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Abstract

Willig (1976) argues that the change in consumer’s surplus is often a good
approximation to the willingness to pay for a price change: if the income elas-
ticity of demand is small, or the price change is small, then the percentage error
from using consumer’s surplus is small. If the price of a good is random, then the
change in expected consumer’s surplus (ECS) equals a consumer’s willingness
to pay for a change in its distribution if and only if its demand is independent
of income and the consumer is risk neutral. We ask how well the change in
ECS approximates the willingness to pay if these conditions fail. We show that
the difference between the change in ECS and willingness to pay is of higher
order than the L1 distance between the price distributions if and only if the
indirect utility function is additively separable in the price and income. If addi-
tively separability fails, then the percentage error from using ECS is unbounded
for small distribution changes, and is always nonzero in the limit except for
knife-edge cases. If, however, the distribution change is smooth on the space of
random variables, and either the initial price is nonrandom or state-contingent
payments are possible, then the change in ECS might approximate the willing-
ness to pay well. Unfortunately, this smoothness condition necessarily fails in
some important applications of ECS.

JEL Classifications: D6, D8
Keywords: Expected Consumer’s Surplus, Welfare under Uncertainty, Lo-

cal Cost-Benefit Analysis

1I thank Hector Chade, Glenn Ellison, Peter Hammond, Manuel Santos and seminar par-
ticipants at Arizona State and Yale for comments.
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1 Introduction

Expected consumer’s surplus remains a popular measure of consumer welfare in
applied microeconomic models with uncertainty. It is especially so in Industrial
Organization, where incomplete information models have flourished. Its popu-
larity is easy to explain: it allows economists to evaluate consumer welfare under
uncertainty using only demands, without directly specifying the preferences and
endowments of consumers.

Rogerson (1980) and Turnovsky, et. al. (1980) consider the validity of ex-
pected consumer’s surplus as a welfare index. They show that expected con-
sumer’s surplus (ECS) represents a consumer’s (expected utility) preferences
over price distributions if and only if the consumer’s marginal utility of income
is independent of the good’s price (and any other random variables entering the
indirect utility function). In many applications, however, expected consumer’s
surplus is not simply used to rank random alternatives for consumers: it is added
to the change in expected profit to evaluate overall welfare. For this sum to be a
valid welfare index in the sense that it rises if and only if the change is a poten-
tial Pareto improvement (money can be redistributed to make everyone better
off after the change) expected consumer’s surplus must not only represent each
consumer’s preferences, but must equal each consumer’s ex ante willingness to
pay for the change, a much more demanding requirement (see our Remark 1).
Indeed, expected consumer’s surplus equals the willingness to pay if and only if
the indirect utility is quasilinear in income (e. g. Stennek, 1999), implying both
that the demand for good is independent of income and that the consumer is
risk neutral over income gambles.

Although income effects might often be small, risk aversion over income
gambles is not. To illustrate how risk aversion can dramatically affect welfare
results, consider the regulation of a monopolist who has private information
about its costs. If we use expected total surplus to evaluate outcomes, then the
highest possible price under the optimal policy can exceed the highest price for
an unregulated monopoly (Baron and Myerson, 1982: 922). Suppose that this is
the case and imagine that we take a concave transformation of each consumer’s
indirect utility function. This transformation does not affect demand or ECS
but makes each consumer income risk averse. If all consumers are sufficiently
risk averse, then all of them will prefer no regulation at all to the ‘optimal’
regulatory policy: the worst possible outcome for consumers is under the policy
that evaluates outcomes by expected total surplus.

A natural question is how well the change in expected consumer’s surplus
approximates the willingness to pay when consumers are risk averse and income
affects demand. For nonrandom prices, Willig (1976; 1979) argues that the
change in consumer’s surplus is often a good approximation to the willingness
to pay for a price change: if either the income elasticity of demand is small,
or the price change is small, then the percentage error from using consumer’s
surplus is small; in particular, the percentage error vanishes as the price change
tends to zero. This result at least justifies consumer’s surplus for “local” cost-
benefit analysis: If the policy is indexed by a parameter and both consumer’s
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surplus and profit are differentiable in that parameter with the sum having a
positive derivative, then a small enough policy change will be a potential Pareto
improvement.

Weitzman (1988) derives a complementary approximation result for multiple
price changes. His summary (p. 552) of the issue for price changes under
certainty is a useful starting point for us. Paraphrasing slightly: As a situation
changes smoothly from one price-income configuration to another, consumer’s
surplus is likely to approximate a consumer’s willingness to pay well. We pose
two questions: first, in what sense does this assertion remain true for price
changes under uncertainty; and, second, can this sense provide a foundation
for using ECS to evaluate welfare under uncertainty in applied microeconomic
models?2

To begin, we show that some natural extensions of this approximation argu-
ment fail if prices are random. First, the difference between the change in ECS
and willingness to pay is of higher order than the L1 distance between the cu-
mulative distribution functions (c.d.f.’s) of price if and only if the indirect utility
function is additively separable in the price and income (Theorem 1). In this
case, ECS is a good approximation for small changes in the price distribution:
as the distribution change tends to zero, the percentage error from using ECS
tends to zero (Proposition 2). If, however, additive separability fails, then the
percentage error from using ECS is unbounded for small distribution changes;
and if the percentage error does tend to zero for some path of changes, a small
perturbation of the path leads to a nonzero limit (Theorem 2)–a zero limit for
the percentage error is a knife-edge phenomenon. Additively separability of in-
direct utility implies, among other things, that the price elasticity of demand is
independent of income, an implication at odds with empirical demand studies
(e.g. Blundell et. al., 1993).

We also show that ECS might be a good approximation in two cases: if the
initial price is not random (Theorem 3); or if state-contingent payments are
possible (Proposition 3). Each result assumes that the price change is smooth
on the space of random variables. Unfortunately, this smoothness condition fails
in some important applications of ECS (Lemma 3). Moreover, we argue that
the appeal to state-contingent payments as a defense of ECS is problematic.
We illustrate these points with two examples from the literature: information
acquisition and sharing in oligopoly; and minimum resale price maintenance
(Section 4).

The reader may wonder why we emphasize a zero limiting percentage error
for ECS. If the limiting percentage error is small, then perhaps the added ben-
efit from modeling consumers more carefully does not justify the cost. But as
Hausman (1981) points out, the percentage error in calculating the overall wel-
fare change can be large even if the percentage error in the change in consumer

2Vives (1987, Proposition 1) shows that, under strong smoothness and curvature assump-

tions, the percentage error from using consumer’s surplus is at most of order 1/
√
`, where ` is

the number of goods. Since increasing the number of goods, by itself, implies nothing about
risk attitudes, it is clear that extending this result to price changes under uncertainty requires
adding an assumption to ensure that risk aversion vanishes as ` increases.

3



welfare is small. Essentially the only way to ensure a small limiting percentage
error in the the overall welfare change is a zero limiting error in measuring the
change to consumers.3

2 Preliminaries

Let there be ` ≥ 2 goods, with prices of all goods but the first fixed and strictly
positive. We assume that the preference relation over nonnegative consumption
bundles is complete, transitive, continuous, nonsatiated and strictly convex.
Strict convexity ensures that demands are single-valued; with nonsatiation it
ensures that the budget constraint always binds. The consumer is endowed with
income m. The price of good 1 is random, taking on values in a compact interval
P ≡ [p, p], where 0 < p < p. Let D be the space of cumulative distribution
functions (c.d.f.’s) on P, endowed with the topology of weak convergence. We
denote the c.d.f. that assigns probability one to the point p by δp.

We assume that preferences over elements of D and income levels satisfy the
expected utility hypothesis: for m′,m ∈ R++ and G,F ∈ D, a consumer weakly
prefers (m′, G) to (m, F ) if and only if∫

V (p,m′)dG(p) ≥
∫
V (p,m)dF (p),

where V is the consumer’s von Neumann-Morgenstern indirect utility function.
Recall that V is continuous, increasing in (−p,m), and quasiconvex. The in-
direct utility function embodies two distinct aspects of the consumer’s pref-
erences over price distributions and incomes: the consumer’s preferences over
non-random consumption bundles; and risk-preferences, which depend on the
particular representation of preferences over non-random bundles.

Suppose that the consumer initially faces a price distribution F. Let π(G,F,m)
denote the income the consumer is willing to pay to replace F with G :∫

V (p,m)dF =
∫
V (p,m− π(G,F,m))dG.4 (1)

The number π(G,F,m) is sometimes called the ex ante compensating variation
for the change. Clearly, π(G,F,m) ≥ 0 if and only if the consumer weakly
prefers G to F at income m, and, for any G ∈ D, −π(G, ·,m) represents the

3If the derivative of both consumer and total surplus with respect to the policy parameter is
nonzero and the limiting percentage error from using consumer surplus to measure consumer
welfare is zero, then the limiting percentage error in measuring the total welfare change is
zero. In Hausman’s (1981: 672-73) example of the welfare loss of a tax, the derivative of total
surplus with respect to the tax level is zero (at a tax of zero), and the percentage error in
calculating the overall welfare change can remain large as the tax tends to zero. Our Theorem
3(b) is an uncertainty analogue of this phenomenon.

4Since nonsatiation and strict convexity of preferences implies local nonsatiation, V is
strictly increasing in income. Since V is also continuous, the number π(G,F,m) exists and is
unique.
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consumer’s preferences on D × {m}. (Note, however, that π(·, F,m) need not
represent preferences on D × {m}.)

Let (p,m) 7→ d(p,m) denote the consumer’s demand function for good 1.
Since we are only interested in changes in consumer’s surplus and prices lie
in P ≡ [p, p], we lose nothing by setting consumer’s surplus at p equal to∫ p

p
d(ω,m)dω ≡ cs(p,m) for any p ∈ P.5 The change in expected consumer’s

surplus from replacing F by G is

πcs(G,F,m) =
∫
cs(p,m)d(G(p)− F (p)). (2)

Although d and V are defined for all positive incomes and prices, we confine
income to an intervalM = (m,m), where 0 < m < m.We assume that d(p,m) >
0 on P ×M, which implies that V (·,m) is strictly decreasing on P for every
m ∈M.

Our goal is to determine how well πcs approximates π. Since πcs is the dif-
ference between two expectations, πcs(·, F,m) is linear on D in the sense that
πcs(λG+(1−λ)H,F,m) = λπcs(G,F,m)+(1−λ)πcs(H,F,m) for all G,H ∈ D
and λ ∈ [0, 1] . In general, however, π(·, F,m) is not linear in the probabilities.
So our problem is to determine how well the linear functional πcs approximates
(the possibly non-linear functional) π. Machina (1982) considers a related ques-
tion: when do non-expected utility preferences preserve properties that hold
for expected utility? He shows that, if a preference representation is smooth
in the sense of being Fréchet differentiable in the probabilities (with respect to
the L1 norm), then it will behave locally as an expected utility representation.
Although we exploit tools used in the literature on smooth non-expected utility
preferences, our question is different: both π and πcs each represent expected
utility preferences; we ask instead how much the two utility representations π
and πcs differ in magnitude (and as a fraction of πcs).

