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Abstract

A common problem in out-of-sample prediction is that there are potentially many relevant
predictors that individually have only weak explanatory power. We propose bootstrap aggre-
gation of pre-test predictors (or bagging for short) as a means of constructing forecasts from
multiple regression models with local-to-zero regression parameters and errors subject to pos-
sible serial correlation or conditional heteroskedasticity. Bagging is designed for situations in
which the number of predictors (M) is moderately large relative to the sample size (T). We show
how to implement bagging in the dynamic multiple regression model and provide asymptotic
justification for the bagging predictor. A simulation study shows that bagging tends to pro-
duce large reductions in the out-of-sample prediction mean squared error and provides a useful
alternative to forecasting from factor models when M is large, but much smaller than T. We
also find that bagging indicators of real economic activity greatly redcues the prediction mean
squared error of forecasts of U.S. CPI inflation at horizons of one month and one year.
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1 Introduction

A common problem in out-of-sample prediction is that the researcher suspects that many pre-
dictors are potentially relevant, but none of these predictors individually is likely to have high
predictive power. If the number of predictors is at least moderately large, the usual approach
of comparing all possible combinations of predictors by means of an information criterion func-
tion is computationally infeasible.1 One strategy in this situation is to combine forecasts from
many models with alternative subsets of predictors. For example, one could use the median
or the trimmed mean of these forecasts as the final forecast (see Stock and Watson 2003) or
one could use regression-based weights for forecast combination. The latter tend to perform
poorly in practice, unless some form of shrinkage estimation is used (see, e.g., Wright 2003).
Alternatively, we might extract the principal components in the set of predictors. If the data
are generated by an approximate dynamic factor model, then factors estimated by principal
components can be used for efficient forecasting under quite general conditions. (see, e.g., Stock
and Watson 2002a, 2000b; Bai and Ng 2003).2 If the number of predictors is moderately large
relative to the sample size, a third strategy is to rely on a testing procedure for deciding which
predictors to include in the forecast model and which to drop. For example, we may fit a model
including all potentially relevant predictors, conduct a t-test for each predictor and discard all
insignificant predictors prior to forecasting. Such pre-tests lead to inherently unstable decision
rules in that small alterations in the data set may cause a predictor to be added or to be dropped.
This instability tends to inflate the variance of the forecasts and may undermine the accuracy
of pre-test forecasts in applied work. In this paper we will show that the predictive accuracy of
simple pre-test strategies may be greatly enhanced by application of the bagging technique.
Bagging is a statistical method designed to improve the forecast accuracy of models selected

by unstable decision rules. The term bagging is short for bootstrap aggregation (see Breiman
1996). In essence, bagging involves fitting the unrestricted model including all potential pre-
dictors to the original sample, generating a large number of bootstrap resamples from this
approximation of the data, applying the decision rule to each of the resamples, and averaging
the forecasts from the models selected by the decision rule for each bootstrap sample.
By averaging across resamples, bagging effectively removes the instability of the decision rule.

Hence, one would expect the variance of the bagged prediction model to be smaller than that
of the model that would be selected based on the original data. Especially when the decision
rule is unstable, this variance reduction may be substantial. In contrast, the forecast bias of
the prediction model is likely to be of similar magnitude, with or without bagging. Thus, one
would expect bagging to reduce the prediction mean squared error of the regression model after
variable selection.
This heuristic argument led Breiman (1996) to expect that bagging may in general improve

the forecast accuracy of learning rules, of which regression forecasts after variable selection are

1See Inoue and Kilian (2003) for a discussion of this and related approaches of ranking competing forecast models.
The difficulty in using information criteria when the number of potential predictors, M , is large is that the criterion
must be evaluated for 2M combinations of predictors. For M > 20 this task tends to become computationally
prohibitive.

2A closely related approach to extracting common components has been developed by Forni et al. (2000, 2001)
and applied in Forni et al. (2003).
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just one example. Indeed, there is substantial evidence of such reductions in practice. There
are some counterexamples, however, in which this intuition fails and bagging does not improve
forecast accuracy. This fact has prompted increased interest in the theoretical properties of
bagging. Bühlmann and Yu (2002) recently have investigated the ability of bagging to improve
the forecast accuracy of regressions on an intercept when the data are i.i.d. They show that
bagging does not always improve on pre-testing, but nevertheless has the potential of achieving
dramatic reductions in forecast mean squared errors for a wide range of processes.
This result may seem to suggest that bagging would be useful for prediction, but this is

not necessarily the case because bagging in turn may be dominated by forecasts based on
the unrestricted model that includes all potential predictors or by the zero mean forecast that
emerges when all predictors are dropped, as in the well-known no-change forecast model of asset
returns. The former model generates unbiased, but high variance forecasts; the latter model
generates biased, but zero variance forecasts. We show that in the simple setting considered by
Bühlmann and Yu (2002) bagging will rarely be the best forecast method because it is almost
always dominated either by the unrestricted forecast model or by the zero mean forecast model,
depending on how close the slope parameters of the unrestricted model are to zero in population.
We note that it is important for bagging to work well relative to the unrestricted and the zero

mean model that there be many predictors in the unrestricted model that are heterogeneous
in a sense made more precise in the paper. We observe that this condition is likely to be met
in economic forecasting from large data sets. Motivated by this observation, we extend the
theoretical analysis of Bühlmann and Yu (2002) to multiple dynamic regression models. Our
analysis allows for cross-sectional as well as serial correlation in the regression error, which arises
naturally in constructing multi-period forecasts. We also allow for conditional heteroskedasticity
in the regression error.
We study the asymptotic properties of bagging forecasts in this setting under the assumption

that the regression parameters of the unrestricted forecast model are local-to-zero. For a stylized
model we characterize analytically the effect of bagging on the asymptotic prediction mean-
squared error (PMSE). We derive and compare the asymptotic PMSE of the unrestricted model,
the fully restricted model, the pre-test model and the bagged pre-test model. We are able to
show formally that no model will be the best forecast model for all possible data designs, but
that the range for which bagging is more accurate than the alternative methods is far greater
than in the single-regressor model. Simulation evidence suggests that for empirically relevant
settings bagging tends to yield substantial improvements in forecast accuracy relative to the pre-
test model, the unrestricted model and the zero mean model, when the number of predictors is
moderately large relative to the sample size.
A practically interesting question is whether the bagging strategy is competitive with alter-

native approaches such as forecast combinations or forecasts from dynamic factor models. In this
paper, we focus on the latter alternative. Using a number of stylized data generating processes,
we provide simulation evidence that neither bagging forecasts nor factor model forecasts are
most accurate in all settings, but that bagging forecasts tend to perform well relative to factor
model forecasts when the number of predictors is large, but clearly smaller than the sample size.
In many cases, the bagging forecast is more accurate than the factor model forecast, even when
the factor model is the true model. This simulation evidence illustrates the potential of bagging
to achieve substantial reductions in prediction mean squared errors.
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Further research is needed to see whether these preliminary results hold more generally.
While the simulation results are encouraging, we cannot be sure that our simulation design
captures all important features of the data encountered in applied work. The development of
realistic designs for simulation studies of this kind is still in its infancy. Given the difficulty
of generalizing the results of our simulation study, we recommend that, in practice, researchers
choose between the bagging strategy and the dynamic factor model strategy based on the ranking
of their recursive PMSE in simulated out-of-sample forecasts.
We illustrate this approach for a typical forecasting problem in economics. Specifically, we

investigate whether one-month and twelve-month ahead CPI inflation forecasts for the United
States may be improved upon by adding indicators of real economic activity to models involving
only lagged inflation rates. This empirical example is in the spirit of recent work by Stock and
Watson (1999), Marcellino et al. (2003), Bernanke and Boivin (2003), Forni et al. (2003)
and Wright (2003). We show that bagging the pre-test is by far the most accurate forecasting
procedure in these empirical examples. It outperforms the benchmark autoregressive model, the
unrestricted model and factor models with rank 1, 2, 3, or 4 and different lag structures. It also
is more accurate than simple forecast combination methods.
The remainder of the paper is organized as follows. In section 2 we formally define bagging

and present the theoretical arguments in favor of bagging. We also characterize the conditions
under which we would expect bagging to work. Section 3 contains a stylized simulation study
that pins the bagging strategy against some natural competitors. In section 4 we present the
empirical application. We conclude in section 5. The raw data for the empirical study are
described in the Data Appendix.

