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Abstract

Techniques for simulated maximum likelihood (SML) estimation, filtering, and
assessing the fit of stochastic volatility models are examined. Both one- and
two-factor models (with leverage effects) are considered. The techniques are com-
putationally efficient, robust, straightforward to implement, and easy to adapt to
new models. Using these techniques, it is possible to estimate single-factor models
over data sets of several thousand observations in several seconds. The computa-
tional efficiency of the techniques means that Monte Carlo studies assessing both
the small sample statistical properties as well as the numerical properties of the
estimators are easy to do. Such studies are important for all simulation esti-
mators, including simulation-based Bayesian and method of moments estimators.
The application looks at S&P 500 index returns. Even the simple single-factor
models adequately capture the dynamics of volatility; the problem is to get the
shape of the returns distribution right. Although including a second volatility
factor improves the fit over the basic single-factor models, a new formulation of
the SV-t model (a single factor model, but with t rather than normal errors in the
observation equation) provides the best fit. However, all the models considered
fail in a similar manner: they are unable to capture the left tail of the distribution.
Fitting this part of the distribution is important for option-pricing and risk man-
agement. Although it may be possible to come up with ad hoc parametric models
that fit particular data series and sample periods, a promising alternative might
be to look at single-factor models with flexible forms for the error distributions.
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1 Introduction

Equity returns data commonly exhibit volatility clustering and non-Gaussian dis-

tributions. A huge literature devoted to analyzing models that try to account for

these characteristics has developed. Such models are important for pricing derivative

securities and risk management.

The literature has several dominant strands. The bulk of applied work has used

some version of the ARCH/GARCH class of models. Such models can generate data

possessing the features mentioned above, and statistical analysis is straightforward

since the volatility state is easily deduced from the data. On the other hand, these

models imply a deterministic link between the return and volatility processes that

may be difficult to justify on either empirical or theoretical grounds. An alternative

is the class of stochastic volatility (SV) models. While the additional source of

randomness in SV models provides more flexibility in fitting the data, statistical

analysis is greatly complicated since the state is not uniquely determined by the

data. An appealing feature of SV models is that they have a natural continuous-time

interpretation, whereas ARCH/GARCH models are fundamentally discrete-time in

nature. Regime-switching models provide a third alternative (e.g., Hamilton 1990).

Recent work by Geweke and Amisano (2001) suggests the idea of using compound

Markov mixtures of normals. This approach provides a highly flexible modeling

framework, lending a nonparametric flavor to the endeavor. Other approaches to

volatility modeling include using the information available in high-frequency data

(Andersen, Bollerslev, Diebold and Labys 2002b; Barndorff-Nielsen and Shephard

2002), hi-lo quotes (Alizadeh, Brandt and Diebold 2002) or option prices (Jones

1999; Hol and Koopman 2002).

This paper examines tools for likelihood-based analysis of standard one- and two-

factor SV models used in finance, building on work by Shephard and Pitt (1997), Pitt

and Shephard (1999), Durbin and Koopman (1997, 2000, 2001), and Sandmann and

Koopman (1998). The likelihood function is approximated by using simulation to

integrate out an unobserved “auxiliary” variable (the volatility process in this case).

Estimation is carried out by maximizing the approximate likelihood. This approach

is commonly referred to as simulated maximum likelihood estimation (SMLE). It

has a great deal in common with the Bayesian Markov chain Monte Carlo (MCMC)

approach that has become popular in recent years. SMLE is loosely related to
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simulated method of moments (Duffie and Singleton 1993) and efficient method of

moments (Gallant and Tauchen 1996), which also rely upon simulation as a tool to

approximate estimation criteria that are unavailable in closed form.

Other related work on maximum likelihood estimation of SV models includes

Danielson and Richard (1993), Danielson (1994), and Liesenfeld and Richard (2002),

who also use Monte Carlo methods to integrate out the unobserved states, and

Fridman and Harris (1998), who use recursive numerical integration.

The primary contribution of this paper is to demonstrate tools that are robust,

computationally efficient, straightforward to implement, and easy to adapt to new

models. Log volatility models with one and two factors, affine models, and a new

formulation of the SV-t model are examined. All the models allow for the possibility

of leverage effects. In addition to estimation, issues related to filtering, smoothing,

model diagnostics, and numerical performance are considered.

Using these tools, the likelihood of a standard single factor SV model on a data set

of several thousand observations can be approximated in a fraction of a second on a

typical PC. The algorithm can be implemented in a few dozen lines of Fortran code.

Adapting the code to a new model is simply a matter of providing a few model-

specific functions, code for which is easily obtained using symbolic manipulation

software such as Maple. The smoothers, filters, and model diagnostics are also easy

to implement in a few lines of Fortran code. The idea is that it should be possible

for most users to estimate and assess a variety of models of practical interest on

multiple data sets without having to expend a great deal of effort.

With any simulation-based estimator, a careful examination of numerical issues

is essential. Such estimators are based on simulations generated using sequences

of pseudorandom numbers. The estimator is a function not only of the data, but

also of the seed used to generate the pseudorandom sequence. Given a fixed data

set, each choice of seed implies a different parameter estimate. It is typically known

that the simulation estimator converges to some standard estimator with well-known

properties as the simulation length goes to infinity (with fixed data). Of interest is

how close to convergence the estimator is for the simulation lengths actually used

in practice.

A common approach is to fix a particular pseudorandom sequence and report

the corresponding estimates. The seed might, for example, be a family member’s
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birthdate. The hope is that the estimates corresponding to other seqences would

not differ by much. Convincing evidence justifying this hope may be difficult to

come by.

For each of the models considered in this paper, estimates based on many different

seeds for the random number generator are computed. The mean and standard

deviation of the individual estimates is reported. This serves two purposes. The

standard deviation gives an idea of the numerical stability of the estimator with

respect to different seeds. But also, the mean will display much less variablility

than the individual estimates.

By taking an increasing sequence of simulation lengths, it is possible to observe the

rate at which the simulation-induced variance dissipates. By checking for systematic

patterns in location shifts for the parameter estimates with increasing simulation

length, it is also possible to address the issue of simulation-induced bias.

One of the advantages of the computational efficiency of the tools used in this

paper is that careful studies of their numerical properties are feasible. It should

be noted that simulation error is an issue not just with SMLE, but with simulated

method of moments and Bayesian MCMC estimators as well.

This paper is the first time that several of the models considered have been es-

timated using likelihood-based tools. While similar (and yet more sophisticated

models) have been estimated using the efficient method of moments (e.g., Chernov,

Gallant, Ghysels and Tauchen (2003)), the results are not directly comparable. Pa-

rameter estimates obtained using the two approaches — as well as the precision of

those estimates — can differ substantially. The model diagnostics examined in this

paper are also substantially different from those provided by EMM. And finally,

EMM is more computationally demanding than the techniques considered in this

paper. This limits the number of model variants and data sets that can be stud-

ied in detail (given finite computing resources). In addition, Monte Carlo studies

on the numerical properties of the estimator as well as its small sample statistical

properties would be costly to perform for many of the models of practical interest.

