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Abstract 
 

This study addresses the complexity in modeling contingent valuation surveys that account 
for sample selection bias,  true zeros and non-ignorable unresolved cases or missing 
responses including “don’t knows” and protest responses. Estimation and inference on 
welfare measure such as mean WTP or health care valuation for demanders, non-demanders 
as well as counterfactual welfare estimates for these unresolved cases are also provided. Two 
alternative endogenous switching tobit (EST) models are specified to simultaneously estimate 
the parameters of the latent willingness to pay (WTP) decision variable and the latent true 
WTP level. Bayesian techniques are developed using Markov chain Monte Carlo (MCMC) 
methods data augmentation and Gibbs sampling with Metropolis-hastings for estimating the  
endogenous switching tobit model. The Bayesian approach presented here is useful even for 
finite sample size and for models with relatively flat likelihood like sample selection models 
for which convergence is a problem or even if convergence is achieved correlation of the 
latent random errors are outside the (-1,1) range. The proposed methodology is applied to a 
single-bounded dichotomous choice contingent valuation model using British Eurowill data 
on evaluating cancer health care program. Results in this study reveal that the interview 
interest scores for the unresolved or missing cases are substantially high and not far from 
scores of “yes” respondents. The pattern in the values of socio-economic and health related 
variables shows that these unresolved cases are not missing completely at random. 
Consequently, dropping them from the analysis is both inefficient and biased since they may 
actually contain valuable information on the willingness decision process and the true WTP 
level of respondents. Inclusion of these non-ignorable missing values is not detrimental to the 
quality of parameter estimates as reflected in the sum of log conditional predictive ordinate 
(SLCPO) goodness-of-fit criterion and smaller standard deviation of parameter estimates.  
The classification results in this study agree with Haener and Adamowics (1998) and 
Groothius and Whitehead 2002) findings and contradict a common practice of considering all 
“don’t know” responses as “no” responses. The positive correlation of the latent random 
errors may explain why the true WTP levels in DC contingent valuation studies are 
oftentimes overestimated. The model presented in this paper may also be extended to double-
bounded dichotomous choice models with slight modification. Although respondents were 
reminded to ignore the other two programs when assessing the value of each health care 
program, the model presented here can easily be extended to allow estimation and inference 
on correlations of valuations among the three health care programs due to factors such as 
anchoring effect.  This extended model can also test for differences in mean WTP among the 
three health care programs. 
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1.0 Introduction 

Determining the economic value of public or non-market good such as health care 

intervention is oftentimes of prime interest to policy makers. Dichotomous choice contingent 

valuation method (DCCVM) is one popular value elicitation scheme first applied by Bishop 

and Heberlein (1979) while Hanemann (1984) developed the conceptual and theoretical 

arguments for using this technique to elicit welfare benefits. Arrow and Solow (1993) 

together with other panel experts appointed by the US National Oceanic and Atmospheric   

Administration to assess the validity of the contingency valuation (CV) method, 

recommended the DC method over the open-ended approach and inclusion of “don’t know” 

(DK) option. In the close-ended DCCVM a random sample of people from the target 

population are asked if they would be willing to pay for the provision of some public good 

with option of  “yes” ,  “no” or “don’t know”. Then they are asked if they would be willing to 

contribute a specific amount for the public good with the same alternative responses “yes” , 

“no” or “don’t know”. The bid amount is varied across respondents. For the single-bounded 

(SBDCCVM), only one question is posed to individuals. For the double-bounded 

(DBDCCVM) each respondent is presented a sequence of two bids. The second bid is 

conditional on the response to the first bid. It is higher if the response to the first bid is 

affirmative and lower if negative. For each bid the individual has the options of “yes”,“no” or 

“don’t know”. The rationale for the inclusion of the “don’t know” is that a considerable 

number of respondents would prefer this option (Arrow et al. 1993). Moreover, in contingent 

valuation surveys without the DK option,  some of the “yes” or “no” responses may not be 

meaningful preferences or may not be true reflection of their preferences. A follow-up 

question is asked for individuals who opted for a “no” response in an attempt to reveal the 

reasons behind such a negative response. Those who believe that the programme is of no 
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value to their household  or cannot afford to pay for its provision may be considered as “true 

zeros” and others as protests.  The protests and DK responses give rise to missing values. A 

good survey should be able to control or minimize these unresolved cases. However, no 

matter how much effort is exerted by the interviewer and the question designer, some missing 

observations would oftentimes be encountered.  

There are two general forms of missingness. Item nonresponse is the messy data type 

where only a part of the information is missing. The other form of missingness is unit 

nonresponse in which no data at all is available for some sampling units due to unreturned 

questionaires or refusal of respondents to participate in the survey.  Missing data mechanism 

can be classified into three general categories (Rubin 1976, Little and Rubin 1987). 

Unobserved values are said to be missing completely at random (MCAR) if missingness is 

not dependent on known and unknown variables, that is  

P(M/Z,Z*)=P(M) 

where M is the indicator variable which is 1 if it is observed and 0 if it is missing, Z are 

observed variables and Z* are latent or unobserved variables. If missingness depends only on 

observed variables this mechanism is referred to as missing at random (MAR) and 

P(M/Z,Z*)=P(M/Z).  

Nonignorable missingness occurs when  

P(M/Z,Z*)  

cannot be simplified further so that missingness depends on unobserved variables aside from 

the observed variables. It is possible to statistically test the MCAR assumption against the 

alternate hypothesis that missingness is MAR (Diggle, Liang  and Zeger 1994, Little 1988). 

Without additional information it is impossible to test the MAR assumption against a 

nonignorable alternative (Little and Rubin 1987).  If it is certain that the variable values are 

missing completely at random (MCAR) then they may simply be dropped from the analysis.  
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The cost in terms of efficiency and bias from excluding the information from the unresolved 

or missing cases would be trivial. For data sets with missing values which are not MCAR 

(NMCAR), it is imperative to strive to satisfy the MAR assumption by measuring covariates 

and condition on them (Little and Rubin 1999). The most useful covariates for dealing with 

nonresponse are those that are predictive of the missing data indicator and those that are 

predictive of the missing variable(s) (Little and Hongyin 2003). A method for analyzing 

NMCAR incomplete data with covariates is developed by Little(1996). He introduced 

pattern-mixture models for stratifying incomplete data by the pattern of missing values. 