2 The Theory of Bootstrap Aggregation

Consider the forecasting model:

yt+h = β0xt + εt+h, h = 1, 2, 3, ... (1)

where εt+h denotes the h-step ahead linear forecast error, β is anM-dimensional column vector
of parameters and xt is a column vector of M predictors at time period t. We presume that yt
and xt are stationary processes or have been suitably transformed to achieve stationarity. We
further assume that the predictors are weak in the sense that the coefficients of xt are local to
zero, i.e.,

β = δT−
1
2 (2)

where δ is an M-dimensional column vector and T is the sample size available to the forecaster
at date T . This assumption facilitates the exposition. Note that our asymptotic results on
bagging will still go through if some elements of β are not local to zero.
Let β̂ denote the ordinary least-squares (OLS) estimator of β in (1) and let tj denote the

t-statistic for the null that βj is zero in the unrestricted model, where βj is the jth element of
β. Further, let bγ denote the OLS estimator of the forecast model after variable selection. For
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xt ∈ <M , we define the predictor from the unrestricted model (UR), the zero-mean predictor,
and the pre-test (PT) predictor conditional on xT−h+1 by

ŷUR(xT−h+1) = β̂0xT−h+1,

ŷNC(xT−h+1) = 0,

ŷPT (xT−h+1) = 0, if |tj| < 1.96 ∀j and ŷPT (xT−h+1) = bγ0STxT−h+1 otherwise,

where ST is the stochastic selection matrix obtained from
I(|t1| > 1.96) 0 · · · 0

0 I(|t2| > 1.96) · · · 0
...

...
. . .

...
0 0 · · · I(|tM | > 1.96)


by deleting rows of zeros.

The unrestricted model forecast is based on the fitted values of a regression including all M
potential predictors. The zero mean forecast emerges when all predictors are dropped, as in the
well-known no-change forecast model of asset returns. We will refer to the zero-mean predictor as
the no-change (NC) predictor throughout this paper, as yt+h in economic applications typically
refers to percentage growth rates.
The pre-test strategy that we analyze is particularly simple, but asymptotically justified. We

first fit the unrestricted model that includes all potential predictors. We then conduct two-sided
t-tests on each slope parameter at the 5% level using critical values based on the conventional
asymptotic approximation. We discard the insignificant predictors and re-estimate the final
model, before generating the forecast. In constructing the t-statistic we use appropriate standard
errors that allow for serial correlation and/or conditional heteroskedasticity. Specifically, when
the forecast model is correctly specified, the pre-test strategy may be implemented based on
White (1980) robust standard errors for h = 1 and West (1997) robust standard errors for h > 1.
If the forecast model is misspecified, the pre-test strategy must be based on nonparametric robust
standard errors such as the HAC estimator proposed by Newey and West (1987). Note that this
pre-test predictor is admissible in the sense of Inoue and Kilian (2003). Asymptotically, it will
select a model with minimum PMSE among all possible combinations of predictors. The same
is true for the unrestricted model and the no-change model under our assumptions.
The bootstrap aggregated or bagging predictor is obtained by averaging the pre-test predictor

across bootstrap replications.

Definition 1. [Bagging] The bagging predictor is defined as follows:
(i) Arrange the set of tuples {(yt+h, x

0
t)}, t = 1, ..., T−h. in the form of a matrix of dimension

(T − h)× (M + 1).

y1+h x01
...

...
yT x0T−h
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When xtεt+h is serially correlated, construct bootstrap samples (y
∗
1+h, x

0∗
1 )}, ..., {(y∗T , x0∗T−h)}

by drawing with replacement blocks of m rows of this matrix, where the block size m is chosen
to capture the dependence in the error term. This procedure is known as the blocks-of-blocks
bootstrap (see, e.g., Hall and Horowitz 1996, Gonçalves and White 2003). When xtεt+h is
serially uncorrelated, construct bootstrap samples (y∗1+h, x

0∗
1 )}, ..., {(y∗T , x0∗T−h)}by sampling with

replacement from the rows of the same matrix. This amounts to setting m = 1 in implementing
the blocks-of-blocks bootstrap method. This procedure is also known as the pairwise bootstrap.
(ii) For each bootstrap sample, compute the bootstrap pre-test predictor conditional on xT−h+1

ŷ∗PT (xT−h+1) = 0, if |t∗j | < 1.96 ∀j and ŷ∗PT (xT−h+1) = bγ∗0S∗TxT−h+1 otherwise,

where bγ∗and S∗T are the bootstrap analogues of bγand ST , respectively. In constructing |t∗j |
we compute the variance of

√
T bβ∗as H∗−1 bS∗H∗−1 where

bS∗ =
1

bm

bX
k=1

mX
i=1

mX
j=1

(x∗(k−1)m+iε
∗
(k−1)m+i+h)

0(x∗(k−1)m+jε
∗
(k−1)m+j+h),

bH∗ =
1

bm

bX
k=1

mX
i=1

(x∗0(k−1)m+ix
∗
(k−1)m+i),

ε∗t+h = y∗t+h − bβ∗x∗t , and b is the integer part of T/m (see, e.g., Inoue and Shintani 2003).
(iii) The bagged predictor is the expectation of the bootstrap pre-test predictor across bootstrap

samples, conditional on xT−h+1:

ŷBA(xT−h+1) = E∗[bγ∗0S∗TxT−h+1],

where E∗ denotes the expectation with respect to the bootstrap probability measure. The
bootstrap expectation in (iii) may be evaluated by simulation:

ŷBA(xT−h+1) =
1

B

BX
i=1

bγ∗i0S∗iT xT−h+1,

where B =∞ in theory. In practice, B = 100 tends to provide a reasonable approximation.

An important design parameter in applying bagging is the block size m. If the forecast
model at horizon h is correctly specified in that E(εt+h|Ωt) = 0, where Ωt denotes the date t
information set, then m = h− 1. Otherwise m > h− 1. In the latter case, data-dependent rules
such as calibration may be used to determine m (see, e.g., Politis, Romano and Wolf 1999).
Bagging can in principle be applied to any pre-testing strategy, not just to the specific pre-

testing strategy discussed here. It may seem that bagging could also be applied to other methods
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of forecasting. This is not necessarily the case. For bagging to be theoretically justified, it is
essential that the predictor to be bagged involve some hard threshold (such as the decision
of whether to include or exclude a given predictor). It would not be possible, for example,
to justify bagging a given factor model, as such models are inherently smooth. Similarly, the
Schwarz Information Criterion does not lend itself to bagging because it will select one forecast
model with probability one asymptotically.
The performance of bagging will in general depend on the significance level chosen for pre-

testing. Throughout this paper we have set the nominal significance level to 5 percent. As we
will show, this choice tends to work well. In practice, one could further refine the performance
of bagging by comparing the accuracy of the bagging forecast method for alternative nominal
significance levels in simulated out-of-sample forecasts. This question is beyond the scope of
this paper.

2.1 Asymptotic Properties of Bagging

The key assumption for establishing the validity of bagging is the asymptotic normality of the
OLS estimator which holds under the following conditions:

Assumption 1.

(a) T−1/2
PT

t=1 xtεt
d→ N(0,Ω) where Ω is positive definite.

(b) (1/T )
PT

t=1 xtx
0
t

p→ E(xtx0t) where E(xtx0t) is positive definite.

(c) There is a consistent estimator of Ω, Ω̂, i.e., Ω̂−Ω = op(1).

(d) T−1/2
PT

t=1[x
∗
t ε
∗
t −E∗(x∗t ε∗t )]

d→ N(0,Ω) in probability conditional on the data.

(e) (1/T )
PT

t=1 x
∗
tx
∗0
t −E∗(x∗tx∗0t ) = op(1) conditional on the data.

(f) There is an M ×M matrix Ω̂∗ such that Ω̂∗ − Ω̂ = op(1) conditional on the data.

(g) E∗kγ̂∗0S∗Tk1+ς = Op(1), conditional on the data for some ς > 0.

