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Abstract
We analyze the properties of a bias-corrected realized variance (RV) in the presence of iid market mi-

crostructure noise. The bias correction is based on the first-order autocorrelation of intraday returns and
we derive the optimal sampling frequency as defined by the mean squared error (MSE) criterion. The bias-
corrected RV is benchmarked to the standard measure of RV and an empirical analysis shows that the former
can reduce the MSE by 50%-90%. Our empirical analysis also shows that the iid noise assumption does not
hold in practice. While this need not affect the RVs that are based on low-frequency intraday returns, it has
important implications for those based on high-frequency returns.
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1. Introduction

The realized variance (RV) has become a popular empirical measure of volatility, and the RV yields

a perfect estimate of volatility in the hypothetical situation where prices are observed in continuous

time and without measurement error. This result suggests that the RV , which is a sum-of-squared

returns, should be based on returns that are sampled at the highest possible frequency (tick-by-tick

data). However, in practice this leads to a well-known bias problem due to market microstructure

noise, see e.g. Andreou & Ghysels (2002) and Oomen (2002a).1 So there is a trade-off between bias

and variance when choosing the sampling frequency, and this is the reason that returns are typically

sampled at a moderate frequency, such as 5-minute sampling. An alternative way to handle the

bias problem is to use bias correction techniques. In this paper, we analyze an estimator that utilize

the first-order autocorrelation to bias-correct the RV . This estimator is denoted by RVAC1 and has

previously been used by French, Schwert & Stambaugh (1987) and Zhou (1996), who applied it to

∗Corresponding author, email: Peter Hansen@brown.edu
1 The bias is particularly evident from the so-called volatility signature plots that were introduced by Andersen, Bollerslev, Diebold

& Labys (2000).
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daily returns and intraday returns, respectively.2 The subscript ‘AC1’ refers to the fact that we use

one (the first) autocorrelation of intraday returns to correct for the bias.

We make three contributions in this paper. First, we derive the bias and variance properties of the

RVAC1 and the optimal sampling frequency as defined by the mean squared error (MSE) criterion.

Second, we derive the asymptotic distribution of RVAC1 and show that its asymptotic variance is

smaller than that of the standard RV . Third, the analysis is based on a particular type of market

microstructure noise, which has previously been analyzed by Corsi, Zumbach, Müller & Dacorogna

(2001), Zhang, Mykland & Aı̈t-Sahalia (2003), and Bandi & Russell (2003). Here it is assumed that

the noise is independent and identically distributed (across time) and that the noise is independent of

the true price process. We label this type of noise as iid noise. An important result of our empirical

analysis is that the iid noise assumption does not hold in practice. Under the iid noise assumption

the RVAC1 is unbiased at any sampling frequency, however the RVAC1 is clearly biased when returns

are sampled at high frequencies. While the RVAC1 should reduce the MSE by 80%–90% compared

to the standard RV , when based on its optimal sample frequency (about five-second sampling), we

conclude that the implications of the iid noise assumption are only valid when we sample every 30

seconds (or slower). At this sampling frequency the unbiased RVAC1 leads to a reduction of the MSE

by a little more than 50% in our empirical analysis.

The paper is organized as follows. In Section 2, we define the RVAC1 and derives its properties.

Section 3 contains an empirical analysis that quantifies the relative MSE of RVAC1 to that of the

standard RV, and Section 4 contains concluding remarks. All proofs are given in the appendix.

2. Definitions and Theoretical Results

Let {p∗(t)} be a latent log-price process in continuous time and let {p(t)} be the observable log-

prices process, such that the measurement error process is given by u(t) ≡ p(t) − p∗(t). The noise

process, u, may be due market microstructure effects such as bit-ask bounces, but the discrepancy

between p and p∗ can also be a result of the technique that is used to construct p(t). For example,

p is often constructed artificially from observed trades and quotes using the previous-tick method or

the linear interpolation method.3

We assume that the specification for p∗ is a simple stochastic volatility model and our assump-

2 Other approached to bias correcting the RV include the filtering techniques by Andersen, Bollerslev, Diebold & Ebens (2001)

(moving average) and Bollen & Inder (2002) (autoregressive).
3 The former was proposed by Wasserfallen & Zimmermann (1985) and the latter was used by Andersen & Bollerslev (1997). For

a discussion of the two, see Dacorogna, Gencay, Müller, Olsen & Pictet (2001, sec. 3.2.1). Some additional approaches to calculate a

measure for the realized variance are discussed in Andersen, Bollerslev & Diebold (2003).
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tions about the (continuous-time) noise process, are analogous to standard (discrete-time) assump-

tions in the literature. We need the following definition.