Distinct models are formulated with in each stratum. Model parameters are identified by 

alternative assumptions about the missing data. Maximum likelihood expectation 

maximization (EM) and stochastic EM (SEM) algorithms and Bayesian Gibbs sampling 

methods are implemented to provide parameter  estimates.  An alternative to the pattern- 

mixture models are endogenous switching regression models (ESRM) with tobit regime 

models (Cowles, Carlin and Connett 1996) and Odejar and Fahrmeir (2002) of which the 

selection models (Heckman 1976 and Amemiya 1984) familiar to economists are  special 

cases. The Cowles, Carlin and Connett model is developed for clinical trials with 

nonignorable missingness. These models simultaneously model missingness and the variable 

with missing observations. Heckman (1976) suggested  a two-stage procedure for parameter 

estimation of the sample selection model. However, in applying this estimation method, the 

researcher should ensure that the variance-covariance matrix should be adjusted for 

heteroscedasticity and the for the fact that the inverse Mills ratio is unobserved and only 

estimates are used in the second stage of the estimation procedure. Greene (1981) specified 

the corrected asymptotic covariance matrix.  A more efficient estimation method is full 

information maximum likelihood (FIML) in which parameter estimates are consistent, 

asymptotically normal and asymptotically efficient and achieves the Cramer-Rao lower 
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bound. FIML may be implemented  using nonlinear optimisation methods such as Newton’s 

algorithm. This method is computationally quite cumbersome especially with increasing 

number of regressors. and it may converge to a local maximum or even to a saddle point. 

Sometimes convergence values of the random errors correlation are outside the (-1,1) range. 

Copas(1990) recommended evaluating the likelihood profile )ˆ,ˆ,ˆ|( εσβγρL   for a grid of 

values of ρ in the (-1,1) interval because the likelihood is well behaved for fixed value of ρ. 

However, as shown by Copas(1990) and Calia and Strazzera(2001) maximum likelihood 

estimation methods is not really appealing for  sample selection models since these models 

are often characterized by very flat likelihood functions consequently resulting to 

convergence problem. Another well known criticism of the maximum likelihood is that it 

does not provide parameter estimates accurate enough to be useful for small and even 

moderately large samples. Nawata and McAleer(2002) demonstrated that the finite sample 

problem with the t-test is alarming and more severe for binary choice and sample selection 

models. Charlier, Melenberg and van Soest (2001) introduced semiparametric method  of 

estimating the ESRM.  Cowles et. al. (1996) and Odejar and Fahrmeir (2002) implemented 

Markov chain Monte Carlo methods MCMC which provide consistent parameter estimates 

that are reliable even for finite samples and with convergence easily achieved after a certain 

burn-in period. Missing responses may also be generated using MCMC data augmentation 

algorithm. Other imputation methods for contingent  valuation studies are discussed in 

Messonier et. al. (2000). Horowitz and Manski (1998) recommended means for bounding 

imputations. Brox et. al. (2003) imputed missing WTP responses using Bhat’s maximum 

likelihood based method for categorical data.        

In some previous health and environmental contingent valuation studies, the “don’t 

know” responses and protests are dropped from the analysis. A serious cost to this practice is 

loss of information unless these unresolved cases are similar to the retained sample at least in 
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terms of the socio-economic and health characteristics considered in the study. McClelland 

and Whittington (1994) however found that DK respondents were more likely female and / or 

with less education. Haener and Adamowicz (1998) found that DK responses differ in 

characteristics from the rest of the sample so that deleting them would bias welfare estimate. 

Jorgensen and Syme (2000) study showed that censoring protest responses would bias CV 

samples toward those with higher income households.  

In the past, protest responses have been incorporated in the non-participation part of 

sample selection models  (Strazzera, et al. 2003, Calia and Strazzera 2001, Alvarez-Farizo et 

al. 1999 and Donaldson et al. 1998). However, mean WTP is computed only for those  who 

chose to participate in the value elicitation method adjusted for sample selection. No measure 

of public good value for protest responses are provided.  Although those who protest do not 

conform with the payment vehicle in the survey, the health care program may also be of 

value to them and  they can afford to pay some price unknown to the interviewer.     

Analysis of “don’t know” responses have been performed using ordered logistic 

regression model with the “don’t know” assumed to be a middle response (Groothius and 

Whitehead  2002) which is a very strong assumption which may be realistic only for 

ambivalent response but not for those who just cannot make a decision at the time of the 

interview. In the WTP study of Groothius and Whitehead (2002), the “don’t know” responses 

are more similar to the “no” responses for their North Carolina sample and more similar to 

“yes” responses for their Pennsylvania sample.  Multinomial model have also offered another 

method for dealing with “don’t know” responses. However, mean WTP is evaluated  

indirectly thru the price proxy coefficient. Wang (1997) developed a maximum likelihood 

procedure that incorporates DK responses in the estimation of WTP assuming that each 

individual has his/her own implicit valuation distribution and not just a single true value in 

his/her mind. If the bid is not clearly different from the mean value of one’s own distribution, 
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a DK response is given. This procedure assumes that DK responses are truly uncertain of 

their preferences at the time of the interview and ignores the possibility of scenario rejection 

or strategic bias (Haener and Adamowics 1998).  Haener and Adamowics (1998) recoded the 

DK responses to either “yes or “no” based on their reponses to an open-ended payment 

question. They were asked to indicate how much they are willing to give up annually in 

exchange of the public good which is old growth forest protection program. If the DK 

respondents, were willing to give up amounts exceeding the tax level that they were 

requested to vote on, it is assumed that these DK respondents should have responded “yes” to 

the referendum question. However, since intervals in the options are quite broad, it is not 

possible sometimes to determine if the respondents are consistent or not. Of the 67 DK who 

gave specific answers to the quasi-open ended payment question, 7 were recoded as “yes”, 55 

as “no”, 5 are inconsistent and not recoded. Of the 97 DK responses 21 still were unresolved 

and replied DK to the additional open-ended payment question.             

 This study develops a Bayesian technique for estimating true willingness to pay or 

true value of health care program taking into consideration true zeros and nonrandom 

unresolved cases such as protests, “don’t know” and missing responses. It is assumed that for 

all respondents including the protests and the “don’t know” respondents, there is some 

unknown true WTP or true valuation amount which is either above or below the bid given. 

