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Abstract

In most of the recent macroeconomics literature, the sticky reaction of
prices in response to changes in aggregate conditions has been modelled
following the highly influential contribution of Calvo (1983). However,
this approach has difficulties in accounting for some well-established styl-
ized facts, like the sluggish and delayed response of inflation to demand
shocks, and the positive correlation between real output and the rate
of change of inflation. In this paper, we will investigate the possibility
of a simple flexible prices and monopolistic competitive model to match
this features, when the expectations of the firms are formed following the
adaptive learning literature.

1 Introduction

In most of the recent macroeconomics literature, the sticky reaction of prices
in response to changes in aggregate conditions has been modelled following the
highly influential contribution of Calvo (1983). In particular, it is assumed that,
in each period, firms face a constant probability to reset prices optimally. Due
to its appealing analytical tractability, this approach has become the workhorse
of most of monetary policy literature (see for example Clarida et al. (1999)).

However, this model has difficulties in explaining some well-established stylised
facts: in particular, two robust features of data are a sluggish and delayed re-
sponse of inflation to demand shocks (e.g., see Christiano et al. (2001)), and
a positive correlation between real output and the rate of change of inflation
(the so-called acceleration phenomenon, see Mankiw and Reis (2002)). Both of
these patterns are not replicated by the Calvo-type staggered price settings; the
main theoretical reason is the fact that, despite of the stickiness of price level,
inflation can respond rapidly to exogenous shocks.

In this paper, we propose a different source of intrinsic stickiness in firms’
pricing behavior: in particular, we assume that firms do not have an exact
knowledge of the ”true” economic model, but form their expectations according
to their most recent estimates of the law of motion of the unknown aggregate
variables. This approach is typical of the adaptive learning literature, which

1



has received an increasing attention in recent years (see Evans and Honkapohja
(2001) for an extensive monograph).

Up to now, most effort in this literature has been devoted to the issue of
stability under learning, namely under which conditions a rational expecta-
tions equilibrium is a limiting point of the learning process; only recently there
have been attempts to evaluate quantitatively the effect of introducing adaptive
learning into a macro or finance model, and to test the ability of this framework
to explain empirical facts1. This may be due to the caveat that learning can
introduce too many degrees of freedom in the model, allowing the researcher to
match any pattern of data just playing with the learning algorithm.

The aim of this paper is to build a simple flexible price model of monop-
olistic competition, augmented by the adaptive learning formation of agents’
expectations, and to investigate (via numerical simulations) whether this is able
to outperform the staggered price model in replicating the above mentioned
features of data. In doing so, we will try to use a learning scheme with a basis
in a payoff-maximizing choice of the agents, in order to make less severe the
potential cricism toward ad hoc learning procedures. To assess the goodness of
fit of the model, we will use some techniques to evaluate calibrated dynamic
general equilibrium stochastic models presented in the survey of Canova and
Ortega (2000).

It is worth noting that the approach we will develop in this paper is concep-
tually linked to the one of Mankiw and Reis (2002), who assume that firms are
free to reset prices in each period, but that information diffuses slowly among
them; in their model, in each period firms face a constant probability to update
their information set.

2 Stylized Facts and Calvo Model

In recent work on monetary policy issues, the standard tool to model the firms’
pricing behavior has been the so-called Calvo model: in each period, firms have
a constant probability to reset their price optimally, and they do so taking into
account that such a price will last for an unknown number of periods. Since this
probability is independent of the last time a specific firm has reset its price, this
approach leads to an analitically tractable framework which constitutes one of
the building blocks of what Clarida et al. (1999) call the New Keynesian Science
of Monetary Policy.

Besides its theoretical appeal, this approach has done well in replicating cer-
tain empirical patterns (like, for example, the high aurocorrelation of inflation);
nevertheless, it has shown many difficulties in explaining some well-established
stylized facts that are also common wisdom of policymakers. In particular,
we will concentrate on two features of the Calvo model that are at odds with
empirical evidence:

1See Timmermann (1993) and Timmermann (1996) for applications to the stock market,
Marcet and Nicolini (1998) for a model that aims to explain hyperinflations in South american
countries, and Sargent (1999) for and explanation of the change in the U.S. inflation pattern.
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• many empirical investigations (and conventional wisdom of central bankers)
show that nominal shocks have a sluggish and delayed effect on inflation,
and that the impulse response of inflation is hump-shaped2. Instead, the
Calvo model is characterized by a monotonic decreasing impulse response
function3;

• another widely documented empirical fact is a positive relationship be-
tween real output and the growth rate of inflation. This pattern, that
Mankiw and Reis (2002) call acceleration phenomenon, has been shown
through the use of scatterplots by many economists4, and has been con-
firmed by Mankiw and Reis (2002) calculating the correlation between real
output and the growth rate of inflation for U.S. data. Instead, the Calvo
model predicts a slightly negative value for this statistics.