The empirical work looks at S&P 500 index returns over the period June 23,

1980 through September 2, 2002. The results suggest that even the simple single

factor models are able to capture the volatility dynamics (e.g., volatility clustering)

exhibited by the data. The problem is capturing the shape of the returns distribution
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(conditional on the volatility factor). While including a second volatility factor

helps, all of the models fail in a similar manner. None is able to explain the extreme

left tail of the distribution. In addition to formal statistical tests, QQ-plots clearly

illustrating the nature of the models’ failure are provided.

The best model fit is obtained by a new formulation of the SV-t model. This

model differs from models considered previously in the manner in which correlation

between returns and the volatility process is introduced. The volatility process

inherits some of the kurtosis found in returns. In particular, large absolute returns

(e.g., “crash” days) are associated with simultaneous “jumps” in volatility, an effect

that Eraker, Johannes and Polson (2001) argue is an important feature of the data.

Using t rather than normal errors adds kurtosis to the returns distribution. But

skewness is needed as well. The idea of using single-factor models with more flexible

distributional forms for the innovations looks like a promising direction for future

work.

The rest of this paper is organized as follows: Section 2 describes the estimation

approach used, Section 3 begins the empirical work and fits a variety of models,

Section 4 discusses the issues of filtering and smoothing, Section 5 provides model

diagnostics, Section 6 looks at the numerical performance of the estimators, and

Section 7 concludes.
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2 Estimation methodology

The basic idea underlying SMLE is as follows. Suppose that x = (x1, . . . , xn) is a

realization from some random vector X = (X1, . . . , Xn) for which direct evaluation

of the density function p(x) is infeasible, but that there exists some collection of

(unobserved) auxiliary variables V = (V1, . . . , Vn) such that the joint density p(x, v)

is easy to evaluate. The likelihood of a parameter vector θ can then be obtained by

integrating out the auxiliary variables:

L(θ|x) =
∫

p(x, v; θ) dv. (1)

This is generally a very high-dimensional integral that must be evaluated using

Monte Carlo techniques. The idea is to draw samples v(1), . . . , v(S) from some density

q, referred to as an importance density, and compute

L(θ|x) =
∫

p(x, v; θ)
q(v)

dQ(v)

≈ 1
S

S∑

s=1

p(x, v(s))
q(v(s))

.

(2)

Thus the likelihood is approximated by a weighted average across “simulated” draws

from q. Although q will usually depend on x and θ, this will be suppressed in the

notation. The dependence of p on θ will usually be supressed as well. The estimation

step is performed by maximizing the approximate likelihood thus obtained.

The theory of Monte Carlo integration is well understood (e.g., Judd 1998). Con-

vergence of the sum on the right hand side of (2) follows from a straightforward

application of the strong law of large numbers (treating x and θ as fixed). It is

sufficient to verify that the integral in equation (2) exists. In practice, one would

also like for the variance of p(x, V )/q(V ) (with respect to q) to be finite, so that a

central limit theorem may be applied to show that convergence is at rate
√

S. The

issue is essentially whether the tails of q are sufficiently thick with respect to those

of p. This is not just of theoretical concern, but a very practical problem. If the

tails of q are too thin, very large values of p/q will be drawn occasionally and the

sum will be erratic over repeated trials.

While a theoretical verification that the regularity conditions are satisfied is of

course useful, it is easy to design importance samplers that satisfy them yet per-

form so poorly that they are of little use in practice (e.g., Geweke 1989). It also
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possible to take an importance density which works well over most of its range and

fix problems far out in the tails by truncation (e.g., Kloek and van Dijk 1978). A

careful examination of the convergence properties of the sum in (2) for the partic-

ular problem at hand is essential (indeed, providing an estimate of the numerical

error should be part of the standard operating procedure for any simulation-based

estimator). This issue is addressed in Section 6.

The stochastic volatility models examined in this paper are of form

Xt+1 = µX(Xt, Vτ ) + σX(Xt, Vτ )εt+1

Vt+1 = µV (Vt) + σV (Vt)ηt+1

(3)

where Xt is an nx-dimensional observed component, Vt is an nv-dimensional latent

volatility component, and (εt, ηt) is an (nx + nv)-dimensional random variable with

mean zero and variance Ω. By setting τ equal to either t or t + 1, the above model

encompasses the different timings that appear in the literature.

The importance sampler is based on the Laplace approximation to p(x, v). One

first computes

v̂ = argmax
v

log p(x, v)

and

H =
∂2

∂v2
log p(x, v̂).

The importance density is given by the multivariate normal with mean v̂ and vari-

ance −H−1. The mode, v̂, of p(x, v) is obtained using Newton’s method. Although

this would appear to be costly since it involves solving a n · nv dimensional sys-

tem of linear equations, the Hessian is positive definite symmetric banded (with nv

off-diagonals). Efficient techniques are available to solve linear systems with this

structure. Note that there is never any need to obtain H−1 explicitly.

This approach is very efficient computationally and can be implemented in just

a few lines of Fortran code. Pseudocode and detailed implementation notes are

available in the appendix. The only model dependent code involves the computa-

tion of log p(x, v) and its first and second derivatives with respect to v. In prac-

tice, log p(x, v) is obtained as the sum of terms of form log p(xt+1, vt+1|xt, vt). The

derivatives of log p(x, v) are constructed by stacking up the derivatives of these terms

blockwise. The formulae are typically easy to obtain. The simplest way to do so is
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using Maple or some other symbolic manipulation software (sample code available

upon request).

Jacquier, Polson and Rossi (1994) (JPR hereafter) compare the performance of

their MCMC estimator for SV models against several other approaches in an ex-

tensive simulation study that has become a standard benchmark in this literature.

They look at the model
Xt = exp(Vt/2)εt

Vt = α + φVt−1 + σV ηt

(4)

where the (εt, ηt) are iid standard normal.

Following JPR, I estimate model (4) over synthetic data generated using various

parameter settings that they argue are representative of much financial data. The

distribution of the estimates obtained using the approach described in this paper is

essentially the same as found by JPR and others. Details are available upon request.

The estimator is very well-behaved with these models. Experiments over thousands

of simulated data sets never resulted in any apparent problems with convergence or

multiple relative extrema.

Computational cost for this model is about 0.05 seconds per evaluation of the

likelihood function (on a 2 GHz PC) with n = 1000 observations and S = 64 draws

from the importance sampler. Time required to maximize the likelihood is more

variable. Using two-sided numerical derivatives, the Broyden-Fletcher-Goldfarb-

Shapiro optimizer, and a reasonable start value, times of around 3 seconds are

typical.