Definition 1 (Gaussian iid process) We call u(t) a Gaussian iid process with mean µ and variance

ω2 if u(t) and u(s) are independent for all t 6= s and u(t) ∼ N (µ, ω2) for all t ∈ R.

Lemma 1 The Gaussian iid process exists and (u(t1), . . . , u(tk))
′ ∼ Nk(µ, ω2Ik) for any k-tuple

(t1, . . . , tk) of distinct points, where µ = (µ, . . . , µ) and Ik is the k × k identity matrix.

Assumption 1 (i) The true price process is given from dp∗(t) = σ(t)dw(t), where w(t) is a stan-

dard Brownian motion, σ(t) is a time-varying (random) function that is independent of w, and σ 2(t)

is Lipschitz (almost surely). (i i) The noise process, u, is a Gaussian iid process with mean zero and

variance ω2 that is independent of p∗.

Although we allow the volatility function, σ(t), to be random we shall condition on σ(t) in our

analysis, because our object of interest is the integrated variance, IV ≡
∫ b

a σ 2(t)dt. The Lipschitz

condition is a smoothness condition that requires |σ 2(t) − σ 2(t + δ)| < εδ for some ε and all t

and δ (with probability one). This specification for the noise process is similar (or identical) to

those in Corsi et al. (2001), Zhang et al. (2003), and Bandi & Russell (2003). Assuming a Gaussian

distribution is not crucial but makes the analysis more tractable.

We partition the interval [a, b] into m intervals of equal length, 1m ≡ (b − a)/m, and obtain

the m returns, y∗
i,m ≡ p∗(a + i1m) − p∗(a + i1m − 1m), i = 1, . . . , m, that will be referred to

as intraday returns. Similarly we define yi,m and ei,m to be the increments in p and u, respectively,

and note that ei,m = yi,m − y∗
i,m .

The realized variance for p∗ is defined by RV (m)
∗ ≡

∑m
i=1 y∗2

i,m , and it follows that RV (m)
∗ is

consistent for the IV, as m → ∞, see e.g. Meddahi (2002). An asymptotic distribution theory of

realized variance (in relation to integrated variance) is established in Barndorff-Nielsen & Shephard

(2002). While RV (m)
∗ is the ideal estimator it is not a feasible estimator, because p∗ is latent. The

realized variance of p, which is given by RV (m) ≡
∑m

i=1 y2
i,m, is observable but suffers from a

well-known bias problem and is inconsistent for the IV .

The bias-variance properties of the RV (m) have been established by Zhang et al. (2003) and

Bandi & Russell (2003) under an iid noise assumption. The following lemma summarizes some of

their results in our framework, where our Gaussian assumptions lead to more detailed (and simpler)

expressions. First we define σ 2
i,m ≡

∫ a+i1m
a+i1m−1m

σ 2(t)dt and we note that var(y∗
i,m) = E(y∗2

i,m) =
σ 2

i,m .

3



Hansen, P. R. and A. Lunde: Realized Variance and IID Noise

Lemma 2 Given Assumption 1 it holds that E(RV (m)) = IV + 2mω2, var(RV (m)) = 12ω4m +
8ω2 ∑m

i=1 σ 2
i,m − 4ω4 + 2

∑m
i=1 σ 4

i,m, and the asymptotic distribution is given by

RV(m) − 2mω2

√
12ω4m

=
√

m/3(
RV(m)

2mω2
− 1)

d→ N (0, 1), as m → ∞.

