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Abstract

Existence of monotone pure strategy equilibrium is established in
the discriminatory and uniform S + α-th price (α ∈ [0, 1]) auctions
of S identical objects when bidders are risk-neutral with independent
signals. The model requires discrete price / quantity grids and al-
lows for multi-dimensional signals, interdependent values, increasing
marginal values, allocative externalities, and two-sided trading. Given
no externalities, further, all mixed-strategy equilibria in these auctions
must be ex post allocation- and interim expected payment-equivalent
to some monotone pure strategy equilibrium. Thus, for standard ex-
pected surplus / revenue analysis, there is no loss in restricting atten-
tion to monotone strategies.
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1 Introduction

The U.S. Treasury’s bond issue auctions and the NYSE’s opening batch
auctions are just two among many examples of real-world auctions of multiple
identical objects (so-called “multi-unit auctions”). A bid in such an auction
is a demand and/or supply schedule, specifying a price (or “unit-bid”) for
each unit, and a bidder receives or keeps a given unit if his bid on that unit
is among the highest unit-bids. There are a wide variety of payment rules for
such auctions, but two sorts are the most common in practice: discriminatory
and uniform-price auctions. Until the late 1990s, the U.S. Treasury used a
discriminatory auction to issue bonds: bidders’ paid their bids for each unit
that they won. Recently the Treasury changed its auction to a uniform S+1-
st price format: all bidders pay a price equal to the highest losing bid (S is
the number of units, so this is the S + 1-st highest unit-bid). Every morning
at the beginning of trading, NYSE market-makers run a two-sided auction
(bids are submitted overnight) and all trades at that time execute at the
same price. The Paris and Amsterdam exchanges also open trading with
batch auctions which may be thought of, at least approximately, as uniform
S + 1/2-th price auctions: bidders pay (if buying) or receive (if selling) the
average market-clearing price.1

Despite their practical importance, the theory of multi-unit auctions is
quite incomplete. This would be troubling but not of great concern if insights
from the well-developed theory of single-object auctions applied in multi-unit
settings. Unfortunately, single-object auction theory provides an unreliable
guide in settings with multi-unit demand / multi-unit supply. For example,
critics of the Treasury’s plan to switch to the uniform price auction noted
that, even though this auction appears similar to a second-price auction
(which is an S+1-price auction when S = 1), bidders will not submit truthful
demand schedules but rather shade their bids down in equilibrium. Indeed,
Back and Zender (1993) expanded an example in Wilson (1979) showing
that in some models the uniform S + 1-st price auction has a multitude of
equilibria with so much bid-shading that revenues can be arbitrarily low!

Even more basic insights drawn from single-object auction theory regard-
ing the structure of equilibria can run afoul in multi-unit settings. To see

1To the best of my knowledge, NYSE does not have a formally defined price-setting rule.
Yet “specialists must maintain a fair, competitive, orderly and efficient market” (NYSE
website, italics added), so the S +1/2-price auction is a natural modelling candidate since
it treats buyers and sellers symmetrically.
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this, consider the simplest possible scenario in which bidders are risk-neutral
with independent private values (IPV). In the first-price and second-price
auctions, it is well-known that all equilibria are monotone, i.e. equilibrium
bids are non-decreasing in bidders’ values.2 Yet all equilibria may be non-
monotone in the uniform S +1-st price auction in the same case, i.e. bidders
may lower their bids on some units as their values increase. (See Example
5.) Since intuitions drawn from single-object auction theory can be very
deceptive, we need to develop a free-standing multi-unit auction theory.

In this paper, I begin to address some of the basic issues surrounding
existence and monotonicity of equilibrium in multi-unit auctions. In particu-
lar, is it safe to assume that an equilibrium exists at all?, that bidders adopt
pure strategies in equilibrium?, and that bidders adopt monotone strategies
in equilibrium? The paper’s two main results provide a “qualified Yes” to
these questions for the discriminatory and uniform S +α-th price (α ∈ [0, 1])
auctions. “Yes”, a monotone pure strategy equilibrium (MPSE) exists and,
“Yes”, there is a sense in which all equilibria are equivalent to MPSE. “Qual-
ified” in two ways. First, extra assumptions need to be made: Both the
existence and characterization results require that bidders receive indepen-
dent signals (or “types”), that they are risk-neutral, and that a specific tie-
breaking rule (“priority rationing”) is used. Unfortunately, each of these con-
ditions is essential. As Examples 3, 4, and 5 show, respectively, all equilibria
may be non-monotone given risk-averse bidders and IPV, given risk-neutral
bidders and affiliated private values, or given risk-neutrality, IPV, and “pro-
portional rationing” to break ties instead of priority rationing. Furthermore,
the characterization result requires that there be no externalities. Example
6 shows that this restriction also can not be relaxed.

Second, equilibria need only be “equivalent” to some MPSE. To be spe-
cific, every mixed strategy equilibrium is both ex post allocation- and interim
expected payment-equivalent to some MPSE. (These terms are discussed be-
low and defined formally on page 27.) Some such qualification is necessary
since one must account for the fact that bidders are indifferent between all
demand / supply schedules (“bids”) that always lead to the same allocation
and the same payment for them. For example, in the uniform S + 1-st price

2In the second-price auction, bidding one’s true value is a weakly dominant strategy, so
that (trivially) all equilibria in weakly undominated strategies are monotone. Other equi-
libria can involve randomized or non-monotone bidding, but such behavior is not crucial
to any equilibrium: in terms to be defined later, any such equilibrium is ex post allocation-
and interim expected payment-equivalent to a monotone pure strategy equilibrium.
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auction, consider a situation in bidder 1 never wins a first unit with any
unit-bid less than p and a range of types [0, t] all submit first unit-bids less
than p in equilibrium. Since these bidder 1 types always lose, they are indif-
ferent between all bids in the range [0, p] and hence may randomize or submit
lower first unit-bids as type increases, causing a non-monotonicity. The in-
terim expected payment-equivalence result demonstrates, however, that it
is always possible to “monotonize” bidder 1’s strategy in such a way that
preserves equilibrium and such that every other bidder’s interim expected
payment (i.e. conditional on his type) is preserved. A priori, there also is
the possibility that randomizations or non-monotonicities may support an
equilibrium whose allocation differs from that of any MPSE. The ex post
allocation-equivalence result rules that out.

While our results are cast in a setting with S ≥ 1 units, the charac-
terization result appears to be new even in the well-studied case of S = 1.
Specifically, in the second-price auction, this paper appears to be the first to
recognize that every mixed strategy equilibrium is ex post allocation- or in-
terim expected payment-equivalent to a monotone pure strategy equilibrium.
(Even given risk-neutral bidders and independent types, it is not obvious that
all equilibria must be equivalent in these ways to MPSE when bidders have
general interdependent values.)

Establishing monotonicity of equilibria in auctions is a common thread
in much of the auction literature (see below). Why is monotonicity impor-
tant? Probably most significant, in the special case of symmetric models,
is that strict monotonicity – when combined with symmetry – guarantees
efficiency of the auction outcome. This is why, for instance, Reny and Perry
(2003) focus so intensively on establishing monotonicity in large uniform-
price auctions. There are also some potential practical benefits3 as well as
technical reasons why it’s easier to study auctions in which bidders are known
to adopt monotone strategies. Another important reason is that monotonic-
ity serves as an intuition check as we learn what distinguishes multi-unit
from single-object auctions. If we are expecting equilibria to be monotone
but they fail to be so, then we need to understand why. From this point
of view, the several examples presented here are interesting as they show

3A bidder (or an econometrician) computing best responses faces a simpler problem if
attention can be restricted to the smaller space of monotone strategies. Monotonicity also
creates an additional layer of struture in data generated by an auction. To be specific,
higher bids correlate with higher values. This may help with identification of empirical
models (though it is by no means necessary nor sufficient for identification).

4



how monotonicity can fail. Sometimes this failure is due to a detail in the
rules. For instance, Example 5 shows that equilibria may fail to be mono-
tone given the most commonly-studied tie-breaking rule, whereas the paper’s
main results show that such possibilities disappear if we choose a different
rule. This suggests that modellers and auction designers may want to con-
sider more carefully their choice of tie-breaking rule. Other times the failure
of monotonicity points out a faulty intuition carried over from our more
well-developed understanding of single-object auctions. Examples 3, 4 both
fit in this category, showing why, respectively, affiliation and risk-aversion
play very different sorts of roles in multi-unit auctions than in single-object
auctions.

Related Literature: This paper complements a growing literature study-
ing existence and monotonicity of equilibrium in multi-unit auctions. There
are several important dimensions to models of such auctions so, perhaps not
surprisingly, the models in this literature are typically incomparable in their
generality. Each paper makes a contribution by relaxing certain assump-
tions but at the cost of requiring a relatively strong assumption elsewhere.
In the brief (and non-exhaustive) review to follow, I italicize the key as-
pects in each paper that are less general than in the others, summarizing
at the end how this paper relates. Reny (1999) shows existence of MPSE
in the one-sided discriminatory auction given multi-dimensional independent
private values. Using an entirely different approach, Jackson and Swinkels
(2001) (hereafter “JS”) establish existence of equilibrium in distributional
strategies in a wide variety of one- and two-sided auctions when bidders have
multi-dimensional correlated private values. In two-sided auctions, JS also
show how to guarantee existence of a non-trivial equilibrium, i.e. one having
positive probability of trade. In yet another vein, Fudenberg, Mobius, and
Sziedl (2003) (“FMS”) and Reny and Perry (2003) (“RP”) establish existence
of MPSE in large enough two-sided uniform price auctions when bidders have
single-unit demand. FMS further require that bidders have correlated pri-
vate values, while RP allow for interdependent values given affiliated signals
drawn from a symmetric distribution. This paper takes yet another type of
approach, establishing existence of MPSE in one- and two-sided versions of
the uniform-price and discriminatory auctions when bidders receive multi-
dimensional independent signals and there may be just a few bidders having
multi-unit demand and interdependent values. I also allow for certain sorts
of allocative externalities à la Jehiel, Moldavanu, and Stacchetti (1996), i.e.
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bidders may care who else wins how many units. In short, this paper relies
on independence while JS and FMS rely on private values and FMS and RP
on there being sufficiently many bidders.

Another related literature is that proving existence and characterizing
monotonicity properties of equilibria in the first-price auction (which is a
discriminatory auction with S = 1). Bajari (1997) showed that, given inde-
pendent private values, there is a unique equilibrium which is in monotone
pure strategies. Several other papers establish existence of MPSE or unique-
ness among the class of all MPSE but, unlike this paper, do nothing to rule
out the possibility of non-MPSE.4 More to the point of this paper, Rodriguez
(2000) (for two bidders) and McAdams (2003a) (for n bidders) establish that
all equilibria must be equivalent to MPSE (in the stronger sense of ex post
allocation- and ex post payment-equivalence) in asymmetric models with af-
filiated signals and interdependent values. Lastly, McAdams and Persico
(2003) apply this result to show that the efficient MPSE demonstrated by
Milgrom and Weber (1982) in their n-bidder symmetric model is its unique
equilibrium.

This first-price auction literature, however, grapples primarily with set-
tings in which bidders have affiliated but not independent signals. Indeed,
proving our characterization results for the first-price auction is fairly straight-
forward when bidder signals are independent. This paper grapples with some-
thing totally different, the multidimensionality of bids. Bidders typically are
indifferent between many different bids and even if the set of bidders’ best
responses is increasing in the strong set order (see page 32) higher types may
have a best response that is not comparable with or strictly less than a lower
type’s best response. (Two bids are incomparable if each specifies a higher
unit-bid for some quantity.) The challenge of our characterization work is
to show that submitting incomparable bids is never vital to supporting an
equilibrium allocation nor expected payments. To manage this inherent mul-
tidimensionality problem, I exploit a novel representation of mixed strategies
as weighted planar graphs in which bids can be interpreted as paths.

Lastly, the existence part of the paper applies and extends techniques
developed in McAdams (2003b) so it is important to distinguish the two

4In an asymmetric two-bidder model with affiliated signals and interdependent values,
Lizzeri and Persico (2000) show that there is a unique MPSE. Maskin and Riley (2000),
Athey (2001), and Reny and Zamir (2002) establish MPSE existence in models of varying
levels of generality but all allowing for n asymmetric bidders, interdependent values, and
affiliated signals.
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papers. McAdams (2003b) has no characterization result but there is some
overlap of results: he proves MPSE existence in the uniform S-th and S+1-st
price auctions given independent signals (but not requiring risk-neutrality).
As shall be discussed more completely later (pages 15-18), the uniform S-
th and S + 1-st price auctions have a special structure – not shared by
the discriminatory or other uniform price auctions – that makes the key
technical observation that payoffs are modular in own bid especially clear.
Furthermore, this difference has significant implications. Modularity holds
in the S-th and S + 1-st price auctions regardless of bidders’ risk preference,
fails in the discriminatory and S + α-th price auctions (α ∈ (0, 1)) when
bidders are risk-averse, and fails in the S + 2-nd price auction even when
bidders are risk-neutral. In short, this paper establishes modularity beyond
the uniform S-th and S+1-st price auctions making the existence result here
more general than that in McAdams (2003b).