More primitive assumptions that imply Assumptions 1(a)-(c) can be found in Gallant and
White (1988), for example. When the data are dependent, Hall and Horowitz (1996), An-
drews (2002), Gonçalves and Kilian (2003), Gonçalves and White (2003) and Inoue and Shin-
tani (2003) provide more primitive assumptions that imply Assumptions 1(d)-(f). Assumption
1(g) is a uniform integrability condition (see Billingsley 1995, p. 338).
We treat M as fixed with respect to T , but all our theoretical results will go through with

minor modifications when M is allowed to increase with T at a rate not exceeding
√
T . The

usual motivation for allowingM to increase is that the fixedM asymptotics may provide a poor
small sample approximation when M is large relative to T . In the current context, however, the
fixed M asymptotics work quite well, given that M is distinctly smaller than T .
Bühlmann and Yu (2002) consider bagging a linear model with one local-to-zero regressor in

the form of an intercept when the data are i.i.d.. The following theorem generalizes Proposition
2.2 of Bühlmann and Yu (2002) to dynamic multiple regression models with possible serial
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correlation and conditional heteroskedasticity in the error term. Note that - unlike Bühlmann
and Yu (2002) - we re-estimate the model after variable selection.

Theorem 1. [Asymptotic Properties of Forecasts] Suppose that Assumptions 1 (a)—(g) hold.
Then

T 1/2ŷUR(x)
d→ ξ0x, (3)

ŷNC(x) = 0, (4)

T 1/2ŷPT (x)
d→ ξ0S0[SE(xtx0t)S

0]−1SxI(|ξj| >
p
Σjjc for some j), (5)

T 1/2ŷBA(x)
d→ E{η0S∗0 [S∗E(xtx0t)S∗

0
]−1S∗xI(|ηj| >

p
Σjjc for some j)|ξ} (6)

where ξ ∼ N(δ,Σ), Σ = [E(xtx
0
t)]
−1Ω[E(xtx0t)]−1, S is the stochastic selection matrix obtained

from 
I(|ξ1| > c

√
Σ11) 0 · · · 0

0 I(|ξ2| > c
√
Σ22) · · · 0

...
...

. . .
...

0 0 · · · I(|ξM | > c
√
ΣMM )


by deleting rows of zeros, Σjj is the (j, j)-th entry of Σ, S

∗ is defined as S with ξ replaced by η,
and η|ξ ∼ N(ξ,Σ).

Proof of Theorem 1.

The result for the no-change predictor holds trivially. Since T 1/2β̂
d→ N(δ,Σ) ≡ ξ by

Assumptions 1(a) and (b), the result for the unrestricted predictor follows immediately. The
result for the pretest predictor follows from Assumptions 1(a)-(c) and the continuous mapping
theorem because the set of discontinuity points is of measure zero. The result for the bagging
predictor follows from Assumptions 1(d)-(f) given that Assumption 1(g) implies the uniform
integrability in probability of bγ∗0S∗T .
From the viewpoint of economic forecasting it is instructive to study the properties of the

prediction mean squared error (PMSE) of these forecasting models. Note that in general

E[(yT+1 − ŷ(xT−h+1))
2|xT−h+1] = E[(yT+1 −E(yT+1|xT−h+1))

2|xT−h+1]

+[E(yT+1|xT−h+1)− ŷ(xT−h+1)]
2

= σ2 + [E(yT+1|xT−h+1)−E(ŷ(xT−h+1))]
2

+V ar(ŷ(xT−h+1)|xT−h+1), (7)

where σ2 = E
£
yT+1 −E(yT+1|xT−h+1)

¤2
. The last expression shows that the PMSE can be

decomposed into three terms: the population PMSE of the forecast model, the squared bias of
the forecasts and the variance of the forecasts. By choosing between different forecast models,
the forecaster may be able to reduce the second term or the third term, but the first term is
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beyond the forecaster’s control. We will refer to the sum of the last two terms as the mean-
squared error (MSE) of the predictor. The aim is to choose a predictor that minimizes this MSE.
The MSE expressions implied by Theorem 1 are too complicated to be compared analytically
in general. In the next subsection we will therefore simplify the model to allow us to build
intuition for the likely performance of bagging predictors compared to other predictors..

2.2 Why Bagging Tends to Work in Multiple Regression

The fundamental problem in choosing a forecast model is that of resolving the bias-variance
trade-off that arises when predictors are weak in the sense described above. Clearly, there is a
gain from choosing a more parsimonious model than the true model when the bias from under-
fitting is small relative to the reduction in estimation uncertainty. On the other hand, when the
predictor is sufficiently strong, the bias from underfitting will outweigh the variance reduction.
We illustrate this phenomenon with a stylized example involving only a single regressor. The
example is based on Bühlmann and Yu (2002). Suppose that β = δT−1/2, xt = 1 ∀t, εt is
distributed iid(0, σ2ε) with σ2ε = 1. For expository purposes, we will focus on h = 1. We also

will assume that E[(β̂ − β)(β̂ − β)0] = Σ+ o(1) in computing the PMSEs. Then the forecasts
from the unrestricted model, the zero mean (or no change) model and the pre-test model can
be written as

ŷUR = β̂,

ŷNC = 0,

ŷPT = bβI(|T 1/2β̂| > 1.96),
ŷBA =

1

B

BX
i=1

bβ∗iI(|T 1/2β̂∗i| > 1.96).
By an application of Theorem 1

T 1/2ŷUR d→ (δ + z),

T 1/2ŷNC = 0,

T 1/2ŷPT d→ (δ + z)I(|δ + z| > 1.96),
T 1/2ŷBA d→ (ξ − ξΦ(1.96− ξ̃) +

√
Σφ(1.96− ξ̃) + ξΦ(−1.96− ξ̃)

−
√
Σφ(−1.96− ξ̃)),

where z ∼ N(0, 1) and eξ = ξ/
√
Σ. Note that the asymptotic PMSE in this model is of the form

E[(yT+1 − ŷ(xT ))2|xT ] = σ2ε + bias
2 + variance. We will focus on the last two terms.

2.2.1 Comparing the MSE of the Pre-test Predictor, the No-change Pre-
dictor and the Unrestricted Predictor

We are interested in evaluating how the bias and variance of the UR, NC and PT predictors
affects their MSE. The magnitude of the MSE of each predictor is a function of the Pitman drift,
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δ. Given the bias-variance trade-off described earlier, the MSE ranking of the unrestricted and
the no-change forecast model will not be the same for all δ. The drift term δ in turn is directly
linked to the population R2 of the forecast model for finite T by R2 = δ0δ/(T + δ0δ).
For example, the MSE of the no-change forecast is a monotonically increasing function of δ.

In the limit, when the δ = 0, the no-change forecast has zero bias and zero variance and hence
zero MSE. Although its variance is always zero, its bias equals δ and hence increases linearly
with δ. The unrestricted forecast, in contrast, has the same MSE of 1 for all δ, because it will
be unbiased with constant variance of 1. Thus, for δ > 1 the unrestricted predictor has lower
MSE than the no-change predictor, for δ = 1 both models are tied and for δ < 1 the no-change
model is asymptotically more accurate (see Figure 1).
This result suggests that perhaps by selecting a subset of the predictors in the unrestricted

model, we may be able to improve on the forecast accuracy of the unrestricted and the no-change
model. Figure 1 shows that this strategy does not work in general because the pre-test forecast is
always dominated by the unrestricted or the no-change model. Intuitively, this happens because
the third term in the asymptotic PMSE expression is inflated by the excess variability induced
by testing.3

2.2.2 Comparing the MSE of the Bagging Predictor and the Pre-test Pre-
dictor

One way of improving on the pre-test predictor is to bootstrap-aggregate the pre-test estimator.
It may be shown that in the Bühlmann and Yu (2002) example that the PMSE of the pre-test
predictor and of the bagging predictor, respectively, are

T E[(E(yT+1)− ŷPT )2] = E[(ξ − δ)I(|eξ| > 1.96) + δI(|eξ| ≤ 1.96))]2
+o(1), (8)

T E[(E(yT+1)− ŷBA)2] = E[(δ − ξ + ξΦ(1.96− ξ̃)−
√
Σφ(1.96− ξ̃)

−ξΦ(−1.96− ξ̃) +
√
Σφ(−1.96− ξ̃))]2

+o(1). (9)

Note that the asymptotic PMSE expression for the bagging predictor does not depend on the
indicator function, reflecting the smoothing implied by bootstrap aggregation. Although this
smoothing should typically help to reduce the variance of the predictor relative to the pre-test
predictor, it is not obvious a priori whether bagging the pre-test predictor will also improve the
PMSE. Intuitively, we would expect bagging to reduce the PMSE by reducing the third term of
the PMSE expression, while leaving the second term largely unchanged.
Figure 2 compares the performance of the pre-test predictor and the bagging predictor for

this model. The upper panel of Figure 2 shows the squared bias of the predictors. Although
bagging actually reduces the bias somewhat for most values of δ, the gains are small. Basically,
bagging does not affect bias very much in one or the other direction. The second panel, in

3For a related discussion of the MSE of inequality constrained estimators see Thomson and Schmidt (1982).
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contrast, shows dramatic reductions in variance relative to the pre-test estimator for most δ,
which, as shown in the third panel, results in substantial improvements in the overall accuracy
measured by the PMSE, consistent with Breiman’s conjecture. Figure 2 illustrates the potential
of the bagging principle to improve forecast accuracy relative to the pre-test. Although this
improvement does not occur for all values of δ, it does for a wide range of δ.