Both of these shortcomings are originated by the fact that in the baseline
version of the Calvo model inflation is a purely forward looking-variable, without
any intrinsic source of inertia; to overcome this problem, there have been many
attempts to improve the empirical fit of the New Keynesian framework through
the introduction of some source of inertia in the Phillips curve5.

Some alternative avenues to reconcile monetary theory with data have been
tried. In particular, some recent papers have abandoned the approach of as-
suming that firms face some kind of constraint on their possibility of resetting
each period their prices; instead, they assume that prices are fully flexible, but
that the information set of the firms is somehow constrained.

In this spirit, Mankiw and Reis (2002) introduced the so-called ”sticky in-
formation Phillips curve”: in their model, the information is supposed to spread
slowly across the economy, so that each firm faces every period a constant prob-
ability to update its information set. Since it is free to reset prices every period,
the firm would set prices such that its expected profit, given the latest update
of the information set, is maximized. In Mankiw and Reis (2002), the authors
show that this alternative assumption can outperform the Calvo model in a
simple business cycle framework6.

Another example of this new strand of literature is the model of Woodford
(2001) where, following the pioneering idea of Phelps (1970) and the highly
influential paper of Lucas (1972), the firms are assumed not to be able to observe
correctly the level of the aggregate variables, and to take their decisions on the
basis of their subjective expectations. The main difference with the Lucas’
model is that the information constraint is not simply a one-period delay in
the aggregate variables’ observability, but, following Sims (2003), ”a limited

2See Christiano et al. (1999) and (2001).
3For more details, see Section 4.3 and the Appendix.
4See, e.g. Abel and Bernanke (1998) and Blanchard (2000).
5For example, Rotemberg and Woodford (1997) have introduced a decision delay for some

price setters, and Christiano et al. (2001) have added various other source of nominal rigidity
together with price stickiness, like adjustment costs and wage stickiness.

6For an application of the sticky information Phillips curve to optimal monetary issues,
see Ball et al. (2003).
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capacity of the private decision-makers to pay attention to all of the information
in their environment”. In this way, the agents’ decision process is converted into
a signal-extraction problem: in fact, letting qt be the nominal income, each firm
i can observe in period t only the private signal zt(i) of the form:

zt(i) = qt + vt(i)

where vt(i) is an idiosyncratic noise term. Woodford uses this model to study
the impulse response functions of inflation and output, and finds that it can
replicate data patterns better than the Calvo approach, at least for a reasonable
region of the parameters’ space.

One of the most common ways to model the economic behavior in a world
characterized by constraints on the information sets and bounded rationality
is the adaptive learning7. This approach typically deals with agents that does
not know the ”correct” model of the world, but use data to estimate it like an
econometrician would do. Following this line of reasoning, the most natural way
to model how the individuals do their estimations is to assume that they have
a mental model of the law of motion of the relevant variables in the economy
(the ”perceived law of motion”, or PLM), and that they estimate its parameters
via OLS8. Given these estimates, the endogenous variables will follow what is
called the ”actual law of motion” (ALM). Calling φt the N -dimensional vector
of parameters estimates, Rt the matrix of its second moments, zt the regressors
and pt the endogenous variables, it can be shown that, with the appropriate
initial conditions, the updating algorithm:

φt = φt−1 + t−1R−1
t−1zt−1(p′t − z′t−1φt−1) (1)

Rt = Rt−1 + t−1(zt−1z
′
t−1 −Rt−1)

delivers the same sequence of estimates {φt}∞t=0 as the standard OLS techniques
applied period by period; for this reason, it is called recursive least squares
algorithm (RLS). Given these estimates, the ALM (in case of a linear model) is:

pt = T
′
(φt−1)zt−1 + εt

where the function T : <N → <N is the mapping from the estimated coefficients
to the actual coefficients determined by the estimates, and is εt a white noise.
The appealing feature of this formulation is that it can be studied with the tools
of stochastic approximation9, with the result that for large classes of models the
asymptotic dynamics are governed by the stability properties of a deterministic
ordinary differential equation; in particular we have that a rational expectations
equilibrium is (locally) stable under adaptive learning if it is a (locally) stable