Note that in the absence of market microstructure noise (ω2 = 0) we obtain the result of

Barndorff-Nielsen & Shephard (2002), that var(RV (m)) = 2
∑m

i=1 σ 4
i,m = 2 1

m

∫ b
a σ 4(s)ds + o( 1

m ).

Next, we consider the alternative measure of the realized variance, that is given by

RV(m)

AC1
≡

m
∑

i=1

y2
i,m +

m
∑

i=1

yi,m yi−1,m +
m

∑

i=1

yi,m yi+1,m .

This quantity incorporates the empirical first-order autocorrelation which explains the subscript.

This modification amounts to a bias reduction that ‘works’ the same way that robust covariance

estimators, such as that of Newey & West (1987), achieve their consistency.

Lemma 3 Given Assumption 1 it holds that E(RV (m)

AC1
) = IV,

var(RV (m)

AC1
) = 8ω4m + 8ω2

m
∑

i=1

σ 2
i,m − 6ω4 + 6

m
∑

i=1

σ 4
i,m + O(m−2),

and the asymptotic distribution is given by

RV(m)

AC1
− IV

√
8ω4m

d→ N (0, 1), as m → ∞.

An important result of Lemma 3 is that RV (m)

AC1
is unbiased for the IV (conditionally on {σ(s),

a ≤ s ≤ b}), such that an unbiased measure is available in the presence of market microstructure

noise. A rather remarkable result of Lemma 3 is that the bias corrected estimator, RV (m)

AC1
, has a

smaller asymptotic variance than the unadjusted estimator, RV (m). Usually a bias correction leads to

a larger asymptotic variance. Also note that the asymptotic results of Lemma 3 is more useful than

that of Lemma 2, because the result of Lemma 2 does not involve the object of interest, IV , but only

shed light on aspects of the RV’s bias. Note, however, that the asymptotic result of Lemma 3 does

not suggest that RV (m)

AC1
should be sampled at the highest possible frequency, since the asymptotic

variance is increasing in m. Our expression for the variance is approximately given by var[RV (m)

AC1
] ≈

8ω4m +8ω2
∫ b

a σ 2(s)−6ω4 +6
∫ b

a σ 4(s)ds 1
m , where the last term involves the integrated quarticity

that was introduced by Barndorff-Nielsen & Shephard (2002).

Next we compare RV (m)

AC1
to RV(m) in terms of their mean square error (MSE) and their respective

optimal sampling frequencies for a special case.
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Corollary 4 Suppose that the volatility is constant such that σ 2
i,m = σ 2/m, where σ 2 = IV and

define the noise-to-signal ratio, λ ≡ ω2/σ 2. The mean squared errors are given by

MSE(RV (m)) = 2σ 4[2λ2m2 + 6λ2m + 4λ − 2λ2 + 1
m

],

MSE[RV(m)

AC1
] = 2σ 4[ 4λ2m + 4λ − 3λ2 + 3

m
].

Let m∗
0 and m∗

1 be the optimal sampling frequencies for RV (m) and RV (m)

AC1
, respectively. It holds that

m∗
0 is given implicitly as the real (positive) solution to 2m3+3m2 = 1/(2λ2) whereas m∗

1 =
√

3/4/λ.

It can be verified that m∗
1 is several times larger than m∗

0, thus the optimal RV (m)

AC1
requires more

frequent sampling that the ‘optimal’ RV . This is quite intuitive, because RV (m)

AC1
can utilized more

information in the data without being affected by a severe bias.

3. Empirical Analysis

We analyze the Alcoa Inc. (AA) stock over a sample period that spans the five year from January

2, 1998 to December 31, 2002. The data are transaction prices from the NYSE extracted from

the Trade and Quote (TAQ) database. The raw data were filtered for outliers and we discarded

transactions outside period from 9:30am to 4:00pm, and days with less than five hours of trading

were removed from the sample, which reduced the sample by 13 days. Thus we used the previous-

tick method to construct the RVs for a total of n = 1, 242 days and denoted these by RV (m)
t and

RV(m)

AC1,t , t = 1, . . . , n. The RVs are calculated for the hours that the market is open, approximately

390 minutes per day (6.5 hours) for most days.

