors show that information about

non-tradable risks has always a positive value.

The paper is organized as follows. Section 2 sets out the model and defines the equilibrium concept

used in the paper. Section 3 describes the criteria for choosing the baseline parametrization. Section 4

presents the results. Finally, we conclude in Section 5.
4The structure of the model considered in their paper allows only for a fully revealing equilibrium. Thus, in order for

the asymmetric information assumption to play any role, they have to use a definition of equilibrium that is less restrictive

than the standard rational expectations equilibrium concept used in the literature.
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2 The model

The paper applies the baseline model presented in Hatchondo et al. (2003) to study how the receipt

of more accurate information affects agents’ welfare. Even though the model has a simple structure,

it does not allow for a tractable analytical solution, so we must rely thus on numerical techniques to

characterize the equilibrium.

We consider a pure exchange economy with asymmetric information and heterogeneous agents.

There is a single risky asset in the economy: a tree. The tree pays high dividends with probability ν

and low dividends with probability 1− ν. The tree pays only once and then dies. There is a measure 1

of agents in the economy and everybody is initially entitled with a share of the tree. Agents also receive

a riskless endowment, though some of them are luckier than others, i.e., a fraction φ of the population

receives a high endowment, while a fraction 1− φ receives a low endowment.

The parameters ν and φ are drawn from a joint probability distribution F (ν, φ). The latter is

common knowledge. The random variable ν takes values on the unit interval I ≡ [0, 1]. The random

variable φ is discrete and takes values on Φ = {φl, φh}.
Agents are not able to observe the realizations of those variables but receive informative signals

about the tree. Each signal can be either good or bad. Every agent receives n number of signals. The

realizations of the signals are drawn from a Binomial distribution with parameter ν. As the number of

signals increases, the information agents receive becomes more accurate. The case where ν is common

knowledge corresponds to an infinite number of signals.

The assumption described in the previous paragraph deserves two comments. First, we acknowledge

that there exist other mechanisms that can be used to model the transmission of information instead of

the binary signals structure. We choose the latter for the sake of simplicity. Second, the paper is silent

about how the number of signals is determined. In order to circumvent this limitation, the model could

be interpreted as a case where agents decide the number of signals they purchase. 5 The process of

acquisition of information is not the main focus of this paper, so it is not modelled explicitly.

All the action takes place in a single period. Markets open in the morning, the tree pays off in the

afternoon and agents consume at the end of the day. In the absence of trade, agents consume their
5See Verrecchia (1982) for a case where agents decide the precision of the information acquired.
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endowments and dividends paid by the tree. Actually, this would be the equilibrium allocation if there

was no heterogeneity across agents. This is not the case in the present framework, though. Poor agents

have a stronger preference for consumption smoothing than wealthy individuals, so there are gains from

trade. 6

Agents can transfer resources freely across the two states of nature that can be realized, i.e., whether

the tree pays high or low dividends. This means that consumers can trade in two Arrow-Debreu

securities. One of them pays 1 unit of the consumption good if the high dividends state is realized.

Otherwise, it pays zero. The other security only pays (1 unit) in the low dividends state. There is only

one price to be determined: the relative price between these two securities.

The previous market structure would be enough to attain an efficient allocation in an economy with

full information. This is no longer true in the present example. As will become clear in the next section,

an extra asset (and hence another market) would be necessary to attain an efficient allocation with the

information structure assumed before. The present paper studies the case where that is not possible:

markets are incomplete.

The equilibrium price depends on ν and φ. A higher value of ν means that the high dividend state

is more likely, which makes the contingent claim paying in that state more valuable. A higher φ implies

that a lower fraction of agents needs insurance, which reduces the demand for contingent claims paying

in the low state.

The critical assumption made in the paper is that agents are fully rational and use the information

pooled by the equilibrium price when they update their beliefs. Agents not only learn from their

private signals, but also understand how the price is determined in equilibrium. This allows them to

make inferences about the realizations of ν and φ once they have observed the market price. In addition,

the endowment realization also conveys valuable information, as will be described below. Finally, the

paper assumes agents do not behave strategically. They take the price and everyone else’s behavior as

given. This is justified on the ground that there is a ‘large’ number of agents, so each individual does

not exert any influence on aggregate variables.
6This result is true if the utility function is concave and shows a decreasing coefficient of absolute risk aversion. The

latter is defined as −u′′(c)
u′(c) . The utility function assumed in the present paper (logarithmic) satisfies both properties.
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2.1 Definition of equilibrium

Agents maximize expected utility of consumption. They do not know the actual state probabilities,

so they use the information contained in the private signals, the endowment and the market price to

refine their belief about ν. We assume the belief consists of the expectation of ν conditional on the

price and the agents’ private information. Formally, let Ii denote the private information set of agent

i, specifically, the signals and endowment received. His belief about ν is denoted by ν̃i, where

ν̃i
(I, p,P i (·)) = E

[
ν | Ii, p,P i (·)] .

P i denotes the price function perceived by agent i. It is used to extract information from the

observed price. For the agent to be able to unveil the information conveyed by the price, he must guess

on the equilibrium relationship between the price, ν and φ. The next subsection describes in more detail

how agents compute their beliefs in the class of economies we analyze.

A type i consumer solves the following optimization problem:

Max
ch,cl

{
ν̃i

(I, p,P i (·)) u (ch) +
(
1− ν̃i

(I, p,P i (·)))u (cl)
}

(1)

subject to (1− p)cl + pch = W = ai + (1− p)dl + pdh

cl, ch ≥ 0

where: u(c) denotes the utility function; cj denotes planned consumption in state j; ai denotes the

riskless endowment of a type i agent; dj denote the dividends paid by the tree in state j; and W denotes

individual wealth. The sum of the prices of the Arrow-Debreu securities is normalized to 1.

If each agent receives n signals, there are 2(n + 1) different types: an agent can receive either a

high or low riskless endowment combined with n+1 different signals realizations. For simplicity, the

paper assumes that the distribution of signals in the population is independent from the distribution

of riskless endowments. Denote by µi (ν, φ, n) the measure of agents i in the population. For instance,

the model implies there is a fraction (1− φ)
(
n
j

)
νj (1− ν)(n−j) of agents with a low riskless endowment

and j good signals.