Since πcs is linear on D (and cs(·,m) is absolutely continuous in p), it is L1-
Fréchet differentiable on D. If πcs approximates π well for small changes in the
distribution then evidently π(·, F,m) is L1-Fréchet differentiable at F and it has
the same derivative as πcs(·, F,m). This observation is the starting point for our
approximation results. The following condition ensures that π is differentiable.

Definition 1 V is regular if it is continuously differentiable on P ×M with
V2 > 0.6

We assume that the only uncertainty that a consumer faces is over the price
of the good. In particular, consumers know their own preferences over goods

5If the integral
R ∞

p d(ω,m)dω does not exist, then consumer’s surplus is not defined. The

change in consumer’s surplus between any two prices, however, is.
6Numerical subscripts will denote partial derivatives. Recall that preferences over com-

modities are strictly convex and nonsatiated. If, in addition, we impose two conditions on
the agent’s von Neumann-Morgenstern utility function over commodities, then V will be reg-
ular: it is concave; and it is differentiable in the first commodity with a positive derivative
everywhere. (This fact follows from Corollary 5 in Milgrom and Segal [2002].)
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when the price distribution changes. Whether this assumption is reasonable
depends on why prices are random. Most applications of ECS consider one of
two possibilities: the firms’ costs are uncertain; or demand is uncertain. Pure
cost uncertainty poses no problem for our assumption of known preferences;
demand uncertainty obviously might, since it is often interpreted as preference
uncertainty. If, however, aggregate demand is uncertain to each consumer and
firm simply because consumer preferences are private information–the consumer
and only the consumer knows his own preferences–then our results apply. In this
case, we must interpret the c.d.f. of price to be the consumer’s posterior belief
about prices, conditional on knowing his own preferences. What we exclude is
that consumer preferences depend on some event that no one knows when the
price distribution changes. (See Section 5.3.)

3 Expected Consumer’s Surplus as a Welfare
Measure

Three related preliminary questions are, first, when does expected consumer’s
surplus represent the consumer’s preferences over D; second, when is πcs pre-
cisely equal to π; and, third, what are the grounds for using aggregate ECS as
a welfare index for consumers as a whole?

3.1 Expected consumer surplus as a representation of in-
dividual and social preferences

Rogerson (1980, Theorem 1) shows that expected consumer’s surplus represents
a consumer’s preferences over price distributions if and only if the marginal
utility of income is independent of price. This condition plays an important
role in our analysis.

Lemma 1 Let V be regular. The following two assertions are equivalent.7

(a) For any G,F ∈ D and m ∈ M, πcs(G,F,m) ≥ 0 if and only if∫
V (p,m)dG(p) ≥

∫
V (p,m)dF (p).

(b) V is additively separable in (p,m) on P ×M.

If V is additively separable (and twice continuously differentiable with V2 > 0),
then the income elasticity of demand for good 1, ηm = (∂d/∂m)m/d, equals
relative risk aversion over income gambles, r = −mV22/V2.

It is immediate from Lemma 1 that expected consumer’s surplus always
equals the willingness to pay only if the indirect utility function is quasilinear
in income: Equality between the two measures certainly implies that expected

7Rogerson imposes stronger differentiability assumptions then we do. Lemma 1, however,
simply requires Roy’s identity to hold, namely, that d(p,m) = −V1(p,m)/V2(p,m). If V is
differentiable, and preferences over commodity bundles are strictly convex and nonsatiated,
then the identity holds (Mas-Colell, et. al., 1995: 73).
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consumer’s surplus represents the consumer’s preferences on D, so V takes the
additively separable form V (p,m) = a(p) + b(m); but since πcs(·, F,m) is linear
in the probabilities, so is π(·, F,m), implying that b(·) is affine on M . If V is
quasilinear, of course, then the demand for good 1 is independent of income and
the consumer is risk neutral over income gambles.

Rogerson (1980) also considers aggregate expected consumers’ surplus as a
representation of social preferences in the sense that it is Pareto consistent : if
all consumers prefer G to F , then aggregate expected consumers’ surplus is
higher under G than F . He shows (Theorem 2) that if each consumer’s indirect
utility function is additively separability in price and income, then aggregate
expected consumers’ surplus is Pareto consistent.

Pareto consistency is a weak normative requirement: it is satisfied if just
one consumer is better off whenever aggregate ECS rises. Most applications of
ECS usually demand that consumers “as a whole” are better off in some sense
when aggregate expected consumers’ surplus rises. A usual formalization of this
requirement is Kaldor consistency : the change in aggregate ECS is positive if
and only if the change is a potential Pareto improvement (income can be redis-
tributed among consumers so that they all prefer the change). It turns out that
Kaldor consistency of aggregate ECS is essentially equivalent to quasilinear util-
ity. To show this, let there be a continuum of consumers, indexed by i ∈ [0, 1],
and a finite number of von Neumann-Morgenstern indirect utility functions in-
dexed by τ ∈ T. The distribution of preferences and incomes (attributes) is given
by a (Borel) measurable function a : [0, 1] → T × (m,m). We let A denote the
set of such measurable functions. Let πcs(G,F,m, τ) be the change in expected
consumer’s surplus and π(G,F,m, τ) the willingness to pay for a change in the
price distribution from F to G for a consumer with indirect utility function
V (·, ·; τ) and income m. We say that aggregate expected consumers’ surplus is
Kaldor consistent if for all G,F in D and all distribution of attributes a ∈ A,
we have

∫
[0,1]

πcs(G,F, a(i))di ≥ 0 if and only if
∫
[0,1]

π(G,F, a(i))di ≥ 0.

Proposition 1 Suppose that for each τ ∈ T, V (·, ·, τ) is regular and twice dif-
ferentiable in m on (m,m). Aggregate expected consumers’ surplus is Kaldor
consistent if and only if for each τ ∈ T , V (·, ·; τ) is additively separable in p and
m on P ×M and one of the following conditions holds:

(a) Each consumer i ∈ [0, 1] has the same preferences on D.

(b) For every τ ∈ T, V (·, ·; τ) is affine in income: V (p,m, τ) = f(p, τ) +
m for some real-valued function f on P × T.

Proof : appendix.

Remark 1 Proposition 1 just considers consumer welfare. As mentioned al-
ready, the change in aggregate ECS is often added to the change in expected
profit (minus any other cost) from a policy change to evaluate overall welfare.
If this sum is to be Kaldor consistent for a rich enough class of environments,
then condition (b) of Proposition 1 must hold. To see this, suppose that the good
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is produced by a competitive industry under constant returns, but that the (com-
mon) unit cost is unknown to the firms when they choose how much to produce.
In this case expected profit is always zero and the price distribution is the same as
the unit-cost distribution. Suppose that by spending C dollars, the government
can change the distribution of unit cost, and that consumers’ aggregate willing-
ness to pay for this change in the cost distribution is positive. If the aggregate
willingness to pay for the change does not equal the change in aggregate expected
consumers’ surplus, then just set C to be in between those two numbers to gen-
erate a Kaldor inconsistency from using ECS. Hence the two measures must be
equal. The requirement that

∫
[0,1]

πcs(G,F, a(i))di =
∫
[0,1]

π(G,F, a(i))di for all
a ∈ A then implies that condition (b) holds.

Proposition 1 and Remark 1 imply that additive separability cannot in general
rationalize aggregate ECS as a measure of consumer welfare for arbitrary policy
changes. We emphasize small policy changes in what follows.

3.2 Expected consumer’s surplus as an approximate wel-
fare measure

If V is not quasilinear in m, then π(·, F,m) is not linear in the probabilities. If,
however, V is regular, then at least π(·, F,m) can be approximated well by some
linear functional. Let || · || denote the L1 norm: for any integrable function f on
P, ||f || =

∫
P
|f |dp. (All integrals with respect to price will be over the interval

P , a dependence we will sometimes omit.)

Lemma 2 Let V be regular. For any m ∈M and F ∈ D,

π(G,F,m) =
∫
V (p,m)d(G− F )∫
V2(ξ,m)dF (ξ)

+ o(||G− F ||),

where o(·) is a real-valued function satisfying o(0) = 0 and limh→0 o(h)/h = 0.8

Proof : Appendix.

3.2.1 Small distribution changes

Theorem 1 Let V be regular. The following two assertions are equivalent:

(a) For every (F,m) ∈ D×M, π(G,F,m)−πcs(G,F,m) = o(||G−F ||).
(b) V is additively separable on P ×M .

Proof : Suppose that (b) holds, so that V takes the form V (p,m) = f(p)+g(m).
From Lemma 2,

π(G,F,m) =
∫

f(p)
g′(m)

d(G− F ) + o(||G− F ||).

8Formally, if V is regular, then π(·, F,m) is L1-Fréchet differentiable at F ; its derivative
at F is given by the linear functional L(G − F ;F ) =

R
V d(G − F )/

R
V2dF, where L(·;F ) is

defined on the linear space spanned by D endowed with the L1 norm.
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By Roy’s Identity (see footnote 7), d(p,m) = −V1/V2 = −f ′(p)/g′(m) on P×M.
Thus

cs(p,m) =
∫ p

p

d(ξ,m)dξ =
−1
g′(m)

∫ p

p

f ′(ξ)dξ =
f(p)− f(p)
g′(m)

,

so that

πcs(G,F,m) =
∫
cs(p,m)d(G− F ) =

∫
f(p)
g′(m)

d(G− F ). (3)

Consequently,
π(G,F,m)− πcs(G,F,m) = o(||G− F ||).

Suppose now that (a) holds: for every (F,m) ∈ D × M , π(G,F,m) =∫
cs(p,m)d(G− F ) + o(||G− F ||). In particular, for any α ∈ [0, 1],

π(αG+ (1− α)F, F,m) = α

∫
cs(p,m)d(G− F ) + o(α||G− F ||)

so that

lim
α→0+

π(αG+ (1− α)F, F,m)
α

=
∫
cs(p,m)d(G− F ).

But by Lemma 2 this limit also equals
∫
V (p,m)d(G− F )/

∫
V2dF. Thus∫

cs(p,m)d(G− F ) =
∫
V (p,m)d(G− F )∫
V2(ξ,m)dF (ξ)

and
∫
csd(G − F ) > 0 if and only if

∫
V d(G − F ) > 0, so that ECS represents

the consumer’s preferences on D × {m} for every m ∈ M . By Lemma 1, V is
additively separable. �

Additive separability also implies that the percentage error from using ECS
tends to zero as the change in distribution tends to zero.

Proposition 2 If V is regular and additively separable on P ×M , then for any
sequence 〈Gn〉 in D converging to F with πcs(Gn, F,m) 6= 0 for all n,

lim
n→∞

π(Gn, F,m)− πcs(Gn, F,m)
πcs(Gn, F,m)

= 0.