It is sometimes found in empirical work that negative returns are associated with

a subsequent increase in volatility. This is often referred to as the “leverage effect”.

No changes in the main body of code are needed to include correlation between

returns and the volatility process in (4). The only thing needed is a minor change

in the Maple code used to obtain expressions for log p(xt, vt|xt+1, vt+1) and its first

and second derivatives. The resulting estimator works with essentially the same

efficiency and robustness as for the uncorrelated case. Some simulation results are

shown in Table 1. Parameter settings for φ, σX and σV are taken from the “middle”

case of JPR. Various settings for the correlation parameter, ρ, are tried.

Another model of interest is the SV-t model, which uses t in place of normally

distributed errors in the returns process. The idea is to model the excess kurtosis in
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returns that remains even after allowing for time-varying volatility. The specification

used in this paper is given by

Xt = µ + σX exp(Vt−1/2)εt

Vt = φVt−1 + σV

(
ρεt +

√
1− ρ2ηt

) (5)

where εt ∼ tν , ηt ∼ N(0, 1), and εt and ηt are independent. Correlation between

returns and volatility is introduced by including εt in the innovations of both.

An alternative formulation of the model is estimated by Jacquier, Polson and

Rossi (2002) using Bayesian MCMC techniques. The specification they use is given

by
Xt = σX exp(Vt/2)λtεt

Vt = φVt−1 + σV ηt

(6)

where ν/λt ∼ χ2
ν , εt and ηt are N(0, 1), and corr(εt, ηt) = ρ. Note that the product

λtεt has the tν distribution.

There are two key differences between these models. First, the timings are differ-

ent: (5) is a martingale difference sequence, while (6) is not (due to the presence of

Vt in the right hand side of the observation equation). This issue is examined in more

detail in Section 3. Secondly, (5) implies that the volatility process inherits some

of the kurtosis found in returns. In particular, large absolute returns (e.g., “crash”

days) are associated with simultaneous “jumps” in the volatility level. Eraker et al.

(2001) argue that this is an important feature of the data.

SV-t models have also been estimated using likelihood-based techniques by Chib,

Nardari and Shephard (2002), Sandmann and Koopman (1998) and Liesenfeld and

Richard (2002), but only with uncorrelated errors (note that (5) and (6) are equiv-

alent if the errors are not correlated). As will be shown in Section 3, the models

without correlation are not empirically relevant, at least for S&P 500 index returns.

As before, implementing the estimator for the model shown in (5) requires no

changes in the main body of code. Expressions for the transition density and its

derivatives are easily obtained using Maple. Performance and robustness of the

estimator are similar to the case with normally distributed errors. See Table 1 for

some results from a small simulation study.

Another approach to capturing the non-Gaussianity of returns is to include a

second volatility factor. The first factor is highly persistent and captures volatility
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clustering. The second factor has little persistence. Its role is essentially to control

the shape of the distribution of returns. Engle and Lee (1998) use a two-factor

GARCH model. Two-factor SV models have been explored (using different tech-

niques) by Gallant, Hsu and Tauchen (1999), Alizadeh et al. (2002), and Chernov

et al. (2003) among others. Liesenfeld and Richard (2002) estimate and assess a

two-factor model (but without leverage effects) using likelihood-based tools.

A standard two-factor model is given by

Xt = µ + σX exp(Ut−1/2 + Vt−1/2)ε1t

Vt = φV Vt−1 + σV ε2t

Ut = φUUt−1 + σU ε3t

(7)

where εit ∼ N(0, 1) and corr(εit, εjt) = ρij . Note that if φU = 0, then exp(Ut−1/2)ε1t

is an iid mixture of normals. If ρ31 = 0 as well, then it is a scale mixture of

normals (i.e., the normals are always centered at zero). Recall that the t distributed

innovations which appear in the SV-t model may also be thought of as iid scale

mixtures of normals, but the scaling factor has a different distribution.

The approach used to estimate this model is basically the same as for the one-

factor model, but the implementation is more involved. It is primarily a matter of

“bookkeeping”. The hessian required in the construction of the importance sampler

is constructed blockwise from the second derivatives of p(xt, ut, vt|xt−1, ut−1, vt−1)

with respect to (ut, vt, ut−1, vt−1). To maintain the banded form for the hessian of the

transition matrix, the latent factors must be interleaved, (u1, v1, u2, v2, . . . , un, vn).

Also, the blocks of the second derivative matrix are 4×4 (versus 2×2 for the single

factor case), which means that there are ten cells to fill in for each block (rather than

three for the single-factor case; recall that the hessian is symmetric). Otherwise,

the algorithm differs little from the single-factor case.

Computational cost is greater than for the single-factor model but remains mod-

est. More data is needed to obtain reasonably precise estimates for some of the

parameters (the rate of mean reversion of the non-persistent factor is difficult to

estimate precisely even with several thousand observations). Also, more draws from

the importance sampler are needed to obtain acceptable levels of numerical preci-

sion. The simulation studies reported in Table 1 are based on n = 2000 observations

and S = 256 draws from the importance sampler. Computational cost is less than

1 second (on a 2 GHz PC) per evaluation of the likelihood function.
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The estimation approach described above can also be used with the affine class

of SV models, but slightly more work is required. First, the model should be trans-

formed to one where the coefficient of the Brownian motion in the latent process is

constant. Given the continuous-time version of the model

dYt = µdt +
√

Vt dW1t

dVt = φ(α− Vt) dt + σ
√

Vt dW2t

where W1 and W2 are (possibly correlated) Brownian motions, use Ito’s rule with

the transformation ht =
√

Vt to get

dYt = µdt + ht dW1t

dht =
φ

2ht

(
α− σ2

4φ
− h2

t

)
dt +

σ

2
dW2t.

This is the same “volatility-stabilizing transformation” used in Durham and Gallant

(2002). The idea is the same in either context. The transformed model is closer to

Gaussian and the performance of the importance sampler is dramatically improved.

For the generic case where the coefficient of W2t is σV (v), the desired transformation

is given by h =
∫

σ−1
V (v) dv.

The form of the model that is actually estimated is the Euler approximation

Xt = µ + ht−1εt

ht = ht−1 +
φ

2ht−1

(
α− σ2

4φ
− h2

t−1

)
+

σ

2
ηt

(8)

where εt and ηt are both N(0, 1) and corr(εt, ηt) = ρ. Once the model is in this

form, adapting the estimator to work with it again requires some modification of

the Maple code used to obtain p(xt, vt|xt−1, vt−1) and its derivatives, but no changes

to the main body of code. Results of a simulation study are shown in Table 1.

It seems plausible that the estimation approach used in this paper can be extended

to work with affine models with jumps and/or more than a single volatility factor.