The remainder of the paper is organized as follows: Section 2 lays out
the model of multi-unit auctions. Section 3 discusses and sketches the proof
that bidders’ expected payoffs are modular in own bid in the discriminatory
and uniform S+α-th price auctions (α ∈ [0, 1]), a key technical contribution.
Sections 4, 5 leverage modularity to conclude that a MPSE exists and that,
as long as there are no externalities, all mixed strategy equilibria must be ex
post allocation- and interim expected payment-equivalent to MPSE. A few
remarks and an Appendix containing some proofs concludes the paper.

2 Model: Multi-Unit Auctions

This paper studies one- and two-sided discriminatory and uniform-price auc-
tions. Unless otherwise specified, all results in the paper maintain the fol-
lowing framework and assumptions.

Values and Information: Bidder i receives value Vi(q, t) from the alloca-
tion q = (q1, ..., qn) in the state t = (t1, ..., tn), where types ti = (t1i , ..., t

h
i )

are multi-dimensional with support Ti = [0, 1]h and {tji}
i=1,...,n
j=1,...,h are indepen-

dent. Vi is bounded and piecewise continuous in t and Vi(q
′, t) − Vi(q, t) is

increasing in ti and non-decreasing in t−i whenever q′i > qi and q′j ≤ qj for all
j 6= i. Bidders are risk-neutral, i.e. seek to maximize expected surplus, the
difference between their value and payment. To avoid notational confusion,
vectors are bolded (including vectors of quantities, types, bids, etc...). The
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main exception to this rule are individual bidder types ti and individual bids
Pi(·) which each are multi-dimensional objects but remain unbolded.

Notes: The proof of existence (Theorem 2) requires the relatively weak as-
sumption that {ti}i=1,...,n are independent while the proof of the charac-
terization result (Theorem 3) uses the stronger property that {tji}

i=1,...,n
j=1,...,h

are independent. The model includes “interdependent values” (in which
Vi(q, t) = Vi(qi, t), i.e. value depends on others’ information but not on what
others’ receive) and allows for allocative externalities, with the caveat that
“own incremental values” are non-decreasing in own type. Such a monotonic-
ity assumption is present, for instance, in Jehiel, Moldavanu, and Stacchetti
(1996)’s study of single-object auctions with externalities. As an example,
consider a common value stock IPO model. If the total value of the equity
being auctioned is Z(t), the value of allocation q to bidder i depends not
only on the quantity i receives but on how much others receive:

Vi(q, t) = Z(t)
qi∑n

j=1 qj

(This would not be an issue if bidders knew the total quantity of shares
when formulating their bids. Companies going public in the United States,
however, have the “Greenshoe Option” to issue up to 10% more shares than
initially planned.) When q′i ≥ qi and q′j ≤ qj for all j 6= i, Vi(q

′, t)− Vi(q, t)
is increasing in ti since Z(t) is increasing in ti and

q′i
q′i +

∑
j 6=i q

′
j

≥ qi

qi +
∑

j 6=i q
′
j

≥ qi

qi +
∑

j 6=i qj

Also, marginal values may be non-monotone in qi, so the model applies to
procurement settings in which suppliers have increasing returns to scale.
(Still, we require that bids be non-increasing schedules.)

Auction Framework: A potentially important structural aspect of the
model is that there is a discrete grid of prices p and of quantities q:

p =
{
{∅}, pmin, pmin + 1, ..., pmax − 1, pmax,∞

}
q = {−E,−E + 1, ..., E − 1, E} where E finite integer

The “null prices” {∅} and∞ are meant to allow bidders to make requirements
that they not receive more or less than some quantity. ({∅} = max Pi(q) (or
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∞ = min Pi(q)) “means” that bidder i is unwilling to buy more (or less)
quantity than q at any permissible price.) Discrete grids are “potentially im-
portant” since it remains an open question5 (even given independent signals!)
whether a convergent sequence of equilibria in these discrete-grid auctions can
be chosen so that, as the grid of prices becomes arbitrarily fine, it’s limit is
an equilibrium in the corresponding continuum-grid auction.

A bid Pi(·) is a demand correspondence that maps each quantity q ∈ q

to a set of prices (or “unit-bids”) Pi(q) ⊂ p. Not every possible bid is
permissible. To be permissible, Pi(·) must satisfy four requirements. (These
guarantee that a market-clearing allocation exists.) (i) Non-empty valued:
Pi(q) 6= ∅ for all q ∈ q. (ii) Inverse non-empty valued: Let q ∈ Di(p)
iff p ∈ Pi(q). Then Di(p) 6= ∅ for all p ∈ p.6 (iii) Order interval-valued:
{p′, p′′} ⊂ Pi(q) implies that the order interval [p′, p′′] ⊂ Pi(q) for all q ∈ q

and {q′, q′′} ⊂ Di(p) implies [q′, q′′] ⊂ Di(p) for all p ∈ p. (iv) Non-decreasing:
max Pi(q

′) ≤ min Pi(q) for all q′ > q.
For each subset of bidders I ⊂ {1, ..., n}, define the “aggregate demand”

of I as DI(·) =
∑

j∈I Dj(·). That is to say, Q ∈ DI(p) iff there exists {qj}j∈I

such that
∑

j∈I qj = Q and qj ∈ Dj(p) for all j ∈ I. Let PI(·) be the
corresponding inverse demand correspondence. (Note that unbolded PI(·)
refers to an aggregate inverse demand correspondence whereas PI(·) refers
to a vector of individual bids.)

The set of permissible bids, P , forms a lattice with respect to the product
order. P 2(·) ≥P P 1(·) in the product order iff, for all q ∈ q, max P 2(q) ≥
max P 1(q) and min P 2(q) ≥ min P 1(q). The type spaces [0, 1]h are also en-
dowed with the product order ≥P (For simplicity, I will usually refer to ≥P

as ≥.) The meet and join of any two bids P 2(·), P 1(·) are their lower- and

5In work-in-progress, Eiichiro Kazumori appears to have made some progress on this
hard problem, but to my knowledge his proof remains incomplete. (Following this paper,
Kazumori studies a simplified version of our model, takes as given our proof that an
equilibrium exists given any discrete grid, then aims to fashion the limiting argument to
extend this paper’s results to auctions with a continuum of prices.) The most fundamental
problem with continuum grids, of course, is that bidders may fail to have a best response.

6For most of the analysis, I employ the inverse demand correspondence notation Pi(·)
to represent a given bid. The inverse of that, Di(·), provides the demand correspondence
representation of the same bid. Unfortunately, neither sort of notation can comfortably
handle all of the arguments in the paper. I will use them interchangeably, depending on
which is more convenient, with the default being Pi(·).
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upper envelopes:

max P 2 ∨ P 1(q) = max{max P 2(q), max P 1(q)}
max P 2 ∧ P 1(q) = min{max P 2(q), max P 1(q)}

for all q ∈ q.
Each bidder i has an endowment ei ∈ Z where endowments sum to S ≥ 0.

Each bidder may potentially receive more than his endowment (“buy units”)
or less than his endowment (“sell units”) in a final allocation and may receive
a negative number of units. Pi(·) is announced inverse demand, if you will,
over gross quantities not over net quantities.

A strategic bidder is one who, in equilibrium, submits a bid that is a best
response to others’ bidding behavior given his own private information. A
non-strategic bidder is one whose bid is a function of his private information
but is not necessarily a best response. In typical two-sided auction models,
there may be some non-strategic “noise traders” but otherwise all bidders
are strategic. In most typical one-sided auction models, there are strategic
bidders i = 1, ..., n − 1 and the auctioneer who can be thought of as non-
strategic bidder n. If the auctioneer specifies supply correspondence S(·),
then we can think of S ≡ min S(∞) as the maximal possible supply and of
the auctioneer’s “bid” as being defined by Dn(p) = S − S(p).

Notes: In a two-sided auction (also called “double auction”), bidders may
submit bids to buy or sell units. Following Jackson and Swinkels (2001)
our model of two-sided auctions differs from most of the literature (such
as Rustichini, Satterthwaite, and Williams (1994), Fudenberg, Mobius, and
Sziedl (2003), and Reny and Perry (2003)) in that bidders have multi-unit
demand and may wind up being buyers or sellers.

Allocation Rule: The lowest market-clearing price p is the highest price
such that supply does not exceed demand or equivalently P1,...,n(S + 1), the
S + 1-st highest unit-bid submitted by any bidder. Similarly, the highest
market-clearing price p is the lowest price such that demand does not exceed
supply or equivalently P1,...,n(S). These prices are not necessarily linked to
bidder payment, but are useful in describing market-clearing allocations.

If p = {∅} or p = ∞, then the auction is cancelled. Else each bidder
receives a market-clearing quantity, i.e. a quantity in Di(p). (p 6= p implies
that there is a unique market-clearing allocation. Without any ambiguity,
then, we can use just price p to determine market-clearing quantities.) When
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there is more than one set of market-clearing allocations (i.e. a tie), we will
use a specific “priority rationing rule”. Each bidder i is assigned a rank
ρ(i) where (ρ(1), ..., ρ(n)) is a permutation of (1, ..., n).7 The auctioneer first
determines p and the minimal and maximal quantities q

i
(P(·)) (shorthand

q
i
) and qi (P(·)) (shorthand qi) that each bidder could receive in a market-

clearing allocation:

q
i
≡ min (Di (p) ∩RSi (p)) , qi ≡ max (Di (p) ∩RSi (p))

where RSi (p) ≡ S−D−i(p) is the residual supply facing bidder i given others’
bids. (Recall from footnote 6 that Pi(·), Di(·) are equivalent representations
of the same bid.) Each bidder receives at least q

i
. Next, bidders are rationed

additional quantity one-at-a-time in order (first bidder ρ−1(1) then ρ−1(2),
etc...), where each bidder receives all of the remaining supply or the maximal
quantity that he demanded at p, whichever is less. This process leads to
a unique allocation q (P(·); ρ) = (q1(P(·); ρ), ..., qn(P(·); ρ)). (To simplify
notation, we will usually drop reference to ρ. See the discussion in Section 4
on the role of the tie-breaking rule.)

Payment in uniform S + α-th price auction: Each bidder pays (or
receives) a market-clearing price on all units that he buys (or sells). Given
the profile of bids P(·),

ZUP
i (P(·)) = (qi(P(·))− ei)

(
α min{p, pmax}+ (1− α) max{p, pmin}

)
for some α ∈ [0, 1]. (We need to use min{p, pmax} instead of p since it is
possible that p = ∞ and bidders can’t pay ∞ per unit, and likewise the
lowest market-clearing price can’t be the low null bid {∅}.)

Payment in discriminatory auction: Each bidder pays (or receives) his
marginal bid on each unit that he buys (or sells), interpreted here as meaning

7It doesn’t matter how these ranks are assigned. In particular, they may be assigned
before the auction begins or after the bids are submitted. In the first case, a natural
interpretation is that some bidders are favored over others. In the second case, this tie-
breaking rule is a generalization of the standard coin-flip rule for breaking ties (if each
bidder is equally likely to get first priority, second priority, etc...).
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the maximal price that he was willing to pay for that unit:8

ZD
i (P(·)) =

qi(P(·))∑
q=ei+1

max Pi(q) if qi(P(·)) > ei

=

ei∑
q=qi(P(·))+1

−max Pi(q) if qi(P(·)) < ei

= 0 if qi(P(·)) = ei

Payoff and Equilibrium: A pure strategy Pi : q × Ti → p for bidder i
specifies a set of unit-bids (in p) for each unit in q and each type ti ∈ Ti

or, equivalently, a permissible bid Pi(·; ti) for each ti. Let Si be the set of
bidder i’s pure strategies and S ≡ Πn

j=1Sj and S−i ≡ Πj 6=iSj the sets of pure
strategy profiles of all bidders and of bidders −i, respectively.