Let Yi (φ) denote the overall aggregate resources in state i, ci
j

(
p,P i (·)) denote the optimal con-

sumption of agent i in state j, and Zi

(
p, µ,P1, . . . ,P2(n+1)

)
denote the aggregate demand in state i.
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The latter is computed as follows:

Zj

(
p, µ,P1 (·) , . . . ,P2(n+1) (·)

)
=

2(n+1)∑

i=1

ci
j

(
p,P i (·))µi (ν, φ, n) .

We are now ready to define a competitive equilibrium for this class of economies.

Definition 1 A rational expectations equilibrium (REE) consists of a measurable price function p :

I× Φ → [0, 1] and individual demands
{
ci
l (·) , ci

h (·)}i=2(n+1)

i=1
such that:

(1)
{
ci
l (p (ν, φ) p (·)) , ci

h (p (ν, φ) p (·))} solve consumer i’s problem ∀ i = 1, . . . , 2(n + 1) and

∀ ν ∈ I, φ ∈ Φ.

(2) Markets Clear: Zj (p (ν, φ) , µ (ν, φ) , p (·) , . . . , p (·)) = Yj ∀ j = l, h and ν ∈ I, φ ∈ Φ.

Radner (1979) provides a more general definition of the equilibrium concept defined above. 7 An

important assumption implicit in Definition 1 is that the individuals’ perceived price function coincide

with the actual equilibrium function. Agents, fully understand how prices are determined and take that

into account to update their beliefs. Notice that in general, finding a solution of the previous problem

requires solving for a fixed point functional equation: the price function perceived by the agents must

coincide with the price function generated by their behavior.

In what follows we consider a simplified version of the framework described above. That reduces

the generality of the results but allows us to characterize the equilibrium in some cases. Even though

the conclusions depend on the specific assumptions we make, the economies analyzed do not belong

to a negligible set, i.e. the results are robust to any perturbation of the primitives: utility function;

dividends and endowment process; and joint distribution of ν and φ.

2.2 Finding the equilibrium: a particular case

We choose a logarithmic utility function because it has the advantage that individual demands are linear

in wealth. The optimal consumption rules are specified in equation (2). It is assumed for simplicity that
7Dubey et al. (1987) criticize the REE approach because it assumes implicitly that prices pool individuals’ private

information before they trade. Nonetheless, the approach has been extensively used in the literature, showing that, despite
its limitations, it constitutes a useful tool to analyze problems with asymmetric information
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the random variables ν and φ are independent. ν is drawn from a uniform distribution with support

[0, 1], while φ takes a high value φh with probability π and a low value φl with probability 1− π.

ci
h (p, p (·)) = ν̃i (p, p (·)) W i

p
ci
l (p, p (·)) =

(
1− ν̃i (p, p (·))) W i

1− p
(2)

In order to help to understand how the model works, we assume for the moment that each agent

receives only one signal. This implies that there are four different types of agents in the model. They

are listed below with their corresponding measure.

• νφ agents with high endowment and a good signal (denoted by 1̄),

• (1− ν)φ agents with high endowment and a bad signal (denoted by 0̄),

• ν (1− φ) agents with low endowment and a good signal (denoted by 1
¯
),

• (1− ν) (1− φ) agents with low endowment and a bad signal (denoted by 0
¯
).

In equilibrium, aggregate planned consumption for the high state must equal aggregate resources in

that state. If that equality holds, by Walras’ law, the other market is also in equilibrium. The market

clearing condition is formally stated in equation (3).

φ
[
νc1̄

h + (1− ν) c0̄
h

]
+ (1− φ)

[
νc1

h̄ + (1− ν) c0
h̄

]
= φā + (1− φ) a

¯
+ dl, (3)

where ā denotes the high value of the riskless endowment and a
¯

its low value.

The equilibrium price is obtained after replacing individual demands into the market clearing con-

dition.

p (ν, φ) =
φ (ā + dl)

[
νν̃ 1̄ + (1− ν)ν̃ 0̄

]
+ (1− φ) (a

¯
+ dl)

[
νν̃1

¯ + (1− ν)ν̃0
¯

]

φā + (1− φ) a
¯

+ dh +
{
φ

[
νν̃ 1̄ + (1− ν)ν̃ 0̄

]
+ (1− φ) [νν̃1

¯ + (1− ν) ν̃0
¯]

}
(dl − dh)

(4)

It is easy to show that this model does not possess a fully revealing equilibrium. The reasoning is

as follows. The agents’ private signals and endowments do not convey enough information to reveal the

realization of (ν, φ). Thus, the only way in which agents can infer the values of those variables is if in

equilibrium there is a one to one mapping between (ν, φ) and the equilibrium price. In other words, for
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prices to be fully revealing, there must be only one possible realization of ν consistent with a given price

and value of φ. The equilibrium relationship between ν and the last two variables in the fully revealing

case is described in equation (5). 8

ν (p, φ) =
p [φā + (1− φ) a

¯
+ dh]

φā + (1− φ) a
¯

+ (1− p) dl + pdh
(5)

It is apparent that there is more than one combination of ν and φ consistent with a given price. This

contradicts the hypothesis that prices are fully revealing. Furthermore, it suggests that the equilibrium

is pairwise revealing: the market price reveals that the probability of high dividends could have taken

one of two possible values. Thus, individual beliefs consist on a weighted some of those values. The

weights are determined by the signal and endowment received.