However, such work is beyond the scope of this paper.
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3 Application

In this section, some variants of the models described in the previous section are

estimated using daily S&P 500 index returns from June 23, 1980 to September 2,

2002 (N = 5616). The data are plotted in Figure 1.

The data exhibit a small amount of autocorrelation, possibly due to non-synchronous

trading of the individual stocks comprising the index. One way to remove this cor-

relation is by passing the data through an ARMA filter. This is the approach taken

by, for example, Andersen, Benzoni and Lund (2002a). An alternative approach

would be to include an additional factor to capture mean dynamics (e.g., Chernov

et al. 2003).

The empirical results reported in this paper are all based on data that has been

prefiltered using an ARMA(2,1) model. Whether filtered or unfiltered data are used

makes little difference in either the parameter estimates or the diagnostics discussed

in Section 5. The models under consideration are summarized in Table 2. Parameter

estimates and log likelihoods are shown in Table 3.

We first look at the single factor SV model

Xt = µ + σX exp(Vτ/2)εt

Vt = φVt−1 + σV ηt

where εt and ηt are both iid N(0, 1) and corr(εt, ηt) = ρ. Two different timings

appear in the literature, depending upon whether τ = t or τ = t − 1. If τ = t − 1,

the resulting model is a martingale difference sequence (after subtracting off the

unconditional mean, µ). It also represents the Euler scheme approximation of the

underlying continuous-time model. This model will be referred to as SV1-EUL. If

τ = t, large absolute returns are associated with concurrent shifts in the level of

volatility, introducing an additional source of non-Gaussianity into the model. In

particular, the distribution of Xt|Vt−1 is skewed if ρ 6= 0 with this timing. Jacquier

et al. (2002) argue that this effect may help to explain the extremely large negative

returns that are seen occasionally in the data (“crash” days). This model will be

referred to as SV1-JPR. If ρ = 0, the timing issue is irrelevant and the model will

be referred to simply as SV1.

Whether the asymmetry introduced by the JPR timing is important in practice

can only be determined empirically and with respect to particular data sets. That
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the model with this timing is not the Euler scheme approximation to the underlying

continuous-time model does not appear to be critical. The Euler scheme is one

approximation; it is neither the only one nor necessarily the best. And while it is

nice that Xt − µ is a martingale difference sequence for SV1-EUL, the departure

from “martingale-ness” implied by SV1-JPR may be small. Furthermore, it is not

obvious that the true data generating process has this characteristic (that the data

had to be run through an ARMA prefilter suggests otherwise). Rather than relying

on possibly shaky theoretical arguments, it is better to assess the models empirically.

Looking at the estimates, we first note that ρ is highly significant (leverage effect).

Potentially more interesting is that SV1-JPR provides a significant improvement

over SV1-EUL (model comparisons are based on Kullback-Leibler information, i.e.,

the difference in log likelihood; note that both models have the same number of free

parameters). On the other hand, Yu (2002) finds in favor of the martingale timing

(using S&P 500 index data from 1980-87 and a Bayesian estimator), so this result

may not be robust. In practice, it may not make much difference which version of

the model one uses: parameter estimates as well as the forecasts and diagnostics

examined in subsequent sections are similar either way. Given that the persistence

of the volatility factor is over 0.98, it is not surprising that the timing issue makes

little difference.

The two-factor model is specified as

Xt = µ + σX exp(Uτ/2 + Vτ/2)ε1t

Vt = φV Vt−1 + σV ε2t

Ut = φUUt−1 + σU ε3t

with εit ∼ N(0, 1) and corr(εit, εjt) = ρij . There is a timing issue similar to that with

the single-factor model. Three variants are considered. In the following discussion,

V will refer to the persistent factor and U to the nonpersistent factor. SV2-EUL

uses τ = t − 1 (for both U and V ). This model has the same nice properties as

the single-factor martingale model. SV2-JPR uses τ = t. While this model is not a

martingale, the additional sources of non-Gaussianity resulting from the appearance

of the contemporaneous volatility state in the observation equation may be useful,

as turned out to be the case in the single-factor models. I also look at a hybrid

model, SV2-HYB, which uses the martingale timing for the persistent factor but

not the nonpersistent factor.
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Based on the Kullback-Leibler information criterion, there is little reason to prefer

one of these models over the others, at least on this data set. Nonetheless, SV2-EUL

does slightly better than the alternatives; given its appealing theoretical properties,

it would probably be considered the preferred model. A version of the two-factor

model with all correlations set to zero (i.e., no leverage effect) is also estimated. For

this version of the model, the timing issue is irrelevant. As in the single-factor case,

this version of the model is of little relevance empirically.

The parameter φU governs the persistence of the non-persistent factor and ρ31

controls the extent of the leverage effect with respect to this factor. For all of the

two factor models, these parameters are marginally significant at best. For SV2-

EUL, φU is not significantly different from zero at any conventional significance

level, while ρ31 has a p-value of 0.048. Table 3 also includes estimates for SV2-EUL

with both of these parameters pinned to zero. Although the likelihood ratio test

rejects the restriction, the Bayesian information criterion prefers the smaller model

(the reduction in log likelihood is around 6 points on over 5000 observations).

Despite having two fewer parameters, the SV-t model does even better than the

two-factor models in terms of log likelihood. It is useful to compare these models

more closely. SV2-EUL with φU = 0 may be rewritten as

Xt = µ + σX exp(Vt−1/2)νt

Vt = φVt−1 + σV ζt

(9)

where νt = exp(Ut−1/2)ε1t is a scale mixture of normals with no autocorrelation.

If ρ31 = 0, these innovations are iid, otherwise there is some “leverage effect” (i.e.,

Var(νt) depends upon νt−1). The volatility innovations, ζt, are normal and possibly

correlated with νt. The SV-t model is also of form (9): the return innovations are

iid scale mixtures of normals (but with a different mixing distribution) and each

volatility innovation is a linear combination of a normal and a t. Given the results

on φU and ρ31 pointed out in the preceding paragraph, it is not surprising that the

performance of these models is similar. The particular forms of the mixing distri-

bution implied by these two alternatives does not appear to make much difference

empirically.

It is useful to clarify what is meant by one- versus two-factor models. Models of

form (9) will be referred to as single-factor as long as νt is iid, even if there exists

a possible construction of the distribution as a mixture. The SV-t and SV2-EUL
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models (as well as the other SV2 variants) with φU = ρ31 = 0 are of this form. For

the unrestricted SV2 models with the parameter estimates shown in Table 3, on the

other hand, the νt not quite iid.

Figures 2 and 3 show predictive densities for Xt|Vt−1 for several models. The

densities are computed by fixing Vt−1 = 0 and integrating across Vt, Ut, Ut−1|Vt−1.