However, due to some reasons either lack of effort on the part of the question designer, the 

interviewer or the respondent, the true WTP level may not  be elicited giving rise to 

unresolved cases.  In this study, the true level for the unresolved cases is determined to be 

either above or below the bid using a decision process model which is a function of the 

individual’s socio-economic and health characteristics decision. The latent true WTP or 

valuation level is then determined as a function of socioeconomic individual covariates 

adjusted for the latent decision variable value or net benefit score and truncated to a 



 8

nonpositive range or a range either above or below the bid. This is a great improvement from 

the usual method which depends only on the bid level. The MCMC methods data 

augmentation and Gibbs sampler with metropolis-hastings are implemented for estimating 

two endogenous switching tobit models in which the true WTP equation is incidentally 

truncated conditional on the latent decision variable or net benefit score in a single-bounded 

dichotomous choice contingency valuation exercise. The decision indicator variable for the 

nonrandom unresolved cases, the values of the latent decision variable or net benefit score, 

net-benefit threshold value and the latent true WTP levels are considered additional 

parameters estimated or imputed in the data augmentation step of the MCMC algorithm and 

are estimated at each iteration step together with the coefficients of the decision process and 

the true WTP models and the correlation between the unobserved errors in these equations 

which are generated at the posterior step.  

This paper is organized as follows. The next section describes the survey and 

questionaire design. In section 3, the endogenous switching tobit model and MCMC 

estimation method are presented. Results of the survey and MCMC simulation procedure are 

discussed in section 4. Section 5 contains a summary and conclusion of this study.   

2. Survey Data 

Thirteen Health Promotion Assistants employed by Grampian Health Board, in the 

Northeastern Scotland conducted questionnaire-based interviews, on behalf of the University 

of Aberdeen. They sampled the Grampian population in street interviews, various community 

groups and work environments. Attention was given to obtaining a representative sample of 

the Grampian population by means of comparison with the most recent census data. This was 

an ongoing procedure with comparison of demographics being periodically reviewed and if 

necessary adjustment made to the target population. Respondents were told that taking part in 

the study would enter them into a prize draw with two prizes of £100 cash.  
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The questionaire was developed centrally by the Eurowill group (Donaldson, 1999) 

and customised for the specific country. The questionnaire was concerned with WTP for 

expansion in 3 health care programs: cancer treatments, heart operations and improved 

ambulance service for the Grampian population. Respondents were provided with a 

background information on the type of care currently provided the size of the proposed 

expansion and the expected health outcomes with and without the expansion. Before 

evaluating the value of each of the three health care programmes, the interviewer reminds the 

respondents to ignore the other two programmes for the moment. The initial stage of the 

WTP exercise is designed to reveal general WTP particpation decision of  subjects by asking 

if they are willing to contribute anything in terms of extra taxation or donation with possible 

options of “yes”, “no”, and “don’t know”.  A follow-up question is posed to determine the 

motivations behind refusal to pay. The alternative responses are “the programme is of no 

value to my household”, “other programmes are more valuable”, “other public sector budgets 

should be cut”, “other groups in society should pay”, “users should pay”, “the health service 

should be more efficient”, “I can’t afford it”, “I prefer other ways of paying, like private 

insurance”, “other reasons specified by the respondents”. The second stage question is 

intended to determine the WTP level of the respondents by asking if their household would 

be willing to contribute a specific amount annually for the expansion in the number of cancer 

treatments. Those with affirmative response were asked to explain why they would be willing 

to contribute. 

Table 1 presents the health related and socio-economic variables considered in this 

study. The interviewer asked if the respondent or anyone in the family had cancer experience.  

Respondents  also rated their health status from 1 indicating very good to 5 indicating very 

poor. The socio-economic variables are respondent’s age, midpoint of the income category of 

the household total gross income, number of children under 16 years in the household, 
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respondent’s highest educational attainment. The interview related variables are interview 

interest of the respondent  or seriousness to the survey on a 1-5 scale where 1 means not at all 

interested and 5 means extremely interested, and interview time in minutes.    

 

3. Econometric Framework 

 

Endogenous Switching Tobit Model  

This study proposes an endogenous switching tobit (EST) model or incidentally truncated 

model which simultaneously considers in the estimation procedure both the non-random 

WTP decision process and the true WTP level which are correlated through the unobserved 

or latent random errors. The first equation of the EST models the self-selection or the 

decision process of whether or not to pay for a public good or health intervention. Individuals 

either deliberately or unconsciously take into consideration the net benefit in terms of 

expected utility and cost to him of supporting a public good such as health care programme. 

If the net benefit,  di* is positive, he decides to pay for the cancer health care program either 

as additional tax or voluntary donation thus accepts the bid  di is then set to  1. Otherwise, he 

refuses to pay and di = 0.   

 

Self-selection  or WTP Decision Model:  (1) 

di*  = zi′γ + ηi ,   i = 1,…,n    

di = 1,   for i∈  R1 ,      if di* > 0 

     = 0,  for i∈  R21 or R22 ,        if di* ≤ 0 
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where di* is the latent decision variable for respondent i, di is the observed decision dummy 

variable for the ith respondent, zi is the vector of socio-economic and health related covariates 

and ηi are the unobserved random errors in the WTP decision model for the ith respondent. 

The second equation of EST is the true WTP level model. Conditional on the latent or 

unobserved net benefit score, di* being positive, the respondent accepts the bid which implies 

that the latent  true WTP  amount or reservation price for the health care program is greater 

than or equal to the bid.  When the net benefit  di* is non-positive,  the true WTP or value 

level is either non-positive which is the case for the true zeros or it is positive but less than 

the bid so that the bid is refused. 

WTP Amount Model:  (2) 

Regime 1:  wi* = xi′β + εi ≥  b,  for i∈  R1 ,  if di = 1                                                     

Regime 2: 0dif
Rifor,0

Rifor,b'x0*w
i

22

21iii ====




∈∈∈∈====
∈∈∈∈<<<<++++<<<<==== εβ

   

where γ is the  vector of parameters in the WTP decision model, wi* is the latent true WTP 

level of the ith individual assumed to follow a  normal distribution,  xi is the vector of socio-

economic covariates of the latent true WTP level,  β is the  vector of parameters in the true 

WTP level model  and εi are the unobserved random errors in the true WTP level model, and 

b is the bid .  The model specification in (1) and (2) disentangles the confounded direct 

effects of the covariates and additional effects due to the correlation between the latent 

random errors in (1) and (2). 