Given bids P(·; t) = (P1(·; t1), ..., Pn(·; tn)) in state t, bidder i’s ex post
payoff depends on his valuation for the allocation and his payment:

Πpost
i (P(·; t), t) = Vi (q(P(·; t)), t) , Zi (P(·; t))

Given others’ pure strategies P−i(·; ·), bidder i’s interim expected payoff de-
pends on his own bid and type (as well as, of course, on the conditional
distribution of other types):

Πi(Pi(·; ti), ti;P−i(·; ·)) = Et−i

[
Πpost

i (P(·; t), t)
∣∣ti]

Let BRi(ti;P−i(·; ·)) ≡ arg maxPi(·)∈D Πi(Pi(·), ti;P−i(·; ·)) be bidder i’s set
of best response bids to the pure strategy profile P−i(·; ·) given type ti. Let
BRi(P−i(·; ·)) be bidder i’s best response correspondence, mapping others’
pure strategy profiles into sets of own pure strategies. A profile P∗(·; ·) ∈ S
is a pure strategy equilibrium iff

P ∗
i (·; ·) ∈ BRi

(
P∗
−i(·; ·)

)
for all i.

A mixed strategy λi : P × Ti → [0, 1] specifies a mixture over demand cor-
respondences for each type ti ∈ Ti, i.e. λi (Pi(·), ti) is the probability that

8To be completely correct, we should replace max Pi(q) with min{max Pi(q), pmax} to
rule out the possibility of bidders paying ∞ on some unit, but in equilibrium this issue
will not arise.
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type ti bids Pi(·). A mixed strategy equilibrium is a profile of mixed strategies
such that, for all ti and each element Pi(·) in the support of λi(·; ti), Pi(·) is
a best response to strategies λ−i(·; ·) for type ti.

Monotone Strategies: A pure strategy Pi(·; ·) is monotone iff Pi(·; t′i) ≥
Pi(·; ti) whenever t′i > ti. A mixed strategy λi(·; ti) is monotone iff P ′

i (·) ≥
Pi(·) for all P ′

i (·), Pi(·) in the support of λi(·; t′i), λi(·; ti) (respectively) for
all t′i > ti. Any monotone mixed strategy can involve randomization by at
most a zero measure set of types and, hence, every selection from a monotone
mixed strategy equilibrium must be a monotone pure strategy equilibrium.

3 Modularity in Multi-Unit Auctions

The key observation that allows our analysis to proceed is that, holding
others’ bids fixed, each bidder’s ex post valuation and payment are modular
(or additively separable) in own bid.

Definition (Modularity in x). Let (X,≥,∨,∧) be a lattice. f : X → R

is modular in x iff

f(x′ ∨ x) + f(x′ ∧ x) = f(x′) + f(x)

for all x′, x ∈ X.

When X is a subset of Euclidean space, modularity of f is equivalent to its
being additive separable in its first component, second component, and so
on. In the multi-unit auction context, any bid Pi(·) can be associated with
the vector (max Pi(q))

q∈q, so modularity implies that the incremental return
to varying one’s bid on unit q does not depend on the level of bids on other
units.9

Why does the incremental return to increasing one’s bid on unit q not
depend on the level of one’s bids on other units? For some multi-unit auc-
tions, such as the discriminatory auction, this result seems rather intuitive.
Slightly decreasing one’s bid on unit q has just three effects, each of which
does not depend on the level of one’s bid for other units: (a) if unit q is
inframarginal, then decreasing my bid decreases my total payment; (b) if

9Of course, Pi(·) can also be associated with the vector (maxDi(p))p∈p, so modularity
also implies that the incremental return to increasing the quantity one is willing to buy at
price p does not depend on the levels of one’s demand at other prices.
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unit q is extramarginal, then decreasing my bid has no effect; and (c) if unit
q is marginal, then I no longer win unit q nor pay anything on that unit.
For other auctions such as uniform price auctions, however, additively sep-
arability can seem more counter-intuitive. After all, the amount that I pay
for my q-th unit depends on my bid on the q′-th unit if my bid on the q′-th
unit affects the price I pay on the q-th unit. On the other hand, the extent
to which changing my bid on the q′-th unit affects the amount that I pay on
the q-th unit does not depend on the level of my bid for the q-th unit. These
intuitions are only suggestive, however, and mask some important subtleties.
(See the discussion below of the S + 2-nd price auction.)

Theorem 1. In the discriminatory and uniform S + α-th price auctions
(α ∈ [0, 1]), each bidder’s interim expected payoff function is modular in own
bid regardless of the strategies that others adopt.

Proof sketch and discussion. (Proof details in the Appendix.) First, since
weighted sums of modular functions are modular, it suffices to show that,
for all t and P−i(·) (and ρ), ex post surplus Πpost

i (P(·), t) = Vi(q(P(·)), t)−
Zi(q(P(·))) is modular in Pi(·). We break the argument into two parts: (a)
valuation and (b) payment are modular in Pi(·).

Ex Post Valuation: This part of the argument is the same as part of
the argument in McAdams (2003b). Modularity of valuation arises from
the structure imposed on allocations by market-clearing (see Figure 1). The
join of P 1

i (·) and P 2
i (·) in the product ordering, P 1

i (·) ∨ P 2
i (·) ≡ P 1∨2

i , is
traced by unfilled circles. Note that the allocation is the same when bidder
i submits bid P 2

i (·) or P 1∨2
i (·) and the same when he submits bid P 1

i (·) or
P 1∧2

i (·), given that others have submitted the profile of bids P−i(·), since the
allocation only depends on where i’s demand schedule crosses the residual
supply schedule. (In Figure 1, I have represented bids as demand rather than
inverse demand, since it is more convenient to describe residual supply in the
demand formulation.) Since ex post valuation only depends on the allocation
and the state, this implies modularity directly:{

Vi

(
q1, t

)
, Vi

(
q2, t

)}
=

{
Vi

(
q1∨2, t

)
, Vi

(
q1∧2, t

)}
implies that

Vi

(
q1, t

)
+ Vi

(
q2, t

)
= Vi

(
q1∨2, t

)
+ Vi

(
q1∧2, t

)
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Figure 1: Modularity of ex post valuation given signals t−i

where we use shorthand q1 ≡ q (P 1
i (·),P−i(·)) and so on. (Note that only

bidder i’s bid varies.) Of course, Figure 1 is only suggestive since there is a
continuum price-quantity grid and no rationing occurs. Indeed, the choice of
rationing rule is vital for the result, as discussed in detail in Section 4.

Ex Post Payment: Modularity of bidders’ payment functions Zi(P(·)) in
Pi(·) is more complex and does not follow from McAdams (2003b)’s proof
technique for the uniform S-th and S +1-st price auctions. Those particular
auctions have a special property that the two price/allocation combinations
that occur on the main-diagonal10 are identical to the price/allocation com-
binations that occur on the off-diagonal. (To parse this, see again Figure 1.
The statement boils down, loosely, to the observation that the two demand
schedules P 1

i (·), P 2
i (·) cross the residual supply at the same price/quantity

as their upper- and lower-envelopes.) In other uniform-price auctions, from
the S + α-th varieties studied here to the S + 2-nd price variety discussed
below, there is a similar-sounding but crucially different property. The two
prices that occur on the main-diagonal are identical to the prices that occur

10When I speak of the “main- and off-diagonal” when considering two bids
and their meet and join, I invoke a geometrical interpretation of the sublattice
{P 1

i (·), P 2
i (·), P 1∧2

i (·), P 1∨2
i (·)} as a “rectangle”. P 1∧2

i (·), P 1∨2
i (·) comprise the main diag-

onal while the original bids comprise the off-diagonal. Of course, when P 1
i (·) and P 2

i (·)
are comparable, this rectangle is degenerate and there is no difference between the main-
and off-diagonal.
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on the off-diagonal and the two allocations that occur on the main diagonal
are the same as on the off-diagonal. But the price/allocation combinations
need no longer match! Indeed, despite the apparent similarity, this differ-
ence can destroy modularity of bidder payments, making the current effort
a much more subtle exercise. Example 1 shows why ex post payment fails
to be modular in the S + 2-nd price auction. (In fact, ex post payment is
supermodular in this auction making ex post surplus submodular.)
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Key to Figure

�–�: Residual Supply

×–×: Bid P×
1 (·)

•–•: Bid P •
1 (·)

– – : Join and Meeth’d: Sets price

�’d: Wins unit

Figure 2: Payment supermodular in uniform S + 2-nd price auction

Example 1 (Uniform S +2-price auction). There are two bidders, three
units, and permissible prices {0, 1, 2, 3, 4, 5} in a fifth-price auction. We will
focus on bidder 1, holding as fixed a bid for bidder 2 of P2(·) = (4, 4, 0) or,
equivalently, holding as fixed the residual supply (0, 4, 4), traced in Figure
2 with solid lines connecting diamonds. (Here for notational ease we use
the representation of bids as vectors of maximal unit-bids, (max Pi(q))

q∈q.)
Consider now two incomparable bids for bidder 1, labeled as P×

1 = (5, 5, 1)
and P •

1 = (3, 3, 3) (solid lines connecting ×’s and •’s, respectively). Their
join and meet are P×∨•

1 = (5, 5, 3) and P×∧•
1 = (3, 3, 1) (dashed lines). Now,

in the Figure, unit-bids that lead bidder 1 to win are boxed whereas unit-
bids that set the price are circled. Thus, for example, bidding P×∨•

1 leads
bidder 1 to win two units at price 3 for payment 6. Similarly, P×

1 leads
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to two units at price 1 and payment 2, P •
1 to one unit for payment 3, and

P×∧•
1 to one unit for payment 1. Overall, the sum of payments on the main-

diagonal of the bid-space (7) exceeds the sum on the off-diagonal (5) i.e.
payment is supermodular. As hinted at in the previous discussion, the source
of this failure of modularity is a “mismatch” of price/allocation combinations
generated on the main- and off-diagonals. On each diagonal, quantity is
either one or two units and price is either 1 or 3. But on the main-diagonal
the price is 1 for one unit and 3 for two units, whereas on the off-diagonal
the price is 3 for one unit and 1 for two units.

In uniform S + α-th price auctions, there can be a mismatch of another
sort. The pair of payments made on the main diagonal need not be the same
as the pair of payments made on the off-diagonal. The extra bit of structure
that allows us to salvage modularity, however, is that this can only happen
when the allocation is constant over the whole rectangle. Or, for a deeper
way to appreciate what’s going on that doesn’t involve ad hoc arguments,
note that each unit-bid’s pair of marginal contributions to overall payment
are the same on the main- and off-diagonals. An example again is the clearest
way to illustrate this idea:

Example 2 (Uniform S +1/3-price auction). There are two bidders and
two units in a uniform 7/3-rd price auction, with permissible bids {0, 1, 2, 3, 4}.
Holding fixed bidder 2’s bid of (4, 0), consider two bids for bidder 1, (3, 0) and
(2, 1), as well as their upper- and lower-envelopes, (3, 1) and (2, 0). Given
any of these bids, bidder 1 receives onle unit. Bid (3, 1) yields price 7/3,
(3, 0) price 2, (2, 1) price 5/3, and (2, 0) price 4/3. Overall, total payment
is 11/3 both on the main- and off-diagonal so modularity is not violated.
The “marginal contribution” of his first-unit bid to the price is 2/3(3)=2
when he bids 3 and 2/3(2)=4/3 when he bids 2, and similarly the marginal
contribution of his second-unit bid is either 1/3 or 0. There is a mismatch
of these marginal contributions (on the main-diagonal, 2 + 1/3 and 4/3 + 0;
on the off-diagonal, 2 + 0 and 4/3 + 1/3) but this mismatch is not fatal to
modularity.

Discriminatory auction: Proving that payment is modular in the discrimina-
tory auction might seem at first blush even more difficult than in the uniform
S + α-th price auctions, since there can be a mismatch of total payments on
the main- and off-diagonals even in situations in which different allocations
are realized in the rectangle generated by P 1

1 (·), P 2
1 (·). See Figure 3. Bid-

ding P 1∨2
1 (·) yields high quantity and payment A+B+C, P 1

1 (·) low quantity
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Figure 3: Modularity of ex post payment in discriminatory auction

and payment A + B, P 2
1 (·) high quantity and payment B + C, and P 1∧2

1 (·)
low quantity and payment A. In the Figure, of course, modularity is not
violated since the sum of payments on both the main- and off-diagonals is
A + 2B + C. At a deeper level, the reason for this is the same as for the
uniform S +α-th price auctions: the marginal contributions of each unit-bid
are the same on both diagonals (the marginal payment on unit q is P (q), and
{P 1(q), P 2(q)} = {P 1∨2(q), P 1∧2(q)} by definition of the product order) and
total payment is a sum of these marginal contributions.

4 Monotone equilibrium exists

Given that we have established that expected payoffs are modular in own
bid, it is routine to apply McAdams (2003b)’s existence theorem to conclude
that monotone pure strategy equilibria exist. The key remaining condition
to check is Athey’s so-called “single-crossing condition” (SCC).

Definition (Single-crossing in (x, t)). Let X, T be partially ordered sets.
The function f : X ×T → R satisfies the single-crossing property in (x, t) if,
for all x′ > x and t′ > t, f(x′, t) > (≥)f(x, t) implies f(x′, t′) > (≥)f(x, t′),
i.e. strict inequality implies strict, weak inequality implies weak.