From Lemmas 2 and 3 it follows that 2mω2 = E[RV (m) − RV(m)

AC1
] such that ω̂

2 = 1
2m (RV

(m) −
RV

(m)

AC1
) is a natural estimator of ω2 (under the assumptions of Corollary 4), where we define the

sample averages, RV
(m) ≡ n−1 ∑n

t=1 RV(m)
t and RV

(m)

AC1
≡ n−1 ∑n

t=1 RV(m)

AC1,t . With m = 390 (1-

minute intraday returns) we find that RV
(m)−RV

(m)

AC1
= 0.657 which leads to ω̂

2 = 0.657/(2∗390) =
0.000842, and since RV

(m)

AC1
= 4.762 we obtain λ̂ = 0.000842/4.762 = 0.000177. This leads to

m∗
0 ≈ 200 and m∗

1 ≈ 4, 890, which corresponds to intraday returns that are sampled approximately

every 2 minutes and every 5 seconds, respectively.4 By plugging these numbers into the formulae

of Corollary 4 we find the relative mean squared error to be MSE(RV (m∗
0))/MSE(RV

(m∗
1)

AC1
) ≈ 4.88,

which (in theory) implies that RV
(m∗

1)

AC1
is almost five time more efficient than RV (m∗

0) in terms of the

mean squared error criterion. The most commonly used sampling frequency is 5-minute sampling,

4 Bandi & Russell (2003) reported optimal sample frequencies for RV (m) (for several assets) that are quite similar to our estimate

of m∗
0 .
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which corresponds to m = 78 in our application. As noted by Bandi & Russell (2003) this results in

an additional loss of efficiency and theoretically we have that MSE(RV (78)) is about 10 times larger

than MSE(RV
(m∗

1)

AC1
).

From Corollary 4 we observe that the root mean squared errors are proportional to σ 2, such that

RMSE(RV (m)) = σ 2cRV (m) and RMSE(RV (m)

AC1
) = σ 2cAC(m) where c2

RV (m) ≡ 2[2λ2m2 + 6λ2m +
(4λ − 2λ2) + 1

m ] and c2
AC(m) ≡ 2[4λ2m + (4λ − 3λ2) + 3

m ]. In the left panel of Figure 1 we have

plotted cRV (m) and cAC(m) using our empirical estimate of λ. This reveals that the RV (m)

AC1
dominate

the RV (m) except at the lowest frequencies. The left panel also shows that the RV (m)

AC1
is less sensitive

to the choice of m. This is also clear from the right panel of Figure 1, where we have displayed

the relative MSE of RV (m)

AC1
to that of (the optimal) RV (m∗

0) and the relative MSE of RV (m) to that of

(the optimal) RV
(m∗

1)

AC1
. One aspect that can be read of Figure 1 is that the RV (m)

AC1
continue to dominate

the ‘optimal’ RV (m∗
0) for a wide ranges of frequencies, and not just in a small neighborhood of the

optimal value, m∗
1.

[Figure 1 about here]

The optimal sample frequencies of Corollary 4 depend on parameters that are likely to differ

across days. So our estimates above should be viewed as approximations for ‘daily average values’,

in the sense that m0 = 200 is a sensible sampling frequency to use (on average), although different

values are likely to be better on some days. While m∗
1 indicate that we should sample intraday

returns every 5 seconds, we shall see that the implications of the iid noise assumption do not hold

in practice if intraday returns are sampled at high frequencies. In our application the implications

seem to fail once intraday returns are sampled more frequently than every 30 seconds.

3.1. Empirical Evidence against the IID Noise Assumption

Under the iid noise assumption the RV (m)

AC1
should be unbiased at any frequency. This can be un-

derstood from the fact that the iid noise assumption causes the first-order autocorrelation of ei,m

(and hence yi,m) to be non-zero, whereas higher-order covariances are all zero. The RV (m)

AC1
properly

corrects for the first-order autocorrelation in yi,m, which is the reason that the RV (m)

AC1
is unbiased

under the iid assumption. If higher-order autocorrelations of yi,m are non-zero, which could be the

case if the noise component, u(t), was dependent across time (different from iid noise), then the

RV(m)

AC1
would be biased (for large ms). This problem is evident from the signature plots in Figure

2 that show that the RV (m)

AC1
is biased for sampling frequency above 30 seconds. For example, with

6
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1-second sampling the bias is quite severe and close to that of the standard RV , however the RV (m)

AC1

generally has a smaller bias.