In order to understand how the price depends on ν and φ, it is helpful to consider again the case

where both variables are common knowledge. In that case, the equilibrium price function is given by

pFR (ν, φ) =
ν [φā + (1− φ) a

¯
+ dl]

φā + (1− φ) a
¯

+ dh − ν (dh − dl)
. (6)

The relative price trivially increases with ν. As the high state becomes more likely, agents demand

more contingent claims paying in that state. It can easily be shown that the equilibrium price also

increases with φ. We have already mentioned that ‘poor’ agents (with a low riskless endowment) are

de-facto more risk averse than ‘rich’ agents, so the former ones buy insurance from the latter, i.e. agents

with a low endowment transfer consumption from the high dividend state to the low dividend state. 9

As the fraction of rich individuals (φ) increases, there are less agents demanding contingent claims that

pay in the low state, so their relative price decreases, i.e., p increases.
8Equation 5 is obtain after replacing individual beliefs ν̃i in equation (4) by the actual realization of ν.
9Let θh denote the net demand of contingent claims that pay only if the high state is realized. The agent is endowed

with a + dh of this asset. It can be shown that

∂θh

∂a
> 0 ⇐⇒ −u′′ (ch)

u′ (ch)
<
−u′′ (cl)

u′ (cl)

where
ci = a + di + θi i = l.h

From the individual first order conditions and the aggregate resource constraint, it transpires that ch > cl for every
agent. Thus, a sufficient condition for the previous inequality to hold is that the coefficient of absolute risk aversion
decreases with consumption. The utility function assumed in the present paper satisfies this property.
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Presumably, the equilibrium price in the economy with asymmetric information is also increasing in

both arguments. We found this to be true in all the simulations performed.

2.2.1 Beliefs’ updating scheme

The equilibrium price specified in equation (4) takes the values of the beliefs as given. But, as it was

explained before, the latter are a function of the market price and the price function itself. This section

explains in more detail how agents compute their beliefs.

Figure 1 shows how agents extract the information pooled by the market price. Every agent is

assumed to know the price function. So when they observe a particular price, say p0 in the picture,

they infer that only two values of ν could have been realized: ν (p0, φl) or ν (p0, φh). The first one

corresponds to the value of ν consistent with a price p0 and a low fraction of highly endowed agents.

The second one corresponds to the value of ν consistent with a low fraction of highly endowed agents.

Since agents ignore the actual distribution of riskless endowments, they cannot distinguish which of the

previous values corresponds to the actual realization of ν. But agents not only learn from the market

price. Their private signals and endowments reveal information. An agent with a high endowment

believes that it is more likely that the fraction of rich agents is φh rather than φl, so he assigns more

weight to ν (p0, φh). An agent with a good signal believes that it is more likely that the highest ν was

realized.

We now formalize the previous argument taking the case of an agent who has received a high riskless

endowment and a good signal. The beliefs’ updating schemes of the remaining agents follow the same

logic.

The paper assumes that each agent’s belief regarding the probability that the tree pays high dividends

consists of the expectation of ν conditional on his private information and the market price, namely

ν̃ 1̄ (p) = E [Pr (tree pays dh) | signal = 1, endowment = ā, price = p]

= ν (p, φh) Pr (ν (p, φh) | 1, ā, p) + ν (p, φl) Pr (ν (p, φl) | 1, ā, p) .

The second equality takes into account that once the agent has conditioned on the price, the prob-

ability ν has a dichotomous distribution. Now, let us apply the law of conditional probabilities to the
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Figure 1: Information revealed by the price function

last expression, and then use the implication that once we condition on the fact that Nature has picked

a particular value of φ, the following events are mutually independent: the tree pays high dividends;

the agent receives a good signal; and the agent receives a high riskless endowment. The result is the

following equation:

ν̃ 1̄ (p) =





ν (p, φh) Pr (1 | p, φh) Pr (ā | p, φh) Pr (p | φh) Pr (φh)+

ν (p, φl) Pr (1 | p, φl) Pr (ā | p, φl) Pr (p | φl) Pr (φl)









Pr (1 | p, φh) Pr (ā | p, φh) Pr (p | φh) Pr (φh)+

Pr (1 | p, φl) Pr (ā | p, φl) Pr (p | φl) Pr (φl)





Finally, equation (7) is obtained after replacing the probabilities in the last expression by their actual

values. Recall that the probabilities of receiving a good signal and a high riskless endowment coincide

with the actual realizations of ν and φ, respectively.

ν̃ 1̄ (p) =
ν (p, φh) ν (p, φh) φhg (p | φh) π + ν (p, φl) ν (p, φl) φlg (p | φl) (1− π)

ν (p, φh) φhg (p | φh) π + ν (p, φl) φlg (p | φl) (1− π)
(7)
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The function g (p | φi) denotes the density of the price conditional on φi, where

g (p | φ) = f (ν (p, φi))
∂ν (p, φi)

∂p
= f (νi (p)) ν ′i (p)

The last equality just simplifies the notation. The subindex i denotes the fraction of rich agents in

the economy, i.e. φi, and f (·) denotes the density function of ν. 10 The intuition for the formula of the

conditional density is that a price p is likely to be observed when the value of ν consistent with that price

is likely to be drawn, i.e. f (ν) is high, or when the price function pi (.) is not sensitive to ν at νi (p). An

heuristic description of the last argument is provided in the picture below. Consider an hypothetical

case when it is known that the price lay on the range [p0, p1]. Its actual value, however, is not observed.

In that case, agents infer that ν belong to [νh (p0) , νh (p1)] if the fraction of rich agents is φh, and to

[νl (p0) , νl (p1)] if the fraction is φl. In the case where ν is drawn from a uniform distribution, the

probability of observing a price in [p0, p1] consists of the length of the interval [νi (p0) , νi (p1)], which is

clearly higher for price function p (·, φl). In the limit, as the length of the price range collapses to a single

point, the likelihood of observing a particular price becomes inversely proportional to the derivative of

the price function at that point, or directly proportional to ν ′i (q) .

The beliefs of the remaining types are described in (8)− (10).

ν̃ 0̄ (p) =
πf (νh) ν ′hφh (1− νh) νh + (1− π) f (νl) ν ′lφl (1− νl) νl

πf (νh) ν ′hφh (1− νh) + (1− π) f (νl) ν ′lφl (1− νl)
(8)

ν̃1
¯ (p) =

πf (νh) ν ′h (1− φh) ν2
h + (1− π) f (νl) ν ′l (1− φl) ν2

l

πf (νh) ν ′h (1− φh) νh + (1− π) f (νl) ν ′l (1− φl) νl
(9)

ν̃0
¯ (p) =

πf (νh) ν ′h (1− φh) (1− νh) νh + (1− π) f (νl) ν ′l (1− φl) (1− νl) νl

πf (νh) ν ′h (1− φh) (1− νh) + (1− π) f (νl) ν ′l (1− φl) (1− νl)
(10)

Notice that the equilibrium price affects the beliefs in two ways. First, for a given market price

p, agents use the equilibrium price function to retrieve the possible realizations of ν: νh (p) and νl (p).