2.2.3 Comparing the MSE of the Bagging Predictor, the No-change Pre-
dictor and the Unrestricted Predictor

Given that bagging has been shown to improve the accuracy of pre-tests in Figure 2, one might
hope that this improvement would perhaps be large enough to beat the unrestricted and no-
change forecast models, but the analysis of our stylized example suggests otherwise. Although
bagging indeed asymptotically improves on pre-testing for all but the smallest values of δ, as
Figure 1 shows, bagging in turn is dominated by the no-change forecast for low values of δ
and by the unrestricted model for large values of δ. Only for a very small range of δ values
near one is bagging the asymptotically best strategy. This conclusion is disturbing in that we
clearly cannot count on being in the small region for which bagging works, when doing applied
work. This conclusion holds for regression with one predictor as well as for regression with many
predictors, when all predictors are orthonormal with the same value of δ.

2.2.4 On the Role of Heterogeneity in the Predictors

There are reasons, however, to be more optimistic about the likely performance of bagging in
practice. Suppose that instead of having multiple predictors with the same δ we have multiple
predictors with different values of δ, say, three orthonormal predictors with δ1 = 0, δ2 = 1,
and δ3 = 2. If we evaluate those predictors at xiT = 1, i = 1, 2, 3, then we may read off their
respective asymptotic MSEs from Figure 1. For each forecast model, the combined forecast MSE
may be computed as the sum of the forecast MSEs for each δi, provided that εt is i.i.d. The
results of this exercise are shown in Table 1. Note that the combined bagging forecast MSE may
be lower than the combined MSE of either the unrestricted or the no-change forecast, even when
not all δi are near 1. In fact, in our example two out of three δi are far from 1. Nevertheless, the
combined bagging MSE is only 2.53 compared to 3, 3.97 and 5 for the other predictors. This
example illustrates that - at least under i.i.d. innovations - we would expect bagging to work
for a much wider range of δ, when the orthonormal predictors are heterogeneous in the sense of
having different slope parameters.
We conjecture that heterogeneity in the predictors is likely to improve the accuracy of bagging

forecasts, even when the predictors are not orthonormal and the innovations are not i.i.d.,
making the computation of the combined MSE nontrivial. In this more general case, we may
define heterogeneity as follows:

Definition 2.[Heterogeneity] Let yt+h = β0xt + εt+h = β0Σ1/2Σ−1/2xt + εt+h = eβ0T ext + εt+h,

where eβ0T = β0Σ1/2 and Σ = [E(xtx0t)]−1
X∞

j=0
E(xtεt+hεt+h−jxt−j)[E(xtx

0
t)]
−1. Then a vector

of predictors is said to be heterogeneous if
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eβ0T 6= κ+M

holds for any κεR / {0} where +M is an M-dimensional vector of ones.

The existence of such heterogeneity in empirical applications seems likely, if for no other
reason than that there are differences in the quality of predictor data and in their a priori
relevance (see, e.g., Boivin and Ng 2003). The conjecture that heterogeneity in this sense tends
to improve the performance of bagging predictors is supported by simulation evidence, as we
will show shortly. Nevertheless, it is important to be clear that heterogeneity in this sense is
neither necessary nor sufficient for bagging forecasts to be more accurate than forecasts from
the restricted, the unrestricted and the pre-test model.
It is not necessary because, as we have shown, it is entirely possible that bagging forecasts are

the most accurate forecasts even in the homogeneous case. This situation arises, for example,
when δi = 1.1 ∀i in the orthonormal model underlying Table 1. Conversely, the existence of
heterogeneity does not guarantee that the bagging forecast has the lowest MSE. Rather than
being universal, the accuracy gains from bagging - and indeed the ranking of all methods - will
depend on design features such as the population R2 of the forecast model (as a scalar summary
measure of the vector δ) and the number of predictors,M . Although we do not present detailed
results for the performance of bagging as a function ofM , we note that sizable gains in accuracy
may arise in practice for as few as five predictors. The extent of these gains depends crucially
on the population R2 (or, equivalently, the vector δ).
This point again may be illustrated in the context of the simple orthonormal model of Table

1. For example, when δ1 = 0, δ2 = 0.1, and δ3 = 0.2, both the pre-test forecast and the no
change forecast will be more accurate than the bagging forecast. When δ1 = 1.9, δ2 = 2,and
δ3 = 2.1, in contrast, the bagging forecast has lower MSE than the no-change and pre-test
forecasts, but higher MSE than the unrestricted forecast. In neither case, the bagging forecast
has the lowest MSE because the δi are clustered entirely to the left or entirely to the right of the
range where bagging yields improvements (see Figure 1). It is only when the δ includes values
to both sides of that range that heterogeneity may help boost the performance of bagging. For
example, if we had two orthonormal predictors with δ1 = 0, and δ2 = 2,the MSE of the bagging
forecast would be 1.76 compared with an MSE of 2.71 for the pre-test forecast, 3 for the forecast
from the unrestricted model and 4 for the no-change forecast.4

Although there is no compelling reason that heterogeneity alone will benefit bagging, we will
show that it typically does. The following two figures illustrate both the role of the population
R2 in bagging multiple regression models and the extent to which heterogeneity may extend the
range for which bagging works well. All results were computed based on M = 30 orthonormal
predictors for a sample size of T = 100.
Figure 3 is the direct multiple-regression analogue of the analysis of the single-regressor

model in Figure 2. We postulate M orthonormal predictors with the same slope parameter.

4It would be of obvious interest for empirical work to design a test of whether bagging can be expected to improve
forecast accuracy, but, since the vector δ cannot be estimated consistently, it is not possible to design such a test.
This means that, although we can describe the conditions under which bagging can be expected to improve forecast
accuracy, these conditions cannot be verified in practice.
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Thus, the predictors are homogeneous in the sense of Definition 2, and there is a one-for-one
mapping between δi = δ, i = 1, ...,M , and the population R2. As expected, the results in
Figure 3 are qualitatively the same as in Figure 2. For small values of R2 the bagging forecast is
dominated by the no-change forecast and for large values of R2 the unrestricted model dominates
the bagging model. Only for 0.2 < R2 < 0.5 the bagging predictor is the best choice (see vertical
bars). Thus, the range of R2 values for which bagging can be expected to work is rather small.
In contrast, Figure 4 shows the same experiment with different slope parameters for each

orthonormal predictor. Thus, the predictors are heterogeneous in the sense of Definition 2.5

Figure 4 shows that under heterogeneity the bagging predictor dominates the other predictors for
0.17 < R2 < 0.93 (see vertical bars). The range for which bagging works best more than doubles,
improving our confidence that bagging would perform well in practice. This simulation example
illustrates our point about the beneficial effects of heterogeneity on the likely performance of
bagging in multiple regression problems. Note that we do not claim that the particular ranges
found in this example are representative for applied work. Rather our point is that heterogeneity
will tend to increase the scope for improvements in forecast accuracy from bagging.