[Figure 2 about here]

In spite of this shortcoming, we will still argue that the RV (m)

AC1
is preferred to the standard RV.

The volatility signature plot of RVAC1 indicate that the time-dependence in u persists for less than 30

seconds, because the signature plot is quite constant for the frequencies that are below a 30-second

sampling. So our estimate of λ (that is based on 1-minute returns) should not be affected by the time

dependence, and this value of λ suggests that the MSE of the RV (780)

AC1
(30-seconds returns) is 58%

smaller than that of the ‘optimal’ RV (m∗
0), see Figure 1. Nevertheless, Figure 2 shows that there is

a need to study the properties of the RV under a more general specification for the noise process,

such as the Ornstein–Uhlenbeck specification that was analyzed in a related setting by Aı̈t-Sahalia,

Mykland & Zhang (2003).

4. Concluding Remarks

We have derived the bias and variance properties of RV (m)

AC1
, which equals the standard realized vari-

ance plus a bias correction that is given from the first-order autocorrelation of intraday returns. The

RV(m)

AC1
compares favorable to the standard measure of RV in terms of the mean squared error cri-

terion. Our empirical analysis showed that the MSE of RV (m)

AC1
may be 90% smaller than the MSE

of the most common measure of RV, provided that the market microstructure noise satisfies the

iid assumption. Most of the existing theoretical studies of the RV in the presence of market mi-

crostructure effects are based on this assumption, however our empirical analysis revealed that this

assumption does not hold in practice. While it may be true (or approximately true) for sampling at

low frequencies, it does not hold when returns are sampled more frequently than every 30 seconds

in our empirical analysis. This followed directly from the volatility signature plot of RV (m)

AC1
in Figure

2. While the RV (m)

AC1
is biased when sampling at high frequencies, its bias was less severe than that of

the standard RV , and RV (m)

AC1
was found to dominate the standard RV (m) when the former is based on a

less aggressive sampling, such as 30-second sampling. However, our analysis has revealed a need to

study the properties of RV-measures under a more general specification for the noise process. Some

preliminary results can be found in Hansen & Lunde (2003) who use a model-free noise structure,

and in Oomen (2002b) who use a model-based approach.
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Appendix of Proofs

Proof of Lemma 1. That (u(t1), . . . , u(t k))
′∼ N (µ, ω2 Ik) follows from the definition of u, and since this

is a well-defined (multivariate) Gaussian distribution, the existence of u follows directly from Kolmogorov’s

Existence Theorem, see Billingsley (1995, chapter 7).

As stated earlier, we condition on σ(t) in our analysis, thus without loss of generality we treat σ(t) as a

deterministic function in our derivations.

Proof of Lemma 2. The bias follows directly from the decomposition y2
i,m = y∗2

i,m + e2
i,m + 2y∗

i,mei,m, since
E(e2

i,m) = 2ω2. Similarly, we see that

var(RV(m)) = var(
m

∑

i=1

y∗2
i,m) + var(

m
∑

i=1

e2
i,m) + 4 var(

m
∑

i=1

y∗
i,mei,m)

because the three sums are uncorrelated. The first sum involves uncorrelated terms such that var(
∑m

i=1 y∗2
i,m) =

∑m
i=1 var(y∗2

i,m) = 2
∑m

i=1 σ 4
i,m , where the last equality follows from the Gaussian assumption. For the sec-

ond sum we find

E(e4
i,m) = E(ui,m − ui−1,m)4 = E(u2

i,m + u2
i−1,m − 2ui,mui−1,m)2

= E(u4
i,m + u4

i−1,m + 4u2
i,mu2

i−1,m + 2u2
i,mu2

i−1,m) + 0

= 6ω4 + 6ω4 = 12ω4,

E(e2
i,me2

i+1,m) = E(ui,m − ui−1,m)2(ui+1,m − ui,m)2

= E(u2
i,m + u2

i−1,m − 2ui,mui−1,m)(u2
i+1,m + u2

i,m − 2ui+1,mui,m)