For SV1-EUL, this predictive density is exactly Gaussian. Using the JPR timing in

the single-factor model adds a small amount of skewness. The SV-t model fattens

the tails. There is not much difference in the predictive densities implied by the SV-

t and various SV2 models. Note that all of these densities are close to symmetric

and thus offer little in the way of explaining the occasional large negative returns

present in the data.

The idea of using a single-factor model but with flexible distributional forms

for the innovations looks promising. Mixture distributions are easy to work with

technically and offer great flexibility. The formulation used for the SV-t model in

this paper (wherein large absolute returns are associated with simultaneous “jumps”

in volatility) may be worth particular attention.

Table 3 also displays estimates for a single factor affine model. These results

confirm the findings of ABL and CGGT that this model is of little empirical rele-

vance, at least for S&P index returns (while both of those papers find that including

jumps in the affine model can greatly improve matters, such models pose additional

difficulties that are beyond the scope of this paper).
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4 Smoothing and filtering

It is straightforward to obtain estimates of the smoothed volatilities, E(V1, . . . , Vn|x1,

. . . , xn). One again simulates many draws from the importance sampler q. For each

sample path, v(s), one computes the weight

ws =
p(x, v(s))/q(v(s))∑S
i=1 p(x, v(i))/q(v(i))

, s = 1, . . . , S.

The collection of sample paths and weights may be thought of as defining a dis-

crete probability measure which approximates that of V1, . . . , Vn|x1, . . . , xn. The

smoothed volatilities are estimated by the mean of the approximating distribution,

V̄ =
S∑

s=1

v(s)ws.

Other expectations, such as the variance, can be estimated in a similar manner.

While this approach to smoothing is simple, it is not very efficient. For the two-

factor SV models, numerical error in the smoothed volatility is still readily apparent

over test runs using 10,000 sample paths each (one can check the numerical error

by repeating the exercise several times with different seeds for the random number

generator). Using one million paths seems to be sufficient to reduce the numerical

error to insignificance. Computational cost is about two hours of CPU time on a

750 MHz PC. For the single-factor SV models, the sampler is more efficient and

10,000 sample paths appear to be enough. This runs in a matter of several minutes.

Using the MCMC approach to sample directly from the density of V |X may be

a more efficient solution to the smoothing problem (e.g., Kim, Shephard and Chib

1998; Shephard and Pitt 1997; Eraker 2001; Jacquier et al. 1994). On the other

hand, the approach described above may be less costly in terms of programming

effort, which could ultimately be more important.

In practice, one may be more interested in the filtered volatilities, E(Vt|Ft), where

Ft denotes the information set generated by X1, . . . , Xt. One way to obtain these

is by means of a particle filter. Kim et al. (1998) use a particle filter for a single

factor model without leverage effect. The version described below works for the one

and two-factor models with leverage effects and various timings considered in this

paper.
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A particle filter is comprised of a collection of discrete probability distributions

F̂ (vt|Ft) that approximate the exact densities F (vt|Ft). For each t, the approxi-

mating density is defined by a collection of points v
(s)
t and probability weights w

(s)
t ,

s = 1, . . . , S. These are constructed recursively.

Heuristically, the idea at each step is to draw “particles” from the time t filter

F̂ (vt|Ft), advance the particles by drawing from F (vt+1|vt,Ft), and then weight to

adjust for the new information implied by Xt+1.

More formally, suppose that p̂(vt|Ft) is known and the goal is to obtain p̂(vt+1|Ft+1).

First, notice that

p(vt+1|Ft+1) =
∫

p(vt+1, vt|Ft+1) dvt

=
∫

p(vt+1, vt|Ft+1)
p(vt|Ft)

dP (vt|Ft). (10)

Also, from p(vt+1, vt, xt+1|Ft) = p(vt+1, vt|Ft+1)p(xt+1|Ft), we get

p(vt+1, vt|Ft+1) =
p(vt+1, vt, xt+1|Ft)

p(xt+1|Ft)

=
p(xt+1|vt+1, vt,Ft)p(vt+1|vt,Ft)p(vt|Ft)

p(xt+1|Ft)
. (11)

Plugging (11) into (10) gives

p(vt+1|Ft+1) =
∫

p(xt+1|vt+1, vt,Ft)p(vt+1|vt,Ft)
p(xt+1|Ft)

dP (vt|Ft).

Thus, to advance the filter, first draw a point v
(s)
t from p̂(vt|Ft), then draw v

(s)
t+1

from p(vt+1|vt,Ft). Repeat for s = 1, . . . , S. These are the new particles. The

weights are given by

w(s) = p
(
xt+1|v(s)

t+1, v
(s)
t

)
/

S∑

s=1

p
(
xt+1|v(s)

t+1, v
(s)
t

)
.

Note that the conditioning must be on both vt+1 and vt since the innovations in

the observed and unobserved components of the model may be correlated. Without

correlation, the preceding argument would be much simpler.

The algorithm described above is reasonably efficient, can be written in just a

few lines of Fortran code (available on request), and works for all of the models

considered in this paper. More efficient implementations are possible.
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5 Model diagnostics

A standard approach to specification analysis of time series models is to look at

the residuals. Of interest is their unconditional distribution and dynamic structure.

Due to the presence of the latent factor, it is not obvious how to go about doing

this in the current setting. However, the construction of the particle filter suggests

the following idea. The density of Xt+1|Ft can be estimated by

p̂(xt+1|Ft) =
1
S

S∑

s=1

p
(
xt+1|v(s)

t+1, v
(s)
t

)
.

Similarly, its cdf can be estimated by

zt = prob(Xt+1 ≤ xt+1|Ft) =
1
S

S∑

s=1

prob
(
Xt+1 ≤ xt+1|v(s)

t+1, v
(s)
t

)
.

If the model is correctly specified, these quantities should be iid uniform(0,1). While

it would be possible to base analysis directly upon these, it is useful first to transform

them by the inverse of the normal cumulative distribution function, z̃t = Φ−1(zt).

For a correctly specified model, these “pseudo-residuals” should be iid N(0, 1).

The Jarque-Bera test is used to assess the unconditional distribution of z̃t for the

various models under consideration. The Box-Pierce test and the standard LM test

for ARCH behavior (e.g., Greene 2002) are used to look for dynamic structure. It is a

good idea to try computing these statistics several times using different sequences of

random numbers to construct the particle filter. If the statistics differ significantly

across replications, more precision will be needed in the filter. Although 10,000

particles were enough to obtain good estimates of the filtered volatilities, the test

statistics were not sufficiently stable across replications. The results reported in

Table 4 were constructed using 100,000 particles for the single-factor models and

one million particles for the two-factor models.

Kim et al. (1998) use a similar approach to assess a single factor model without

leverage effect. However, they look at zt = prob(X2
t+1 ≤ x2

t+1|Ft). This formula-

tion makes it impossible to disentangle the right and left tails of the distribution,

diminishing its usefulness.