Proof : Let V (p,m) = f(p) + g(m) and let 〈Gn〉 be any sequence satisfying
the conditions of the Proposition. By the Mean Value Theorem there is (for n
large enough) a number tn between m and m − π(Gn, F,m) such that g(m −
π(Gn, F,m)) − g(m) = −π(Gn, F,m)g′(tn). Thus π(Gn, F,m) =

∫
f(p)d(G −

F )/g′(tn). Since g′ is continuous and positive on M, we have (using (3)) that

lim
n→∞

π(Gn, F,m)− πcs(Gn, F,m)
πcs(Gn, F,m)

= lim
n→∞

g′(m)− g′(tn)
g′(tn)

= 0.�

9



If V is not additively separable, then the percentage error from using ex-
pected consumer’s surplus is unbounded. Moreover, if the percentage error does
tend to zero for a particular sequence of c.d.f.’s with a nondegenerate limit F ,
then a small perturbation of the ‘direction’ that the sequence approaches its
limit will result in a nonzero limit.

To formalize this second point, we consider smooth paths on D. A path on
D to F is a continuous mapping from [0, 1] into D which equals F at 0. We
denote a path by 〈H(·, α) : α ∈ [0, 1]〉 (or by 〈H(·, α)〉 for short). We say that
a path 〈H(·, α) : α ∈ [0, 1]〉 is smooth at α = 0 if for every p ∈ P the derivative
H2(p, 0) exists and the family of functions 〈(H(·, α)−H(·, 0)) /α : α ∈ (0, 1]〉
is bounded uniformly on P × (0, 1]. (Since 0 ≤ α ≤ 1, it should be understood
that all limits as α tends to 0 are from the right.) In part (b) of the next result,
we assume that the marginal utility of income, V2(·,m), is not F -a.e. constant.
This implies that V is not additively separable and that F is a nondegenerate
c.d.f.

Theorem 2 Let V be regular.

(a) If V is not additively separable on P ×M, then there is an (F,m) ∈
D×M, and a path 〈H(·, α)〉 in D to F such that πcs(H(·, α), F,m) 6=
0 for all α ∈ [0, 1] and

lim
α→0

∣∣∣∣π(H(·, α), F,m)− πcs(H(·, α), F,m)
πcs(H(·, α), F,m)

∣∣∣∣ = ∞. (4)

(b) Let F be nondegenerate and let 〈Ĥ(·, α)〉 be a smooth path to F with
πcs(Ĥ(·, α), F,m) 6= 0 for all α ∈ (0, 1]. If V2(·,m) is not F–a.e.
constant in p, then for any ε > 0, there is a smooth path 〈H(·, α)〉 to
F with ||Ĥ2(·, 0)−H2(·, 0)|| < ε such that

π(H(·, α), F,m)− πcs(H(·, α), F,m)
πcs(H(·, α), F,m)

(5)

does not tend to zero as α→ 0.

Proof : appendix.

Figure 1 illustrates the argument for part (a). If V is not additively sepa-
rable, then ECS does not represent preferences over price distributions: there
are distributions G and F such that ECS ranks them differently than expected
utility. If the path 〈H(·, α)〉 from G to F is such that ECS ranks H(·, α) and
F differently than expected utility for all α ∈ (0, 1] and H2(p, 0) lies in the
tangent space to the indifference set of ECS at F, then πcs tends to zero faster
than π − πcs and hence the percentage error from using ECS tends to +∞.

Theorem 2 contrasts markedly with the case of a single price change under
certainty: as the change in price under certainty tends to zero, the percentage
error from using consumer’s surplus to measure willingness to pay always tends
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to zero.9 Theorem 2(b) implies that a zero limiting percentage error is a knife-
edge phenomenon when additive separability fails. Indeed we can say something
a little stronger than this.

Remark 2 (Genericity) Fix an (F,m) ∈ D × M and suppose that V is
regular, but that V2(·,m) is not F-a.e. constant in p. Consider the following
pseudo-metric, ρ, on the space of smooth paths to F : ρ(Ĥ(·, α),H(·, α)) =
‖Ĥ2(·, 0) − H2(·, 0))‖. If we treat as equivalent any two paths whose deriva-
tive with respect to α at 0 is Lebesgue a.e. equal, then the space of smooth paths
to F with metric ρ becomes a metric space. It is then straightforward to mod-
ify the proof of Theorem 2 to show that the set of smooth paths for which the
percentage error from using ECS does not tend to zero contains an open dense
subset of the set of smooth paths to F .

3.2.2 Smooth paths on the space of random variables

As noted already, additive separability of the indirect utility is a strong assump-
tion even under certainty, implying that own-price elasticities are independent
of income. Hence Theorem 2 suggests that we cannot reasonably justify the
change in expected consumer’s surplus as a measure of the willingness to pay
even for local cost-benefit analysis. Smooth paths on D, however, exclude price
changes under certainty. If we consider other classes of paths, then we can avoid
at least some of the grim consequences of Theorem 2.

Besides paths on the space of c.d.f.’s, the most commonly used paths in
the economics of uncertainty are those on the space of random variables. Let
(Ω,B, ν) be a probability space and 〈q(·, α) : α ∈ [0, 1]〉 a family of random
variables defined on it with range in P (which we will often denote simply by
〈q(·, α)〉). If q(ω, ·) is continuous at 0 for each ω ∈ Ω, then the family is a path
to q(·, 0). The path 〈q(·, α)〉 is smooth at α = 0 if the derivative q2(ω, 0) exists
for each ω ∈ Ω and if the family of functions 〈(q(·, α)− q(·, 0)) /α : α ∈ (0, 1]〉 is
bounded uniformly on Ω×(0, 1]. Let Gx denote the c.d.f. of the random variable
x. Given the initial price distribution F (defined by F (p) =

∫
{ω|q(ω,0)≤p} dν(ω)

for all p) we consider final distributions of the form Gq(·,α). Define Π(α) =
π(Gq(·,α), F,m) and Πcs(α) = πcs(Gq(·,α), F,m). And let µ(α) =

∫
q(ω, α)dω,

the mean price at α. If a path is smooth at 0, then µ(·) is differentiable at 0
and µ′(0) =

∫
q2(ω, 0)dω. Let σ2 =

∫
(q2(ω, 0))2 dω − (µ′(0))2, the variance of

the first-order effect of α on the price. Finally for a path that is regular at zero
define (in an abuse of notation)

µ′′(0) = lim
α→0

∫
(q(ω, α)− q(ω, 0))/αdν(ω)− µ′(0)

α

whenever the limit exists. The next result gives some consequences of this notion
of smoothness under the assumption that the initial price is not random.

9That is, as long as preferences are strictly convex and nonsatiated, and demand is positive.
(Use Willig, (1976), eq. (20) or apply the Integral Mean Value Theorem directly to the formula
for the percentage error.)
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Theorem 3 Let V be regular, let p ∈ P, and suppose that the path 〈q(·, α)〉 is
smooth at α = 0 with q(ω, 0) = p ν-a.e. and Πcs(α) 6= 0 for all α ∈ (0, 1].

(a) If µ′(0) 6= 0, then

lim
α→0

Π(α)−Πcs(α)
Πcs(α)

= 0.

(b) If V is twice continuously differentiable, µ′(0) = 0, µ′′(0) exists and
0 6= d1(p,m)σ2 6= µ′′(0)d(p,m), then

lim
α→0

Π(α)−Πcs(α)
Πcs(α)

=
s [ηm − r]

−2pµ′′(0)
σ2 − ηp

,

where ηm is the income elasticity of demand, ηp the price elasticity
of demand, r the measure of relative risk aversion (−mV22/V2),and s
the budget share for good 1 (all evaluated at (p,m)). If µ′′(0) = 0, then
the formula for the percentage error simplifies to −s [ηm − r] /ηp.

Proof : Fix (p,m) ∈ P ×M. By the Mean Value Theorem, for each (α, ω) ∈
(0, 1] × Ω, there exists a point ξ(α, ω) ∈ P ×M on the line segment between
(q(ω, α),m−Π(α)) and (p,m) such that

V (q(α, ω),m−Π(α)) = V (p,m) + V1(ξ(α, ω))(q(ω, α)− p)− V2(ξ(α, ω))Π(α).

After integrating, rearranging and dividing by α we get

Π(α)
α

=

∫
V1(ξ(α, ω))( q(ω,α)−p

α )dν(ω)∫
V2(ξ(α, ω))dν(ω)

.

Since each integrand is bounded and each has a limit as α tends to zero, the
Lebesgue Dominated Convergence Theorem10 (LDCT) implies that

Π′(0) = −d(p,m)µ′(0). (6)

Moreover, a similar application of the Mean Value Theorem and the LDCT
implies that Πcs is differentiable at α = 0 with

Π′
cs(0) = −

∫
d(q(ω, 0),m)q2(ω, 0)dν(ω) = −d(p,m)µ′(0). (7)

Since µ′(0) 6= 0, we have Π′
cs(0) 6= 0, so by L’Hôpital’s Rule,

limα→0
Π(α)−Πcs(α)

Πcs(α)
=

Π′(0)−Π′
cs(0)

Π′
cs(0)

= 0.

For part (b), µ′(0) = 0 implies that Π′(0) = Π′
cs(0) = 0. Since V is twice

continuously differentiable on P ×M , by Taylor’s Theorem for each (α, ω) ∈
10E.g. Billingsley (1986: Theorem 16.8(i)).
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(0, 1] × Ω, there is a point ψ(α, ω) ∈ P × M on the line segment between
(q(ω, α),m−Π(α)) and (p,m) such that

V (q(α, ω),m−Π(α)) = V (p,m) + V1(p,m)(q(ω, α)− p)− V2(p,m)Π(α)

+
1
2
V11(ξ(α, ω))(q(ω, α)− p)2 − V12(ξ(α, ω))Π(α)(q(ω, α)− p)

+
1
2
V22(ξ(α, ω))(Π(α))2.

After integrating both sides of this equation, rearranging and dividing by α2 we
get

Π(α)
α2

= −d(p,m)
µ(α)− p

α2
+

1
2

∫
V11(ξ)
V2(p,m)

(
q(ω, α)− p

α
)2dν(ω)

−Π(α)
α

∫
V12(ξ)
V2(p,m)

(
q(ω, α)− p

α
)dν(ω) +

1
2

(
Π(α)
α

)2 ∫
V22(ξ)
V2(p,m)

dν(ω).

Similarly, for every (ω, α) ∈ Ω× [0, 1], there is a number θ(ω, α) between q(ω, α)
and p such that

Πcs(α)
α2

= −d(p,m)
µ(α)− p

α2
− 1

2

∫
d1(θ(ω, α),m)(

q(ω, α)− p

α
)2dν(ω) (8)

= −d(p,m)
µ(α)− p

α2

+
1
2

∫ (
V11(θ(ω, α),m)
V2(θ(ω, α),m)

− V21(θ(ω, α),m)V1(θ(ω, α),m)
V2(θ(ω, α),m)2

)
(
q(ω, α)− p

α
)2dν(ω).