3 Simulation Evidence

We now turn to a simulation study to investigate the potential of bagging to improve forecast
accuracy relative to the unrestricted forecast model, various restricted forecast models and the
pre-test forecast model. An additional question of practical interest is whether the bagging
strategy is competitive with alternative approaches to forecasting from large data sets such
as forecast combinations or forecasts from dynamic factor models. We focus on the latter
alternative, because of earlier evidence that dynamic factor models tend to be more accurate
than mean or median-based combination forecasts (see Stock and Watson 1999). We postpone
for future research a comparison with Bayesian methods of regression-based forecast combination
(see, e.g., Wright 2003).
Our aim here is not to argue that bagging will in general be superior to those alternative

approaches. Clearly, the design of our study is too limited to make such a case. Rather we want
to illustrate the importance of various design features that will affect the relative performance
of bagging and other forecasting techniques. We also want to illustrate the potential gains from
bagging and we want to show that the bagging approach is not dominated by existing forecasting
techniques in situations when M is large, but still much smaller than T .

3.1 Simulation Design

All simulations in this paper are based on M = 30 and T = 100. This setting is intended to
capture the assumption that the number of predictors is large, but distinctly smaller than the
sample size. We postulate that

yt+1 = β0xt + εt+1 (10)

5Specifically, we use design 3 described in section 3.1. Similar results are obtained for other heterogeneous designs.
Figures 3 and 4 are based on averages across 5000 trials with B=100.
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where εt ∼ NID(0, 1). The innovation variance of εt can be set to one without loss of generality,
since we will scale the variance of β0xt to maintain a given R2 of the forecast model. We will
consider R2 = 0.25 and R2 = 0.5 in the simulation study.

3.1.1 Design of Slope Parameters in Forecast Model

The first design issue is the choice of the slope parameter vector β. As discussed in the previous
section, the relative performance of bagging is expected to improve when the predictors are
heterogeneous in the sense of Definition 2. We attempt to capture this heterogeneity in our
simulation design by exploring a number of different profiles for the slope parameters. As a
benchmark we include a vector of constants in design 1. When the regressors are orthonormal,
this design imposes homogeneity in the sense of Definition 2. The other six designs imply
heterogeneity. Designs 4 and 5 are step functions. The remaining designs incorporate smooth
decays, some slow and others (like the exponential design 6) very rapid decays, resulting in a few
regressors with relatively high predictive power and many regressors with negligible predictive
power.
Design 1. β = c1[1, 1, ..., 1]

0.
Design 2. β = c2[30, 29, 28..., 1]

0.
Design 3. β = c3[1, 1/2, 1/3..., 1/30]0.
Design 4. β = c4[11×15, 01×15].
Design 5. β = c5[11×8, 01×22].
Design 6. β = c6[e−1, e−2, ..., e−30]0.
Design 7. β = c7[

√
30,
√
29, ..., 1]0.

The scaling constants ci, i = 1, .., 7, are chosen, given the variance of xt, such that the
population R2 of the forecasting model is the same across all profiles.

3.1.2 Design of Regressor Matrix

The second design issue is the data generating process for the vector of predictors, xt. For
expository purposes we begin by postulating that the predictors are uncorrelated Gaussian
white noise.
Case 1.

xt ∼ NID(0, I30)

While instructive, this first case, in which all predictors are orthonormal, is implausible
in that most economic data show a fair degree co-movements. It is this co-movement that
motivated the development of factor models. The remaining data generating processes for xt
are therefore based on factor models with ranks of r ε {1, 2, 3, 4}.

Case 2.
xt = ΛFt + ηt
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where Ft ∼ N(0, Ir), ηt ∼ N(030×1, I30), and Λ is an Mxr matrix of parameters.

Since we do not know the value of Λ, we replace the elements of the parameter matrix Λ
by independent random draws from the standard normal distribution. For each draw of Λ we
compute the root PMSE for each model based on 5,000 Monte Carlo trials. Since the results
may differ across draws, in the simulation study we report average root PMSE ratios based on
30 draws of Λ.

3.1.3 Controlling the Strength of the Factor Component in the Predictors

A third design feature is the relative importance of the idiosyncratic component ηt relative to
the factor component ΛFt in the DGP for xt. We measure the explanatory power of the factor
component by the pseudo-R2 measure

R2pseudo =
tr(ΛΛ0)

tr(ΛΛ0 +Σηt
)
,

where Σηt
denotes the covariance matrix of ηt and tr denotes the trace operator. We chose this

ratio to match the pseudo-R2 measure found in our empirical application in section 4. In the
limit, for R2pseudo = 0, the factor model reduces to the orthonormal model of case 1. The data

suggest values of approximately R2pseudo = 0.2 for r = 1, R
2
pseudo = 0.3 for r = 2, R

2
pseudo = 0.4

for r = 3, and R2pseudo = 0.5 for r = 4.

3.2 Simulation Results

The simulation results are presented in Tables 2 and 3. For each panel of the table, we normalize
the results relative to the root PMSE (RPMSE) of the true model. We show results for the
unrestricted model, the zero-mean (or no change) model, the estimated mean (or constant-
change) model, the pre-test model discussed earlier, and the bagging model. Bagging results
are based on B = 100 throughout. We also investigate factor models with rank r ε {1, 2, 3, 4}.
The factor model forecasts are based on the regression

yt+1 = α+ φ(L)yt + θ(L) bFt + εt+1

with β(L) = 0 and θ(L) = θ imposed in the simulation study.

3.2.1 Case 1: Orthonormal Predictors

Table 2 shows the results for a population R2 of 0.25 and Table 3 the corresponding results when
the slope coefficients have been scaled to imply R2 = 0.5. The first panel of each table presents
results for orthonormal white noise predictors. This case is interesting primarily because it
is closest to the simplified assumptions used in section (2.2) when we discussed the intuition
for bagging. For R2 = 0.25 bagging improves on the true model for all designs with gains in
the range of 10 to 20 percentage points of the RPMSE. Bagging also improves on the pre-test
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forecast with two exceptions. For design 5, bagging and pre-test forecasts are tied; for the
exponential design 6, pre-test forecasts are more accurate than bagging forecasts. Both are
much more accurate than the alternatives. As expected, the bagging forecast is more accurate
than the factor model forecast for all designs. This is not surprising since there is no factor
structure in population. Nevertheless, even factor models routinely outperform the true model,
reflecting a favorable bias-variance trade-off. The additional gains from bagging range from 2
to 10 percentage points of the RPMSE of the true model.
For R2 = 0.5, in contrast, imposing incorrect factor structure harms the factor models, indi-

cating that the bias induced by imposing a factor structure outweighs the reduction in variance.
The constant-change and no-change models perform poorly for the same reason. Bagging fore-
casts are once again more accurate than the true model with one important exception. For
design 1, the true unrestricted model is even more accurate than the bagging model. This re-
sult underscores our theoretical point about the importance of heterogeneity in the predictors.
Design 1 mimics the situation in which all predictors are perfectly homogeneous. In contrast,
all other design incorporate varying degrees of heterogeneity.

3.2.2 Case 2: Common Factors among Predictors

The simulation results for the first case confirm the view that bagging will tend to work well
when the predictors are heterogeneous. Case 1, however, is unrealistic in that it treats the
predictors as uncorrelated. In economic applications most predictors show co-movement of
varying degrees. This co-movement may be approximated by factor models. We therefore will
focus on factor model data generating processes for the predictors in the remaining panels of
Tables 2 and 3. We begin with case when the true model is a factor model of rank 1. In
that case, for R2 = 0.25, the unrestricted, no-change and constant-change forecasts perform
poorly relative to the true model. Factor model forecasts perform well, regardless of the rank
imposed. Pre-test forecasts perform erratically. In contrast, bagging forecasts do well across
the board. They are more accurate than forecasts from any factor model considered, regardless
of the design, with percentage gains close to 10 percentage points in some cases. Turning to
the results for R2 = 0.5 in Table 3, we see that the relative advantages of bagging forecasts
increase further with percentage gains of more than 30 percentage points relative to the true
factor model in some cases. Interestingly, even the unrestricted model outperforms the factor
model in this case, although not by as much as the bagging forecast. These results reflect the
relatively low R2pseudo for rank 1 models, which makes it hard to extract reliably the true factor
structure in small samples. The bagging method does not impose any structure and hence is
more robust.
The third panel in Tables 2 and 3 shows qualitatively similar results for rank 2 data generating

processes. As the rank increases further, the results for R2 = 0.25 become more mixed. In many
cases, the factor model is somewhat more accurate than bagging, but only if the researcher
imposes a rank close enough to the true rank. Typically, underestimation of the rank results
in increases in the RPMSE. Although not the best forecast model in all cases, bagging remains
quite competitive in most cases. It always outperforms some factor models and all other forecast
models under consideration. In two of six heterogeneous designs it even outperforms all factor
models. Moreover, for R2 = 0.5 the bagging forecast is more accurate than any of the factor
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models, in some cases by more than 20 percentage points.