In a single-object or multi-unit auction, each bidder i’s expected payoff is a
function of own bid (from a lattice), own type (from a partially ordered set),
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and others’ strategies. SCC is satisfied when each bidder i’s expected payoff
satisfies the single-crossing property in own bid and types whenever others’
adopt monotone strategies. Given independence and risk-neutrality, we show
that in fact expected payoffs satisfy non-decreasing differences in own bid
and type (NDD) for any given strategies by others.

Definition (Non-decreasing differences in (x; t)). Let X, T be partially
ordered sets. The function f : X × T → R has non-decreasing differences in
(x, t) iff f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t) for all x′ > x, t′ > t.

Theorem. [McAdams (2003b)] Let G be a game in which each player’s ac-
tion ai is chosen from a finite lattice, each player’s type ti ∈ [0, 1]h, and
each player’s interim expected payoff function satisfies quasisupermodular-
ity in ai and has single-crossing in (ai, ti) whenever others adopt monotone
strategies.11 Then G has a monotone pure strategy equilibrium.

Theorem. [McAdams (2003b)] A monotone pure strategy equilibrium exists
in the uniform S-th price and the uniform S + 1-st price auctions.

Theorem 2. A monotone pure strategy equilibrium exists in the discrimina-
tory and uniform S + α-th price (α ∈ (0, 1)) auctions.

Proof. Theorem 1 implies that expected payoffs are modular in own bid no
matter what strategies others’ adopt, so certainly they are quasisupermod-
ular in own bid when others adopt monotone strategies. (Risk-neutrality is
crucial here. Theorem 1 fails when bidders are risk-averse, as discussed in
detail below.) No matter what others bid, submitting a higher bid causes
one to win (weakly) more quantity and others to win less. (Consult equa-
tions (3, 4) in the Appendix.) Since incremental values are assumed to be
non-decreasing, each bidder’s ex post surplus thus satisfies non-decreasing
differences in own bid and type (NDD). By risk-neutrality, then, ex post
payoff satisfies NDD and, by independence, expected payoff satisfies NDD.
(This is the only place where independence is used in the proof but it is vital,
as discussed in detail below.) We may therefore apply McAdams (2003b)’s
general existence result.

11See McAdams (2003b) for the formal definition of quasisupermodularity in ai, for
which modularity in ai is sufficient.
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Discussion of Assumptions

Three assumptions stand out in this paper’s analysis and merit further dis-
cussion: independence, risk-neutrality, and the rationing rule. In each case,
it is illuminating to compare their role in this paper’s multi-unit auction
analysis with their more limited role in single-object auction theory.

Independence. In the first-price auction, each bidder’s ex post payoff sat-
isfies a weak form of complementarity across bids: if bidding higher increases
my payoff when others bid lower, then bidding higher can not decrease my
payoff when others bid higher. When bidder signals are positively corre-
lated, this complementarity across bids (loosely speaking) increases bidders
tendency to adopt monotone strategies in response to monotone strategies by
their opponents: when I receive a higher signal, you are more likely to have
received a higher signal and hence be bidding higher, which in turn makes
me want to bid no lower by strategic complementarity. Indeed, this virtu-
ous cycle of monotonicity breeding monotonicity is precisely what drives the
literature on monotone equilibrium in single-object auctions (such as Athey
(2001), McAdams (2003a), and Reny and Zamir (2002)).

In multi-unit auctions, however, complementarity across bids and hence
SCC tend to fail in wholesale fashion. For instance, in the uniform S + 1-st
price auction example below, suppose that bidder 1 has value 100 for both
units and compare two bids (50, 50) vs. (50, 20). If bidder 2 bids (25, 0), then
bidder 1 prefers (50, 50) over (50, 20) since the former gives him payoff 100
whereas the latter only 80. But if bidder 2 increases his bid to (100, 0), bidder
1 now prefer (50, 20) over (50, 50) since the former gives him 80 whereas the
latter only 50. Thus, when bidders receive positively correlated types, the
virtuous cycle is broken: my having a higher type implies that I am more
likely to face high bids if my opponents are following monotone strategies,
but this may lead me to prefer to bid lower and hence not adopt a monotone
strategy myself. While the example employs the uniform S + 1-st price rule,
similar examples exist for discriminatory and other uniform price rules. See
McAdams (2002a).)

Example 3 (Symmetric, uniform S + 1-st price). Two bidders and
two units in a third-price auction. Bids are allowed in non-negative dol-
lar increments. Bidders receive types t1, t2 ∈ [0, 1] and have private val-
ues vi(1, ti) = v1(2, ti) = 200ti for all ti ∈ [0, 1/2]. vi(1, ti) = 200ti and
vi(2, ti) = 100 for all ti ∈ (1/2, 1]. The joint density of t is given by
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f(t) = 4(1 − t1)(1 − t2) when t1, t2 > 1/2 or t1, t2 < 1/2 and f(t) = 0
otherwise. In other words, t1 > (<)1/2 implies that t2 > (<)1/2 and t are
independent conditional on both being greater than or less than 1/2. In
particular, bidders have affiliated private values.

Proposition 1. There is a unique equilibrium P∗(·; ·) in weakly undominated
strategies in this example, and bidder 2 adopts a non-monotone strategy in
this equilibrium.

Proof. Conditional on t1, t2 < 1/2 or > 1/2, t1, t2 are independent. Applying
Theorem 2 to each of these “sub-auctions” in which the types are less than
or greater than 1/2, we conclude that a pure strategy equilibrium exists
in which bids are non-decreasing over the type range [0, 1/2) and over the
type-range (1/2, 1]. (Non-monotonicities will arise at ti = 1/2.) In any
equilibrium in weakly undominated strategies, P ∗

1 (1, t1), P
∗
2 (1, t2) ≥ 100 and

P ∗
1 (2, t1) = P ∗

2 (2, t2) = 0 for all t1, t2 > 1/2: The bidders are certain to each
win one unit, so someone’s second-unit bid will set the price. Thus each
bidder’s weakly dominant strategy is to bid zero on the second unit. On the
other hand, P ∗

i (2, ti) > 0 in any equilibrium for some ti < 1/2: Since the
other bidder adopts a weakly undominated strategy, bidder 1 (conditional
on t1 < 1/2) faces probability at least p(4) = Pr(t2 < 4/100|t2 < 1/2)
that bidder 2 will bid less than 4 on both units. Consequently, for t1 ≈ 1/2,
bidding 4 rather than 0 allows him to capture approximately (100−4)p(4)
extra expected surplus from winning the second unit while paying at most

4 extra on the first unit. In this example, p(4) =
∫ 4/100

0
(1−x)dx/

∫ 1/2

0
(1−

x)dx = 8/3(4/100)− 4/3(4/100)2. As long as 4 << 100, then, the benefit
of raising one’s bid from zero to 4 on the second unit outweighs the cost.

In this symmetric example, all bidders reduce their bids on some unit as type
increases. Other examples with affiliated private values exist in which some
bidders reduce their bids on all units. (See McAdams (2002a).)

When bidders receive negatively correlated signals, further, there is an
obvious reason why some bidder’s best response may be non-monotone even
in single-object auctions when others adopt monotone strategies: Others are
more likely to receive lower signals and hence bid lower when I receive a higher
signal. See Jackson and Swinkels (2001) for a first-price auction example
along these lines in which every equilibrium is non-monotone. Thus, we can
not possibly hope for a general MPSE existence result except in the case of
independent types (or many bidders each having little impact on price).
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Risk-neutrality. In the first-price auction the presence of risk-aversion also
(loosely speaking) increases bidders tendency to adopt monotone strategies
in response to monotone strategies by others. For instance, consider the
benchmark case of independent private values (IPV). Let p(b) be bidder i’s
probability of winning given bid b and others’ strategies. The incremen-
tal upside (p(b′) − p(b))ui(vi − b′) of winning with b′ when b would have
lost is increasing in the private value vi, whereas the incremental downside
p(b)(ui(vi−b)−ui(vi−b′)) of paying more when b would have won is decreas-
ing in vi. (Given risk-neutrality, this downside to bidding higher is constant
in vi.) In the discriminatory auction, however, risk-aversion can cause SCC to
fail and hence cause bidders to have non-monotone best responses to mono-
tone strategies. Assume again IPV and just two bidders competing for two
units. Here the discriminatory auction is akin to two separate first-price auc-
tions, where my first-unit bid competes against your second-unit bid and vice
versa, with the caveat that second-unit bids can not exceed first-unit bids.
Holding our bids fixed, suppose that my value for the first unit increases. If
I am winning the first unit, this increases my “wealth” going into the second
auction. Consequently, if I have decreasing absolute risk aversion (DARA),
then I will tend to be “less risk averse” and hence bid less in the second auc-
tion. Of course, this logic depends crucially on my having DARA utility and
does not generalize to all sorts of risk-averse bidders. Furthermore, it applies
only to the discriminatory auction. It remains an open question whether SCC
is satisfied in uniform-price auctions for some sorts of risk-averse bidders.12

In short, with risk-aversion there is an interaction between different unit-
bids: bidding higher on one unit, in and of itself, may lead a bidder to
prefer bidding lower on other units. Example 4 shows how this can lead all
equilibria to be non-monotone in the discriminatory auction when bidders
are risk-averse, even given independent private values. Both effects of risk-
aversion – on SCC and modularity – are at play in this example.13

12In particular, I remains unclear to me whether SCC fails in the uniform S +1-st price
auction given DARA bidders. This is an interesting area for future research. If SCC can
be established in the S + 1-st price auction in environments with risk-aversion, then the
analysis in this paper will imply that MPSE exists in such environments and probably
that all equilibria are monotone. This would expand the current literature in another
direction. With the exception of Jackson and Swinkels (2001) and papers following it for
the case of private values, the literature on multi-unit auctions has been limited by the
need to assume risk-neutrality.

13Bidder 1 has increasing absolute risk aversion in the example, but his bid on the first
unit increases by more than his value increases, so that his effective “wealth” when bidding
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Example 4 (Risk-averse, Discriminatory). Two units are auctioned to
two bidders in a discriminatory auction. In order to avoid confusing issues
due to risk-aversion with issues related to the possibility of tying (see Ex-
ample 5), each bidder is given a disjoint set of non-null prices that he is
permitted to bid on each unit. In particular, bidder 1’s permissible prices
are p1 = {{∅}, 20, 60, 100,∞} whereas p2 = {{∅}, 40, 80,∞}.

Bidder 1 receives signal t1 ∈ {L, H} and bidder 2 receives signal t2 ∈
{L, M, H}, where ti are independent. Pr(t1 = L) = Pr(t2 = H) = 1/2
while Pr(t2 = L) = 1/4, Pr(t2 = M) = 1/8, and Pr(t2 = H) = 5/8.
(It is straightforward to modify this example so that each bidder receives a
signal from [0, 1] with values increasing in own signal: all relevant preferences
amongst various bids are strict.) Bidder 1 is risk-averse with utility over
surplus X1 = V1 − Z1 of the form u1(X1) = X1 for all X1 < 100 and
u1(X1) = 100 for all X1 ≥ 100; bidder 2 is risk-neutral.

Bidder 1 is the interesting bidder here, who will adopt a non-monotone
strategy in equilibrium. His marginal value for a second unit does not depend
on his signal, v1(2; L) = v1(2; H) = 99, but his marginal value on the first
unit increases with his signal, v1(1; L) = 110, v1(1; H) = 130. Bidder 2 has
equal marginal value for the first and second unit: v2(·; L) = 0, v2(·; M) = 60,
and v2(·; H) = 200.

Proposition 2. There is a unique equilibrium P∗(·; ·) in weakly undominated
strategies in this example, and bidder 1 adopts a non-monotone strategy in
this equilibrium.

Proof. When t2 = L, bid ({∅}, {∅}) is weakly dominant for bidder 2 since
his marginal values are less than 40. Similarly, bid (40, 40) is weakly dom-
inant when t2 = M . Bidder 2’s marginal values are so high when t2 = H,
finally, that bid (80, 80) is his best response unless P1(1; L), P1(1; H) ≤ 20.
In that case, bidder 2’s best response would be (40, 40). But this leads to a
contradiction, since bidder 1 would then prefer to bid 60 over either 20, {∅}
on the first unit given either type L, H. In summary, P ∗

2 (·; L) = ({∅}, {∅}),
P ∗

2 (·; M) = (40, 40), and P ∗
2 (·; H) = (80, 80).