= E(u2
i,m + u2

i−1,m)(u2
i+1,m + u2

i,m) + 0 = 6ω4.

such that var(e2
i,m) = 12ω4 − [E(e2

i,m)]2 = 8ω4 and cov(e2
i,m, e2

i+1,m) = 2ω4. Since cov(e2
i,m, e2

i+h,m) = 0
for |h| ≥ 2 it follows that

var(
m

∑

i=1

e2
i,m) =

m
∑

i=1

var(e2
i,m) +

m
∑

i, j=1
i 6= j

cov(e2
i,m, e2

i+h,m) = m8ω4 + 2(m − 1)2ω4 = 12m ω4 − 4ω4.

The last sum involves uncorrelated terms such that

var(
m

∑

i=1

ei,m y∗
i,m) =

m
∑

i=1

var(ei,m y∗
i,m) = 2ω2

m
∑

i=1

σ 2
i,m .

Finally, the asymptotic normality follows by the central limit theorem for heterogeneous arrays with finite

dependence, and the fact that 2
∑m

i=1 σ 4
i,m + 2ω2 ∑m

i=1 σ 2
i,m − 4ω4 = O(1).
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Proof of Lemma 3. First we note that RV (m)
AC1

=
∑m

i=1Yi,m + Ui,m + Vi,m + Wi,m, where

Yi,m ≡ y∗
i,m(y∗

i−1,m + y∗
i,m + y∗

i+1,m)

Ui,m ≡ (ui,m − ui−1,m)(ui+1,m − ui−2,m)

Vi,m ≡ y∗
i,m(ui+1,m − ui−2,m)

Wi,m ≡ (ui,m − ui−1,m)(y∗
i−1,m + y∗

i,m + y∗
i+1,m),

since yi,m(yi−1,m + yi,m + yi+1,m) = (y∗
i,m + ui,m − ui−1,m)(y∗

i−1,m + y∗
i,m + y∗

i+1,m + ui+1,m − ui−2,m)

=Yi,m + Ui,m + Vi,m + Wi,m . Thus the properties of RV (m)
AC1

are given from those of Yi,m, Ui,m, Vi,m, and
Wi,m . It follows directly that E(Yi,m) = σ 2

i,m, and E(Ui,m) = E(Vi,m) = E(Wi,m) = 0, which shows that
E[RV(m)

AC1
] =

∑m
i=1 σ 2

i,m, and the variance of RV (m)
AC1

is given by

var[RV(m)
AC1

] = var[
m

∑

i=1

Yi,m + Ui,m + Vi,m + Wi,m] = (1) + (2) + (3) + (4) + (5),

where (1) = var(
∑m

i=1 Yi,m), (2) = var(
∑m

i=1 Ui,m), (3) = var(
∑m

i=1 Vi,m), (4) = var(
∑m

i=1 Wi,m), (5) =
2cov(

∑m
i=1 Vi,m,

∑m
i=1 Wi,m), since all other sums are uncorrelated. Next, we derive derive the expressions

of each of these five terms.
1. Yi,m = y∗

i,m(y∗
i−1,m + y∗

i,m + y∗
i+1,m) and given our assumptions it follows that E[y∗2

i,m y∗2
j,m] = σ 2

i,mσ 2
j,m

for i 6= j, and E[y∗2
i,m y∗2

j,m] = E[y∗4
i,m] = 3σ 4

i,m for i = j, such that

var(Yi,m) = 3σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m − [σ 2

i,m]2 = 2σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m .