3.2.3 Sensitivity Analysis

All results in Tables 1 and 2 are based on the same choices for R2, R2pseudo and M . We
conclude this subsection with some sensitivity analysis that illustrates the role of these design
parameters. Figures 5 and 6 are based on a representative draw from the rank 1 factor model
data generating process for design 3. These simulation examples are not intended as concrete
advice for practitioners, but are designed to illustrate the trade-offs that govern the ranking
of bagging forecasts and factor model forecasts in practice. Figure 5 shows that the gains in
accuracy from bagging forecasts decline - relative to using the best factor model forecast among
models with r ε {1, 2, 3, 4} - as M increases. This result simply reflects the fact that - all else
equal - a larger M allows the more precise estimation of the factor component.
The ranking itself also depends on the population R2 of the unrestricted forecast model.

Low R2 favors factor models because in that case the gains from imposing the correct factor
structure are largest. In the example, for R2 = 0.25 the best factor model outperforms bagging
for M in excess of about 38; for R2 = 0.5 bagging forecasts remain the more accurate forecasts
even for M = 45, but here as well the gains from bagging decline with M .
Similarly important is the question of how strong the factor component in the predictor data

is. Figure 6 shows that the gains in accuracy from bagging decline relative to the best factor
model, as R2pseudo increases, as one would expect when the factor model is the true model. Again

the range of R2pseudo, for which bagging is more accurate than factor models increases with R
2.

While the simulation results are encouraging, we have no way of knowing a priori whether
the data generating process in a given empirical application will favor bagging or factor model
forecasts because that ranking will depend on unknown features of the data generating process.
Given the difficulty of generalizing the results of our simulation study, we recommend that, in
practice, researchers choose between the bagging strategy and the dynamic factor model strategy
based on the ranking of their recursive PMSE in simulated out-of-sample forecasts. The model
with the lower recursive PMSE up to date T − h will be chosen for forecasting yT+1. We will
illustrate this approach in the next section for a typical forecast problem in economics.

4 Application: Do Indicators of Real Economic Activity
Improve the Accuracy of U.S. Inflation Forecasts?

We investigate whether one-month and twelve-months ahead U.S. CPI inflation forecasts may be
improved upon by adding indicators of real economic activity to models involving only lagged
inflation rates. This empirical example is in the spirit of recent work by Stock and Watson
(1999), Bernanke and Boivin (2003), Forni et al. (2003), and Wright (2003). The choice of the
benchmark model is conventional (see, e.g., Stock and Watson 2003, Forni et al. 2003). The
lag order of the benchmark model is determined by the AIC subject to an upper bound of 12
lags. The optimal model is determined recursively in real time, so the lag order may change as
we move through the sample.
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Since there is no universally agreed on measure of real economic activity we consider 26
potential predictors that can be reasonably expected to be correlated with real economic activity.
A complete variable list is provided in the Data Appendix. We obtain monthly data for the
United States from the Federal Reserve Bank of St. Louis data base (FRED). We convert all
data with the exception of the interest rates into annualized percentage growth rates. Interest
rates are expressed in percent. Data are used in seasonally adjusted form where appropriate.
All predictor data are standardized (i.e., demeaned and scaled to have unit variance and zero
mean), as is customary in the factor model literature. We do not attempt to identify and remove
outliers.
The alternative forecasting strategies under consideration include the benchmark model in-

volving only lags of monthly inflation and seven models that include in addition at least some
indicators of economic activity. The unrestricted (UR) model includes one or more lags of all
26 indicators of economic activity as separate regressors in addition to lagged inflation. The
pre-test (PT ) model uses only a subset of these additional predictors. The subset is selected
using 2-sided t-tests for each predictor at the 5% significance level. Forecasts are generated from
the subset model. The bagging (BA) forecast is the average of these pre-test predictors across
100 bootstrap replications. For the one-month ahead forecast model there is no evidence of serial
correlation in the unrestricted model, so we use White (1980) robust standard errors for the
pre-tests and the pairwise bootstrap. For the twelve-month ahead-forecast we use West (1997)
standard errors with a truncation lag of 11 and the blocks-of-blocks bootstrap with m = 12.
Finally, we also fit factor models with rank r ε {1, 2, 3, 4} to the 26 potential predictors and
generate forecasts by adding one or more lagged values of this factor to the benchmark model
(DFM).
We compute results for the UR, PT , and BA methods for up to three lags of the block of

indicator variables in the unrestricted model. Note that adding more lags tends to result in
near-singularity problems, when the estimation window is short. Even for three lags of the 26
indicator variables, there are near-singularity problems at the beginning of the recursive sample.
We also show results based on the SIC with an upper bound of 2 lags. For larger upper bounds,
near-singularity problems tend to arise at the beginning of the sample. In contrast, dynamic
factor models are more parsimonious and hence allow for richer dynamics. We show results for
models including up to five additional lags of the estimated factor. We also allow the lag order
q to be selected by the SIC. The SIC generally produced more accurate forecasts than the AIC.
The results are robust to the upper bound on the lag order.
To summarize, the forecast methods under consideration are:
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Benchmark : πh
t+h|t = bα+Xp

k=1
bφkπt−k

UR : πh
t+h|t = bα+Xp

k=1
bφkπt−k +

Xq

l=1

XM

j=1
bβjlxjt−l+1

PT : πh
t+h|t = bα+Xp

k=1
bφkπt−k +

Xq

l=1

XM

j=1
bγjlI(|tjl| > 1.96)xjt−l+1

BA : πh
t+h|t =

1

100

100X
i=1

µbα∗ +Xp

i=1
bφ∗iπt−i +

Xq

l=1

XM

j=1
bγ∗jlI(|t∗jl| > 1.96)xjt−l+1

¶
DFM : πh

t+h|t = bα+Xp

k=1
bφkπt−k +

Xq

l=1
bθl bFt−l+1

where πh
t+h denotes the rate of inflation over the period t to t+ h.

The accuracy of each method is measured by the square root of the average of the squared
forecast errors (RPMSE) obtained by recursively re-estimating the model at each point in time
and forecasting πh

t+h. Note that we also re-estimate the lag orders at each point in time, unless
noted otherwise. The evaluation period consists of 240 observations covering the most recent
twenty years in the sample. Table 4 shows the results for one-month ahead forecasts of U.S. CPI
inflation (h = 1). The best results for each method are shown in bold face. Table 4 shows that
bagging the pre-test is by far the most accurate forecasting procedure. The bagging forecast
outperforms the benchmark autoregressive model, the unrestricted model and factor models
with rank 1, 2, 3, or 4. The gains in forecast accuracy are 16 percentage points of the RPMSE
of the AR benchmark. Dynamic factor models, in contrast, outperform the benchmark at best
by 3 percentage points. These results are robust to extending or shortening the evaluation
period of 240 observations.
One would expect that imposing the factor structure becomes more useful at longer forecast

horizons. Table 5 shows the corresponding results for a horizon of twelve months (h = 12). In
that case, the benchmark model no longer is an autoregression. Here as well the bagging forecast
is by far the most accurate forecast. The accuracy gains are even larger with 44 percentage points
relative to the benchmark model. Dynamic factor models also perform well, as expected, but
the best factor model is still less accurate than the bagging model by 11 percentage points.
This result is perhaps surprising in that the dynamics allowed for in bagging are much more
restrictive than for factor models. Using the SIC for selecting the lag order q at each point in
time does not necessarily improve the accuracy of the forecast relative to fixed lag structures.
We also computed the forecast accuracy of the median forecast from all possible models

including just one indicator of economic activity at a time in addition to lagged inflation rates.
We found that this combination forecast, was typically inferior to the best factor model forecast
and always inferior to the bagging forecast. This finding is consistent with the results of Stock
and Watson (1999), who investigated a number of different methods of combining inflation
forecasts and found them to be inferior to dynamic factor model forecasts.
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5 Conclusion