Second, they use the derivative of the price function (ν ′h (p) and ν ′l (p) ) in order to assess how likely are

those points.
10The paper assumes a uniform distribution over the interval [0, 1], so the density is just the constant 1. However, it

will assist the intuition to consider for the moment the more general case.
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The structure of the model is similar to Ausubel (1990a) and Ausubel (1990b). He also analyzed

an economy with partially revealing prices and where the state of the economy is characterized by

two variables: one continuous and the other dichotomous. In our framework, the first one would be

represented by ν and the second one by φ. The difference is that he considered the case where a fraction

of the population is fully informed while the rest is uninformed and must learn from the equilibrium

price. This structure allowed him to prove existence and uniqueness of equilibrium. In Ausubel (1990a)

he is also able to obtain a closed-form solution for the equilibrium price using specific assumptions about

the utility function and the distribution of the continuous variable. Unfortunately, his results do not

extend to the present framework. Our model does not allow for a tractable analytical solution. But

an approximate solution can be found using numerical techniques. The appendix provides a detailed

description of the procedure followed to find the equilibrium.

3 Parametrization

The model presented before builds on many restrictive assumptions. This allows us to find a (numerical)

solution but has the disadvantage that the resulting model is highly stylized and has a limited ability
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to replicate real data. Thus, the parameters that characterize the dividends and endowment’s processes

are not chosen following a standard calibration exercise, i.e. they are not based on actual data. There

are other reasons that motivate the previous choice. The fact of considering a risky asset that lives for

only one period does not allow to mimic the returns of any aggregate stock index. 11 Besides, in order

to calibrate the process of the riskless endowment it would be necessary to consider not only the labor

income of stockholders, but also other sources of income, like the returns to private businesses, which

are not easy to obtain.

The strategy, therefore, is to choose a baseline parametrization that helps to illustrate the effect

the paper tries to emphasize. To that end, the worst realization of the riskless endowment is allowed

to take a relatively low value in order to magnify the different attitudes toward risk of rich and poor

agents. This increases the sensitivity of the equilibrium to changes in the distribution of endowments

(controlled by φ). Similarly, if the dividend dispersion was low, equilibrium state prices would lay

close to the corresponding state probability, regardless of the realization of φ. In that case, agents’

beliefs would tend to coincide with the actual realization of ν, and the economy would behave almost

as if everyone were fully informed. A disperse dividend realization is necessary to avoid that result.

In summary, we restrict attention to the case where the lower realizations of the riskless endowment

and dividend take small values compared to their higher counterpart. Both are necessary to generate

significant belief’s heterogeneity in the model. The parameters chosen are specified in the table below.

dh = 1 dl = 0.1

ā = 1 a
¯

= 0.5

φh = 0.8 φl = 0.2

π = 0.5 ν ∼ U (0, 1)

11If the risk free bond is taken as numeraire, the expected return of the tree for a given realization of ν and φ in an
economy with full information is

R (ν, φ) =
νdhp

dl (1− p) + dhp
+

(1− ν) dl (1− p)

dl (1− p) + dhp
, where p = p (ν, φ) .

The gross return is below 1 for almost all realizations of ν and φ. This implies that the model cannot generate positive
net rates of returns of the risky asset, as it is observed in the data.
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4 Results

Figure 2 compares the equilibrium prices between an economy with full information and an economy with

asymmetric information (agents receive one signal). The graph shows that the monotonicity property

of the price function is preserved in the asymmetric information framework. It also illustrates that

when the economy is hit with a good endowment shock (φ = φh), the relative price of the high dividend

state is higher in the asymmetric information case compared to the full information case. The result

is reversed when the economy is hit with a bad shock. The explanation rests on the beliefs’ updating

scheme. Consider again Figure 1 on page 14. Interpret the picture as the price scheme of the case

where all the population but a single agent is fully informed. The unlucky agent has to infer ν from the

price observed in the market and his private information. If the values ν (p0, φl) and φl are realized, the

agent’s belief lays below the actual realization of ν. The equilibrium price is not affected because that

single agent has measure zero and so his behavior does not influence aggregate variables. However, if the

fraction of agents who are imperfectly informed increases, the average belief in the economy decreases

and the equilibrium price falls, as can be deduced from equation (4). Eventually, if no agent is fully

informed, the average believe is below the actual realization of ν. This implies that the equilibrium

price is below its level in the full information economy, as Figure 2 shows. The previous argument holds

for any realization of ν. A similar logic can be used to explain why the equilibrium price is higher in

an economy with asymmetric information and a high realization of φ.

Figures 3-4 graph the beliefs as a function of the price. It shows that the value of the riskless

endowment conveys more information than the signal about the tree. Agents with low endowments are

more optimistic than the rest, independently of the signal received. An agent hit with a low riskless

endowment assigns more weight to the possibility that φ = φl than a rich individual. This means that

receiving a low endowment can be taken as a signal that the actual ν is closer to νl (p) than νh (p). The

first value is higher than the second one, explaining why poor agents tend to be more optimistic.