The matrix form specification of this model is 

ξ++++==== ΨΨΨΨXY                                                                                                   (3)                   

where 
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Since both the latent WTP decision variable and the latent true WTP level or true degree of 

WTP are unobserved, the coefficients are estimable only up to a scale factor. Thus, both 

variances of  ηi and εi are assumed equal to one. The possible responses that are in the first 

regime are {{{{ }}}}Y
B

DK
D

DK
T

Y
B

Y
D

DK
T

Y
B

DK
D

N
T

Y
B

Y
D

N
T

Y
B

Y
T1 III,III,III,III,IIR ====  where l

kI  , k=T,D,B which 

denote extra tax, voluntary donation and bid respectively,  l∈ {Y,N,DK} indicates the response 

for the kth stage question. The superscripts Y, N, DK and M indicate “yes”, “no”, “don’t 

know” and missing responses respectively. Those responses that fall in the second regime are 

{{{{ }}}}N
B

DK
D

DK
T

N
B

Y
D

DK
T

N
B

DK
D

N
T

N
B

Y
D

N
T

N
B

Y
T21 III,III,III,III,IIR ==== .  True zero WTP level associated with 

those who consider the program of no value to their household or their household cannot 

afford to pay belong to R22. Protests and “don’t knows” RM = 

{{{{ }}}}DK
B

DK
D

DK
T

DK
B

Y
D

DK
T

DK
B

DK
D

N
T

DK
B

Y
D

N
T

DK
B

Y
T III,III,III,III,II  have missing responses to WTP level 

question. These missing responses are non-ignorable since the probability that they are 

missing may actually depend on their unobserved or latent true WTP. Since the protests are 

the effect of elicitation method rather than a measure of the true valuation of the programs, 

these responses and the “don’t knows” were imputed using socio-economic and health 

covariate values. The indicator variable di for the missing responses are considered additional 
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parameters to be estimated using individual’s socio-economic and health related covariate 

values. 

Bayesian Estimation Via Markov Chain Monte Carlo Method 

The likelihood of the endogenous switching tobit model in (1) and (2)  is 

L(θ/Y)= [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]∏∏∏∏∏∏∏∏∏∏∏∏
∈∈∈∈∈∈∈∈∈∈∈∈

====≤≤≤≤<<<<<<<<≤≤≤≤≥≥≥≥>>>>
22211 RiRiRi

0*w,0*dPb*w0,0*dPb*w,0*dP                   (4)         

where  θθθθ = { γγγγ, ββββ, σηηηηεεεε }. The detailed version of this likelihood is in appendix A. This 

likelihood is analytically intractable and is relatively flat Copas (1990) and Calia and 

Strazzera (2001). Consequently, convergence is difficult to achieve using maximum 

likelihood algorithms and even if convergence is achieved the correlation may be outside the 

interval (-1,1). 

Bayesian approach greatly simplifies analysis of this endogenous switching tobit 

model. The key to analysing this model is to apply data augmentation algorithm to generate 

the missing or latent values My
(m) = [ di

M, di* ,w*] and analyse it as a seemingly unrelated 

regression model in the posterior step. With the original data and these generated latent 

values, the data is complete and the likelihood simplifies to a multivariate linear model 

(((( ))))(((( )))) 






 ′′′′−−−−−−−−−−−−∝∝∝∝ ∑∑∑∑
====

−−−−
n

i
iiii XYXYtrYL

1

1

2
1exp),( ψψθ ξΣΣΣΣ .                                  (5)   

To ensure a proper posterior density, parameters may be modelled with informative 

priors. It is trivial to obtain prior information from a subset of the sample data using FIML 

estimates or probit estimates, cluster analysis and discriminant analysis and even from 

correlations of the covariates and the dummy variables.  MCMC method estimates especially 

the coefficients of both the decision and the true WTP level equations of the EST are fairly 

robust to prior information (Odejar and Fahrmeir 2002) and starting values unlike estimates 

generated by the EM algorithm.  The joint prior density of the parameters is 

)()(),()( ξξθ ΣΣΣΣΨΨΨΨΣΣΣΣΨΨΨΨ gggg ========                                                   (6)             
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where )(g ΨΨΨΨ is a multivariate normal ),( ΨΨΨΨVAN and )( ξΣΣΣΣg is inverse-Wishart so that 

(((( ))))11 )(,~ −−−−−−−− RW ααξΣΣΣΣ  with mean R-1 and precision matrix   (αR)-1. Combining (5) and (6), 

yields the posterior distribution g(θθθθ |Y) . MCMC methods contruct a Markov chain 

)()()2()1( ,...,,...,, t
k

m
kkk θθθθ  with equilibrium distribution identical to the desired joint posterior 

distribution. Ergodic averaging of the Markov chain )( m
kθ  or some function (((( )))))( m

khθ  provides 

consistent estimators of the parameters θθθθ or its function (((( ))))θh . A form of MCMC is 

Gibbs(Geman and Geman 1984) sampling where Markov chains are generated from full 

conditional distributions. Data augmentation is  Gibbs sampling with two blocks. In the 

imputation step, the missing or latent variables are generated sequentially and in the posterior 

step, the rest of the parameters are drawn from the conditional distributions. The details of the 

MCMC algorithm for estimating the parameters of EST in (1) and (2) is in appendix B.The 

iterations from the imputation and posterior steps of the MCMC method provide a Markov 

chain with transition probability from  θθθθ (m) to θθθθ (m+1) given by the product of the full 

conditional probabilities. Under regulatory conditions (Tierney 1991), as the number of 

iterations m approaches infinity, )( mθθθθ converges in distribution to θθθθ. After equilibrium is 

reached at iteration a, the generated sample values are averaged to provide consistent 

estimates of the parameters or their function, 

( )[ ] ( )
∑

+= −
=

t

am

m
k

k at
hhE

1

)(
ˆ θθθθθθθθ                                                                                             (7)                

and the estimate of the conditional predictive ordinate(CPO) is 

( ) ( )
( )

∫
∑

−
≈ +=

at

XYf
dXYgXYf

t

am

fmf

ff 1

)( ,|
)(,|,|

θθθθ
θθθθθθθθθθθθ                                          (8)  

As depicted in the autocorrelation values of the generated parameter estimates in figure 1, the 

steady state is quickly reached after only less than or about 50 iterations. The MCMC 
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algorithm is implemented with a burn in or warm up period of a=200 iterations and 

monitoring period of  t=5000 iterations to provide the ergodic average in (7)  and (8) or 

estimate of the posterior mean and CPO. Parameter estimates are considered significant at the 

5%(1%) significance level if the interval between the 2.5th (0.5th) and 97.5th (99.5th) 

percentiles of the MCMC samples from the posterior distribution exclude zero. Model 

selection is based on the sum of log CPO’s (SLCPO) for cross validation sample of size 12. 