It follows from differentiating Roy’s Identity with respect to income that V12 =
(ηm − r)V1/m. Using this fact and the LDCT, we have

lim
α→0

(
Π(α)
α2

− Πcs(α)
α2

)
=

V21(p,m)V1(p,m)
2V2(p,m)2

σ2

=
(ηm − r)d2

2m
σ2. (9)

By equation (8) and the assumption that µ′′(0) exists,

lim
α→0

Πcs(α)
α2

= −d(p,m)µ′′(0)− d1(p,m)σ2/2 6= 0. (10)

Since

lim
α→0

Π(α)−Πcs(α)
Πcs(α)

= lim
α→0

(Π(α)−Πcs(α))/α2

Πcs(α)/α2

part (b) follows from combining (10) and (9). �

Theorem 3(a) requires the initial price to be nonrandom and that µ′(0) 6= 0—
a small change in α from 0 has a first-order effect on the mean price. But part

13



(a) imposes no conditions on V other than regularity. Hence, the change in
ECS approximates the willingness to pay well for this class of changes if the
distribution change is small. Indeed, if q(·, α) is a degenerate random variable
for each α ∈ [0, 1], then the change collapses to the familiar case of a price
change under certainty. Thus part (a) is a stochastic generalization of that case.
Conceivably the initial price could be known either because it is regulated or
because the initial environment is known; if so, then this result could sometimes
justify ECS as a welfare measure for local cost-benefit analysis. As our analysis
of information acquisition in Section 4.1 shows, however, the hypotheses of
Theorem 3(a) sometimes fail even if the initial price is not random.

Even if the path is smooth, the conclusion of Theorem 3(a) generally fails
unless V is additively separable: by Theorem 3(b) it fails when there is no first-
order effect on the mean price (unless ηm = r);11 and it generally fails if the
initial price distribution is nondegenerate.

Remark 3 Fix an initial price q(·, 0) defined on a probability space (Ω,B, ν) and
suppose that V is regular, but V2(q(·, 0),m) is not ν-a.e. constant on Ω. Consider
all paths to q(·, 0) defined on (Ω,B, ν) that are smooth (at zero) and define a
pseudo-metric ρ on this space by ρ(q̂(·, 0), q(·, 0)) =

∫
|q̂2(ω, 0)− q2(ω, 0)| dν(ω).

If we identify any two smooth paths to q(·, 0) whose derivatives at α = 0 are ν-
a.e. equal, then the set of such paths endowed with ρ is a metric space. One can
show that the set of smooth paths on (Ω,B, ν) to q(·, 0) for which the percentage
error does not tend to zero contains an open dense subset of all such paths.

Remark 4 The condition in part (a) that the path be smooth at 0 with µ′(0) 6=
0 can be replaced with various weaker conditions. For example, if (i) q(·, α)
converges to q(·, 0) uniformly; and (ii) lim infα→0 |Πcs(α)/Λ(α)| > 0, where
Λ(α) = supω∈Ω |q(ω, α)− q(ω, 0)|, then the conclusion of Theorem 3(a) holds if
q(·, 0) is constant. (Consider the path given by q(ω, α) = f(ω)+g(α)ε(ω) for all
(ω, α) ∈ Ω × [0, 1] where f(·), g(·) and ε(·) are bounded measurable functions,
with

∫
ε(ω)dν(ω) 6= 0 and g is continuous at 0 with g(0) = 0. This path satifies

(i) and (ii), but need not be smooth at α = 0.) What is not sufficient, however,
is simply the condition that q(·, α) converge to p pointwise (Theorem 2), or even
that q(ω, ·) be differentiable at α = 0 for each ω ∈ Ω, since neither forces the
supports to converge.12

We now consider a simple example which illustrates why smoothness of paths
on the space of random variables can fail in applications of ECS. For every

11If the derivative of expected total surplus is zero at α = 0 under the hypotheses of Theorem
3, and the second derivative is nonzero, then the limiting percentage error from using ECS to
measure the total welfare change is zero if and only if ηm = r at the initial price. This result
is one extension of Hausman’s (1981) analysis of small taxes under certainty (note 3).

12 Consider the path 〈q(·, α)〉 on the unit interval endowed with Lebesgue measure given
by q(ω, α) = 1 if 0 < ω < α, q(ω, α) = 2 otherwise. For each ω ∈ Ω, q(ω, ·) is differentiable at
α = 0 (the derivative is 0 for all ω), Π′

cs(0) 6= 0, yet the limiting percentage error is not zero
unless V is additively separable: since this path is linear onD, a simple application of Lemma 2
gives the percentage error to be ((∆V/V2(2,m))−∆cs) /∆cs, where ∆V = V (1,m)−V (2,m)
and ∆cs = cs(1,m)− cs(2,m); if V2(·,m) is strictly monotonic on P , this limiting percentage
error is nonzero.
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α ∈ [0, 1], let the price take on just two values, Q2(α) with probability λ(α) and
Q1(α) with probability 1 − λ(α). Suppose that λ(·) and Qj(·), for j = 1, 2 are
all continuous functions that are differentiable at α = 0. The question here is
whether there is a probability space (Ω,B, ν) and a path defined on it with the
same probability law as the family of distributions just described, and which is
smooth at α = 0. In general the answer is ‘no’; indeed the path will not even
converge uniformly to the distribution at α = 0.

Lemma 3 Suppose that λ′(0) 6= 0.

(a) If Q2(0) 6= Q1(0), then there is no probability space (Ω,B, ν) with path
〈q(·, α)〉 defined on it with the following properties: (i) ν{ω|q(ω, α) =
Q2(α)} = λ(α) for all α ∈ [0, 1]; and (ii) q(·, α) converges to q(·, 0)
uniformly as α tends to zero.

(b) If Q2(0) = Q1(0), then there is a probability space and a path defined
on it satisfying (i) which is smooth at α = 0 (so (ii) holds) with
µ′(0) = Q′

2(0)(1− λ(0)) +Q′
1(0)λ(0).

Proof : appendix.
Since we allow λ(0) to be 0 or 1, the price can be nonrandom at α = 0 even

when Q2(0) 6= Q1(0). The failure of uniform convergence has no counterpart in
the certainty case and is one important reason why ECS may poorly approximate
a consumer’s willingness to pay. (The example in note 12 fits Lemma 3(a) for
λ(0) = 1, yet the percentage error does not tend to zero.) What drives failure
of smoothness when Q2(0) 6= Q1(0) is the that the likelihood of the prices, λ(α),
varies with α. This leads to the conjecture that Theorem 3(a) (and its extension
to random initial prices, Proposition 3) might not apply to policies that change
the likelihood of prices, such as acquiring or spreading information or policies
which make the realization of some supply states less likely (for example flood
prevention in agriculture).

4 Two Applications

Our results have been in terms of abstract paths of c.d.f.’s or random variables.
We now show how the issues stressed in the formal results arise naturally in
applications that use ECS.

4.1 Information Acquisition and Sharing

Consider an industry in which firms are uncertain about either cost or demand.
Firms can either acquire additional information, or share the information that
they have. The information sharing literature is mainly concerned with two
questions: how much information will firms acquire or share; and what is the
welfare effect of the firms’ decisions?13

13Novshek and Sonnenschein (1982) is an early contribution; Vives (1999: chapter 8) surveys
this large literature; and Raith (1996) provides some unifying results.
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Assume, as is common in this literature, that the industry’s (single) good is
produced under constant returns and that demand is linear. Suppose that the
demand is known, but that the unit cost is unknown, having support in [0, 1];
denote it by k̃.14 Let the demand be d(p,m) = a−p, where a > 1, which comes
from a single consumer with von Neumann-Morgenstern utility

u(x, y) = T (ax− (1/2)x2 + y), (11)

where x is the quantity of the good, y the expenditure on all other goods and
T (·) is a differentiable, strictly concave function with T ′ > 0. The indirect utility
function is V (p,m) = T ((a − p)2/2 +m). Note that demand is independent of
income (if income is high enough).

4.1.1 Information Acquisition

To begin, suppose that the good is produced by a monopolist. Before choosing
its output (or equivalently price), the firm observes the realization of one out of
a family of random variables, 〈s̃α : α ∈ R+〉. Most of the information sharing
literature assumes that information is affine. Specifically, for every α ≥ 0,
E[s̃α|k] = k for all realizations of k, and the the posterior expectation of k,
conditional on s, is affine in s: E[k̃|s] = Aα + Bαs for all realizations s of s̃α

for some numbers Aα and Bα. (E[·] denotes the expectations operator.) Let
v denote the prior precision of k̃ and the let the index α equal the precision

of the signal: α =
(
E[V ar(s̃α|k̃)]

)−1

.15 Suppose that the firm can choose the
precision of the signal at a cost, with more precise signals costing more. Under
affine information,

E[k̃|s] =
α

α+ v
s+

v

α+ v
E[k̃].16

The firm’s output conditional on the signal realization s is (a − E[k̃|s])/2 and
so the price is (a + E[k̃|s])/2. From an ex ante viewpoint (before the signal is
realized) the output has mean (a−E[k̃])/2 and variance α/4v(α+ v); the mean
price is (a+E[k̃])/2, which is independent of α. When α = 0, both output and
price are nonrandom, so at least one assumption of Theorem 3 holds.

Ex post consumer’s surplus equals x2/2, where x is the firm’s output. It
follows that

Πcs(α) =
α

8v(α+ v)
,

which is increasing in the information index α with

Π′
cs(0) =

1
8v2

> 0.

14Since we do not use it, we do not specify the underlying probability space.
15 As an example, suppose that the cost takes on two equally likely values, 0 and 1. Condi-

tional on the cost being 0, the signal equals 0 for sure. If the cost equals 1, the signal equals
(2 + α)/α with probability α/(2 + α) and 0 with the remaining probability. One can verify
that the average precision is α, and that this information structure is affine.

16Ericson (1969); Li (1985: 523).
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Since a small amount of information has a positive first-order effect on ECS, even
though information does not affect the mean price, the path of prices cannot be
smooth at α = 0 (by equation (7)). In particular, the price distribution does not
generally even converge uniformly to the price with no information (see Remark
4 and Lemma 3).17

Now consider the consumer’s willingness to pay for better information. Let
T in equation (11) be given by T (z) =

√
z − ξ, with ξ = m, the consumer’s

income. Then Π is given implicitly by

E

√ ((a− E[k̃|s̃]))2
8

−Π(α)

 =

√
((a− E[k̃]))2

8
,

so that Π(α) = 0 for all α and Π′(0) = 0: the error from using ECS to measure
the willingness to pay is 100% for a small increase in information starting from
null information. Ignoring information costs, the firm’s profit is

((a− E[k̃]))2

4
+

α

4(α+ v)

which is increasing in α. If the cost of information with precision α always
lies in between α/4v(α + v) and 3α/8v(α + v), then the firm would acquire
no information–which is the socially optimal decision. If we had used ECS to
measure consumer welfare, however, then we would have concluded that the
firm should acquire some information.