Bagging is designed for situations, in which there is a moderately large number of predictors
relative to the sample size. The bagging method discussed here is likely to be useful in a vari-
ety of contexts. We may be interested in forecasting macroeconomic aggregates from sectoral
or regional components or from latent variables that are imperfectly measured by observables.
Apart from the inflation examples used in this paper, the same tools may be applied, for ex-
ample, to predict stock returns, exchange returns, growth rates of output, sales, productivity or
consumption, leading economic indicators or unemployment rates.
Like other methods of combining information from many predictors - such as dynamic factor

models or forecast combination methods - bagging does not necessarily improve forecast accu-
racy in all cases. Nevertheless, bagging has the potential to yield substantial improvements in
accuracy in practice. We showed that it tends to perform better than the unrestricted forecast
model as well as the fully restricted model under mild conditions. Bagging also tends to perform
better than the pre-test forecast model. Finally, it often performs better than factor models,
even when the true model has a factor structure. The simulation and empirical evidence, how-
ever, should not be interpreted to mean that bagging should routinely replace dynamic factor
models. Rather the bagging method should be viewed as complementary to the use of dynamic
factor models in forecasting for two reasons.
First, dynamic factor models are designed for data sets with large M relative to T and

may not work well, unless M is large enough.6 In contrast, bagging is designed for forecasting
situations in which M is large, but clearly smaller than T . In this sense, one might say that
bagging is designed to work in precisely those situations, in which the standard justification
for forecasting from estimated dynamic factor models is questionable. Conversely, bagging
cannot be expected to work well in situations for which dynamic factor models have been
designed. Bagging becomes infeasible when the number of predictors, M , is too large relative
to T , because near-singularity problems arise in computing the least-squares estimator of the
unrestricted model, on which the bootstrap approximation is based.7

Second, as we have shown, the ranking of bagging forecasts and forecasts from dynamic factor
models will in general depend on features of the unknown data generating process. For example,
the relative performance will depend crucially on the strength of the common factor component
relative to the idiosyncratic noise component in the set of predictors. When the factor structure
is weak, as it appears to be in our empirical example, bagging may be much more accurate
in small samples than imposing a factor structure, even when the data are truly generated
by the factor model. In contrast, when the data are well approximated by a common factor
model, bagging clearly cannot be expected to outperform the dynamic factor model forecast.
Given the difficulties of arriving at general results for the ranking of bagging relative to factor
model forecasts, we provided some guidance as to how to choose between competing forecast
approaches in practice based on simulated out-of-sample forecasts.

6Specifically, standard asymptotic theory for forecasts from dynamic factor models postulates that T/M → 0.
This is often heuristically interpreted as requiring that M be as large as T or larger for fixed T (see, e.g., Bai and
Ng 2003).

7In our simulation study, these near-singularity problems for the OLS estimator arose for M > 50 when T = 100.
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An important caveat is that the theory of bagging presented in this paper assumes a covari-
ance stationary environment. This means that all variables must be transformed to stationarity
prior to the analysis. It also means that we abstract from the possibility of structural change.
The same is true of the standard theory of forecast combination, which relies on information
pooling in a stationary environment. In contrast, the theory for factor models does allow for
some forms of smooth structural change, although not when M < T . An interesting avenue for
future research would be the development of bagging methods that allow for smooth structural
change. A second direction for future research would be a comparison of bagging forecast meth-
ods, which have been derived from a frequentist perspective, with Bayesian methods of forecast
model combination of the type recently considered by Wright (2003).
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Data Appendix

All data are for the United States. The sample period for the raw data is 1971.4-2003.7. This
choice is dictated by data constraints. The variable codes are from FRED:

INDPRO industrial production
HOUST housing starts
HSN1F house sales
NAPM purchasing managers index
HELPWANT help wanted index
TCU capacity utilization
UNRATE unemployment rate
PAY EMS nonfarm payroll employment
CIV PART civilian participation rate
AWHI average weekly hours
MORTG mortgage rate
MPRIME prime rate
CD1M 1-month CD rate
FEDFUNDS Federal funds rate
M1SL M1
M2SL M2
M3SL M3
BUSLOANS business loans
CONSUMER consumer loans
REALN real estate loans

EXGEUS
DM/USD rate

(extrapolated using the Euro/USD rate)
EXJPUS Yen/USD rate
EXCAUS Canadian Dollar/USD rate
EXUSUK USD/British Pound rate
OILPRICE WTI crude oil spot price
TRSP500 SP500 stock returns

21



References

1. Andrews, D.W.K., (2002), “Higher-order improvements of a computationally attractive
k-step bootstrap for extremum estimators,” Econometrica, 70, 119—162.

2. Bai, J., and S. Ng (2003), “Confidence Intervals for Diffusion Index Forecasts with a Large
Number of Predictors” mimeo, Department of Economics, University of Michigan.

3. Bernanke, B.S., and J. Boivin (2003), “Monetary Policy in a Data-Rich Environment,”
Journal of Monetary Economics, 50, 525-546.

4. Billingsley, P. (1995), Probability and Measure, 3rd ed. John Wiley and Sons: New York.

5. Boivin, J., and S. Ng (2003), “Are More Data Always Better for Factor Analysis?” mimeo,
Department of Economics, University of Michigan.

6. Breiman, L. (1996), “Bagging Predictors,” Machine Learning, 36, 105-139.
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Table 1. MSE of Three Heterogeneous Predictors:

Models MSE =
MX
i=1

MSE(i)

Unrestricted 3.000
No Change 5.000
Pre-test 3.964
Bagging pre-test 2.530

Source: Asymptotic analysis based on δ1 = 0,

δ2 = 1, δ3 = 2 in stylized example with

orthonormal predictors evaluated at xiT = 1,

i = 1, 2, 3.
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Table 2. Out-of-Sample Forecast Accuracy for R2= 0.25:
RPMSE Normalized Relative to True Model

Rank 0 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Constant change 0.915 0.917 0.900 0.897 0.890 0.910 0.908
No Change 0.907 0.911 0.894 0.887 0.881 0.902 0.899
Pre-test 0.980 0.963 0.814 0.931 0.887 0.757 0.956

Bagging pre-test 0.877 0.872 0.814 0.859 0.845 0.793 0.869
DFM rank 1 0.901 0.903 0.894 0.888 0.878 0.899 0.896
DFM rank 2 0.896 0.895 0.891 0.884 0.878 0.902 0.891
DFM rank 3 0.893 0.893 0.886 0.881 0.872 0.896 0.889
DFM rank 4 0.890 0.889 0.883 0.878 0.870 0.892 0.887

Rank 1 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 1.142 1.142 1.143 1.145 1.146 1.142 1.143
Constant change 1.051 1.050 1.034 1.048 1.041 1.021 1.051
No Change 1.041 1.039 1.024 1.038 1.032 1.011 1.041
Pre-test 1.100 1.081 0.947 1.075 1.034 0.884 1.093

Bagging pre-test 0.900 0.984 0.941 0.984 0.972 0.916 0.988
DFM rank 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DFM rank 2 0.997 0.997 0.996 0.997 0.997 0.996 0.997
DFM rank 3 0.995 0.995 0.993 0.996 0.995 0.992 0.995
DFM rank 4 0.994 0.994 0.991 0.995 0.993 0.990 0.994

Rank 2 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 1.159 1.156 1.159 1.164 1.163 1.168 1.161
Constant change 1.054 1.046 1.062 1.059 1.044 1.068 1.062
No Change 1.044 1.036 1.052 1.048 1.034 1.059 1.052
Pre-test 1.099 1.081 0.962 1.084 1.043 0.907 1.100