Model goodness of fit is directly proportional to the SLCPO. 

Alternative Endogenous Switching Tobit Model 

Another model is based on the assumption that those who refuse the bid have a positive net-

benefit less than some threshold value dth so that the decision equation becomes 

Self-selection or WTP Decision Model:   (9) 

     di* = zi′γ + ηi  ,   i=1,…,n 

      di = 2,   for i∈ R1,    if di*>dth   

      di = 1,   for i∈ R21,   if 0< di*<dth   

      di = 0,   for i∈ R22,    if di*<0  . 

The true WTP model is similar to the previous model in (2) except that there are three 

regimes now 

WTP Amount Model:  (10) 

Regime 1:  wi* = xi′ββββ + εi  > b                for i∈ R1,    if di=2   

Regime 2:  wi* =0 < xi′ββββ + εi  < b        for i∈ R21,    if di=1   

Regime 3:  wi* = 0                                 for i∈ R22,    if di=0  . 

The MCMC algorithm for the EST model 2 is similar to the algorithm for the EST model 1 in 

(1) and (2) except  for the steps in generating the threshold value of the net-benefit and the 

latent net-benefit scores di*  for  i  in ∈ R21 and R1. The threshold value and latent net-benefit 
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scores are generated together in a block using metropolis-hastings as developed by Cowles 

(1996) to accelerate convergence and improve the Markov chains mixing properties . 

4. Discussion of Results  

Of the 342 observations, only 318 are available for analysis, the rest have missing values for 

the regressor variables. For the estimation part of  the analysis, 306 observations are available 

and 18 observations are used as cross-validation  sample. As shown in figure 1.0, for the 

WTP question, the “yes” response to the bid is 207/306=67.65%. The “no” response is 

52/306=17.00% and don’t know is 47/306=15.36%. Of  those  with “no” response to the 

WTP decision question, the true zeros is 15/306=4.90% and the protests is 21/306=6.86%. 

True missing values comprises 3/306=1% of the sample. They have missing values for the 

bid question either due to recording error or error on the part of the interviewer, although they 

responded “yes” to the tax or donation question. If only the true zeros and “yes” responses 

are included in the analysis, (21+47+3)/306=23.21% unresolved cases will be dropped from 

the analysis. The definition of variables considered in the analysis are presented in table 1. 

Summary statistics in table 2.0 shows that those with “don’t know” and protest  responses 

have very similar mean interview interest scores with those “yes” responses. Those with 

missing responses have slightly lower average interview interest scores.  

The pattern in the values of socio-economic and health related variables as reflected 

in table 2.0 shows that these unresolved  cases are not missing completely at random. The 

cancer experience, education and income average values are obviously lower for these 

unresolved cases than those with “yes” responses. So that these unresolved cases actually 

contain valuable information at least on the WTP decision process of respondents. 

  Parameter estimates provided by a combination of MCMC methods data 

augmentation and Gibbs sampling  are presented in tables 3 for the log-normal form of the 
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endogenous switching tobit model 1. Notice that inclusion of imputed values for the 

unresolved cases does not sacrifice the quality of parameter estimation as gauged by SLCPO 

which are quite close. In fact for most of the models considered in this study, the SLCPOs are 

even higher when unresolved cases are included implying better goodness-of-fit. The 

parameter estimates of the coefficients and error correlation are similar with and without the 

unresolved cases. The standard deviations of the parameter estimates are even lower with 

unresolved cases included. The significant determinants of WTP decision process of 

respondents are cancer experience, health status, interaction of health and age, income and its 

square and bid. Note that since the model is in log-form the natural logarithm of all variables 

except the dummy variables and categorical variables are used in the analysis. Those with 

cancer experience tend to consider the health care program of greater utility and thus higher 

net benefit are more likely to decide for supporting the cancer treatment expansion. The 

cancer health care program is of greater net benefit to the respondents who consider 

themselves less healthy (that is with higher health score). The health and age interaction has a 

negative effect on the WTP decision process. Those with higher income, are more likely to 

decide in favor of supporting the health care program which is consistent with previous 

studies in the literature. Net benefit of  cancer health care program is more elastic to changes 

in income than its square. Respondents offered lower bids are more likely to decide towards 

supporting the cancer health care program. For the true  WTP level on the other  hand, 

education, income and its square and age and its square have significant effects. True WTP 

level increases with education level, income, and age. True WTP amount is more elastic to 

income and age than their squared values.  

Evidence of self-selection is reflected in the highly significant correlation between the 

latent random errors of the WTP decision and WTP level models. Thus, respondents decision 

on their true WTP level is based on some marginal cost benefit or utility maximizing criterion 
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and not a random process so that it is essential to correct for sample selection bias. The 

positive correlation of the latent random errors may also explain why the true WTP levels in 

DC contingent valuation studies are overestimated. 

The mean WTP for demanders, non-demanders, true zeros, protests, DKs and missing 

respondents are shown in table 4. From table 5, it is apparent that although most of the 

unresolved cases are classified as “no” responses, not all of them can be considered as “no” 

responses. For protests responses 32.78% were classified as “yes” responses. For the DKs, 

30.83%  were considered as “yes” responses. For the missing WTP responses, 37% were 

classifies as “yes” responses.  

As depicted in figure 3, convergence is quickly achieved for the coefficients of the 

decision and the true WTP models and error-correlation for the alternative endogenous 

switching tobit model 2. However, convergence for the threshold value is very slow.     