The heterogeneity in beliefs along with the difference in the endowments induce agents to trade. In

Section 2 we stated that in an economy with full information, rich agents sell contingent claims that

pay in the low state. This may not be true in the present case. Poor agents are more optimistic than

wealthy individuals, so the first ones may have now an incentive to transfer resources to the high state.
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4.1 Definitions of welfare

The objective of the paper is to assess, in a framework with asymmetric information, whether the

receipt of more accurate public information increases or reduces individual welfare. But as Holmstrom

and Myerson (1983) point out, the heterogeneity in private information raises a question that is not

present in an economy with complete information: what is the appropriate measure of welfare? For

instance, expected utility can be computed as a function of each agent’s private information or it can

be computed prior to the receipt of any private information. Holmstrom and Myerson denote the

first concept as interim utility and the second one as ex ante utility. The paper employs the last two

measures of welfare to present the results. Ex ante utility in the case where agents receive n signals is

computed as follows:

E (u) =
2∑

i=1

n∑

j=0

Pr (φi)
∫ 1

0

(
n

j

)
νj (1− ν)(n−j)

[
φiU

j̄ (ν, φi) + (1− φi) Uj
¯ (ν, φi)

]
dν, (11)

where Uj̄ (ν, φ) denotes the expected utility of an agent with j good signals and high riskless en-

dowment, conditional on the information possessed at the node (ν, φ). Similarly, Uj
¯ (ν, φ) denotes the

conditional expected utility of an agent with low risk riskless endowment and j good signals. The

conditional expected utility of an agent of type i is computed as follows:

Ui (ν, φ) = E
[
u | Ii, p (ν, φ)

]
= νu

(
ci
h (ν, φ)

)
+ (1− ν) u

(
ci
l (ν, φ)

)
. (12)

The decision rules that govern consumption in both states are the same as in equation (2) on page

11. Notice that even though agents are not able to observe ν, the actual state probabilities are used to

compute the expected utility of each type. It is easy to check that if those probabilities were replaced

by agents’ beliefs, the formula would yield the same level of ex ante utility. The formulation in equation

(12) is chosen because it stresses that more precise information affects ex ante welfare only through its

influence on the consumption allocation rules.

The model considered in this paper assumes there is no ex ante heterogeneity. Agents differ only

after they have received endowments and signals. Thus, ex ante utility consists of a scalar variable. Even

thought the previous measure is informative and allows us to evaluate aggregate welfare, it limits the

ability to compare our results with the previous literature (that assumes exogenous heterogeneity). For
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that reason, we also provide a measure of interim welfare. The latter is computed after each individual

has received his riskless endowment but prior to observing any signal or the market price, namely

E (u | a) =
2∑

i=1

Pr (φi | a) E [u | a, φi] , where (13)

E [u | ā, φi] =
n∑

i=0

∫ 1

0

(
n

i

)
νi (1− ν)(n−i) Uī (ν, φi) dν,

E [u | a
¯

, φi] =
n∑

i=0

∫ 1

0

(
n

i

)
νi (1− ν)(n−i) Ui

¯ (ν, φi) dν.

Pr (φi | a) is computed using Bayes’ rule.

The formula above assumes that agents update the probability distribution of φ before computing

their expected utility. The reason is twofold. First, it is consistent with the rest of the paper, i.e.

agents are fully rational and use all the available information when they evaluate their expected utility.

Second, and also related to the previous reason, it is consistent with the ex ante utility measure. If

the unconditional probability distribution of φ had been used in equation (13), it would not have been

possible to relate both welfare measures.

For the sake of simplicity, the previous welfare measures were computed under the assumption that

agents receive only one signal. They can easily be generalized to the multiple signal case.

4.2 Welfare and the precision of information

Appendix B considers a simpler version of the model, where agents learn only from public signals. It

shows that as the number signals increases, information becomes more precise in Blackwell’s sense (see

Blackwell (1953)). The information structure assumed in this paper is different, though. Instead of

learning from a public signal, agents learn from the market price and private information. This leads to

a richer model but has the disadvantage that it is no longer possible to apply the standard definition of

better information used in the literature. The result in Appendix B may support the conjecture that the

precision of the information increases with the number of signals. In order to compare two information

structures, then, we provide a measure of how ‘far’ are the beliefs with respect to the actual realizations

of ν. As it is described at the end of the section, that measure confirms the presumption that receiving
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more signals implies more accurate information.

We are now ready to present the main result of the paper. Figure5 and Figure 6 show that welfare

may be nonmonotonic in the precision of information. The relationship between welfare and the number

of signals is described by a reverse J curve. This is independent of individual endowments, implying

that ex ante welfare follows the same pattern.

The values at the boundaries of the graphs correspond to the null and complete information cases.

It is not surprising that expected utility under full information is lower than under no information. The

reason is the following. Uncertainty about ν and φ introduces an extra source of risk in the economy.

Some agents would like to insure against ‘bad’ realizations of those variables, while others could gain

from selling insurance. We consider economies where that market is missing. Agents trade only after

observing their private information and market price. Given the previous restriction, the best allocation

is attained when agents trade knowing their riskless endowment but with no information about ν. 12

In that economy, even if there was another trading round after the value of ν has been disclosed, there

would be no further net trade. 13 Prices would adjust in order to accommodate to the new ‘belief’,

but the consumption allocation would remain invariant. This result was first pointed out in Marshall

(1974). On the other hand, if markets open after the value of ν has become common knowledge, there

are less opportunities to share risks. For instance, if ν takes an extreme value (zero or one), one of

the Arrow-Debreu securities is valueless and no trade takes place. The example illustrates a general

principle: the better the information agents possess, the lower the possibility to insure against ‘bad

news’. This is known as the Hirshleifer effect.

Blackwell (1953) was the first to formalize the intuitive result that more information is welfare

enhancing. In his framework, agents receive an informative signal about the state and then choose

an action a out of a set A. He shows that, as the signal transmits more accurate information, agents

enjoy a higher degree of freedom when decide the optimal action. In the event that the signal is fully

informative, agents can condition their decision on the actual state. Blackwell’s result, though, relies on

the fact that the set A does not change with the precision of information. Hirshleifer (1971) shows that

this assumption cannot be maintained in a general equilibrium model. In a competitive environment,
12The paper restricts attention to economies where agents cannot insure against endowment shocks.
13The endowment allocation prior to the second trading round consists of the equilibrium allocation obtained in the first

trading round.
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the arrival of more precise information about the state of the economy affects the equilibrium prices

and through that, it modifies each individual’s budget constraint. In fact, as it is stated in the previous

paragraph, better information limits the opportunities to share risks, which in turn offsets Blackwell

effect.

Several authors have studied the implications of Hirshleifer effect in more general environments.

More recently, Schlee (2001) provides quite general conditions under which the receipt of better infor-

mation leads to a Pareto inferior allocation, meaning that no agent is better off, and at least some agent

is worse off (as long as the arrival of more precise information modifies the consumption allocation).