The Box-Pierce and ARCH tests suggest that even the simple single-factor models

are able to capture the volatility dynamics adequately. The issue of timing (SV1-

JPR vs. SV1-EUL) makes little difference here. The two-factor models (including
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SV2-EUL with the restriction φU = ρ31 = 0) do slightly worse on these tests but

also fail to be rejected. The correlograms in Figures 4 and 5 tell much the same

story.

In contrast, the Jarque-Bera test results imply that none of the models is able

to capture the shape of the returns distribution. The situation is more clearly

illustrated by the QQ-plots in Figures 6 and 7. Although including the second

volatility factor helps somewhat, all of the models under consideration fail in a

similar manner. None is able to capture the extreme left tail of the distribution.

The two factor models are all slightly too thick in the right tail; SV1-EUL gets the

right tail almost perfectly.

The affine model does poorly in both dimensions, as shown by the test statistics

in Table 4 and more clearly by the graphics in Figures 4 and 6.

Unfortunately, there does not appear to be an easy way to carry out a similar

analysis for the SV-t model. Computing zt requires that one first evaluate the

density p
(
xt+1|vt+1, vt

)
. But for the SV-t model, this involves the density of a linear

combination of normal and t random variables, which is not available analytically

(note that this problem does not come up if ρ = 0). It should be possible to overcome

this problem numerically, but doing so would be computationally costly and is not

addressed in this paper. In any event, it seems likely that the results would be

similar to those for the SV2 models.

It would be possible to undertake a similar analysis using smoothed rather than

filtered residuals, i.e., with

zt = prob(Xt ≤ xt|x1, . . . , xt−1, xt+1, . . . , xn).

However, this approach seems to be less useful. These is no reason to expect these

wt to be independent. Also, the smoothing effect causes the Jarque-Bera test to be

badly sized (the test almost never rejects).

The key point to take from the foregoing specification analysis is that the simple

single-factor log volatility model is sufficient to capture the volatility dynamics of

returns; the problem is to get the right shape for the returns distribution condi-

tional on volatility. Including a second factor or using t innovations fattens the

tails somewhat, but neither offers sufficient flexibility to capture the left tail. Un-

derstanding this part of the distribution is important for hedging, option pricing,
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and risk management. Chernov et al. (2003) try a more flexible specification for the

volatility factors which appears to do better on the particular data set they consider.

Given sufficient patience, it should always be possible to come up with an ad hoc

specification that is acceptable for a particular data set. Unfortunately, this process

would have to be repeated for every different data set examined, a prospect with

little appeal (particularly if one is forced to use a more computationally costly esti-

mator than the one used here). Better would be to come up with a non-parametric

approach to fitting the returns distribution. One way forward might be the SV-

mix class of models examined in Durham (2003), which uses a discrete mixture of

normals to fit the conditional distribution of returns, Xt|Vt−1.

20



6 Numerical performance

While it is easy to demonstrate that the estimators used in this paper are asymptot-

ically equivalent to the corresponding maximum likelihood estimators as S goes to

infinity, (e.g., Gouriéroux and Monfort 1996, proposition 3.2), what is really needed

is some understanding of the nature of the approximation error given the simulation

lengths used in practice.

It is useful to look first at the convergence properties of the Monte Carlo approx-

imation to the likelihood. Recall that

L(θ|x) =
∫

p(x, v) dv

=
∫

p(x, v)
q(v)

dQ(v)

≈ 1
S

S∑

s=1

p(x, v(s))
q(v(s))

(12)

where v(1), . . . , v(S) are iid samples from the importance density q and the depen-

dence of both p and q on θ is suppressed in the notation. The almost sure conver-

gence of the sum follows from the strong law of large numbers since L(θ|x) < ∞ by

definition. Note that the choice of q does not come into play here.

A central limit theorem can be applied to get
√

S convergence if additionally

E Q

[(
p(x, V )
q(V )

)2
]

=
∫ (

p(x, v)
q(v)

)2

dQ(v) < ∞.

It is generally difficult to assess whether this integral is finite analytically, but a

numerical investigation into the issue is straightforward. In particular, it is easy to

obtain a large number of draws from p(x, V )/q(V ), where V has density q. Suppose

that the right tail of log
(
p(x, V )/q(V )

)
is thinner than that of Z, the Gaussian

distribution with the same mean and variance. Since exp(Z) has a finite second

moment, we could conclude that p(x, V ) does also.

Note that we may write

log
p(x, V )
q(V )

= log p(x) + log
(

p(V1|x)
q(V1)

)
+

n−1∑

i=1

log
(

p(Vi+1|Vi, x)
q(Vi+1|Vi)

)
.

Since this is a sum of many random variables, it seems plausible to hope that

log (p(x, V )/q(V )) might be approximately normally distributed. Figure 8 shows
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histograms and QQ-plots of 100,000 draws from log
(
p(x, V )/q(V )

)
using the data

and two of the models considered in Section 3. These figures are supportive of

the argument outlined above. It seems reasonable to expect that the sum in (12)

converges at rate
√

S, at least eventually.

On the other hand, if the variance of log
(
p(x, V )/q(V )

)
is large, then p(x, V )/q(V )

will be severely skewed, and “eventually” could be a long time coming. Furthermore,

between the computation of the likelihood and the evaluation of the estimator lies

an optimization step. Therefore, the preceding information is possibly of interest

but less than conclusive.

The simplest way to address the issue of simulation error is possibly the best:

re-estimate the model many times using different seeds for the random number

generator. This provides direct and unambiguous evidence on the variability of the

estimator as a function of the sequence of random numbers used.

Ultimately, what is needed is a single parameter estimate for a given data set.

Rather than arbitrarily choosing the estimate corresponding to one particular seed,

it is better to take the mean of the entire collection of estimates computed. The

standard deviation of the individual estimates serves as an indication of the simu-

lation error. Of course, since the variance of the mean will be much less than the

variance of the individual estimates, this will be a conservative estimate of the nu-

merical error associated with the parameter estimate actually reported for the data

set under consideration.

Table 5 shows the results of trying this idea using the data and some of the models

considered in Section 3. The mean and standard deviation of the estimates obtained

using each of 500 different sequences of random numbers are shown. Several different

values for S are tried. Histograms of the estimates provide further insight and are

available upon request.

For the single factor models, the estimator is reasonably stable even with a small

number of draws. This is fortunate, because if
√

S convergence is setting in, it is

doing so slowly. Notice that there is some movement in the mean of the estimates

with increasing S. This suggests the presence of a small amount of simulation-

induced bias that dissipates as S gets large.

For the two-factor model, there is a significant amount of variation across sim-

ulations in the estimates for several of the parameters. However, the variance of
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the mean of the estimates — which is what is actually reported — should be much

smaller. There are also significant shifts in location for some of the estimates with

increasing S, especially for φU and ρ31. It seems likely that larger settings for S

would yield estimates closer to zero for both of these parameters.