Since v1(1; ·) > 20 and v1(2; ·) < 100, bidder 1 always bids at least 20 on
both units and less than 100 on the second unit. This leaves five bids that
might be best responses for bidder 1. Consider first bidder 1’s best response

on the second unit has decreased. Submodularity also clearly plays a role since raising his
bid on the first unit, in and of itself, leads him to prefer a lower bid on the second unit.
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when t1 = H. Note that bidder 1’s incremental surplus from winning the
first unit at price 100 is 30, at price 60 is 70, and at price 20 is 110; and from
winning the second unit at price 60 is 39 and at price 20 is 79. Since bidder 1
is assumed satiated at surplus 100, we can express bidder 1’s expected utility
from each possible bid as follows:

(100, 60) 7→ 5/8(30) + 1/8(69) + 1/4(69) = 44.625

(100,20)7→ 5/8(30) + 1/8(30) + 1/4(100) = 47.5

(60, 60) 7→ 5/8(0) + 1/8(100) + 1/4(100) = 37.5

(60, 20) 7→ 5/8(0) + 1/8(70) + 1/4(100) = 33.75

(20, 20) 7→ 5/8(0) + 1/8(0) + 1/4(100) = 25

So, P ∗
1 (·; H) = (100, 20). Now consider bidder 1’s best response when t1 = L,

when his value for the first unit is 20 less.

(100, 60) 7→ 5/8(10) + 1/8(49) + 1/4(49) = 24.625

(100, 20) 7→ 5/8(10) + 1/8(10) + 1/4(89) = 29.75

(60,60)7→ 5/8(0) + 1/8(100) + 1/4(89) = 34.75

(60, 20) 7→ 5/8(0) + 1/8(50) + 1/4(100) = 31.25

(20, 20) 7→ 5/8(0) + 1/8(0) + 1/4(100) = 25

So, P ∗
1 (·; L) = (60, 60) and bidder 1 reduces his bid on the second unit as his

type increases.

Priority rationing rule. Tie-breaking rules have received a lot of attention
in the single-object auction literature but the issues surrounding tie-breaking
become much more complex in multi-unit environments. For one thing, a
bidder may not just “win” or “lose” a tie but also “win some of” a tie when
bidders express excess demand for multiple units. Furthermore, details of
the rationing rule can induce bidders to adopt non-monotone strategies in
ways that just can’t happen in a single-object setting.

An important feature of the rationing rule used in this paper, obviously,
is that the quantity a bidder wins is non-decreasing in his bid. One could
conceive of (non-standard) rationing rules in which the amount that a bid-
der is rationed at market-clearing price p∗ decreases as min Di(p

∗) and/or
max Di(p

∗) increase.14 Not surprisingly, given such a rationing rule a bidder

14The market-clearing price depends on the bids. The intention here is to restrict
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may choose to decrease his bids on some units as his valuation increases, if
decreasing his bid allows him to win more!

A more subtle and interesting aspect of priority rationing is that changing
one’s bid on unit q does not change one’s likelihood of winning some other
unit. (For a formal verification, consult equations (3, 4) in the Appendix.)
This property of priority rationing is not obvious and fails in other rationing
rules. Consider for instance so-called “proportional rationing”, the most
commonly studied type of rationing rule.

Definition (Proportional Rationing). Let q
i

be as defined on page 11.
The rationed quantity R = S −

∑
i qi

is split amongst the bidders in pro-

portion to their excess demands.15 For instance, bidder 1 receives quantity

q∗1 = q
1
+ R

max D1(p∗)−q
i∑n

i=1 max Di(p∗)−q
1

.

As a simple example, suppose that there are twelve units and two bidders.
Bidder 1 bids $10 on all twelve units while bidder 2 bids $10 on the first
six and $5 on the last six. q

1
= 6 and q

2
= 0 in this example, so given

proportional rationing bidder 1 gets nine units while bidder 2 gets three
units. If bidder 2 were to raise his bids on all of his units to $10, however,
he would receive six. Thus, his likelihood of getting units 4-6 depends on
his bids on units 7-12. Under priority rationing, on the other hand, given
the original bids bidder 1 gets six (or twelve) units and bidder 2 gets six (or
zero) if bidder 2 (or bidder 1) has priority. If bidder 2 raises his bids on all
units 7-12, he now either wins zero or twelve ... but his chances of winning
units 4-6 have not changed.

Why does this matter, that unit-bids on units 7-12 may affect one’s win-
ning chances on units 4-6? The reason is that now there is an interaction
between bids on units 4-6 and bids on 7-12. Raising your bid from $9 to
$10 on units 4-6 leads to a greater increase in your probability of winning
those units if you also raise your bids on units 7-12 to $10. Consequently, ex
post valuation will typically fail to be modular. Example 5 shows that this

attention to those bids by i after which the market-clearing price is p∗ and explore how
the quantity that bidder i receives depends on the range of quantities that he demands at
price p∗.

15There are other variations of the proportional rationing rule, as when bidders are
awarded min Di(p∗) plus an amount proportional to max Di(p∗) − minDi(p∗). All such
variations share the property that additive separability fails and that bidders may adopt
non-monotone strategies in equilibrium.
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failure of modularity can lead all equilibria to be non-monotone even given
independent private values.

Example 5 (Proportional Rationing, S + 1-st price). Two strategic
bidders with permissible bids from the set ∅ ∪ {10, 20}. Auctioneer has 10
units for sale but requires that all 10 sell for at least 10 or else the auction
is cancelled. (Supply S(∅) = {0, ..., 10}, S(10) = S(20) = 10.) Proportional
rationing. Uniform S + 1st-price payment rule. (Variations on this example
apply also to uniform S-st price, discriminatory, and Vickrey payment rules.)
Each bidder has either a high (H) or low (L) type, and these types are i.i.d.
with Pr(t1 = L) = Pr(t2 = L) = 1/2. When t1 = L, bidder 1 has value 11
for the first four units and value 0 for all subsequent units; when t1 = H,
she has value 110 for the first four units and value 0 for subsequent units.
When t2 = L, bidder 2 has value 11 for the first two units and value 0 for all
subsequent units; when t2 = H, he has value 11 for the first eight units and
value 0 for subsequent units.

Proposition 3. There is a unique equilibrium P∗(·; ·) in weakly undominated
strategies in this example, and bidder 1 adopts a non-monotone strategy in
this equilibrium.

Proof. Let P∗(·) be a pure strategy equilibrium in weakly undominated
strategies. (Without loss we may disregard mixed strategies.) First, the
requirement that bidders adopt weakly undominated strategies completely
nails down bidder 2’s strategy: P ∗

2 (q; t2) = 10 for (q; t2) = (1, L), (2, L), ... ,
(1, H), (8, H) and P ∗

2 (q; L) = ∅ otherwise.
When t1 = L, bidder 1’s unique best response is to bid

P ∗
1 (·; L) = (20, 20, ∅, ∅, ..., ∅).

This guarantees that she wins two objects at price 10 in the event that t2 = H
and that the auction will be cancelled when t2 = L.

When t1 = H, bidder 1’s unique best response is to bid

P ∗
1 (·; H) = (10, ..., 10, ∅, ∅).

When t2 = L, this leads her to win 8 objects at price 10 for surplus 2*110
- 8*10 = 140; when t2 = H, this leads her to be rationed 4 = 8/2 units for
surplus 2*110 - 4*10 = 180 (and expected surplus 160). (10, ..., 10, ∅, ∅) is the
best bid among those that guarantee that the auction is not cancelled when
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t2 = L: she must bid at least 10 for the 8th unit to avoid the cancellation,
and by bidding 10 for all units q = 0, ..., 8 she minimizes the amount that she
wins in the case that t2 = H. Compare that to the best bid that doesn’t avoid
cancellation, again (20, 20, ∅, ..., ∅) for expected surplus 1/2(2∗110−2∗10) =
100 < 160. Bidder 1’s strategy is non-monotone since P ∗

1 (1; L) = 20 and
P ∗

1 (1; H) = 10.

5 All equilibria are monotone

Not only do monotone pure strategy equilibria (MPSE) exist but all mixed-
strategy equilibria16 in the discriminatory and uniform S + α-th price (α ∈
[0, 1]) auctions are “equivalent” to MPSE in the sense of ex post allocation-
and interim expected payment-equivalence defined below. Thus, at least
insofar as one is concerned with expected surplus / revenue analysis, there
is no loss in restricting attention to monotone strategies. A caveat, to be
discussed after the proof, is that these results hold only when there are no
externalities. That is to say, bidder values take the simpler form Vi(q, t) =
Vi(qi, t). (All other assumptions remain the same.)

The following definitions are made for pure strategy profiles to simplify
the exposition, but the extension to mixed strategy profiles should be clear:

Definition (Ex post allocation-equivalence ). Two pure strategy profiles
P′(·; ·), P(·; ·) are ex post allocation-equivalent if the induced allocation (and
hence total ex post surplus) is the same with probability one:

Pr t (q(P′(·; t)) = q(P(·; t))) = 1

Similarly, two bids P ′
i (·), Pi(·) are ex post allocation-equivalent when

Pr t−i
(q(P ′

i (·),P−i(·; t−i)) = q(Pi(·),P−i(·; t−i))) = 1

Definition (Interim expected payment-equivalence). Two pure strat-
egy profiles P′(·; ·), P(·; ·) are interim expected payment-equivalent if each

16The present analysis does not apply to correlated equilibrium. Indeed, whenever
there are multiple (non-equivalent) MPSE there also exists a correlated equilibrium in
which bidders observe a public coin-flip and play the first (or second) equilibrium upon
seeing heads (or tails). Such a correlated equilibrium will typically involve higher types
playing some bids that are not greater than some bids played by lower types.
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bidder i makes the same interim expected payment (conditional on his own
type) with probability one:

Pr t

[
Et−i

(
Zi(P

′
i (·; ti),P′

−i(·; t−i))
)

= Et−i
(Zi(Pi(·; ti),P−i(·; t−i))) for all i

]
= 1

Interpretation: An observer of the state of the world t and all realized allo-
cations would not be able to distinguish the data generated by two ex post
allocation-equivalent strategy profiles. Similarly, an observer of the state of
the world and each bidder’s interim expected payment would not be able to
distinguish the data generated by two interim expected payment-equivalent
strategy profiles. Consequently, auctioneer revenue and expected bidder sur-
plus (for each bidder type) induced by two such strategy profiles are identical.

Theorem 3. Under the extra assumption of no externalities, all mixed strat-
egy equilibria are ex post allocation- and interim expected payment-equivalent
to a monotone pure strategy equilibrium in the discriminatory and uniform
S + α-th price (α ∈ [0, 1]) auctions.

Proof. To simplify the exposition, I deal here with the less notationally com-
plex case of one-dimensional types. A proof for the multi-dimensional case
is available from the author in an expanded version of the paper.17 I also re-
fer more simply to “allocation-equivalence” or “payment equivalence” rather
than ex post allocation-equivalence and interim expected payment equiva-
lence. Similarly, reference to “expected payment” means each bidder’s in-
terim expected payment conditional on own type.

Strategies as graphs: The proof leverages a novel (many-to-one) mapping
G from the space of all mixed strategies to a space of weighted directed
planar graphs (or simply “graphs”), λ1(·; ·) 7→ G(λ1(·; ·)).18 A weighted
directed graph consists of a set of nodes, directed edges connecting pairs of
nodes, and scalar weights for each edge. A planar graph is one whose nodes
and edges are embedded in the plane (nodes as points, edges as straight line-
segments). All graphs that are in the range of this mapping have common

17This multi-dimensional extension uses the assumption that {tji}
i=1,...,n
j=1,...,h are inde-

pendent, whereas the existence result (Theorem 2) required the weaker condition that
{ti}i=1,...,n are independent.

18Shorthand notation G is used to refer both to the mapping from strategies to graphs
and to a representative graph in the range of that map. Specifically, when I write “any
graph G” I mean any graph that is mapped to by some strategy. All such graphs have
the property that the total weight of all in-edges to a node equals the total weight of all
out-edges from that node.
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Figure 4: Planar graph not corresponding to a monotone strategy

node-set {(p, q) : q ∈ q, p ∈ p} corresponding to points in the quantity/price
grid, and common edge-set {((b′, q) → (b, q′, )): q′ = q + 1, b′ ≥ b}. The
weight put on edge ((b′, q) → (b, q + 1)) in the graph G(λ1(·; ·)) equals the
probability a(q,q+1)((b

′, b); λ1(·; ·)) that a bid P1(·) is played in strategy λ1(·; ·)
with the property that both unit-bids P1(q) = b′ and P1(q+1) = b. Formally,
for any Q ⊂ q and bQ = (bq)

q∈Q,

aQ(bQ; λ1(·; ·)) =

∫
t1

∑
P1(·):P1(q)=bq∀q∈Q

λ1(P1(·); t1)dt1

I also assign weight w((p, q)) to each node equal to the total weight of all
its in-edges to that node: w((p, q)) =

∑
p′≥p w ((p′, q − 1) → (p, q)). Next,

define a path in graph G as a sequence of nodes connected by edges having
non-zero weights, including one node for each quantity in q. The set of
all possible paths is isomorphic with the set of all permissible bids, and it
inherits the product order. It is worth noting, however, that the set of graph
G(λ1(·; ·))’s paths is not necessarily identical with the set of bids played with
positive probability in λ1(·; ·) (though all played bids are among G’s paths).
Similarly, a graph’s paths need not have a maximal element, just as the set
of bids played in a strategy need not have a maximal element.