The first-order autocorrelation of Yi,m is

E[Yi,mYi+1,m] = E[y∗
i,m(y∗

i−1,m + y∗
i,m + y∗

i+1,m)y∗
i+1,m(y∗

i,m + y∗
i+1,m + y∗

i+2,m)]

= E[y∗
i,m(y∗

i,m + y∗
i+1,m)y∗

i+1,m(y∗
i,m + y∗

i+1,m)] + 0

= 2E[y∗2
i,m y∗2

i+1,m] = 2σ 2
i,mσ 2

i+1,m,

such that cov(Yi,m, Yi+1,m) = σ 2
i,mσ 2

i+1,m, whereas cov(Yi,m, Yi+h,m) = 0 for |h| ≥ 2. Thus

(1) =
m

∑

i=1

(2σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m) +

m
∑

i=2

σ 2
i,mσ 2

i−1,m +
m−1
∑

i=1

σ 2
i,mσ 2

i+1,m

= 2
m

∑

i=1

σ 4
i,m + 2

m
∑

i=1

σ 2
i,mσ 2

i−1,m + 2
m

∑

i=1

σ 2
i,mσ 2

i+1,m − σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m

= 6
m

∑

i=1

σ 4
i,m − 2

m
∑

i=1

σ 2
i,m(σ 2

i,m − σ 2
i−1,m) + 2

m
∑

i=1

σ 2
i,m(σ 2

i+1,m − σ 2
i,m)

−σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m

= 6
m

∑

i=1

σ 4
i,m − 2

m
∑

i=2

σ 2
i,m(σ 2

i,m − σ 2
i−1,m) + 2

m−1
∑

i=1

σ 2
i,m(σ 2

i+1,m − σ 2
i,m)

−σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m − 2σ 2
1,m(σ 2

1,m − σ 2
0,m) + 2σ 2

m,m(σ 2
m+1,m − σ 2

m,m)

= 6
m

∑

i=1

σ 4
i,m − 2

m−1
∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m) + σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m

9
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2. Ui,m = (ui,m − ui−1,m)(ui+1,m − ui−2,m) and from E(U 2
i,m) = E(ui,m − ui−1,m)2 E(ui+1,m − ui−2,m)2 it

follows that var(Ui,m) = 4ω4. The first and second order autocovariance are given by

E(Ui,mUi+1,m) = E[(ui,m − ui−1,m)(ui+1,m − ui−2,m)(ui+1,m − ui,m)(ui+2,m − ui−1,m)]

= E[ui−1,mui+1,mui+1,mui−1,m] + 0 = ω4, and

E(Ui,mUi+2,m) = E[(ui,m − ui−1,m)(ui+1,m − ui−2,m)(ui+2,m − ui+1,m)(ui+3,m − ui,m)]

= E[ui,mui+1,mui+1,mui,m] + 0 = ω4,

whereas E(Ui,mUi+h,m) = 0 for |h| ≥ 3. Thus, (2) = m4ω4 + 2(m − 1)ω4 + 2(m − 2)ω4 = 8ω4m − 6ω4.

3. Vi,m = y∗
i,m(ui+1,m − ui−2,m) such that var(V 2

i,m) = σ 2
i,m2ω2 and E[Vi,m Vi+h,m] = 0 for all h 6= 0. Thus

(3) = var(
∑m

i=1 Vi,m) = 2ω2 ∑m
i=1 σ 2

i,m .

4. Wi,m = (ui,m − ui−1,m)(y∗
i−1,m + y∗

i,m + y∗
i+1,m) such that var(W 2

i,m) = 2ω2(σ 2
i−1,m + σ 2

i,m + σ 2
i+1,m).

The first order autocovariance equals

cov(Wi,m, Wi+1,m) = E[−u2
i,m(y∗2

i,m + y∗2
i+1,m)] = −ω2(σ 2

i,m + σ 2
i+1,m),

while cov(Wi,m, Wi+h,m) = 0 for |h| ≥ 2. Thus

(4) =
m

∑

i=1

[2ω2(σ 2
i−1,m + σ 2

i,m + σ 2
i+1,m) −

m
∑

i=2

ω2(σ 2
i,m + σ 2

i−1,m) −
m−1
∑

i=1

ω2(σ 2
i,m + σ 2

i+1,m)]

= ω2
m

∑

i=1

(σ 2
i−1,m + σ 2

i+1,m) + ω2[σ 2
1,m + σ 2

0,m + σ 2
m,m + σ 2

m+1,m]

= 2ω2
m

∑

i=1

σ 2
i,m + ω2[σ 2

0,m − σ 2
m,m + σ 2

m+1,m − σ 2
1,m] + ω2[σ 2

1,m + σ 2
0,m + σ 2

m,m + σ 2
m+1,m]

= 2ω2
m

∑

i=1

σ 2
i,m + 2ω2[σ 2

0,m + σ 2
m+1,m].