Note that the issue of numerical error is a problem with any simulation-based

estimator, including simulated method of moments and Bayesian MCMC estimators.

The advantage of the techniques used in this paper is that they are efficient enough

that careful investigations of numerical issues are possible.
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7 Conclusion

This paper examines some easily implemented tools for estimating and assessing one

and two-factor SV models. Monte Carlo studies demonstrating their small sample

statistical properties and numerical properties are provided. Such studies are made

feasible by the computational efficiency of the tools considered. Model diagnostics

are based on standard time-series techniques.

The application looks at S&P 500 index returns. The results suggest that rather

than adding a second volatility factor, better results may be obtained by staying

within the single factor framework but using more flexible distributions for the

innovations.
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Table 1. Simulation studies.

The mean and standard deviation of parameter estimates are shown. For the single factor model
with correlation, the data generating parameters correspond to the middle cell of the simulation
study in Jacquier et al. (1994). For the remaining models, the data generating parameters corre-
spond approximately to the parameter estimates obtained in the empirical sections of this paper.
All results are based on 5000 replications with N = 2000 observations each. The single-factor and
SV-t models use S = 64 draws from the importance sampler; the two-factor and affine models use
S = 256.

Single-factor (see Eq. (4))

σX φ σV ρ

True 0.0252 0.9500 0.260 0.000
0.0253 0.9476 0.256 0.000

(0.0015) (0.0124) (0.028) (0.074)

True 0.0252 0.9500 0.260 0.250
0.0253 0.9476 0.257 0.255

(0.0015) (0.0120) (0.027) (0.071)

True 0.0252 0.9500 0.260 0.500
0.0253 0.9479 0.258 0.507

(0.0014) (0.0106) (0.025) (0.062)

True 0.0252 0.9500 0.260 0.750
0.0253 0.9486 0.259 0.757

(0.0011) (0.0080) (0.021) (0.043)

SV-t (see Eq. (5))

µ σX φ σV ρ ν

True 0.0000 0.0070 0.980 0.100 -0.500 8.00
-0.0000 0.0070 0.976 0.103 -0.515 8.45
(0.0002) (0.0005) (0.010) (0.022) (0.116) (1.83)

Two-factor (see Eq. (7))

µ σX φV σV ρ21 φU σU ρ31

True 0.00000 0.00800 0.980 0.090 -0.400 0.20 0.500 0.000
-0.00002 0.00806 0.970 0.103 -0.390 0.15 0.435 0.005
(0.00019) (0.00043) (0.023) (0.032) (0.154) (0.30) (0.071) (0.103)

Affine (see Eq. (8))

µ φ α σ ρ

True 0.00000 0.030 0.000200 0.0010 -0.500
0.00000 0.041 0.000200 0.0011 -0.501

(0.00032) (0.030) (0.000012) (0.0003) (0.149)
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Table 2. Models

SV1-EUL:

Xt = µ + σX exp(Vt−1/2)εt εt, ηt ∼ N(0, 1)
Vt = φVt−1 + σV ηt corr(εt, ηt) = ρ

SV1-JPR:

Xt = µ + σX exp(Vt/2)εt εt, ηt ∼ N(0, 1)
Vt = φVt−1 + σV ηt corr(εt, ηt) = ρ

SV-t:

Xt = µ + σX exp(Vt−1/2)εt εt ∼ tν , ηt ∼ N(0, 1)
Vt = φVt−1 + σV

(
ρεt +

√
1− ρ2ηt

)
corr(εt, ηt) = 0

SV2-EUL:

Xt = µ + σX exp(Ut−1/2 + Vt−1/2)ε1t εit ∼ N(0, 1)
Vt = φV Vt−1 + σV ε2t corr(εit, εjt) = ρij

Ut = φUUt−1 + σU ε3t

SV2-JPR:

Xt = µ + σX exp(Ut/2 + Vt/2)ε1t εit ∼ N(0, 1)
Vt = φV Vt−1 + σV ε2t corr(εit, εjt) = ρij

Ut = φUUt−1 + σU ε3t

SV2-HYB:

Xt = µ + σX exp(Ut/2 + Vt−1/2)ε1t εit ∼ N(0, 1)
Vt = φV Vt−1 + σV ε2t corr(εit, εjt) = ρij

Ut = φUUt−1 + σU ε3t

AFF:

Xt = µ + Vt−1

(√
1− ρ2εt + ρηt

)
εt, ηt ∼ N(0, 1)

Vt = Vt−1 + φ
2Vt−1

(
α− σ2

4φ − V 2
t−1

)
+ σ

2 ηt corr(εt, ηt) = 0
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Table 3. Parameter estimates, S&P 500 index returns.

The data are prefiltered using an ARMA(2,1) model. The sample period is 6/23/1980 - 9/2/2002
(N = 5616 observations). A ‘*’ indicates that the parameter has been fixed at zero. The SV1 and
SV-t models are estimated using S = 256 draws from the importance sampler; the SV2 and affine
models use S = 1024. Each model is estimated 100 times using different seeds for the random
number generator use to construct the simulations (as described in Section 6). The mean of these
estimates is reported. Standard errors are immediately below each set of estimates, followed by the
standard deviation of the 100 individual estimates.

Model Log L µ σX φ σV ρ ν

SV1-EUL 18533.34 0.00007 0.00855 0.9762 0.170 -0.432
(0.00011) (0.00041) (0.0045) (0.015) (0.047)

(0.87) (0.00000) (0.00000) (0.0004) (0.002) (0.002)

SV1-JPR 18538.84 0.00024 0.00872 0.9828 0.148 -0.462
(0.00010) (0.00050) (0.0035) (0.012) (0.049)

(0.62) (0.00000) (0.00001) (0.0002) (0.001) (0.003)

SV1 18503.12 0.00025 0.00862 0.9816 0.151 *
(0.00010) (0.00048) (0.0040) (0.013)

(0.77) (0.00000) (0.00000) (0.0003) (0.002)

SVt 18582.24 0.00008 0.00755 0.9895 0.103 -0.488 8.09
(0.00010) (0.00052) (0.0026) (0.011) (0.052) (0.89)

(0.11) (0.00000) (0.00000) (0.0000) (0.000) (0.001) (0.01)

SVt 18553.50 0.00020 0.00773 0.9934 0.085 * 7.68
(0.00010) (0.00068) (0.0022) (0.010) (0.83)

(0.07) (0.00000) (0.00000) (0.0000) (0.000) (0.01)

Model Log L µ σX φV σV ρ21 φU σU ρ31

SV2-EUL 18575.86 0.00008 0.00830 0.9905 0.101 -0.459 0.15 0.468 -0.215
(0.00010) (0.00063) (0.0027) (0.014) (0.088) (0.27) (0.066) (0.112)