Despite this poor mixing property for the threshold value, parameter estimates for this model 

which are presented in table 6 are similar in terms of magnitude and signs of the coefficients 

to those for the EST model 1. However, the error correlations are lower than those for EST 

model 1 especially when the unresolved cases are excluded. The goodness of fit criterion 

SLCPO is a little bit higher than those for the EST model 1.  Mean WTP in table 7 are also 

similar to those for EST model 1. The similarity of results maybe explained by the low 

threshold value which is less than one for both cases when the unresolved cases are excluded  

and included in the estimation. As expected the remarkable difference is in the number of the 

unresolved cases classified which are shown in table 8. The percentage of responses 

classified as yes are 71.74%, 74% and 81.67% for the protest, DKs and missing responses 

respectively.  To policy makers this is good news because these results imply more potential 

supporters of the health care program.        
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EST model 2 results agree with those of EST model 1 that inclusion of unresolved 

cases is not detrimental to the quality of parameter estimates as shown by slightly higher 

goodness of fit criterion SLCPO and parameter estimates standard deviations which are either 

lower when unresolved cases are included or close to those when they are excluded. Evidence 

of sample selection is even stronger as shown by a higher error correlation of 0.86 when 

unresolved cases are included and only 0.65 when they are excluded. 

 

5. Summary and Conclusion 

This study provides a method of estimation and inference about the mean WTP or health care 

value for demanders, non-demanders, true zeros, as well as protests, DK and missing 

responses. A Bayesian technique using MCMC methods data augmentation and Gibbs 

sampling is developed for estimating  an endogenous switching tobit model  that corrects for 

sample selection bias and accounts for true zeros and non-ignorable missing responses 

including “don’t knows” and protests in a single-bounded contingency valuation survey . The 

Bayesian approach presented here is useful even for finite sample size and for models with 

relatively flat likelihood like sample selection models for which convergence is a problem or 

even if convergence is achieved correlation of the latent random errors are outside the (-1,1) 

range.  Results in this study reveal that the interview interest scores for the unresolved or 

missing cases are substantially high and not far from scores of “yes” respondents. The pattern 

in the individual specific socio-economic and health characteristics, reveal that these 

unresolved cases are not MCAR and deleting them from the analysis is inefficient and would 

bias estimation and inference. Inclusion of these non-ignorable missing values does not 

jeopardize estimation and the quality of parameter estimates as reflected in the SLCPO 

goodness-of-fit criterion and smaller standard deviation of parameter estimates. This is true 

for both EST models 1 and 2. The Bayesian methodology presented in this paper may also be 
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applied to double-bounded dichotomous choice models with slight modification. Moreover, 

although respondents were reminded to ignore the other two programs when assessing the 

value of each health care program, the model presented here can easily be extended to allow 

estimation and inference on correlations of valuations among the three health care programs 

due to factors such as anchoring effect.  This extended model can also test for differences in 

mean WTP among the three health care programs. 
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Extra Taxation 

Figure 1.0 
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Figure 2.0   Autocorrelation Functions of the MCMC Estimates 
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Table 1.0 
Description of Variables 

 

Variable Name 
 

Description 
 

Cancer 
Experience 

1= Household has cancer experience 
0= No cancer experience 

Health Status 

1=Very good 
2=Good 
3=Neither good nor bad 
4=Poor 
5=Very poor 

Age Respondent’s age 
Income Midpoint of household income level 
Number of 
Children Number of children under 16 years in the household 

Education 

1=Primary/part secondary 
2=Higher level (or A level) 
3=Further education college 
4=University/polytechnic 
6=Other, Specified by respondent 

Interview 
Interest 

1-5 scale 
1=not at all interested 
5 = extremely interested 

Interview Time Length of inteview in minutes 
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Table 2.0   
Summary Statistics:  

Mean and  
(Standard Deviation) 

of Health, Socio-Economic 
 and Interview Variables  

 

VARIABLES YES NO TRUE 
ZERO PROTESTS DON’T 

KNOW MISSING

Cancer 
Experience 

1.35 
(0.609) 

0.53 
(0.513) 

0.47 
(0.516) 

0.63 
(0.500) 

0.59 
(0.501) 

0.53 
(0.779) 

Age 40.25 
(15.157) 

42.79 
(19.069)

43.80 
(19.553) 

44.13 
(18.353) 

40.75 
(20.775) 

42.94 
(18.340) 

Education 3.75 
(1.292) 

3.26 
(1.327) 

2.73 
(1.223) 

3.31 
(1.580) 

3.46 
(1.503) 

3.03 
(1.383) 

Income 6.43 
(3.605) 

4.79 
(2.616) 

3.71 
(2.016) 

4.50 
(4.980) 

5.73 
(3.505) 

4.60 
(3.935) 

Bid 
 

68.07 
(76.20) 

197.53 
(163.79)

96.17 
(115.02) 

145.94 
(140.66) 

139.45 
(127.09) 

122.72 
(121.98) 

Health Status1 2.12 
(0.844) 

2.26 
(0.733) 

2.73 
(0.799) 

1.88 
(0.619) 

2.18 
(0.670) 

2.44 
(0.877) 

Interview 
Interest 

4.11 
(0.925) 

3.74 
(0.991) 

3.53 
(0.516) 

4.00 
(0.679) 

4.11 
(0.801) 

3.74 
(0.657) 

Interview Time 24.84 
(7.258) 

26.68 
(8.420) 

26.53 
(10.225) 

29.79 
(7.934) 

24.19 
(9.835) 

28.66 
(9.110) 
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Table 3.0 

Bayesian Estimates of the Endogenous Switching Tobit Model I 
 

 

With Imputed Values With Unresolved Cases 
Excluded WTP Decision Model 

Variables 
Coefficients Standard 

Deviation Coefficients Standard 
Deviation 

Intercept 0.046 ns 0.820 0.228ns 0.827 

Cancer Experience 0.917** 0.134 1.046** 0.156 

Health Status 1.692** 0.199 1.685** 0.203 

Ln Age 0.301 ns 0.193 0.367 ns 0.197 

Health and Ln Age -0.495** 0.059 -0.487** 0.060 

Ln Income 0.758** 0.181 0.789** 0.186 

Ln Income2 -0.072** 0.015 -0.080** 0.016 

Ln Bid -0.555** 0.037 -0.538** 0.036 

With Imputed Values With Unresolved Cases 
Excluded 

 
True WTP Level Model 
Variables 

Coefficients Standard 
Deviation Coefficients Standard 

Deviation 

Intercept 3.393** 0.852 3.569** 0.887 

Education 0.287* 0.085  0.366** 0.104 

Ln Number of Children -0.043 ns 0.111 -0.101 ns 0.130 

Ln Income 0.636** 0.200 0.707** 0.202 

Ln Income2 
-0.074** 0.020 -0.087** 0.021 

Ln Number of Children x 
Ln Income 0.005 ns 0.011 0.010ns 0.013 

Ln Age 0.940** 0.215 0.957** 0.217 

Ln Age2 
-0.276** 0.064 -0.274** 0.069 
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Parameter Posterior 
Mean 