Unlike previous papers, Schlee’s conclusion does not depend on any specific assumption about agents’

initial level of information: his result holds for any informational improvement, and not only when

agents receive partial information starting from no information.

Figures 5 and 6 point out that there exist endowment economies with competitive markets in which

individual welfare may increase with the precision of information. The graphs show that both types

of agents enjoy higher expected utility under full information compared to the situation when they

receive one signal. The Hirshleifer effect is still present in our model, but the asymmetric information

assumption introduces an extra adverse effect on trade that is not observed in Schlee’s paper.

The dispersion of beliefs is such that decreases agents’ needs to participate in the market. In an

equilibrium with homogeneous beliefs, individuals with a high riskless endowment provide insurance

to poor agents by selling risk free bonds and purchasing shares of the tree. In the economy we study,

however, there is disagreement in the beliefs about ν. Rich agents are more pessimistic than poor agents.

This feature is summarized in Figure 8. The picture shows that for any realization of ν, poor agents’

average beliefs are above the actual ν, while rich agents’ average beliefs are below ν. This induces a

contraction in the demand and supply of insurance compared to the full information setting. Thus,

an economy with partial information displays a lower magnitude of trade than the economy where ν is

common knowledge. The latter accounts for the difference in welfare between those two cases.

More generally, Figures 5 and 6 summarize the interaction between two effects. At the corners

we observe the pure Hirshleifer effect, while at the ‘interior’ points the negative effect caused by the

heterogeneity in beliefs plays a role. Both forces limit the opportunities to share risks. That explains why

the arrival of better information always reduces welfare if agents have initially no information. However,
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the consequences of receiving better information starting from a situation of partial information are

ambiguous. The receipt of more signals strengthens the Hirshleifer effect at the same time that it

weakens the heterogeneous beliefs effect (agents’ beliefs tend to concentrate). If the latter outweighs

the former effect, we should observe a welfare increase following the arrival of more precise information.

This is the situation described in the graph.

If the argument described in the previous paragraph is correct, we should expect welfare and trading

volumes to be strongly correlated with each other. Figure 7 confirms this feature. The average volume

of trade displays the same reverse J curve as welfare.

We cannot use Blackwell’s criterion to compare the degree of precision between different information

structures, so we are not able to assess a priori whether receiving more signals implies better information

or not. As it may be expected, though, there is a positive ex post relationship between the number of

signals received and the accuracy of the beliefs. This is confirmed by Figure 8, which shows that the

distance between individual beliefs and the actual realizations of ν shrinks as the number of signals

increases. In addition, this result seems to hold for every possible value of ν and φ. Figure 9 uses a

simple measure to quantify the precision of the beliefs. 14 The picture also supports the conjecture

that more signals imply better information.

4.3 Incentives to acquire information

We have shown how the receipt of informative signals can hurt everyone in the economy. But this result

relies on the assumption that agents actually use all the available information to compute their beliefs.

The assumption should not be maintained if each individual finds that it is in his own interest to ignore

all or part of the information received. We presume this is not the case in our model. Recall that no

agent can exert any influence on the aggregate. This implies that, from the point of view of a single

agent, the arrival of better information has a pure Blackwell effect, so it should be welfare enhancing.

The chart below illustrates the private incentives to use information in a particular case. It describes
14The graph summarizes the average distance between individual beliefs and realizations of ν using the following measure:
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the expected utility of an individual who lives in our benchmark economy: the set of agents who use

all the information available to update their beliefs has full measure. Besides, agents receive only one

signal. It’s clear that every other choice, but to use the information contained in the price, the signal

and the endowment realization, leads to a worse decision rule.

Individual Welfare when different

pieces of information are used 15

Rich Poor

Price, signals and endowment 100.0000 100.0000

Price and endowment only 99.9966 99.9966

Price and signals only 99.8008 99.8008

Price only 99.7932 99.7931

Signal only 87.5619 87.5619

No information 82.7408 82.7408

Similarly, consider an economy where no one uses any information. In that case, agents’ beliefs

are homogeneous and coincide with the unconditional expectation of ν. But if an individual decides

to incorporate the information revealed by the signal to update his belief, he will enjoy an increase in

welfare (expressed in terms of consumption) of 5.98% or 6.11% depending on whether he has received

a high or low riskless endowment, respectively.

Even though the complexity of the model does not allow us to prove the conjecture that every

individual has a private incentive to use all the available information, we could show that this is true

for the baseline parametrization. The result has an additional implication. If agents were required to

pay for the signals and that cost were sufficiently low, then every individual would effectively acquire

a signal. 16 But that would lead to an overacquisition of information due to the Hirshleifer and

heterogeneous beliefs effects. A similar result is reported in Berk (1997) using a model with strategic

behavior.
15Welfare is expressed in terms of certainty equivalent consumption. The latter is normalized to 100 in the case where

the individual uses all the information available.
16For simplicity, we assume at the moment that agents can only purchase one signal.
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5 Concluding remarks

Hirshleifer was the first to point out that in a general equilibrium framework, better information may

leave some agents worse off. Although he considered a simple example, his conclusion has proven to be

robust to several generalizations. In a recent paper, Schlee analyzed a general class of economies and

concluded that better information reduces the expected utility of every agent.

The present work stresses that those results depend crucially on the existence of homogeneous

beliefs. We consider an economy with endogenous heterogeneity, asymmetric information and partially

revealing prices. The paper identifies two effects through which information affects the equilibrium

allocation: the well known Hirshleifer effect; and an adverse effect induced by the heterogeneity in

beliefs. From an ex ante perspective, both effects limit the possibilities to share risks and therefore,

have a negative impact on welfare. In this setup, the arrival of more precise information strengthens

the Hirshleifer effect at the same time that it weakens the heterogenous beliefs effect. It is not possible

to establish a priori which effect dominates, raising the possibility that welfare might be nonmonotonic

in the precision of information. The paper focuses on the last case. It analyzes an example where

the impact of better information on welfare depends on the initial level of information: more precise

information increases welfare in an economy with partial information; but it decreases welfare in an

economy with no information.