5. The autocovariances between the last two terms are given by

E[Vi,m Wi+h,m] = E[y∗
i,m(ui+1,m − ui−2,m)(ui+h,m − ui−1+h,m)(y∗

i−1+h,m + y∗
i+h,m + y∗

i+1+h,m)],

showing that cov(Vi,m, Wi±1,m) = ω2σ 2
i,m, while all other covariances are zero. From this we conclude that

(5) = 2[2
∑m

i=1 ω2σ 2
i,m − ω2(σ 2

1,m + σ 2
m,m)] = 4ω2 ∑m

i=1 σ 2
i,m − 2ω2(σ 2

1,m + σ 2
m,m).

By adding up the five terms we find

6
m

∑

i=1

σ 4
i,m − 2

m−1
∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m) + σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m + 8ω4m − 6ω4

+ 2ω2
m

∑

i=1

σ 2
i,m + 2ω2

m
∑

i=1

σ 2
i,m + 2ω2[σ 2

0,m + σ 2
m+1,m] + 4ω2

m
∑

i=1

σ 2
i,m − 2ω2[σ 2

1,m + σ 2
m,m]

= 8ω4m + 8ω2
m

∑

i=1

σ 2
i,m − 6ω4 + 6

m
∑

i=1

σ 4
i,m + +κm,

10
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where

κm = −2
m

∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m) + σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m

+2ω2(σ 2
0,m − σ 2

1,m + σ 2
m+1,m − σ 2

m,m).

Since σ 2(t) is Lipschitz, there exists an ε > 0 such that |σ 2(t) − σ 2(t + δ)| ≤ εδ for all t and all δ. Thus
if we define the interval, Ji,m ≡ [a + (i − 1)1m, a + i1m], we have that |σ 2

i,m | = |
∫

Ji,m
σ 2(s)ds| ≤

1m sups∈Ji,m
σ 2(s) = O(m−1), since 1m = (b − a)/m = O(m−1), and

|σ 2
i,m − σ 2

i−1,m | = |
∫

Ji,m

σ 2(s) − σ 2(s − 1m)ds| ≤
∫

Ji,m

|σ 2(s) − σ 2(s − 1m)|ds

≤ 1m sup
s∈Ji,m

|σ 2(s) − σ 2(s − 1m)| ≤ 12
mε = O(m−2).

Finally,
∑m

i=1(σ
2
i+1,m − σ 2

i,m)2 ≤ m · (1m
ε
m )2 = O(m−3), which proves that κm = O(m−2). The asymp-

totic normality follows from the CLT that applies to heterogeneous arrays with finite dependence, since

yi,m(yi−1,m + yi,m + yi+1,m) is a finite dependent (3-dependent) process for any m.

Proof of Corollary 4. The MSE’s are given from Lemmas 2 and 3. Setting the ∂MSE(RV (m))/∂m ∝ 4λ2m +
6λ2−m−2 equal to zero yields the first order condition of the corollary. Similarly we find ∂MSE(RV (m)

AC1
)/∂m ∝

4λ2 − 3m−2, which proves that m∗
1 =

√
3/4/λ.
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Figure 1: Left: The MSEs of RV (m) and RV(m)
AC1

as a function of the sampling frequency, m. Right: Relative

MSE of RV (m) to RV
(m∗

1)

AC1
where m∗

1 is the optimal sampling frequency for RVAC1 , and relative MSE of RV (m)
AC1

to RV (m∗
0) where m∗

0 is the optimal sampling frequency for the standard RV .
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