Standard 
Deviation 

Posterior 
Mean 

Standard 
Deviation 

Error Correlation 0.972** 0.005 0.975** 0.006 

Sum of log CPO -23.565 -22.698 

  
*indicates significant  and ** highly significant at the 5% and 1% level respectively 
and  ns indicates not significant. 
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Table 4.0   
Mean WTP for Model I 

 
 

Respondents Posterior 
Mean 

Standard 
Deviation 

Posterior 
Mean 

Standard 
Deviation 

Demanders 143.818** 11.715 141.222** 13.021 

Non-Demanders 27.680** 6.768 26.832** 7.333 

Protesters (Yes) 143.506** 47.572   

Protesters (No) 21.518** 8.543   

Don’t Knows (Yes) 152.378** 33.161   

Don’t Knows (No) 23.541** 7.070   

Missing (Yes) 162.696** 15.161   

Missing (No) 19.153** 5.725   

True Zeros -18.421** 8.95 e-13 -18.421** 8.95 e-13 
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Table 5.0 

Classification of Unresolved Cases for Model I 
 

Mean Number Classified As 
 Unresolved Cases 

 Yes No 
Protests 8.85 18.15 

Don’t Knows 12.63 28.36 
Missing 1.11 1.89 
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Figure 3.0   Autocorrelation Functions of the MCMC Estimates 
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Table 6.0 
Bayesian Estimates of the Endogenous Switching Tobit Model II 

 

 

With Imputed Values With Unresolved Cases 
Excluded WTP Decision Model 

Variables 
Coefficients Standard 

Deviation Coefficients Standard 
Deviation 

Intercept -0.903ns 0.821    -1.24 ns  0.839 

Cancer Experience 1.200** 0.199     1.834** 0.207 

Health Status 1.681** 0.200     1.696** 0.199 

Ln Age 0.258 ns 0.175     0.248ns 0.173 

Health and Ln Age -0.496** 0.058    -0.523** 0.061 

Ln Income 0.570** 0.185     0.420* 0.185 

Ln Income2 -0.043** 0.015    -0.026 ns 0.015 

Ln Bid -0.239** 0.060    -0.104** 0.044 

With Imputed Values With Unresolved Cases 
Excluded 

 
True WTP Level Model 
Variables 

Coefficients Standard 
Deviation Coefficients Standard 

Deviation 

Intercept 3.810** 0.898 4.166** 0.931 

Education 1.110** 0.314 2.174** 0.287 

Ln Number of Children -0.281 ns 0.174 -0.581** 0.196 

Ln Income 0.751** 0.208 0.830** 0.212 

Ln Income2 
-0.094** 0.023 -0.118** 0.025 

Ln Number of Children x 
Ln Income 0.031 ns 0.018 0.064** 0.020 

Ln Age 0.965** 0.216 0.970** 0.216 

Ln Age2 
-0.430** 0.091 -0.639** 0.115 
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Parameter Posterior 
Mean 

Standard 
Deviation 

Posterior 
Mean 

Standard 
Deviation 

Error Correlation 0.860** 0.062 0.654** 0.100 

Utility Threshold Value 0.546** 0.052 0.725** 0.062 

Sum of log CPO -16.493 -16.875 

  
*indicates significant  and ** highly significant at the 5% and 1% level respectively 
and  ns indicates not significant. 
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Table 7.0   
Mean WTP for Model II 

 
 

Respondents Posterior 
Mean 

Standard 
Deviation 

Posterior 
Mean 

Standard 
Deviation 

Demanders 152.530** 16.436 166.055** 20.658 

Non-Demanders 31.893** 6.352 34.471** 6.266 

Protesters (Yes) 206.717** 28.095   

Protesters (No) 14.225** 11.475   

Don’t Knows (Yes) 214.522** 27.890   

Don’t Knows (No) 35.231** 17.396   

Missing (Yes) 183.719** 51.603   

Missing (No) 5.068ns 10.037   

True Zeros 1.00 e-8** 1.10 e-21 1.0 e-8** 1.099 e-21 
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Table 8.0 
Classification of Unresolved Cases for Model II 

 
Mean Number Classified As 

 Unresolved Cases 
 Yes No 

Protests 19.37 7.63 
Don’t Knows 30.34 10.66 

Missing 2.45 0.55 
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Appendix B 

MCMC Algorithm for EST Model 1 

Imputation Step: 

Generate the elements of the missing vector My
(m) = [ di

M, di* , w*]  from  

[My
(m)| ? y

(m-1)] sequentially as follows: 

1. For the unresolved cases or missing values generate the decision model 

dummy variable di 
M (m) from                   

 )]'z([Bernoulli~]|d[ i
)1m(M

i ?? ?? . 

2. For all cases generate the decision variable or net benefit score  di* 
(m) from   

      from a truncated normal 

]1,'z[TN~],d|*d[ i)0,(
)1m(

ii ?? ? ?
?  with support (-? , 0]  if di = 0 

]1,'z[TN~],d|*d[ i),0(
)1m(

ii ?? ?
?  with support (0,? )  if di = 1. 

3. For the demanders, that is if  di = 1, generate the true WTP w* in  

log-form from a truncated normal 

)]1(),'z*d('x[TN~],d,*d|*w[
)1m(2)1m(

i
)m(

i
)1m()1m(

i]U,b[ln
)1m()m(

i
)m(

ii L

????? ??? ???? ?????
 

     with support [ln b, UL] where UL is some reasonable upperbound like the     

            ln(0.02Imp)  or  ln(m b) where Imp  is the midpoint of the income category the   

            individual belongs to and  m is an integer greater than or equal to 2 . 

4. For the non-demanders, that is if di = 0, generate the true WTP w* in  

log-form from a truncated normal         

1 1 1 2 11( m ) ( m ) ( m ) ( m ) ( m ) ( m ) ( m )
i i i ( ,lnb) i i i[ w * | d * ,d , ] ~ T N [ x ' ( d * z ' ),( )]? ? ? ? ?? ? ? ? ?? ? ? ?

? ? ? ? ? ?
  

              with support (-?  +?  ,lnb). 