For example, consider the following non-monotone pure strategy P1(·; ·)
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in a setting in which t1 ∼ U [0, 1]: P1(·; t1) = (4, 2, 2, 2) when t1 ∈ [0, 1/3),
P1(·; t1) = (4, 2, 2, 1) when t1 ∈ [1/3, 2/3), P1(·; t1) = (3, 3, 2, 1) when t1 ∈
[2/3, 1]. The graph mapped to by this strategy is illustrated in Figure 4. Only
those edges having positive weight are displayed. The edge ((2, 2) → (2, 3))
has weight 2/3 since all types ti ∈ [0, 2/3) submit a bid such that Pi(2; t1) = 2
and Pi(3; ti) = 2). There are four paths in this graph but only three played
bids; path ((3, 1)), (3, 2), (2, 3), (2, 4)) does not correspond to a played bid.

There are three nice things about this representation of strategies as
graphs. (1) The total weight of all in-edges to (or out-edges from) (p, q) in
G is the probability that bidder 1 makes unit-bid p on unit q in the strategy
mapping to G. (2) Any graph G whose nonzero-weight edges never intersect
always has a maximal path. (3) Any graph G whose nonzero-weight edges
never intersect is mapped to by some monotone strategy whereas no mono-
tone strategy maps to any graph that has such intersecting edges. Point (1)
is evident from the construction.

Proof of (2): For given graph G, let p(q) ≡ max{p ∈ p : w((p, q)) > 0}.
Clearly, the path P ≡ ((p(q), q) → (p(q + 1), q + 1))q∈q is greater than all
paths in G. It suffices to show that, as long as there are no intersecting
edges having nonzero weight, P is a path in G. Suppose otherwise. Then
for some q ∈ q, (p(q), q) → (p(q + 1), q + 1) has zero weight. By definition of
p(·), however, both nodes (p(q), q) and (p(q + 1), q + 1) have positive weight.
This means that (p(q), q) has an out-edge which must be going to some node
(p, q + 1) with p < p(q + 1), whereas (p(q + 1), q + 1) has an in-edge which
must be coming from some node (p, q) with p < p(q). Any such two edges
must intersect, a contradiction.

Proof of (3): Suppose that a graph G has edges ((p1, q) → (p1, q + 1)) and
((p2, q) → (p2, q + 1)) of non-zero weight that intersect in the plane. That
these intersect means that p1 > p2 ≥ p2 > p1 (or symmetrically that p2 >
p1 ≥ p1 > p2). But then bidder 1 sometimes plays two incomparable bids: in
one his unit-bids are (p1, p1) on units (q, q + 1) and in the other these unit-
bids are (p2, p2). No incomparable bids can ever be played in a monotone
strategy, however, so such a graph can not represent any monotone strategy.
Now suppose that the graph has no such intersecting edges (and that the total
weight of all in-edges equals that of out-edges for each node). We construct
a monotone strategy that maps to this graph recursively, by assigning bids
to types beginning with the highest types and proceeeding to lower types.
Since no edges cross, there is always a maximal path P by (2). Let q(P )
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Figure 5: Planar graph corresponding to a monotone strategy

be the minimal weight of any of the edges connecting nodes in P . Now
we assign the bid corresponding to path P to q(P )-probability mass of the
highest remaining types, reduce the weights of each edge in P by q(P ), and
repeat the process with the new graph. (P will no longer be a path in this
new graph since one of its edges now has zero weight. Also, the maximal
path in this new graph was a path in the old graph and so is less than P .)
Once this process is complete and all types have been assigned a bid to play,
higher types always play a bid that is greater than or equal to that played
by lower types. Thus, we have constructed a monotone pure strategy that
maps to this graph. For example, given the graph illustrated in Figure 5,
we would construct the monotone pure strategy in which types t1 ∈ [2/3, 1]
bid (4, 3, 2, 2), types t1 ∈ [1/3, 2/3) bid (4, 2, 2, 1), and types t1 ∈ [0, 1/3) bid
(3, 2, 2, 1).

Allocation-equivalence: Let λ∗(·; ·) be a mixed-strategy equilibrium. Ar-
guments here apply to bidder 1 and, hence, to all bidders. Suppose that
λ∗1(·; ·) is non-monotone. Let P ′

1(·), P1(·) be any pair of bids such that
P ′

1(·) � P1(·) and there exist types t′1 > t1 such that λ∗1(P
′
1(·), t′1) > 0 and

λ∗1(P1(·), t1) > 0. Define as shorthand P∨
1 (·) ≡ P ′

1(·) ∨ P1(·) and P∧
1 (·) ≡

P ′
1(·) ∧ P1(·).

By the definition of the product order, disjoint sets Q′
∗(P

′
1(·), P1(·)) and
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Q∗(P
′
1(·), P1(·)) ⊂ q (shorthand Q′

∗, Q∗) exist so that

P∨
1 (·) =

(
b′Q′

∗∪Q∗ , b−Q′
∗∪Q∗

)
,P ′

1(·) =
(
b′Q′

∗
, b−Q′

∗

)
,

P1(·) =
(
b′Q∗ , b−Q∗

)
,P∧

1 (·) = bq

where b′q  bq for all q ∈ Q′
∗ ∪Q∗.

Since bidders’ expected payoffs are modular in own bid and have non-
decreasing differences in own bid and own type, Milgrom and Shannon (1994)’s
Monotonicity Theorem implies that each bidder i’s set of best response bids
is a lattice for all types ti and that the correspondence mapping bidder types
into best response bids is increasing in the strong set order.

Definition (Increasing in strong set order (ISSO)). Let X be a lattice,
T a partially ordered set, and φ : T → X a correspondence. φ is increasing
in the strong set order if, for all t′ > t, x ∈ φ(t) and x′ ∈ φ(t′) implies that
x ∧ x′ ∈ φ(t) and x ∨ x′ ∈ φ(t′).

In our case, ISSO implies that the lower type t1 must find both
(
b′Q∗ , b−Q∗

)
and bq to be best responses, while

(
b′Q′

∗∪Q∗
, b−Q′

∗∪Q∗

)
and

(
b′Q′

∗
, b−Q′

∗

)
must

be best responses for the higher type t′1. In particular, type t1 is indifferent
to raising its bid on units in Q∗ from bQ∗ to b′Q∗ when its other bids are at

level
(
bQ′

∗ , b−Q∗∪Q′
∗

)
, and type t′1 is indifferent to raising its bid on units in Q∗

from bQ∗ to b′Q∗ when its other bids are at the higher level
(
b′Q′

∗
, b−Q∗∪Q′

∗

)
.

By modularity in own bid, we can express bidder 1’s interim expected
payoffs as a sum of functions that each depend only on an individual unit-
bid, the bidder’s type, and others’ strategies:

Π1

(
(bq)

q∈q , t1; λ−1(·; ·)
)

=
∑
q∈q

Πq
1 (bq, t1; λ−1(·; ·))

For every q ∈ Q∗ consider the two unit-bid levels b′q > bq. Since the priority
rationing rule is being used, changing one’s unit-bid on q can not change
one’s likelihood of being awarded any other unit q′ 6= q (see discussion on
page 25). Thus, if bidder 1 wins the q-th unit more often with unit-bid b′q,
then the incremental return to bidding b′q vs. bq is strictly increasing in own
type. Since two different types t1, t

′
1 are indifferent to raising these unit-bids

(albeit with their other bids at different levels), it must be that bidder 1’s
likelihood of winning each unit q ∈ Q∗ does not change as he raises his bids
on that unit from bq to b′q. Furthermore, variations in one’s own bid can
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only affect others’ allocations if they change one’s own allocation. We may
conclude that, for each q ∈ Q∗, if bidder 1 were to modify his strategy by
sometimes submitting unit-bid b′q when he originally had bid bq on that unit
or vice versa, then the allocation would remain the same with probability
one given others’ strategies no matter what he bids on other units.

Preserving expected payments & winning probabilities: Now we re-
place bidder 1’s equilibrium strategy λ∗1(·; ·) with a monotone strategy P̃1(·; ·)
so that (a) each bidder’s probability of winning at least quantity q and ex-
pected payment from any bid (whether an equilibrium bid or deviation) is
the same as given bidder 1’s equilibrium strategy.

Constuction of the monotone pure strategy P̃1(·; ·): First, we replace
λ∗1(·; ·) with a strategy λ̃1(·; ·) that need not be monotone but which maps
to a graph that has no intersecting nonzero-weight edges. Second, we use
the procedure described in the proof of (3) above to construct a monotone
pure strategy that maps to this graph. For this first part, then, suppose
that the graph corresponding to strategy λ∗1(·; ·) has a pair of intersecting
edges. In particular, there must be consecutive quantities q, q + 1 such that
E1 = (p1, q) → (p1, q+1) and E2 = (p2, q) → (p2, q+1) have non-zero weight
and p1 > p2 ≥ p2 > p1 (or symmetrically p2 > p1 ≥ p1 > p2). The weight
w(E1) on edge E1 is the probability that bidder 1 submits a bid P1(·) with
the property that P1(q) = p1 and P1(q + 1) = p1, and similarly for w(E2).

Now we adjust the graph, creating new weights w′(·) as follows, with
two cases. In the first case, w(E1) ≥ w(E2). Set w′(E1) = w(E1) − w(E2),
w(E2) = 0, w′((p1, q) → (p2, q + 1)) = w′((p1, q) → (p2, q + 1)) + w(E2),
and w′((p2, q) → (p1, q + 1)) = w′((p2, q) → (p1, q + 1)) + w(E2). This
eliminates the intersection by putting zero weight on E2, maintains the same
total in-edge weight into every node, and puts weight onto two other edges,
one above and one below both E1 and E2. The second case, w(E2) ≥ w(E1),
is symmetrical, with the difference that we put zero weight on E1. Repeating
this process for all such intersections yields a graph that puts the same weight
on each node as the original graph and which is mapped to by some monotone
strategy P̃1(·; t1). Figure 5 provides an example of the graph that results from
“monotonizing” Figure 4, where q = 1, E1 = ((4, 1) → (2, 2)), E2 = ((3, 1) →
(3, 2)), p1 = 4, p2 = p2 = 3, and p1 = 2.

The weight on node (p, q) is the probability that bidder 1 will submit
a bid having unit-bid p for quantity q. Since these weights are preserved,
the distribution of bidder 1’s unit-bids are also preserved. Consequently,
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for every bidder i 6= 1 (say bidder 2), his probability of winning at least q
units and his expected payment conditional on winning q units after any bid
(whether an equilibrium bid or a deviation) are preserved, for all q. To see
why, note that bidder 2’s probability of winning at least q units with any
given bid depends only on the probability that his q-th unit bid is greater
than, equal to, or less than the (S − q + 1)-st unit-bid submitted by any
other bidder. (This uses again the property of the priority rationing rule
discussed on page 25.) Holding strategies fixed for all bidders 3, ..., n, these
probabilities do not change if the distribution of bidder 1’s unit-bids stay the
same. Similarly, bidder 2’s expected payment with any given bid depends
on the quantity that he wins, his own bid, and (potentially) the distribution
of the S-th and S + 1-st highest unit-bids overall. Holding strategies fixed
for all bidders 3, ..., n, this distribution does not change if the distribution of
bidder 1’s unit-bids stays the same.