4.1.2 Information Sharing

Sometimes information sharing in an industry works much like information ac-
quisition of a monopolist (Vives, 1999: 248). Suppose there are two firms with
a common unit cost of k that is unknown. Each firm observes a private signal
of this common cost. The signal distributions are identical and independent,
conditional on the cost k, and the signals are affine, as before. Suppose that
each firm can simply choose whether to share its information or not. In keeping
with (almost all) the information sharing literature, we assume that the sharing
decision is made before the signals are realized and that a this choice cannot
be revoked afterwards. Let the firms have a common prior about the cost with
precision v, and let α denote the precision of the pooled signal. If the firms
unilaterally decide whether or not to share their information, the unique Nash
equilibrium is that neither firm shares (Li, 1985, Proposition 3); moreover in-
dustry profit is lower when both firms share than when they do not (Li, 1985,
Proposition 2). The industry output when the firms share information is

2
3

(
a− E[k̃] +

α

α+ v
(s− E[k̃])

)
17As α tends to zero, the average variance of the signals grows without bound. In the

example in note 15, for each α > 0, there is a positive probability that the firm’s posterior
expected cost equals 1, but the prior expected cost is 1/2.
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for each s and when they do not share it is

2
3

(
a− E[k̃] +

3α
3α+ 4v

(s− E[k̃])
)

for each s (Li [1985: 529-30]). Li notes (1985: 534) that expected consumers’
surplus and expected total surplus are both higher when information is shared:
from the perspective of expected total surplus, firms do not share enough infor-
mation.

A risk-averse consumer, however, may not prefer that firms share informa-
tion: If we again set T (z) =

√
z − ξ, with ξ = m, then the consumer is indifferent

about the firms’ sharing decision: all the consumer cares about is the mean out-
put, which is the same whether the firms share or not. Here the equilibrium
outcome of no information sharing is optimal. Indeed, expected total surplus
is Pareto inconsistent: it is higher when firms share information, but the firms
strictly prefer not to share and the consumer is indifferent. (If we replace T in
this example with a function that is more concave than it, then the consumer
will prefers that the firms not share information.)

4.1.3 Extension to Other Information Structures

We noted in Section 4.1.1 that the path to the (nonrandom) price at null infor-
mation was not smooth, or even uniformly convergent, under affine information.
The failure of smoothness is not peculiar to affine information or the initial point
being null information (a point relevant to our treatment of state-contingent
payments in Section 5.1).

Suppose as before that a monopoly firm produces the good under constant
returns with an unknown cost. Let the unit cost take on two (initially) equally
likely distinct values, k1 or k2. As before we index the available information
structures by α ∈ [0, 1]. Suppose for simplicity that there are just two possible
signal realizations, z1 and z2. Let rij(α) denote the probability that signal
zj is drawn if the cost is ki, and suppose that each rij(·) is differentiable at
α = 0. (We do not require that α = 0 corresponds to null information.) The
prior probability of observing signal zj is λzj (α) = r1j(α)/2 + r2j(α)/2. Let
Qzj (α) denote the equilibrium price conditional on observing signal zj from
information structure indexed by α. Suppose that the firm’s revenue (as a
function of output) is C2 with a negative second derivative and that it is active
at both cost realizations. Then Qzj

(·) is differentiable at α = 0 for j = 1, 2.
This situation fits Lemma 3.

Corollary 1 Suppose that Qz2(0) 6= Qz1(0), and that r′22(0) 6= −r′12(0). Then
there is no probability space (Ω,B, ν) with path 〈q(·, α)〉 defined on it with the
following properties: ν{ω|q(ω, α) = Qzj (α)} = λzj (α) for all α ∈ [0, 1] and
j = 1, 2; q(·, α) converges to q(·, 0) uniformly.

There are two ways that Qz2(0) 6= Qz1(0). First, the structure could be in-
formative at α = 0; second, it could uninformative at α = 0, but one of the
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two signals has zero probability at α = 0, and both have positive probability
otherwise. In the second case, a small increase in α starting from 0 provides
lots of information; and since the optimal price is differentiable in α the price
support ‘implodes’ at α = 0. (See Examples 2 and 6 in Chade and Schlee [2002:
429, 440].) If, however, α = 0 corresponds to null information, and rij(0) > for
i, j = 1, 2, then Qz2(0) = Qz1(0) (Chade and Schlee [2002: 439, Corollary 5]),
leading to the hope that Lemma 3(b) and Theorem 3(a) might deliver a zero
limiting percentage error. Unfortunately, since the firm’s optimal price is just a
function of the expected cost, µ′(0) = Q′

z2
(0)λz2(0) +Q′

z1
(0)λz1(0) = 0, and we

cannot apply Theorem 3(a). (Indeed, here the family of information structures
meets the conditions for the Radner-Stiglitz (1984) nonconcavity in the value
of information: the marginal value of a little information is zero.) In this case,
if the random price meets the conditions of Theorem 3(b), then the percentage
error from using ECS tends to zero with α if and only if the income elasticity
of demand equals relative risk aversion at the initial price.

4.2 Minimum Resale Price Maintenance

Deneckere, Marvel, and Peck (1997, henceforth DMP) construct a theory of
ruinous price competition under demand uncertainty.18 A good is produced by a
monopolist manufacturer and sold by a continuum of identical retailers with zero
cost. Retailers must order inventories before the demand uncertainty is resolved;
any unsold inventories are worthless. They consider two scenarios. The first is
flexible pricing : the manufacturer sets a wholesale price, pw, that each retailer
must pay at the time that inventories are ordered. After the demand uncertainty
is resolved, the retail price is set so that demand equals aggregate inventory.
The second is minimum resale price maintenance (RPM): the manufacturer
sets both a wholesale price pw and a minimum price, pmin, below which the
retail price cannot fall. If demand equals supply at a price above pmin, then
the market-clearing price prevails. If, however, supply exceeds demand at a
price below pmin, then the retail price is set at pmin and consumers are rationed
among retailers to equalize the ex ante probability of a sale.

One striking result is that expected total surplus–and even expected con-
sumers’ surplus–can be higher under RPM than under flexible pricing. In this
sense price competition can be ruinous. Intuitively, RPM can raise expected
consumers’ surplus (or not lower it more than expected profit rises) since min-
imum RPM can lead retailers to hold more inventory: although the price floor
raises the retail price when demand is low, the higher output lowers price when
demand is high.

DMP (1997: 638, Theorem A1) give sufficient conditions for expected total
surplus to rise with the imposition of RPM. One condition is that the demand
uncertainty is multiplicative: total demand is given by θD(p), where θ is an
unknown parameter. The other conditions are that production cost is zero;

18See also Deneckere, Marvel, and Peck (1996). Rey and Tirole (1986) similarly use ECS
to evaluate vertical restraints, such as resale price maintenance, under demand uncertainty.
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the support of θ is positive, compact, nondegenerate but not “too large”; de-
mand is C2; and a curvature condition on the total revenue function to ensure
uniqueness. Under these conditions the equilibrium retail price under RPM is
nonrandom (the revenue-maximizing price is unique, and since production cost
is zero the manufacturer always wants to set pmin low enough so that retailers
order enough to meet the highest demand at that price).

How robust is their welfare result when consumers do not have quasilinear
utility? The answer depends on how we interpret the demand uncertainty. Since
the support of θ is positive and compact, we may without loss of generality let
it lie in (0, 1]. A natural interpretation of the multiplicative case is uncertainty
over market size: a fraction 1 − θ of consumers do not like the good at all
(i.e. will not buy any at any positive price) and a fraction θ do like the good;
the function D is the total demand if all consumers like the good (so that the
distribution of types who like the good is independent of how many consumers
like the good). Consumers know their own preferences, but each is uncertain
about price because other consumers’ preferences are private information. This
interpretation fits our assumption that the only uncertainty each consumer faces
is over price.

For illustration consider the indirect utility function

V (p,m) = T (cs(p,m0) + g(m)) (12)

where T is twice differentiable, concave and strictly increasing, and g is differ-
entiable and strictly increasing with g′(m0) = 1 and g(m0) = m0. For any such
T, g pair, V generates the same demand at m = m0 that consumer’s surplus
does: −V1(p,m0)/V2(p,m0) = d(p,m0) = −cs1(p,m0) for all p ∈ P . Thus a
consumer with indirect utility function (12) and income m0 would behave ex-
actly in DMP’s model as a consumer with a quasilinear indirect utility function
cs(p,m0)+m, but would have different preferences over price distributions. The
good is noninferior if and only if g is concave. If T is strictly concave, then V is
not additively separable and ECS does not represent preferences over D×{m0}.
Nonetheless under plausible conditions on T and g, the aggregate willingness
to pay of consumers and firms for RPM is still positive under the conditions of
DMP’s Theorem A1. Obviously, if g and T are both affine then the willingness
to pay for RPM equals the change in ECS. Any increase in the concavity of g
(which preserves g′(m0) = 1 and g(m0) = m0) lowers a consumer’s willingness
to pay for RPM.19 But any increase in the concavity of T increases a consumer’s
willingness to pay for RPM (the certainty equivalent price under flexible pricing
rises with any increase in the concavity of T ). So if each consumer is sufficiently
risk averse over income gambles (where the required degree of risk aversion
is higher, the more sensitive the consumer’s demand is to income), then the
aggregate willingness to pay for RPM over flexible prices will be positive.

19Let π̂ denote the willingness to pay to replace price distribution F with a sure price, p∗:
T (cs(p∗,m0) + g(m0 − π̂)) =

R
T (cs(p,m0) + g(m0))dF (p) If we replace g with a function g̃

which is more concave (but preserves eg(m0) = m0 and eg′(m0) = 1 then eg(m0−π̂) ≤ g(m0−π̂),
so to restore the equality which defines the willingness to pay, π̂ must rise.
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We can make this point more precise by considering small changes in the
distribution of θ starting from no uncertainty. Drop the requirement that each
consumer has an indirect utility of the form (12) (but retain the interpretation
of the uncertainty as private information). Let (Ω,B, ν) be a probability space
and for each α ∈ [0, 1] let θ(·, α) be a random variable on this space which takes
on at most a finite number n of values for each α, is differentiable in α for each
ω ∈ Ω with θ2(·, ·) uniformly bounded on Ω × (0, 1], θ(·, 0) almost everywhere
equal to some t ∈ (0, 1],

∫
θ(·, α)dν = t for all α ∈ [0, 1] and

∫
θ2(ω, 0)2dν 6= 0.