To the best of our knowledge, the mechanism explaining the result has not been explored in the

literature. The closest antecedent of this work is Citanna and Villanacci (2000). They also consider an

economy with asymmetric information and partially revealing prices. Like this paper, they conclude

that welfare may increase after the arrival of more accurate information. But they argue that the result

is explained by wealth effects due to changes in relative prices (they study a multiple good economy).

The policy implications derived from the present work also differ from the previous literature. If the

first best cannot be implemented (agents trade prior to the arrival of information), it might be possible

to find policies that lead to a Pareto superior allocation. Those policies must induce agents to acquire

more information.

From a security design perspective, the example studied in the paper favors a complete market

structure. Introducing a new security in a partial information economy would complete the markets
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and allow agents to fully infer the value of ν. In that case, the second best allocation would be attained.

However, if we depart from the benchmark setup, it may be possible to get back the inverse relationship

between welfare and the precision of information. 17 In those economies, an incomplete financial

structure is optimal. 18

17That kind of relationship would be observed in economies where the dispersion of beliefs is not as strong as in our
example.

18See Maŕın and Rahi (2000) for more on this topic.
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A Technical Appendix

In order to study different properties of the equilibrium, we must find a price function p (ν, φ) that

satisfies certain conditions. The equilibrium is defined then by a particular relationship between the

price, ν and φ, which means that any of these variables can be expressed as a function of the other ones.

It simplifies the exposition to write ν as a function of p and φ, so we proceed that way. If agents receive

only one signal, the function ν (·) satisfies equation (A.1). The formula follows from the equilibrium

price equation (4) on page 11. It also takes the beliefs as exogenously given.

νi (p) = ν (p, φi) =
p [φā + (1− φ) a

¯
+ dh]−

[
φW̄ ν̃ 0̄ + (1− φ)W

¯
ν̃0
¯

]

φW̄
(
ν̃ 1̄ − ν̃ 0̄

)
+ (1− φ)W

¯
(ν̃1

¯ − ν̃0
¯ )

(A.1)

W
¯

= a
¯

+ dl (1− p) + dhp

W̄ = ā + dl (1− p) + dhp

More generally, if agents receive n signals, the equilibrium price is given by

p (ν, φ) =
φ (ā + dl)

∑n
h=0

(
n
h

)
νh (1− ν)n−h ν̃h̄ + (1− φ) (a

¯
+ dl)

∑n
h=0

(
n
h

)
νh (1− ν)n−h ν̃h

¯

φā + (1− φ) a
¯

+ dh −
(∑n

h=0

(
n
h

)
νh (1− ν)n−h ν̃h̄ +

∑n
h=0

(
n
h

)
νh (1− ν)n−h ν̃h

¯

)
(dh − dl)

,

which is nonlinear in ν. The latter precludes the possibility of obtaining a functional expression for

ν (·), though it is possible to approximate the last function using numerical techniques.

Before describing the numerical algorithm, notice that the object that needs to be found (the function

ν (·)) has infinite dimension, whereas numerical techniques only allow to solve for finite dimensional

problems. Our strategy consists of parameterizing ν (·) as the weighted sum of Chebychev polynomials.

Namely,

νj (p) ' ν̂ (p;~aj) =
i=N∑

i=0

aj
iTi

(
2
p− p

¯
p̄− p

¯

− 1
)

ν ′j (p) ' ν̂ ′ (p;~aj) =
i=N∑

i=0

aj
iT

′
i

(
2
p− p

¯
p̄− p

¯

− 1
)(

2
p̄− p

¯

)

for j = l, h
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where ~ah =
(
a0

h, a1
h, ...., aN

h

)
, ~al =

(
a0

l , a
1
l , ...., a

N
l

)
are the corresponding weights and Ti (·) is the

Chebychev polynomial of order i.

Tn (x) = cos(n cos−1 x)

With this approach, the choice of the polynomial family becomes an important issue. We use

Chebychev polynomials because they are mutually orthogonal and allow for an efficient parametrization

of ν (·). Finally, notice that the problem simplifies now to finding a finite number of parameters, instead

of an entire function. The algorithm that solves the problem is laid down below.

1) A grid for p is defined using the expanded Chebychev array (see Judd (1998), page 222).

~p = (p0, p1, ..., pN ) , where p0 = 0 and pN = 1. The grid defines the points at which the functions

ν (·) and ν̂ (·) are evaluated.

2) A closed form solution exists in the full information economy. (see equation (5) on page 12) Thus,

a first set of values for the parameters ~ah and ~al is obtained after equating the approximate function

ν̂ (p; ~aj) to the known function νFR (·) at the N grid points. This gives 2N equations in 2N unknowns.

3) The values
{
ah

i , al
i

}i=N

i=1
found in 2) are then used as an initial guess to solve for the system of

equations defined by G (·).

Gi j (~ah,~al) = νj

(
ν̂ (pi;~ah) , ν̂ (pi;~al) , ν̂ ′ (pi;~ah) , ν̂ ′ (pi;~al) , pi

)− ν̂
(
pi;~aj

)
, i = 0, 1, ..., N, j = l, h

(A.2)

The function νi (νh, νl, ν
′
h, ν′l , p) refers to the same object as equation (A.1), but the arguments

are different. The new formulation does not take the beliefs as exogenously determined. Instead, it

includes as additional arguments the equilibrium values of ν consistent to a price p (and the two possible

realizations of φ) and the derivatives of the price function, captured by ν ′i. The last four variables are

necessary to compute the beliefs, as can be seen in equations (7)-(10).

The system of equations (A.2) summarizes the fixed point problem. The function Gj
i (·) does the

following. It takes the set of parameters that defines ν̂h (·) and ν̂l (·) as arguments. Then, it computes

νh (pi), νl (pi) and their derivatives by evaluating the corresponding parameterized functions ν̂ (p; ~aj)

and ν̂ ′ (p; ~aj) at each price pi in the grid. If the approximate functions ν̂ (·) are sufficiently close to
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the actual equilibrium functions, the evaluation of νj (., pi) at the values described in the last sentence

should yield a number similar to ν̂
(
pi;~aj

)
: Gj

i (·) should be close to zero. Therefore, the purpose of the

algorithm is to find the root of the system of equations defined above.