Preserving best responses: While the probability that bidder 2 wins at
least q units with any given bid remains the same whether bidder 1 plays
strategy λ∗1(·; ·) or P̃1(·; ·), we must account for the fact that bidder 2’s ex-
pected value from winning may be different, since that value depends on
which types of opponents he wins against. Formally, for every profile t−2 of
others’ types, define β∗(t−2; (p, q)) to be the probability that bidder 2 wins at
least q units with q-unit-bid p when others receive type profile t−2 and follow
strategies λ∗−2(·; ·). Bidder 2’s expected value for the q-unit conditional on
having type t2 and winning at least q units, then, may be expressed as∫

t−2
v2(q; t)β

∗(t−2; (p, q))dt−2∫
t−2

β∗(t−2; (p, q))dt−2

when bidders 1, 3, ..., n adopt strategies λ∗−2(·; ·). Suppose now that bidder

1 adopts monotone pure strategy P̃1(·) instead (holding fixed the strategies
of 3, ..., n). Let β̃(t−2; (p, q)) be the probability that bidder 2 wins at least
q units with q-unit-bid p when others receive type profile t−2 and follow

strategies
(
P̃1(·), λ∗−1,2(·; ·)

)
. Since the distribution of bidder 1’s unit-bids

remains the same,∫
t−2

β∗(t−2; (p, q))dt−2 =

∫
t−2

β̃(t−2; (p, q))dt−2 for all t−2

By monotonicity of bidder 1’s strategy, however, β̃(t−2; (p, q)) is non-increasing
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in t1. Thus, for all t2 and all (p, q)∫
t−2

v2(q; t)β
∗(t−2; (p, q))dt−2∫

t−2
β∗(t−2; (p, q))dt−2

≥
∫
t−2

v2(q; t)β̃(t−2; (p, q))dt−2∫
t−2

β̃(t−2; (p, q))dt−2

(1)

Denominators are equal. The first numerator is weakly greater than the
second by a basic fact from real analysis: Take any f, g, h : [0, 1] → R
such that f is non-decreasing, h non-increasing, and

∫
g(x)dx =

∫
h(x)dx.

Then
∫

f(x)g(x)dx ≥
∫

f(x)h(x)dx. Thus, for all fixed t−2, and fixed (p, q),

v2(q; t) is a non-decreasing function of t1 and β̃(t−2; (p, q)) is a non-increasing
function of t1. Consequently,∫

t1

v2(q; t)β
∗(t−2; (p, q))dt1 ≥

∫
t1

v2(q; t)β̃(t−2; (p, q))dt1

for all (p, q) and all t−2, implying the desired inequality of numerators in
equation (1).

In short, bidder 2 is no better off submitting any bid after the modification
of bidder 1’s strategy than before. Lastly, by ex post allocation-equivalence,
bidder 2 is equally well off now as before after submitting any equilibrium
bid. (Allocation equivalence guarantees that the event in which he wins is the
same.) All together, this proves that (λ̃1(·; ·), λ∗−1(·; ·)) is itself an equilibrium.

Repeating this process for each bidder, finally, yields MPSE λ̃(·; ·).

In the proof of Theorem 3, it is vital that each bidder’s marginal value
for each unit, vi(q; t), is well-defined. Indeed, Theorem 3 does not apply
to general settings with payoff externalities. The following example shows
how fundamentally non-monotone equilibria (i.e. not ex post allocation-
equivalent to MPSE) can exist given externalities.

Example 6 (Externalities, uniform (S + 1)-st price). There are three
bidders and four units in a uniform fifth-price auction. The grid of per-
missible non-null prices is {0, 1, 2, ...., 99, 100}. Bidder 1 receives a signal
t1 ∈ {L, H} each with probability 1/2; the other bidders get no signal. (It is
straightforward to modify this example so that each bidder receives a signal
from [0, 1] with values increasing in own signal: all relevant preferences are
strict.) Bidders 1,2 have private values exceeding 100 for the first two units
and no value for additional units regardless of t1. Bidder 3 has preferences
over allocation vectors (q1, q2, q3) that depend on t1.
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• When t1 = L, allocations {(2, 1, 1), (0, 1, 3)} are most preferred (say
value 1000), allocation (2, 2, 0) next most preferred (say value 100) and
all others are least preferred (say value 0).

• When t1 = H, allocations {(1, 2, 1), (1, 0, 3)} are most preferred (say
value 1000), allocation (2, 2, 0) next most preferred (say value 100) and
all others are least preferred (say value 0).

Proposition 4. The following strategies constitute a non-monotone equilib-
rium that is not outcome-equivalent to any MPSE: P1(·; L) = (90, 10, 0, 0)
and P1(·; H) = (50, 48, 0, 0); P2(·) = (70, 30, 0, 0); and P3(·) = (0, 0, 0, 0).

Proof. Bidders 1,2 each receive two units at price zero, so clearly they are
adopting a best response. Next, (0, 0, 0, 0) is a best response for bidder 3
for all t1, so it must maximize bidder 3’s expected payoff as well. First,
consider the case in which t1 = L. Note that bidder 1 has the highest
unit-bid, followed by bidder 2’s two unit-bids, followed by bidder 1’s second
unit-bid. Thus, by varying his bid, bidder 3 can induce allocation (2, 2, 0),
(1, 2, 1), (1, 1, 2),(1, 0, 3), (0, 0, 4) but not (2, 1, 1), (0, 1, 3) or any other. By
the assumptions on values when t1 = L, (2, 2, 0) is the allocation that gives
bidder 3 the greatest value among these (and he pays nothing) so bidding
(0, 0, 0, 0) is a best response. Next, consider the case in which t1 = H. Now,
bidder 3 can induce allocation (2, 2, 0), (2, 1, 1), (1, 1, 2),(0, 1, 3), (0, 0, 4) but
not (1, 2, 1), (1, 0, 3) or any other. Again, then, (0, 0, 0, 0) is a best response
and these strategies constitute an equilibrium.

The more interesting part of this example is that there is no outcome-
equivalent monotone pure strategy equilibrium (in which bidders 1,2 always
receive two units at price zero). The key observation is that, to induce bidder
3 to stay out of the bidding competition, the ranking of bidder 1,2’s unit-
bids was crucial. In particular, it is essential that P1(1; L) > P2(1), P2(2) >
P1(2; L) but also that P2(1) > P1(1; H), P1(2; H) > P2(2). Of course, these
inequalities can only be satisfied if P1(1; L) > P1(1; H).

To see why these inequalities must be satisfied in any equilibrium in
which bidders 1,2 each always win two units at price zero, consider bidder
3’s incentives to deviate otherwise. If P2(1) > P1(1; L)+1, then bidder 3 can
get surplus of 1000 − 3(P1(1; L) + 1) ≥ 700 by submitting bid (P1(1; L) +
1, P1(1; L)+1, P1(1; L)+1, 0).19 The key here is that bidder 3 can now induce
the allocation (0, 1, 3) in the state t1 = L in which that allocation is highly

19The cases in which there is no bid between these two and ties must be considered –
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valued. Since the surplus from this bid is at worst −300 when t1 = H, its
expected surplus is at least (700− 300)/2 > 0. Thus, (0, 0, 0, 0) is definitely
not a best response for bidder 3. Similarly, if P1(1; L) > P2(2) + 1, then
bidder 3 can induce the allocation (2, 1, 1) (also highly valued when t1 = L)
by submitting bid (P2(2) + 1, 0, 0, 0), and this bid is preferred to (0, 0, 0, 0).
The argument for the t1 = H inequalities are entirely symmetrical, so I omit
those details.

By Theorem 2, of course, we know that there also is a MPSE.

Equilibria with positive probability of trade: In two-sided auctions,
there are always “no-trade equilibria” in which sellers demand extremely
high prices and buyers demand extremely low prices. Naturally, we are more
interested in equilibria in which trade occurs. In the context of private-value
auctions, Jackson and Swinkels (2001)’s (“JS”) showed that an equilibrium
with positive probability always exists by exploiting the fact that no-trade
equilibria require bidders to play weakly dominated strategies: If some bid-
der(s) are assumed to sometimes exogenously submit bids in the relevant
range, then other bidders now strictly prefer to bid seriously. (By a seri-
ous bid, I mean one that has positive probability of leading to trade given
the distribution of others’ bids.) JS then prove that, as the probability of
such exogenous bidding vanishes, an equilibrium with trade persists. A key
observation is that all equilibria in settings with exogenous bidding remain
equilibria if we (artifically) disallow bidders from submitting weakly domi-
nated bids. Thus, as the probability of exogenous bidding goes to zero, these
equilibria converge to an equilibrium in which bidders do not adopt weakly
dominated strategies.

In our context, this same approach applies, albeit some extra assump-
tions appear necessary. For instance, the following appears to be a sufficient
(though by no means necessary) condition for JS’s analysis to apply:

Pr
t

(
max

i
vb

i(ti) > min
i

vs
i (ti)

)
> 0 (2)

when P2(1) = P1(1;L) or = P1(1;L)+ 1 – make verification more tedious but do not pose
a substantive problem, as long as the benefit that bidder 3 gets from outcomes (2, 1, 1)
and (0, 1, 3) are sufficiently high. Therefore I leave out these cases.
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where for each bidder i we define

vb
i(ti) ≡ inf

t−i;q′,q:q′i=ei+1,qi=ei,q′j≤qj∀j 6=i
(Vi(q

′, t)− Vi(q, t))

vs
i (ti) ≡ sup

t−i;q′,q:q′i=ei,qi=ei−1,q′j≤qj∀j 6=i

(Vi(q
′, t)− Vi(q, t))

vb
i(ti) is a lower bound on bidder i’s marginal value for the first unit that she

might buy, given her own type ti. (The infimum is taken with respect to all
other bidders’ types and all relevant pairs of allocations: she may care who
receives one less unit when she wins that first unit.) Similarly, vb

i(ti) is an
upper bound on bidder i’s marginal value for the first unit that she might
sell. Condition (2) then requires that there would be positive probability of
trade under the presumption that all bidders submitted bids equal to their
lowest possible (if buyers) or highest possible (if sellers) marginal values for
each unit.

6 Concluding Remarks

This paper introduces a new style of analysis for the discriminatory and uni-
form S +α-th price multi-unit auctions (α ∈ [0, 1]).20 This lattice-theoretical
approach leverages the fact that, in these auctions, each bidder’s expected
surplus is modular (i.e. additively separable) in own bid. When bidders ar
risk-neutral, this powerful property allows us to “reduce” the issue of mono-
tone pure strategy equilibrium (MPSE) existence in these multi-unit auctions
to that in single-object auctions: the sufficient condition for MPSE existence
in single-object auctions, Athey (2001)’s “single-crossing condition” (SCC),
is also sufficient in multi-unit auctions.21

Even more importantly, there is a sense in which all equilibria have mono-
tone pure strategies in these auctions. Any given mixed-strategy equilbrium

20There are several sorts of auctions of multiple identical objects to which this paper’s
analysis does not apply. Most prominently among them are (i) combinatorial auctions in
which bidders may demand (say) “q units or nothing”, (ii) sequential auctions in which
the sale of units is spread out over several rounds, and (iii) auctions in which some of
the bidders choose their bids after observing others’ bids. For instance, Back and Zender
(2001) and McAdams (2002b) study auctions in which the auctioneer (a non-strategic
bidder) decides how much to supply after receiving the bids.

21More precisely, Reny and Zamir (2002)’s weaker version of SCC, so-called “best-reply
single-crossing condition” (BR-SCC) is sufficient, both for single-object and multi-unit
auctions.
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is ex post allocation- and interim expected payment-equivalent to some mono-
tone pure strategy equilibrium. Thus, at least insofar as one is concerned
with expected surplus / revenue analysis, there is no loss in restricting at-
tention to monotone strategies.

Furthermore, our focus on the ordinal conditions necessary to generate
monotone bidding behavior allows us to relax several common assumptions
in the existing literature and study models with (among other things) multi-
dimensional types, interdependent values, increasing marginal values, alloca-
tive externalities, and two-sided trading. Verifying SCC is more difficult
in multi-unit auctions, however, than in single-object auctions such as the
first-price auction. Indeed, though there may be some hope of extending our
results to some settings with risk-aversion (see footnote 12), they fail to gen-
eralize if we allow for affilated rather than independent types, if we substitute
risk-averse for risk-neutral bidders, or if we employ a different rationing rule.

Overall, the several counter-examples to monotonicity (Examples 1, 3, 4,
5, 6) may leave some readers with the negative impression that little structure
can be established in multi-unit auctions outside of the very special case of
independent types. While such examples tell a cautionary tale that equilibria
in multi-unit auctions can possess unusual and subtle structures not seen in
single-object auctions, I do not share this perspective. Especially in auctions
with many “small” bidders, I expect that future research will establish that
ordinal conditions (akin to SCC) are satisfied sufficient to apply the powerful
style of ordinal analysis introduced here. Indeed, some initial progress has
already been made on this front: Reny and Perry (2003) have established
that such a condition is satisfied for uniform-price auctions when bidders
have interdependent values, affiliated one-dimensional types, and single-unit
demand.