(This specification is certainly consistent with the ‘small support’ assumption
of DMP’s Theorem A1.) Now let there be a finite number of types of consumers
(who can differ in income, demand or risk preferences), and suppose that the
other conditions of DMP’s Theorem A1 are satisfied. As already mentioned,
the equilibrium retail price under RPM is nonrandom; it is also independent of
θ. Let q(ω, α) denote the equilibrium retail price under flexible pricing when
the state is ω. If X(α) denotes the (unique) output under flexible pricing, the
market-clearing price is given by X(α) = θ(ω, α)D(q(ω, α)), so the price path
is smooth at α = 0. (X(·) is differentiable under DMP’s assumptions.) Since
consumers have private information about demand, they will update their beliefs
about the state of the world; applying Bayes’s rule, a consumer who likes the
good will have belief given by να(A) =

∫
A
θ(ω, α)dν(ω)/t for A ∈ B. If n = 2,

then by Lemma 3(b) there is a common probability space and path of prices to
q(·, 0) ≡ D−1(X(0)/t) which is smooth. The extension of Lemma 3 to n > 2 is
straightforward (or one can use να in place of ν in the proof of Theorem 3). It is
easy to verify that there is no first order effect on the mean price at α = 0 (for any
consumer) under flexible pricing, and that σ2 6= 0.20 We therefore cannot apply
Theorem 3(a). But we can use equation (9) in the proof of Theorem 3(b) to
determine the direction of the bias: if a consumer’s relative risk aversion exceeds
the income elasticity of demand (at p = D−1(X(0)/t)), then the willingness to
pay for RPM exceeds the change in ECS. (Recall that Π is the willingness to
pay to move away from a sure initial price.) The indirect utility function (12)
automatically satisfies this condition if T is strictly concave. So DMP’s ruinous
price competition theorem survives departures from quasilinear utility well.

4.3 A Simple Robustness Test

We used the two applications to illustrate a simple test of how robust welfare
conclusions are to relaxing quasilinear utility: introduce risk aversion by taking
a concave (strictly increasing) transformation of each consumer’s indirect utility
function. This test has three things to recommend it: first, it doesn’t change
demand, so it doesn’t change the purely positive parts of any analysis; second,

20Apply the implicit function theorem to the first order conditions for the manufacturer’s
problem under flexible pricing to conclude that X′(0) = 0. Integrate both sides of X(α) =
θ(α, ω)D(q(ω, α)) with respect to ω and differentiate with respect to α (using the assumption
that the mean value of θ is independent of α) to conclude that µ′(0) = 0–whether from the
perspective of the firm, or of a consumer who likes the good. That σ2 6= 0 follows fromR
θ2(ω, 0)2dν 6= 0.
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it is often easy to do; third, risk aversion is apt to be quantitatively the most
important departure from quasilinear utility.

It is well-known that a mean-preserving increase in price risk raises ECS
(Waugh, 1944). But if the uncertainty in prices comes solely from the supply
side of the market, then policies which increase price risk hurt consumers if they
are sufficiently risk averse. So conclusions which exploit the fact that ECS rises
with price risk–as information acquisition and sharing often do–are not likely
to be robust. By contrast, in Deneckere, Peck and Marvel’s (1997) model of
demand uncertainty, imposing minimum RPM can result in a mean-preserving
decrease in price risk. It is thus easy to understand why minimum RPM can be
more attractive to risk averse than risk neutral consumers.

Before considering some extensions we give one more illustration. Lewis and
Sappington (1988) analyze regulation of a monopoly with private information
about its demand. If the firm’s marginal cost is decreasing, then setting a price
that does not vary at all with the firm’s demand report winds up maximizing
total expected surplus (subject to the usual incentive compatibility and par-
ticipation constraints [Proposition 2]). Suppose as in the last subsection that
each consumer knows its own preferences, but not the aggregate demand. If we
simply take a concave transformation of each consumer’s (quasilinear) indirect
utility function (and use the consumer’s certainty equivalent wealth as a mea-
sure of his welfare) then the optimal policy is unchanged: the same constant
price is still optimal.21

5 Extensions: state-contingent payments; non-
expected utility preferences; multivariate risk

Thus far we have used the ex ante willingness to pay to measure the welfare
change to consumers; we assumed that consumers satisfy the expected utility
hypothesis; and that only the price of good 1 is random. We briefly consider
extensions of our results when these restrictions are relaxed.

5.1 State-contingent payments

If state contingent payments are possible, then our ex ante willingness to pay
criterion might miss some potential Pareto improvements: the aggregate sure
willingness to pay for a change can be negative, yet there might be state con-
tingent payments that make all consumers and firms better off ex ante with the
change (Graham, 1981).

Suppose we adopt the criterion that a change from A to B is desirable if
there are state contingent money transfers which would make everyone better
off under B than A. For the moment, assume that such transfers are not actually

21for any strictly concave, strictly increasing transformation T , we have
T−1

`R
T (cs(p) +m)dF (p)

´
≤

R
cs(p)dF (p) + m with an equality if and only if the

price is not random; so if a sure price maximizes the sum of ECS and expected profit, that
same sure price will maximize the sum of certainty equivalents and expected profit.
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made. As before let 〈q(·, α) : α ∈ [0, 1]〉 be a path defined on a probability space
(Ω, B, ν). Let γ(·, α) be a (measurable) real-valued function on Ω for each
α ∈ [0, 1]. A consumer would just be willing to make state contingent payments
of γ(·, α) to replace the random price q(·, 0) with q(·, α) if∫

V (q(ω, α),m− γ(ω, α))dν =
∫
V (q(ω, 0),m)dν. (13)

Suppose that V is regular and that V (p, ·) is strictly concave for each p, so
that the consumer is risk averse, and suppose that firms are risk neutral. If
we consider transfers between firms and consumers, these two facts imply that
an optimal contingent payment must equate any consumer’s marginal utility of
income in any two states:

V2(q(ω, α),m− γ(ω, α)) = V2(q(ω′, α),m− γ(ω′, α)) (14)

for (almost-all) (ω, ω′) in Ω. If (14) holds for all (ω, ω′), then there is a unique
γ(·) satisfying (14) and (13); and if the path 〈q(·, α)〉 is smooth at α = 0, then
so will the path 〈γ(·, α)〉. Let ∆γ(ω, α) = γ(ω, α) − γ(ω, 0). A measure of
the change in consumer welfare is the expected value of ∆γ(·, α) for a path
of payments satisfying (13) and (14). For example, if the indirect utility V is
additive separable in p and m, then this measure equals the ex ante willingness
to pay, Π(α); if there are no income effects on demand, then it equals the
expected compensating variation for the change. Less justifiable is simply to
use the expectation of ∆γ(·, α) for a smooth path 〈γ(·, α)〉 satisfying (13). One
possibility is to set γ(ω, α) equal to the compensating variation for each state:
V (q(ω, α),m− γ(ω, α)) = V (q(ω, 0),m) for each (ω, α) ∈ Ω× [0, 1]. We include
this possibility for completeness.

Proposition 3 Let V be regular and strictly concave in income for all p ∈ P ;
the path 〈q(·, α)〉 be smooth at α = 0; and Π′

cs(0) 6= 0. We have

lim
α→0

∫
∆γ(ω, α)dν(ω)−Πcs(α)

Πcs(α)
= 0 (15)

if either of the following two conditions holds:

(a) The path 〈γ(·, α)〉 satisfies (13) and (14) for all (ω, ω′, α) ∈ Ω2×[0, 1]
and there are no income effects on demand;

(b) For every (ω, α) ∈ Ω× [0, 1], γ(ω, α) equals the compensating varia-
tion for the change in price from q(ω, 0) to q(ω, α).

Proof : appendix.
Proposition 3 provides some justification for using ECS in local cost-benefit

analysis. Several qualifications are in order, however.

• In some important applications, the path of prices is not smooth, or even
uniformly convergent (Lemma 3, Section 4.1 and Corollary 1). If q(·, α)
just converges to q(·, 0) pointwise, then the conclusions of Proposition 3
fail.
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• Part (a) asserts that there are no income effects on demand: if the initial
price is random and V is not additively separable, then (15) generally fails
if there are income effects (since (14) requires that income vary across
states).22

• For all the same reasons that markets are incomplete, it may be impossible
to make such state-contingent payments.

• If the payments are not made, then the criterion of aggregate state-
contingent payments can be Pareto inconsistent. (See e.g. Graham [1981:
721-22].)23

• For part (b), if the payments are made and there are income effects on
demand then the positive analysis in many applied models is incorrect.
Most applications–including all those in our reference list–assume that
demand is the same before and after the policy change.

This last point raises a further problem: if state-contingent payments can be
made, then presumably consumers can trade income across states of the world;
even if income effects on demand are slight, if risk preferences vary enough
across the population, the resulting trades can overturn both the positive and
normative predictions of applied partial equilibrium models.24

5.2 Nonexpected utility preferences

Suppose that a consumer’s preferences over D ×M are represented by a con-
tinuous real-valued functional v on D×M that is strictly increasing in (−F,m)
(where the c.d.f.’s are partially ordered by the first order stochastic dominance
relation).25 Here π is given implicitly by v(F,m) = v(G,m− π(G,F,m)). Even
if v violates the independence axiom of expected utility theory,26 if v(·,m)
is L1-Fréchet differentiable on D, then it will behave locally as an expected

22If we had just used the mean of γ rather than ∆γ, then we would need to impose quasilinear
utility to establish (15) under (a), since in general

R
γ(ω, 0)dν 6= 0.

23For example, consider the monopoly model of information acquisition from Section 4.1.1
in which the consumer is risk averse but there are no income effects on demand. In this
case, γ(ω, α) is the compensating variation for state ω. Suppose that the choice is simply
between null and perfect information, and that the cost of information just exceeds the value
of information to the firm, but that the sum of expected profit and the expected compensating
variation exceeds the cost of information. If payments are not made, then the firm is clearly
worse off with information if it bears the cost; and if risk aversion is large enough, then the
consumer is worse off as well.

24For example, on our interpretation of the demand uncertainty in Deneckere, Marvel and
Peck (1997) as private preference information, consumers and firms have different beliefs about
the states of the world; even if attitudes towards income risk are the same, there is an incentive
to trade. And Schlee (2001) emphasizes how risk sharing among consumers affects the welfare
consequences of improved information.

25For c.d.f.’s defined on a real interval I, G first order stochastically dominates F if G(x) ≤
F (x) for all x in I with a strict inequality for some x in I.

26A functional f on a convex set C of c.d.f.’s satisfies the Independence Axiom if for any
F,G,H in C, and any real number λ ∈ [0, 1), f(F ) ≥ f(G) if and only if f(λF + (1− λ)H) ≥
f(λG+ (1− λ)H).
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utility functional (Machina (1982)): there is a absolutely continuous function
U(·;m,F ) on P such that

v(G,m)− v(F,m) =
∫

P

U(p;m,F )d(G− F ) + o(||G− F ||).