(1.81) (0.00001) (0.00003) (0.0008) (0.005) (0.020) (0.14) (0.017) (0.048)

SV2-EUL 18569.78 0.00008 0.00827 0.9885 0.113 -0.506 * 0.468 *
(0.00010) (0.00055) (0.0027) (0.011) (0.053) (0.032)

(1.82) (0.00001) (0.00002) (0.0004) (0.002) (0.011) (0.009)

SV2-JPR 18575.21 0.00011 0.00838 0.9878 0.119 -0.536 -0.25 0.439 0.076
(0.00011) (0.00055) (0.0030) (0.012) (0.051) (0.11) (0.037) (0.036)

(2.06) (0.00001) (0.00002) (0.0005) (0.003) (0.011) (0.05) (0.014) (0.008)

SV2-HYB 18572.85 0.00011 0.00837 0.9880 0.118 -0.527 -0.19 0.449 -0.066
(0.00011) (0.00055) (0.0030) (0.012) (0.051) (0.15) (0.036) (0.033)

(1.97) (0.00001) (0.00002) (0.0005) (0.003) (0.012) (0.06) (0.013) (0.005)

SV2 18543.92 0.00020 0.00833 0.9921 0.093 * -0.13 0.493 *
(0.00010) (0.00067) (0.0024) (0.010) (0.12) (0.034)

(2.08) (0.00000) (0.00001) (0.0003) (0.002) (0.04) (0.011)

Model Log L µ α φ σ ρ

AFF 18473.44 0.00003 0.000100 0.0186 0.00129 -0.464
(0.00011) (0.000009) (0.0039) (0.00013) (0.051)

(2.49) (0.00001) (0.000000) (0.0010) (0.00004) (0.010)

30



Table 4. Model diagnostics

Jarque-Bera ARCH(20) Box-Pierce(20)

Raw data 439771.42 272.70 368.60
(0.0000) (0.0000) (0.0000)

Affine 2722.82 59.79 63.74
(0.0000) (0.0000) (0.0000)

SV1-EUL 288.93 12.35 12.70
(0.0000) (0.9036) (0.8898)

SV1-JPR 168.42 12.66 13.08
(0.0000) (0.8915) (0.8740)

SV2-EUL 42.56 20.50 21.04
(0.0000) (0.4269) (0.3948)

SV2-EUL (φU = ρ31 = 0) 53.05 20.91 21.54
(0.0000) (0.4023) (0.3662)

SV2-JPR 34.89 20.46 20.91
(0.0000) (0.4298) (0.4022)

SV2-HYB 30.26 17.86 18.27
(0.0000) (0.5963) (0.5695)
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Table 5. Numerical error

Each model is estimated 500 times for each setting of S. Each set of estimates uses a different seed
for the random number generator used to construct the simulations. The mean of the estimates,
the standard error corresponding to one particular set of estimates, and the standard deviation of
the 500 estimates are reported.

SV1-EUL

S µ σX φ σV ρ log L

32 0.0000693 0.0085533 0.97663 0.1685 -0.4331 18532.62
(0.0001059) (0.0004175) (0.00442) (0.0144) (0.0476)
(0.0000018) (0.0000040) (0.00048) (0.0021) (0.0030) ( 1.15)

128 0.0000688 0.0085516 0.97633 0.1699 -0.4323 18533.21
(0.0001059) (0.0004182) (0.00439) (0.0143) (0.0475)
(0.0000015) (0.0000033) (0.00042) (0.0019) (0.0026) ( 0.94)

512 0.0000685 0.0085508 0.97616 0.1707 -0.4320 18533.41
(0.0001059) (0.0004088) (0.00460) (0.0149) (0.0468)
(0.0000013) (0.0000030) (0.00039) (0.0017) (0.0021) ( 0.64)

2048 0.0000684 0.0085496 0.97601 0.1714 -0.4314 18533.58
(0.0001059) (0.0004145) (0.00445) (0.0144) (0.0475)
(0.0000010) (0.0000022) (0.00030) (0.0014) (0.0017) ( 0.45)

8192 0.0000682 0.0085487 0.97585 0.1722 -0.4310 18533.73
(0.0001059) (0.0004140) (0.00449) (0.0146) (0.0476)
(0.0000008) (0.0000021) (0.00029) (0.0013) (0.0014) ( 0.37)

32768 0.0000681 0.0085482 0.97578 0.1725 -0.4307 18533.78
(0.0001059) (0.0004116) (0.00454) (0.0147) (0.0474)
(0.0000006) (0.0000018) (0.00024) (0.0011) (0.0012) ( 0.24)

SV2-EUL

S µ σX φV σV ρ21 φU σU ρ31 log L

32 0.000087 0.00836 0.9913 0.0957 -0.429 0.311 0.424 -0.279 18572.09
(0.000104) (0.00055) (0.0029) (0.0121) (0.061) (0.199) (0.033) (0.069)
(0.000006) (0.00006) (0.0012) (0.0075) (0.042) (0.204) (0.036) (0.073) ( 2.62)

128 0.000085 0.00833 0.9909 0.0984 -0.445 0.236 0.445 -0.249 18573.86
(0.000104) (0.00071) (0.0025) (0.0139) (0.105) (0.137) (0.052) (0.077)
(0.000007) (0.00005) (0.0010) (0.0065) (0.035) (0.186) (0.030) (0.065) ( 2.34)

512 0.000083 0.00831 0.9906 0.1005 -0.457 0.167 0.462 -0.223 18575.34
(0.000103) (0.00063) (0.0025) (0.0120) (0.074) (0.152) (0.042) (0.072)
(0.000007) (0.00004) (0.0009) (0.0057) (0.027) (0.169) (0.022) (0.056) ( 2.10)

2048 0.000081 0.00829 0.9904 0.1016 -0.465 0.132 0.473 -0.208 18576.59
(0.000103) (0.00062) (0.0025) (0.0115) (0.068) (0.168) (0.040) (0.074)
(0.000006) (0.00003) (0.0008) (0.0051) (0.023) (0.146) (0.016) (0.047) ( 1.89)
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Figure 1. S&P 500 index returns, 6/23/1980 - 9/2/2002.
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Figure 2. Predictive densities for Xt|Vt−1.
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Figure 3. Predictive densities for Xt|Vt−1.
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Figure 4. corroleograms for squared “pseudo-residuals”.
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Figure 5. Corroleograms for squared “pseudo-residuals”.
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Figure 6. QQ-plots for “pseudo-residuals”.
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Figure 7. QQ-plots for “pseudo-residuals.
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Figure 8. Histograms and QQ-plots for 100,000 draws from log(p(x, V )/q(V )), where V is
drawn from the importance density, q.
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