Bagging pre-test 0.997 0.990 0.953 0.994 0.981 0.936 0.997
DFM rank 1 1.022 1.019 1.021 1.023 1.018 1.024 1.023
DFM rank 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DFM rank 3 0.999 0.999 0.999 1.000 0.999 1.000 0.999
DFM rank 4 0.997 0.999 0.998 0.998 0.997 0.999 0.997
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Rank 3 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 1.195 1.199 1.191 1.195 1.193 1.188 1.193
Constant change 1.090 1.113 1.075 1.089 1.100 1.083 1.082
No Change 1.079 1.102 1.064 1.078 1.089 1.072 1.071
Pre-test 1.131 1.127 0.988 1.107 1.078 0.922 1.120

Bagging pre-test 1.019 1.019 0.973 1.011 1.001 0.948 1.015
DFM rank 1 1.050 1.060 1.047 1.059 1.059 1.044 1.048
DFM rank 2 1.025 1.031 1.014 1.025 1.015 1.013 1.022
DFM rank 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DFM rank 4 1.001 1.002 1.000 1.000 1.001 1.000 1.001

Rank 4 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 1.216 1.219 1.211 1.209 1.206 1.213 1.213
Constant change 1.125 1.135 1.096 1.077 1.075 1.101 1.110
No Change 1.114 1.123 1.084 1.066 1.065 1.090 1.099
Pre-test 1.141 1.137 1.009 1.097 1.073 0.949 1.125

Bagging pre-test 1.027 1.027 0.986 1.013 1.003 0.967 1.022
DFM rank 1 1.073 1.075 1.055 1.047 1.048 1.052 1.065
DFM rank 2 1.037 1.036 1.025 1.027 1.021 1.020 1.033
DFM rank 3 1.002 1.011 1.010 1.013 1.010 1.007 1.011
DFM rank 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SOURCE: Based on 5000 trials.
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Table 3. Out-of-Sample Forecast Accuracy for R2= 0.5:
RPMSE Normalized Relative to True Model

Rank 0 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Constant change 1.389 1.392 1.350 1.345 1.338 1.349 1.373
No Change 1.376 1.382 1.345 1.327 1.323 1.343 1.358
Pre-test 1.340 1.176 0.881 1.086 0.889 0.760 1.265

Bagging pre-test 1.012 0.972 0.851 0.944 0.878 0.797 0.990
DFM rank 1 1.347 1.349 1.316 1.312 1.295 1.316 1.333
DFM rank 2 1.319 1.318 1.287 1.287 1.279 1.283 1.308
DFM rank 3 1.297 1.296 1.261 1.264 1.248 1.253 1.286
DFM rank 4 1.272 1.267 1.237 1.240 1.226 1.230 1.264

Rank 1 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 0.808 0.808 0.807 0.812 0.813 0.807 0.809
Constant change 1.122 1.120 1.081 1.114 1.100 1.056 1.121
No Change 1.111 1.109 1.070 1.103 1.0900 1.045 1.111
Pre-test 1.036 0.942 0.719 0.903 0.756 0.632 0.992

Bagging pre-test 0.795 0.772 0.688 0.764 0.722 0.650 0.786
DFM rank 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DFM rank 2 0.981 0.982 0.980 0.982 0.981 0.979 0.981
DFM rank 3 0.965 0.965 0.961 0.967 0.965 0.960 0.965
DFM rank 4 0.950 0.951 0.943 0.953 0.949 0.941 0.950

Rank 2 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 0.8507 0.8482 0.8521 0.8561 0.8532 0.8605 0.8534
Constant change 1.1438 1.1264 1.1631 1.1533 1.1219 1.1760 1.1617
No Change 1.1326 1.1154 1.1519 1.1440 1.1105 1.1651 1.1504
Pre-test 1.0649 0.9719 0.7585 0.9509 0.8069 0.6761 1.0358

Bagging pre-test 0.8268 0.8030 0.7238 0.8007 0.7574 0.6925 0.8204
DFM rank 1 1.0599 1.0540 1.0583 1.0633 1.0513 1.0633 1.0639
DFM rank 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DFM rank 3 0.9839 0.9853 0.9846 0.9857 0.9839 0.9860 0.9836
DFM rank 4 0.9693 0.9720 0.9705 0.9706 0.9682 0.9713 0.9684
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Rank 3 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 0.9163 0.9225 0.9096 0.9158 0.9148 0.9062 0.9133
Constant change 1.2461 1.3029 1.2143 1.2459 1.2700 1.2279 1.2274
No Change 1.2333 1.2898 1.2017 1.2334 1.2573 1.2151 1.2149
Pre-test 1.1312 1.0691 0.8084 1.0190 0.8807 0.7117 1.0933

Bagging pre-test 0.8796 0.8666 0.7681 0.8487 0.8098 0.7261 0.8672
DFM rank 1 1.1418 1.1647 1.1363 1.1646 1.1642 1.1272 1.1414
DFM rank 2 1.0704 1.0857 1.0470 1.0718 1.0477 1.0426 1.0632
DFM rank 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DFM rank 4 0.9878 0.9889 0.9853 0.9862 0.9879 0.9856 0.9871

Rank 4 Data Generating Process

Forecast Model Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

Unrestricted 0.973 0.978 0.964 0.961 0.957 0.968 0.967
Constant change 1.360 1.384 1.288 1.242 1.238 1.304 1.322
No Change 1.346 1.370 1.274 1.230 1.225 1.290 1.309
Pre-test 1.190 1.129 0.856 1.054 0.933 0.763 1.144

Bagging pre-test 0.919 0.907 0.811 0.880 0.843 0.774 0.905
DFM rank 1 1.220 1.226 1.177 1.157 1.158 1.174 1.200
DFM rank 2 1.121 1.119 1.090 1.097 1.081 1.086 1.111
DFM rank 3 1.046 1.043 1.039 1.047 1.041 1.037 1.044
DFM rank 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SOURCE: Based on 5000 trials.
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Table 4. Out-of-Sample Forecast Accuracy:
U.S. Inflation Forecasts: 1 Month Ahead

Evaluation Period: 1983.8-2003.7

Models with Indicators of Economic Activity

RPMSE Relative to AR Benchmark at h=1

Lags of DFM
Indicators UR PT BA rank 1 rank 2 rank 3 rank 4

1 0.885 0.899 0.833 0.985 0.991 1.036 0.978
2 1.168 0.925 0.862 0.969 0.983 1.049 1.021
3 1.668 1.017 14.302 0.984 1.000 1.055 1.049
4 - - - 0.990 1.013 1.094 1.089
5 - - - 0.993 1.019 1.123 1.142
6 - - - 0.998 1.012 1.168 1.185
SIC 0.885 0.899 0.836 0.984 1.014 1.135 1.066

SOURCE: The sample period of the raw data is 1971.4-2003.7. The RPMSE is based
on the average of the squared recursive forecast errors. All pre-tests are based on White
(1980) robust standard errors. The bagging results are based on the pairwise bootstrap.

Table 5. Out-of-Sample Forecast Accuracy:
U.S. Inflation Forecasts: 12 Months Ahead

Evaluation Period: 1983.8-2003.7

Models with Indicators of Economic Activity

RPMSE Relative to Benchmark at h=12

Lags of DFM
Indicators UR PT BA rank 1 rank 2 rank 3 rank 4

1 0.695 1.190 0.582 0.720 0.739 0.785 0.731
2 0.838 1.046 0.564 0.674 0.691 0.746 0.704
3 1.207 1.061 0.672 0.668 0.685 0.755 0.743
4 - - - 0.673 0.687 0.774 0.790
5 - - - 0.686 0.703 0.784 0.829
6 - - - 0.708 0.732 0.803 0.884
SIC 0.695 1.190 0.582 0.776 0.700 0.738 0.830

SOURCE: The sample period of the raw data is 1971.4-2003.7. The RPMSE is based
on the average of the squared recursive forecasts errors. All pre-tests are based on West
(1997) robust standard errors. The bagging results are based on blocks of length m = 11.
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Figure 1: MSE of Alternative Predictors in Single-Regressor Model
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Figure 2: Bias2, Variance and MSE of Pre-test and Bagging Predictors
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Figure 3: MSE of Alternative Predictors in Multiple-Regressor Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Homogeneous Design

M
S

E

Population R2

NC

UR

PT

BA

32



Figure 4: MSE of Alternative Predictors in Multiple-Regressor Model
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Figure 5: Gains from Bagging as a Function of M
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Figure 6: Gains from Bagging as a Function of the Strength of the Common Component
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