The function U is called the local utility function of v(·,m) at F. Since we
consider small changes in the price distribution, one might conjecture that a
version of Theorem 1 holds for non-expected utility preferences by imposing a
condition such as additive separability on each local utility function of v. This
conjecture, however, is false. The role of additive separability is to ensure that
ECS represents the consumer’s preferences over price distributions (Lemma 1),
which is impossible if the consumer violates independence. An adaptation of
the proof that (a) implies (b) in Theorem 1 yields the following result.

Corollary 2 Let v be a real-valued functional v on D ×M that is strictly in-
creasing in (−F,m). If v(·,m) violates independence for some m ∈ M, then
there is an F ∈ D such that π(G,F,m)− πcs(G,F,m) 6= o(||G− F ||).

The conclusion of Theorem 3(a), however, does extend to smooth nonex-
pected utility preferences: for smooth paths on the space of random variables
and a nonrandom initial price, the percentage error from using ECS tends to
zero as the distribution change tends to zero.

Corollary 3 In addition to the hypotheses of Corollary 2, suppose that v is
continuously differentiable on D×M, with v2(F,m) > 0, and that the local utility
function of v(·,m) is continuously differentiable in the price. Then Theorem
3(a) holds.27

5.3 Multivariate risk

If variables in the consumer’s indirect utility function other than the good’s price
are random, then ECS ranks changes in the distribution of price 1 the same way
as expected utility if and only if the marginal utility of income is independent of
all random variables entering the indirect utility function (Rogerson [1980] and
Turnovsky et. al. [1980]). Our Theorem 2 extends to this case as well: additive
separability in prices and income is replaced by additive separability in income
and the entire vector of random variables. This includes the possibility that
consumers are unsure about their tastes when the price distribution changes.
(To model preference uncertainty, we let the consumer’s indirectly utility func-
tion depend directly on the state of the world ω.) If a consumer’s marginal
utility of income is not independent of the state then even our modest positive
results–Proposition 2, Theorem 3(a) and Proposition 3–fail.

27To prove the corollary, use equation (8) on p. 296 in Machina (1982) to show that Πcs

is differentiable at α = 0 with Π′
cs(0) = ψ1(p;m, δp)/v2(δp,m)µ′(0), where ψ(·,m, F ) is the

local utility function for v at (m,F ). (Since 〈q(·, α)〉 is smooth, ||Gq(·,α)−δp|| is differentiable
in α at zero, as Machina’s (8) requires.) The Corollary follows after noting that we can express
Roy’s Identity as d(p,m) = −ψ1(p,m, δp)/v2(δp,m).
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6 Conclusion

Expected consumer’s surplus allows economists to evaluate welfare under un-
certainty using only demands, without directly specifying the preferences and
endowments of consumers. Most scholars who use it no doubt agree that the
conditions for its exact validity–risk neutrality over income gambles and a zero
income elasticity–are severe; but they would likely justify it by arguing that it
provides a useful approximation for cost-benefit analysis, based loosely on re-
sults for consumer’s surplus under certainty. We find that expected consumer’s
surplus can be a poor approximation to willingness to pay for a small distri-
bution change. It can be a good approximation if we restrict the distribution
change to smooth, or at least uniformly convergent, paths on the space of ran-
dom variables; but this condition necessarily fails in some applications.

Expected consumer’s surplus is obviously still useful for counterexamples:
if the sum of expected consumer’s surplus and expected profit is higher under
policy A than B, then B cannot always be preferable to A. But the more
ambitious and important argument that policy A is socially preferable to B for a
range of plausible economic environments requires more. The simple robustness
checks that we carried out in Section 4 are a start.
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7 Appendix

Proof of Proposition 1 : If each consumer’s indirect utility function is additively
separable in price and income and either (a) or (b) holds, then aggregate ECS
is clearly Kaldor consistent. If the indirect utility function is not additively
separable for some type τ∗ ∈ T , then aggregate ECS is not Kaldor consistent:
set a(i) = (m∗, τ∗) for all i ∈ [0, 1], where m∗ is any income level for which
ECS does not represent the same preferences on D as a type τ∗ consumer with
income m∗ (Lemma 1).

So suppose that V (·, ·, τ) is additively separable for each τ ∈ T . In particular,
let V (p,m, τ) = f(p, τ) + g(m, τ). Suppose that (a) fails and that there are two
types τ and τ ′ in T with different preferences on D and that g(·, τ) is not
affine. We will show that aggregate ECS cannot be Kaldor consistent. Set m
such that g11(m, τ) 6= 0 and choose G,F such that πcs(G,F,m, τ) > 0 and
πcs(G,F,m, τ ′) < 0. We now argue that we can always choose such an (G,F )
so that

g11(m, τ)
g1(m, τ)

πcs(G,F,m, τ) 6=
g11(m, τ ′)
g1(m, τ ′)

πcs(G,F,m, τ ′). (16)

To begin, note that the left side of (16) is nonzero. If a particular (G,F ) violates
(16), then replace G with any G′ which first-order stochastically dominates G.
(Such a G′ exists since πcs(G,F,m, τ ′) < 0 implies that G 6= δp.) The left side
of (16) must change and the right must either remain unchanged or move in the
opposite direction when G′ replaces G, and so the two sides of (16) will not be
equal at (G′, F,m). From now on assume that (16) holds. Let θ ∈ (0, 1) satisfy

θπcs(G,F,m, τ) + (1− θ)πcs(G,F,m, τ ′) = 0, (17)

and let a(i) = (m, τ) for i ∈ [0, θ] and a(i) = (m, τ ′) for i ∈ (θ, 1]. If

θπ(G,F,m, τ) + (1− θ)π(G,F,m, τ ′) 6= 0

then there is nothing to prove, so suppose that

θπ(G,F,m, τ) + (1− θ)π(G,F,m, τ ′) = 0.

Now replace G with αG+ (1− α)F. We have

θπcs(αG+ (1− α)F, F,m, τ) + (1− θ)πcs(αG+ (1− α)F, F,m, τ ′) =
α [θπcs(G,F,m, τ) + (1− θ)πcs(G,F,m, τ ′)] = 0 (18)

for all α ∈ (0, 1). But for α small enough, we have

θπ(αG+ (1− α)F, F,m, τ) + (1− θ)π(αG+ (1− α)F, F,m, τ ′) 6= 0. (19)

To see why (19) must hold, note that by Theorem 1

π(αG+ (1− α)F, F,m, τ̂) = απcs(G,F,m, τ̂) + o(α||G− F ||)
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for τ̂ ∈ {τ, τ ′}. Hence

∂

∂α
θπ(αG+ (1− α)F, F,m, τ) + (1− θ)π(αG+ (1− α)F, F,m, τ ′)

∣∣∣∣
α=0+

=

θπcs(G,F,m, τ) + (1− θ)πcs(G,F,m, τ ′) = 0.

But

∂2

∂α2
[θπ(αG+ (1− α)F, F,m, τ) + (1− θ)π(αG+ (1− α)F, F,m, τ ′)]

∣∣∣∣
α=0+

=

θ
g11(m, τ)
g1(m, τ)

(πcs(G,F,m, τ))
2 + (1− θ)

g11(m, τ ′)
g1(m, τ ′)

(πcs(G,F,m, τ ′))
2 =

θπcs(G,F,m, τ)
(
g11(m, τ)
g1(m, τ)

πcs(G,F,m, τ)−
g11(m, τ ′)
g1(m, τ ′)

πcs(G,F,m, τ ′)
)
6= 0.

The second equality follows from (17). Hence equation (19) holds. Equations
(19) and (18) together imply that aggregate ECS is not Kaldor consistent. �

Proof of Lemma 2 : Since V2 exists on M , the Mean Value Theorem implies
that (for ||G − F || small enough) V (p,m − π(G,F,m)) = V (p,m) − V2(p,m −
t(G))π(G,F,m), where 0 < t(G) < π(G,F,m). Thus∫
V (p,m− π(G,F,m))dG =

∫
V (p,m)dG− π(G,F,m)

∫
V2(p,m− t(G))dG.

Substituting this expression into (1) yields

π(G,F,m) =
∫
V (p,m)d(G− F )∫
V2(p,m− t(G))dG

.

Thus

π(G,F,m) =

∫
P
V (p,m)d(G− F )∫
V2(ω,m)dF (ω)

(20)

+
∫
V (p,m)d(G− F )

(
1∫

V2(p,m− t(G))dG
− 1∫

V2(p,m)dF

)
.

Since V1(·,m) is continuous on the compact set P , V1 is bounded by some
number K. This fact implies that

∫
V (p,m)d(G − F )/||G − F || is bounded:

integrating by parts yields that∣∣∣∣∫ V (p,m)d(G− F )
||G− F ||

∣∣∣∣ =
∣∣∫ (G− F )V1(p,m)dp

∣∣
||G− F ||

≤
∫
|(G− F )| |V1(p,m)| dp

||G− F ||
≤ K.

The result follows if the term in parenthesis on the right side of (20) converges
to zero as ||G−F || tends to zero. Since the L1 norm on D metrizes the topology
of weak convergence (Machina, 1982, Lemma 1), it suffices to show that

lim
n→∞

∫
V2(p,m− t(Gn))dGn =

∫
V2(p,m)dF (21)
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for any sequence Gn in D converging (weakly) to F. Since π(·, F,m) is contin-
uous, t(Gn) converges to 0. And since V2(·, ·) is continuous and P is compact,
V2(p,m− t(Gn)) converges to V2(p,m) uniformly in p. Hence (21) holds28 and
the conclusion follows. �

Proof of Theorem 2 : Suppose throughout that V is regular. Consider part (a).
Since V is not additively separable, ECS does not represent preferences over D
(Lemma 1). Since, in addition, V (·,m) and cs(·,m) are both continuous and
strictly decreasing, it is easy to show that there are c.d.f.’s G∗, G, F ∈ D and an
income m ∈M such that

∫
V (p,m)d(G− F ) ≥ 0 and

∫
V (p,m)d(G∗ − F ) > 0

but
∫
cs(p,m)d(G−F ) < 0 and

∫
cs(p,m)d(G*−F ) = 0. (See Figure 1.) Define

H(·, α) = α (αG+ (1− α)G∗) + (1− α)F. Clearly ||H(·, α)− F || tends to zero
as α→ 0 and πcs(H(·, α), F,m) 6= 0 for all α ∈ (0, 1]. Moreover, letting

K(p,m, F ) =
V (p,m)∫

V2ω,m)dF (ω)
− cs(p,m),

we have by Lemma 2 that

∣∣∣∣π(H(·, α), F,m)− πcs(H(·, α), F,m)
πcs(H(·, α), F,m)

∣∣∣∣ =∣∣∣∣α
∫
K(p,m, F )d(G−G∗) +

∫
K(p,m, F )d(G∗ − F ) + 1

αo(||H(·, α)− F ||)
α
∫
cs(p,m)d(G−G∗)

∣∣∣∣ .
The first and third terms in the numerator on the right side of the equality tend
to zero as α tends to zero. Since the second term in the numerator is nonzero,
the entire expression diverges to +∞ as α→ 0.