Appendix: Proof of Theorem 1

It suffices to show that each bidder’s ex post valuation and ex post payment
are modular in own bid. In the following, consider bidder 1 only and fix
the profile of others’ bids P−1(·), the priority ranking ρ, and the state t.
The analysis focuses on properties of the realized allocation and payment
when bidder 1 submits one of two bids P 1

1 (·) or P 2
1 (·) or their join P 1∨2

1 (·) ≡
P 1

1 (·) ∨ P 2
1 (·) or meet P 1∧2

1 (·) ≡ P 1
1 (·) ∧ P 2

1 (·).
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Shorthand notation: q1
j ≡ qj (P 1

1 (·),P−1(·); ρ) and so on for the other
bids P 2

1 (·), P 1∨2
1 (·), and P 1∧2

1 (·). (Note that while bidder 1’s bid varies, oth-
ers’ bids are held fixed.) Similarly, define shorthand b1

S ≡ bS (P 1
1 (·),P−1(·)),

b1
S+1 ≡ (P 1

1 (·),P−1(·)) and so on, where bS(P(·)) and bS+1(P(·)) are the Sth
and S + 1st highest unit-bids given the profile of bids P(·).

Characterizing the allocation: Define bidder 1’s rationing function to
be

Rρ
1(p) ≡ S −

ρ(j)=ρ(1)−1∑
ρ(j)=1

max Dj(p)−
ρ(j)=n∑

ρ(j)=ρ(1)+1

min Dj(p).

Rρ
1(p) is the amount that would be left for bidder 1 if all ahead of him in the

ranking ρ were given their maximum demand at price p and all behind him
were given their minimal demand at that price. By design of the assumed
rationing rule,22

q1 = min D1(bS) if Rρ
1(bS) ≤ min D1(bS)

= Rρ
1(bS) if Rρ

1(bS) ∈ [min D1(bS), max D1(bS)]

= max D1(bS) if Rρ
1(bS) ≥ max D1(bS).

or, equivalently,

q1 = min D1(bS+1) if Rρ
1(bS+1) ≤ min D1(bS+1)

= Rρ
1(bS+1) if Rρ

1(bS+1) ∈ [min D1(bS+1), max D1(bS+1)]

= max D1(bS+1) if Rρ
1(bS+1) ≥ max D1(bS+1).

Both approaches, based on bS and on bS+1, lead to the same rationing out-
come because rationing only occurs when bS = bS+1: bS+1(P(·)) 6= bS(P(·))
implies that there is a unique market clearing allocation, and both approaches

22Rρ
1(bS) ≤ minD1(bS) (Rρ

1(bS) ≥ max D1(bS)) if and only if the rationing process
described on page 11 ends before 1 is reached (after 1 is fully served) in the rationing
queue. Similarly, Rρ

1(bS) ∈ (minD1(bS),max D1(bS)) if and only if 1 can only be partially
served after those ahead of him have been fully served.
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lead to that allocation. More explicitly,

q1(P(·); ρ) = max

{
min D1(bS(P(·))), min

{
Rρ

1(bS(P(·))), max D1(bS(P(·)))
}}

(3)

= max

{
min D1(bS+1(P(·))), min

{
Rρ

1(bS+1P(·)), max D1(bS+1(P(·)))
}}

.

(4)

Modularity of ex post valuation: A bidder’s valuation for what he
wins does not depend on the auction’s payment rule. Consequently, I may
cite McAdams (2003b)’s proof of existence in the uniform S-th and S + 1-st
price auctions for this part of our proof. The key fact (which directly implies
modularity of ex post valuation in own bid since values take the form Vi(q, t))
is that {

q1,q2
}

=
{
q1∨2,q1∧2

}
(The priority rationing rule is crucial to this result; neither risk-neutrality
nor independence is needed.)

Modularity of ex post payment in discriminatory auction: By def-
inition of the ∨,∧ operations,{

max P 1
1 (q), max P 2

1 (q)
}

=
{
max P 1∨2

1 (q), max P 1∧2
1 (q)

}
for all q (5)

In the discriminatory auction, bidder 1’s payment may be broken down as
the sum of marginal payments on each unit:

ZD
i (P(·)) =

∑
q∈q

Zq,D
i (P(·)) where

Zq,D
i (P(·)) = 0 if q ≤ min{e1, q1(P(·))}

= max P1(q) if e1 < q ≤ q1(P(·))
= −max P1(q) if q1(P(·)) < q ≤ e1

It suffices to show that each of these marginal payment functions is modular
in P1(·). Equation (5) directly implies that Zq,D

i (P(·)) is modular for all q
except (in the case when q2

1 > q1
1) for those q such that q1

1 < q ≤ q2
1: either
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all terms are zero or

Zq,D
i (P 1

1 (·),P−1(·)) + Zq,D
i (P 1

1 (·),P−1(·)) = max P 1
1 (q) + max P 2

1 (q)

= max P 1∧2
1 (q) + max P 1∨2

1 (q) = Zq,D
i (P 1∧2

1 (·),P−1(·)) + Zq,D
i (P 1∨2

1 (·),P−1(·))

Since bidding P 2
1 (·) always bidder 1 to win strictly more quantity, further-

more, it must be that max P 2
1 (q) > max P 1

1 (q) for all q1
1 < q ≤ q2

1. Thus, for
such q,

Zq,D
i (P 1

1 (·),P−1(·)) + Zq,D
i (P 1

1 (·),P−1(·)) = 0 + max P 2
1 (q)

= 0 + max P 1∨2
1 (q) = Zq,D

i (P 1∧2
1 (·),P−1(·)) + Zq,D

i (P 1∨2
1 (·),P−1(·))

Modularity of ex post payment in uniform S + α-th price auction:
Again by definition of the ∨,∧ operations,{

b1
S, b2

S

}
=

{
b1∨2
S , b1∧2

S

}
and

{
b1
S+1, b

2
S+1

}
=

{
b1∨2
S+1, b

1∧2
S+1

}
Since we know already that {q1

1, q
2
1} = {q1∨2

1 , q1∧2
1 } and payment in the S+α-

th price auction equals q1(P(·)) (αbS(P(·)) + (1− α)bS+1(P(·))), to establish
modularity it will suffice to show that23{(

b1
S, b1

S+1, q
1
1

)
,
(
b2
S, b2

S+1, q
2
1

)}
=

{(
b1∧2
S , b1∧2

S+1, q
1∧2
1

)
,
(
b1∨2
S , b1∨2

S+1, q
1∨2
1

)}
.

Without loss, suppose that b1
S ≤ b2

S and that b1
S = b2

S implies b1
S+1 ≤ b2

S+1. If
b1
S = b2

S and b1
S+1 = b2

S+1, then we are obviously done. If b1
S ≤ b2

S and b1
S+1 ≤

b2
S+1, then we are also done: q1

1 ≤ q2
1 = q1∨2

1 and (b2
S, b2

S+1) = (b1∨2
S , b1∨2

S+1).
As the final (and most difficult) case, suppose that b2

S > b1
S ≥ b1

S+1 > b2
S+1.

It will suffice to show that q1
1 = q2

1 in this case. Note that, when bidder 1
submits bid P 1

1 (·), some bidder submits unit-bids equal to b1
S, b1

S+1 but that
no bidder submits such unit-bids when he submits bid P 2

1 (·). (In the latter
case, b2

S, b2
S+1 are consecutive unit-bids across all those submitted by any

bidder for any quantity, and others’ bids are fixed.) Thus, we may conclude
that these are bidder 1’s unit-bids when he bids P 1

1 (·) and, in particular, that
P 1

1 (q1
1) = b1

S and P 1
1 (q1

1 + 1) = b1
S+1.

23The reason why modularity fails in Example 1 is that the analogue to this condition
fails. The bids that set the price need not “match up” with the quantities that bidder 1
wins upon submitting bids P 1

1 (·), P 2
1 (·) or from bids P 1∧2

1 (·), P 1∨2
1 (·). The proof here relies

crucially on the fact that the bids setting price (highest-selling bid and lowest-buying bid)
are also the bids that, in a sense, determine the allocation.
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Now, consider unit-bid b2
S. Since this is the S-th highest unit-bid when

bidder 1 submits bid P 2
1 (·) it must be that P 2

1 (q1
1) ≥ b2

S. Otherwise any unit-
bid at level b2

S would be, at lowest, the S−1-st highest. Loosely speaking, we
need bidder 1 to bid high enough on all of the units 1, ..., q1

1 that previously
won in order to make it possible that b2

S might be the S-th highest price.
Conversely, consider unit-bid B2

S+1. Since this is the S + 1-st highest unit-
bid when bidder 1 submits bid P 2

1 (·) it must be that P 2
1 (q1

1 + 1) ≤ b2
S+1.

Otherwise any unit-bid at level b2
S+1 would be, at highest, the S+2-st highest.

Consequently, q1
1 = q2

1 and we are done.
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Appendix: For Referees Only

Extending proof of Theorem 3 for multi-dimensional
types (page 28)

Single-dimensionality of types is used vitally in two spots in the proof.
(A) Construction of monotone pure strategy that maps to a given planar

graph having no intersecting edges (page 33). “We construct a monotone
strategy that maps to this graph recursively, by assigning bids to types be-
ginning with the highest types and proceeeding to lower types.” This recur-
sive process is not well-defined when types are multi-dimensional since the
order on types is not complete. For this purpose, endow each type-space
Ti = [0, 1]h with the lexicographic order: (t

′1
i , ..., t

′n
i ) ≥ (t1i , ..., t

n
i ) iff t

′1
i > t1i

or t
′1
i = t1i , t

′2
i > t2i , or etc.. The process of constructing a monotone strategy

from a graph therefore “assigns” highest bids to types on (h−1)-dimensional
hyperplanes with highest first coordinate, and so on for lower types.

(B) Bidder 2 gets weakly lower payoff from any bid after bidder 1 adopts
the new, monotone strategy (page 35), i.e.∫

t−2
v2(q; t)β

∗(t−2; (p, q))dt−2∫
t−2

β∗(t−2; (p, q))dt−2

≥
∫
t−2

v2(q; t)β̃(t−2; (p, q))dt−2∫
t−2

β̃(t−2; (p, q))dt−2

since∫
t1

v2(q; t)β
∗(t−2; (p, q))dt1 ≥

∫
t1

v2(q; t)β̃(t−2; (p, q))dt1 for all t2, t−1,2 (6)∫
t−2

β∗(t−2; (p, q))dt−2 =

∫
t−2

β̃(t−2; (p, q))dt−2 (7)
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While equation (7) continues to hold for all strategies P̃1(·; ·) that map to such
a graph, equation (6) relies on one-dimensionality in an apparently crucial
way: Take any f, g, h : [0, 1] → R such that f is non-decreasing, h non-
increasing, and

∫
g(x)dx =

∫
h(x)dx. Then

∫
f(x)g(x)dx ≥

∫
f(x)h(x)dx.

Here, for fixed t−1 = (t2, t−1,2) and fixed (p, q), v2(q2; t1, t−1) corresponds to
the non-decreasing one-dimensional function f(x), β̃(t1, t−1,2; (p, q)) corre-
sponds to the non-increasing one-dimensional function h(x), and β∗(t1, t−1,2; (p, q))
to the function g(x).

Once t1 is multi-dimensional, of course, these functions are too. One
can get around this problem by recasting bidder 1’s type-space as a one-
dimensional space consisting of (h1−1)-dimensional hyperplanes, T1 = [0, 1]×
[0, 1]h1−1. More formally, re-define the primitive “bidder 1 type” as an equiv-
alence class (hyperplane) of original types: T1(x) = {(t11, t−1

1 ∈ T1 : t11 = x}.
Under this re-definition, bidder 1’s set of types is T1 = {T1(x) : x ∈ [0, 1]}.
A strategy, similarly, maps each such hyperplane of original types to the
(probability density-weighted) mixture of bids played by types in that hyper-
plane. While monotone pure strategies with respect to the original definition
of types may correspond to mixed strategies under this new formulation,
the same planar graph corresponds to both such strategies. (The planar
graph only encodes overall probabilities that various sorts of bids are played,
and the overall probability that any given bid is played does not depend
on whether we use the original or new formulation for types.) Now we can
construct a pure strategy P̃1(·; ·) corresponding to this planar graph that is
monotone with respect to the lexicographic total order on original types de-
scribed above in (A). This yields a monotone strategy with respect to the
new formulation of types as hyperplanes. (Higher bids are assigned to higher
equivalence classes of types, i.e. to types on hyperplanes having higher first
coordinate.)

To complete the proof, we need to show that (for fixed t−1 = (t2, t−1,2)
and fixed (p, q))

v2(q2; T1(x), t−1) ≡ Et−1
1

[v2(q2; (x, t−1
1 , t−1))]dt−1

1

is non-decreasing in x and that

β̃(T1(x), t−1,2; (p, q)) ≡ Et−1
1

[β̃(x, t−1
1 , t−1,2)]dt−1

1

is non-increasing in x. The first observation follows from the independence
assumption. (Here is where we use the stronger independence condition
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that {tji}
i=1,...,n
j=1,...,h are independent.) The second condition, finally, follows from

the fact that types on higher hyperplanes play higher actions in our re-
constructed strategy P̃1(·; ·).
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