The root is found using a modified Powell hybrid algorithm and a finite-difference approximation to

the Jacobian. This corresponds to routine NEQNF of the IMSL library. A root is defined as a set of

parameters
{

aj
i

}
i=l,h j=0,1,...,N

such that

∑

i=l,h

N∑

j=0

Gj
i (~ah,~al)

2 < 10−12

The solution was tested at prices outside the Chebychev nodes defined for q. The average value

of
∣∣∣Gj

i (~ah,~al)
∣∣∣ at these prices is never larger than 10−5. The maximum deviation observed is below

10−3 and is always located at prices close to the corners. The latter suggests the numerical solution we

obtain is very close to the actual one.
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B Comparing information structures

Let us introduce the following modifications to the baseline model presented in the paper:

1. the signals about the tree are public;

2. there is no uncertainty regarding the distribution of riskless endowments, i.e. the fraction of highly

endowed agents is common knowledge.

Given the previous assumptions, the equilibrium price does not reveal more information than what

the public signals does. The other difference with respect to the model considered in the main text,

is that the economy is now characterized by the realization of one variable: ν. Agents try to infer the

latter using the information contained in the public signal. More formally, we assume agents observe a

signal s from a set S. The latter has finitely many components: S = {s1, s2, . . .}. The components of

S are defined as follows:

s1 = 1, agents observe one good signal out of one;

s2 = 0, agents observe one good signal out of one;

s3 = (1, 1), agents observe two good signals out of two;

s4 = (1, 0), agents observe one good and bad signal out of two;

s5 = (0, 0), agents observe two bad signals out of two;

s6 = (1, 1, 1, ), agents observe three good signals out of three;
....

Thus, each si corresponds to a particular realization of the binary signals structure. The conditional

probability distribution over S is given by a vector πn (ν) = (πn
1 (ν) , πn

2 (ν) , . . .), where

πn (ν) =





(ν, 1− ν, 0, . . .) if n = 1,
(
0, 0, ν2, 2ν(1− ν), (1− ν)2, 0, . . .

)
if n = 2,

...(
0, . . . , 0,

(
N
N

)
νN ,

(
N

N−1

)
ν(N−1) (1− ν) , . . . ,

(
N
0

)
(1− ν)N , 0, . . .

)
if n = N,

...

An information structure consists then of a collection of signals and their corresponding prob-

abilities for every possible realization of ν. In the present framework, an information structure is
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fully specified by the number of binary signals agents observe (n), and it is denoted by In, where

In = {S, πn (ν) for ν ∈ [0, 1]}. The advantage of this set up is that it allows us to apply Blackwell’s

criterion to compare the degree of informativeness of two information structures.

Definition B.1 Information structure In is more informative than In′ if there is a transition prob-

ability function t (s′, s) : S × S → [0, 1], such that
∑∞

j=1 t (sj , s) = 1 ∀ s ∈ S and πn′
i (ν) =

∑∞
j=1 t (si, sj) πn

j (ν) ∀ ν ∈ [0, 1].

The intuition behind the definition is simple. Each realization si under information structure In′ can

be interpreted as being obtained from In by adding some noise through a process of randomization. In

other words, the more informative structure is sufficient for the less informative.

Proposition B.2 In is more informative than In′ ⇐⇒ n > n′

Proof. We prove first that n > n′ ⇒ In is more informative than In′ . For the sake of simplicity,

consider the case where n′ = n− 1. The argument can easily be extended to any n′ < n. The objective

then is to find a transition probability matrix ti,j that replicates the probability distribution πn′ (ν) after

being applied to πn (ν) for all ν. It can be shown that only n (n + 1) coefficients need to be computed.

The remaining ones trivially equal zero. The solution satisfies the following system of equations:




t11 t12 . . . t1n+1

t21 t22 . . . t2n+1

. . . . . . . . . . . . . .

tn1 tn2 . . . tnn+1







(
n
n

)
νn

(
n

n−1

)
νn−1 (1− ν)

...
(
n
0

)
(1− ν)n




=




(
n−1
n−1

)
νn−1

(
n−1
n−2

)
νn−2 (1− ν)

...
(
n−1

0

)
(1− ν)n−1




(B.1)

We let the reader check that the matrix



1 1
n 0 0 . . . 0 0 0

0 1− 1
n

2
n 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . 1− n−2
n

n−1
n 0

0 . . . . . . . . . . . . . . . . . . . 1− n−1
n 1




is a solution of system (B.1).
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It remains to be shown that if In is more informative than In′ then n > n′. Assume that n′ = n+1.

If the hypothesis is true, it must be the case then that there exists a solution for the following system

of equations:



t11 t12 . . . t1n+1

t21 t22 . . . t2n+1

. . . . . . . . . . . . . . . . . . .

tn+21 tn+22 . . . tn+2n+1







(
n
n

)
νn

(
n

n−1

)
νn−1 (1− ν)

...
(
n
0

)
(1− ν)n




=




(
n+1
n+1

)
νn+1

(
n+1

n

)
νn (1− ν)

...
(
n+1

0

)
(1− ν)n+1




.

The first equation implies that a linear combination of ν0, ν, . . . , νn−1 and νn must equal νn+1 for

all ν in the interval [0, 1]. This is clearly not possible. The same argument holds for any n′ > n + 1.

It is intuitive that a higher number of binary signals entails more precise information. We have

showed above that this is true in a similar setting to the one described in the main text, and when the

Blackwell’s criterion is used to compare information structures. Unfortunately, the former criterion can-

not be applied to our baseline model. In that framework, the degree of informativeness is endogenously

determined.
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Figure 2: Equilibrium price under full and partial information
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Figure 3: Difference between individual beliefs and actual realizations of ν for the case

φ = φl
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Figure 4: Difference between individual beliefs and actual realizations of ν for the case

φ = φh
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Figure 5: Welfare of rich agents as a function of the number of signals
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Figure 6: Welfare of poor agents as a function of the number of signals
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Figure 7: Aggregate volume of trade as a function of the number of signals
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Figure 8: Difference between average beliefs and actual realizations of ν as a function of

the number of signals
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