For part (b), let 〈Ĥ(·, α)〉 be any smooth path to F with πcs(Ĥ(·, α), F,m) 6=
0 for all α ∈ (0, 1]. We will evaluate the limit of

(π(Ĥ(·, α), F,m)− πcs(Ĥ(·, α), F,m))/α

πcs(Ĥ(·, α), F,m)/α
(22)

as α tends to 0. After integrating by parts we have

πcs(Ĥ(·, α), F,m)
α

=
∫
d(p,m)

(
Ĥ(p, α)− F

α

)
dp. (23)

28Let fn be a sequence of real-valued functions on P that converges uniformly to the con-
tinuous function f and let Gn be a sequence converging to G. We haveZ

fndGn =

Z
(fn − f)dGn +

Z
fdGn.

The second integral on the right converges to
R
fdG by the definition of weak convergence.

And the first integral converges to zero since fn converges to f uniformly:˛̨̨̨Z
(fn − f)dGn

˛̨̨̨
≤

Z
|f − fn|dGn ≤ sup

p∈P
|f − fn| → 0.
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Since the integrand in (23) is bounded, the Lebesgue Dominated Convergence
Theorem (LDCT) implies that

dπcs(Ĥ(·, α), F,m))
dα

∣∣∣∣∣
α=0

=
∫
d(p,m)H2(p, 0)dp. (24)

Moreover, using Lemma 2 and after integrating by parts, we have

π(Ĥ(·, α), F,m) =
−
∫
V1(p,m)(Ĥ(p, α)− F )dp∫

V2(ω,m)dF (ω)
+ o(||Ĥ(·, α)− F ||).

Thus

π(Ĥ(·, α), F,m)− πcs(Ĥ(·, α), F,m)
α

=∫
P

(
−V1(p,m)
V2(p,m)

V2(p,m)∫
V2(ω,m)dF (ω)

− d(p,m)
)(

Ĥ(·, α)− F

α

)
dp+

o(||Ĥ(·, α)− F ||)
α

or, using Roy’s Identity, the right side of the last equality becomes∫
P

[
d(p,m)

(
V2(p,m)∫

V2(ω,m)dF (ω)
− 1
)(

Ĥ(·, α)− F

α

)]
dp

+
o(||Ĥ(·, α)− F ||)

α
. (25)

Since the integrand in (25) is bounded, the LDCT implies that this expression
has limit ∫

P

[
d(p,m)

(
V2(p,m)∫

V2(ω,m)dF (ω)
− 1
)
Ĥ2(p, 0)

]
dp (26)

as α tends to zero.
If the integral in (26) is not zero, then equation (22) does not tend to zero

with α. So suppose that (26) equals zero. Let P+ = {p ∈ P |V2 >
∫
V2dF} and

P− = {p ∈ P |V2 <
∫
V2dF}. Since V2(·,m) is not F -a.e. constant,

∫
P+
dF > 0

and
∫

P−
dF > 0. And since V2 is continuous, both P+ and P− are open relative

to P (that is, each is the intersection of P and an open set) and hence each is
the union of a countable collection of disjoint intervals that are open relative to
P . Consequently, there are intervals I+ ∈ P+ and I− ∈ P− from these countable
collections with

∫
I+
dF > 0 and

∫
I−
dF > 0 and at most one of these intervals

is closed on the left (which can happen only if the left endpoint is p). If I+ is
open on the left, then let G ∈ D satisfy G = F for all p /∈ I+ and G ≥ F on
I+ with the inequality strict on a set of positive Lebesgue measure. (Such a G
exists since I+ is open on the left and F is not constant on I+.) If I+ is closed
on the left, then let G satisfy G = F for all p /∈ I− and G ≥ F on I− with the
inequality strict on a set of positive Lebesgue measure.
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In either case, for every λ ∈ (0, 1), define a smooth path to F by Hλ(·, α) =
(1− λ)Ĥ(·, α) + λ(αG+ (1− α)F ). Since d > 0, we have (replace Ĥ(·, α) with
Hλ(·, α) in (26)

lim
α→0

(
π(Hλ(·, α), F,m)− πcs(Hλ(·, α), F,m)

)
/α 6= 0.

for any λ ∈ (0, 1). Fix ε > 0. For λ small enough, ||(Hλ
2 (·, 0) − Ĥλ

2 (·, 0))|| < ε.
And since F first-order stochastically dominates G, it follows that, for almost
all λ,

d(πcs(Hλ(·, α), F,m))
dα

∣∣∣∣
α=0

6= 0.

For some such λ, setH(·, α) = Hλ(·, α) for all α ∈ [0, 1].Noting that πcs(Hλ(·, α), F,m) 6=
0 except for at most one value of α, (5) has a nonzero limit. �

Proof of Lemma 3 : For part (a), suppose that Q1(0) 6= Q2(0) but that there is
a path 〈q(·, α)〉 which satisfies (i) and (ii). We will show that λ′(0) = 0. Consider
any sequence 〈αn〉 in (0, 1] with limit zero. Let E0 = {ω ∈ Ω|q(ω, 0) 6∈ {Q1(0), Q2(0)}},
En = {ω ∈ Ω|q(ω, αn) 6∈ {Q1(αn), Q2(αn)}} for each n and E = ∪∞i=0Ei. By hy-
pothesis, ν(Ei) = 0 for i = 0, 1, 2..., so that ν(E) = 0. Since convergence is uni-
form, each Qj(·) is continuous, and Q2(0) 6= Q1(0), there is an n∗ such that for
every ω ∈ Ω/E either q(ω, αn) = Q1(α) for all n ≥ n∗ or q(ω, αn) = Q2(α) for all
n ≥ n∗. Define a sequence of functions on Ω by ψn(ω) = (q(ω, αn)−q(ω, 0))/αn

for all ω ∈ Ω and all n ≥ 1; and let ψ(ω) = Q′
2(0) if q(ω, 0) = Q2(0) and

ψ(ω) = Q′
1(0) for all other ω ∈ Ω. Since each Qj is differentiable at 0, ψn → ψ

a.e. and the sequence 〈(Qj(αn)−Qj(0))/αn〉 is bounded by some number Kj for
j = 1, 2. Thus the sequence 〈ψn〉 is bounded uniformly on Ω/E by the largest
of max{K1,K2} and the real number

sup { |q(ω, αn)− q(ω, 0)|/αn|ω ∈ Ω/E, n ≤ n∗} .

Let f be any strictly increasing, C1 function on R+. By the Mean Value Theo-
rem, for every n and ω ∈ Ω there is a number θn(ω) between q(ω, 0) and q(ω, αn)
such that f(q(ω, αn))− f(q(ω, 0)) = αnf

′(θn(ω))ψn(ω), so that

∫
Ω

(
f(q(ω, αn))− f(q(ω, 0))

αn

)
dν(ω) =

∫
Ω

f ′(θn(ω))ψn(ω)dν(ω). (27)

Since f ′(θn(ω)) is (essentially) bounded, the LDCT (Billingsley, 1986: The-
orem 16.4) implies that the right side of (27) converges to

f ′(Q1(0))Q′
1(0)(1− λ(0)) + f ′(Q2(0))Q′

2(0)λ(0) (28)

as n tends to infinity. Since the sequence 〈αn〉 was arbitrary, this argument
shows that the function Γ(α) =

∫
f(ω, α)dν(ω) of α on [0, 1] is differentiable at

0 and Γ′(0) equals (28). But Γ′(0) must also equal

d

dα
f(Q1(α))(1− λ(α)) + f(Q2(α))λ(α)|α=0 =

f ′(Q1(0))Q′
1(0)(1− λ(0)) + f ′(Q2(0))Q′

2(0)λ(0) + λ′(0)(f(Q2(0))− f(Q1(0))),
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which implies that λ′(0) = 0 if Q2(0) 6= Q1(0). This proves part (a).
For part (b), let Ω = [0, 1], B be the Borel subsets of [0,1], and ν Lebesgue

measure. Suppose that λ′(0) > 0. (The case of is λ′(0) < 0 handled similarly.)
Define the following path on (Ω,B, ν): for each α ∈ [0, 1], q(ω, α) = Q2(α)
if ω ≤ λ(α) and q(ω, α) = Q1(α) otherwise. Obviously, this path satisfies
condition (i). Since the Qi’s are differentiable at α = 0, so is q(ω, ·) for each
ω ∈ [0, 1]. Let Q(0) denote the sure price at α = 0. Since

q(ω, α)− q(ω, 0)
α

∈
{
Q2(α)−Q(0)

α
,
Q1(α)−Q(0)

α

}
, (29)

for each (ω, α) ∈ Ω×(0, 1] and each (Qj(α)−Q(0))/α is bounded in α, the path
〈q(·, α)〉 is smooth at 0, and hence converges to q(·, 0) uniformly: if K is the
uniform bound for |q(ω, α)−q(ω, 0)|/α, then supω |q(ω, α)−q(ω, 0)| ≤ αK → 0.
The last sentence of the Lemma follows from the equality between Γ′(0) and
(28) with f set equal to the identity function. �

Proof of Proposition 3: Under either (a) or (b), the path 〈γ(·, α)〉 must be
smooth at α = 0. Applying an argument similar to the one leading to equation
(6) in the proof of Theorem 3(a) to equation (13) gives us

0 =
∫

(V1(q(ω, 0),m− γ(ω, 0))q2(ω, 0)− V2(q(ω, 0),m− γ(ω, 0))γ2(ω, 0))dν(ω)

= −
∫
V2(q,m− γ) (d(q,m− γ)q2(ω, 0) + γ2(ω, 0)) dν(ω) (30)

where q(·) and γ(·) on the right side of the second equality are evaluated at (ω, 0).
Let (a) hold. Since (14) implies that V2(q(ω, 0),m − γ(ω, 0)) is independent of
ω, equation (30) implies that∫

γ2(ω, 0)dν(ω) =
∫
d(q(ω, 0),m− γ(ω, 0))q2(ω, 0)dν(ω). (31)

A slight adaptation of the argument leading to equation (7) in the proof of
Theorem 3(a) implies that

Π′
cs(0) =

∫
d(q(ω, 0),m)q2(ω, 0)dν(ω). (32)

Since there are no income effects on demand, (15) follows from (31) and (32).
Suppose now that (b) holds. It is easy to show that γ(ω, 0) = 0 and

γ2(ω, 0) = −d(q(ω, 0),m)q2(ω, 0) for all ω ∈ Ω. Hence (31) holds with γ(ω, 0) =
0 for all ω ∈ Ω, from which (15) follows. �
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