       5.  For the true zeros, that is if   di = 0 and w*=0, generate the true WTP w* in   



 log-form from a truncated normal

 

1 1 1 1 2 11( m ) ( m ) ( m ) ( m ) ( m ) ( m ) ( m ) ( m )
i i i ( , ) i i i[ w * | d * ,d , ] ~ T N [ x ' ( d * z ' ),( )]? ?? ? ?? ? ? ? ?? ? ? ? ?

? ? ? ? ? ? ? ?
 

 with support in the neighborhood of -?  , ?  is some small positive number. 

Samples from the truncated normal are generated using Devroye’s (1986) inversion 

method. Rejection method or Geweke’s (1991) method may also be used.  

Posterior Step: 

6. Generate the variance-covariance matrix  ? ?
-1 from 

 ? ? ? ?
1

11 1 1 1

1

n
( m ) ( m ) ( m ) ( m )

y
i

[ | ,M ] ~ W n , R '? ? ? ? ? ?
?

?? ? ? ?

?

? ?? ?
? ?? ?? ?

? ?? ?? ?
?    

where  ? ?)1( ??? m
ii XY ?? . 

11 ??? ? ??? ? , ?  is a diagonal matrix with standard deviations of the random 

errors on the diagonal. This approach is simpler and more direct than 

Metropolis-Hastings which is more appropriate when the conditional 

distribution is intractable or not in closed form.  

7. Generate ?   from ),(~],|[ )()(1
??? ??? MNM m

y
m?   

which is a multivariate normal with mean 

 ? ?? ?YIXAVM n
11 ' ?? ??? ???? ??    

            and variance-covariance  

? ?? ? 111 '
??? ??? XIXV n ??? ??  

 

 

 



Appendix C 

MCMC Algorithm for EST Model 2 

MCMC Algorithm for EST Model 2 

Imputation Step: 

Generate the elements of the missing vector  

 My
(m) = [ di

M, (dth*, di*) , w*]  from  [My
(m)| ? y

(m-1)]  sequentially:   

1. For the unresolved cases or missing values generate          

            the decision dummy variable di 
M (m) from                  

   ? ?1 1 1M ( m )
i th i i[ d | ] ~ Bernoulli[ ( d * z ' ) / z ' ]? ? ? ? ?? ? ? ? ?  

2M
id ? with probability p , 1M

id ?     with probability  1-p. 

2. For all cases generate the threshold value dth*(m)and  the decision variable or   

      net benefit score  di* 
(m)  from  

? ? 1 1M ( m ) ( m ) ( m )
th i i thd *,d * |d ,d * ,?? ?? ?? ?  

2a. 1 1M ( m ) ( m ) ( m )
th i th[ d * | d ,d * , ] ~?? ?  ? ?1

th

( m )
th d *TN d * ,??  with support (0,? ).   

                 dth*  = dth* (m)   if  0 1 1U( , ) min( , )??  

                         = dth* (m-1)   otherwise 

where  

? ?
? ?

? ? ? ?
? ? ? ?

? ?
? ?

1

1 1
1 2

1

1

( ) ( ) ( )
*

( ) ( )( )
'*

* / * ' ' * '

* ' ' ** /
th

i ith

m m m
th d th i i th i

m mm
d dth i i th ith d

d d z z d z

d z z d zd

? ? ? ? ? ? ? ?
?

? ? ? ? ? ?? ?

?

? ?
? ?

? ? ? ? ?
?

? ? ? ? ?
? ?

 

 2b. 1 1
0 1( m ) M ( m ) ( m ) ( m )

i th i ( , ] i[ d * | d * d , ] ~ T N [ z ' , ]? ?? ?
?? ,if di = 0 

       1 1
0

1( m )
th

( m ) M ( m ) ( m ) ( m )
i th i i( ,d * )

[ d * | d * ,d , ] ~ T N [ z ' , ]? ?? ? , if di = 1 

            1 1 1( m )
th

( m ) M ( m ) ( m ) ( m )
i th i i[ d * , )

[ d * | d * ,d , ] ~ T N [ z ' , ]? ?? ?
?

, if di = 2. 

3a. For the demanders, that is if  di = 2, generate the true WTP   



w* in log-form from  the truncated normal   

1( m ) ( m ) M ( m ) ( m )
i i th i[ w * | d * ,d * ,d , ] ~? ?                         

                  1 1 1 2 11
L

( m ) ( m ) ( m ) ( m ) ( m )
[lnb,U ] i i iTN [ x ' ( d * z ' ),( )]? ? ? ?? ? ? ?? ? ? ?? ? ?    

                   where UL = ln(0.02Imp)  or  ln(m b)  

            3b. For the non-demanders, that is if di = 1, generate the true WTP w* in log- 

form from the truncated normal 

1( m ) ( m ) M ( m ) ( m )
i i th i[ w * | d * ,d * ,d , ] ~? ?                   

1 1 1 2 11( m ) ( m ) ( m ) ( m ) ( m )
( ,lnb) i i iTN [ x ' ( d * z ' ),( )]? ? ? ? ?? ? ? ?? ? ? ?

? ? ? ? ? ?  

  3c.  For the true zeros, that is if   di = 0 and w*=0, generate the     

          true WTP w* in  log-form from        

1( m ) ( m ) M ( m ) ( m )
i i th i[ w * | d * ,d * ,d , ] ~? ?

 1 1 1 2 11( m ) ( m ) ( m ) ( m ) ( m )
( , ) i i iTN [ x ' ( d * z ' ),( )]? ? ? ? ?? ? ? ?? ? ? ?

?? ? ? ? ? ? ?  

   Posterior Step: 

   4.Generate the variance-covariance matrix  ? ?
-1 from 

  ? ? ? ?
1

11 1 1 1

1

n
( m ) ( m ) ( m ) ( m )

y
i

[ | ,M ] ~ W n , R '? ? ? ? ? ?
?

?? ? ? ?

?

? ?? ?
? ?? ?? ?

? ?? ?? ?
?    

where  ? ?1( m )
i iY X? ? ?? ? . 

1 1
?? ? ? ?? ?? , ?  is a diagonal matrix with standard deviations of the random 

errors on the diagonal.   

5.Generate ?   from multivariate normal 

  1( m ) ( m )
y[ | ,M ] ~ N ( M , )? ? ?? ? ??   

 with mean  ? ? 11
nM V A X ' I Y? ? ? ?? ?

??? ?? ? ?? ?? ?
   



and variance-covariance ? ?
111

nV X ' I X? ? ?? ?
???? ?? ? ?? ?? ?
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