7For extensive monographs, see Sargent (1993) and Evans and Honkapohja (2001).
8Note that the PLM may or may not be of the same functional form of the rational

expectations solution of the model.
9For an extensive monograph on stochastic approximation, see Benveniste et al. (1990).

4



rest point of the ordinary differential equation1011:

dφ

dτ
= T (φ)− φ

Since a rational expectation equilibrium is a rest point of the T -mapping, RLS
learning has often been invoked to argue that assuming rational expectations
is not a too restrictive hypothesis (at least in the limit), and a lot of effort has
been devoted to study the learnability of equilibriums in widely used economic
models.

There are also other adaptive algorithms employed in the literature; one of
the most used alternatives is to substitute in (1) the factor t−1 with a constant
gain (or tracking parameter) 0 < γ < 1. Since in this case the estimates always
react to any new shock (also asymptotically), the system never converges to a
fixed value, but under some technical conditions it can settle down as a normal
distribution, whose support shrinks to zero as γ approaches zero12.

There have been some effort in trying to reconcile inflation data with mon-
etary models applying the adaptive learning techniques. In Orphanides and
Williams (2002), the authors assume an ad hoc model with a Phillips curve
which includes a lag of inflation as an explanatory variable, and a demand rela-
tion that expresses output gap as a function of the real interest rate deviation
from its equilibrium value, and study the design of the optimal policy in a setting
of adaptive learning through a constant gain algorithm.

More closely related to this work is the paper of Williams (2003), who in-
troduce adaptive learning (both in the RLS and the constant gain versions) in
a standard New Keynesian framework with monopolistic competition and stag-
gered prices à la Calvo. He analyzes to what extent the introduction of adaptive
learning matters for business cycle statistics; he found that, quantitatively, this
change is of second-order importance. However, in his model he still assumes
that the agents optimize taking into account the Calvo constraint on the pricing
resetting possibility.

Moreover, Sargent (1999) shows how a mispecification by the policymak-
ers of the ”true” structural relations of the economy, coupled with constant
gain learning, may lead to a system that oscillates most of the time around
the high inflation equilibrium (the time-consistent one, according to Barro and
Gordon (1983)), occationally moving towards the low inflation time-inconsistent
(or Ramsey) equilibrium, when a suitable sequence of shocks occurs.

We aim to do a first step towards the construction of a bridge between the
adaptive learning literature and the other limited information approaches, in
assuming no price stickiness, and instead taking the imperfect information as
the main source of inertia in the model. We will therefore introduce adaptive
learning in a monopolistic competitive, flexible prices setting, with an exogenous

10In the adaptive learning terminology, an equilibrium which is a stable solution of the
differential equation reported below is defined an E-stable equilibrium.

11For the derivation of this result, see Marcet and Sargent (1989) and Evans and Honkapohja
(2001), Chapter 6 and 8.

12For more on constant gain, see below Section 3.1.
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process for nominal output, and compare its performance to that of an analogous
model where firms behave according to Calvo model.

3 The Model

The production side is characterized by a continuum of firms that produce
differenciated goods in a competitive monopolistic framework. The demand side
is characterized by a representative consumer with rational expectations, who
solves the following problem:

max E0

∞∑
t=0

βtU(Ct, Nt) (2)

s.t.

∫ 1

o

PitCitdi + Mt = Mt−1 + WtNt +
∫ 1

0

Πitdi− Tt

where Cit and Pit denotes the demand of good i and its price, respectively, Mt

is the money stock hold at the end of period t, Tt are transfers from government,
Nt is labor supply, Wt is nominal wage, Πit is the profit from the sell of good
i13, and Ct represents the CES aggregate of consumption:

Ct =
[∫ 1

0

C
θ−1

θ
it di

] θ
θ−1

As shown in Dixit and Stigliz (1977), maximizing the CES index of consumption
subject to a certain level of overall expenditure leads to the demand schedule
for good i:

Cit =
(

Pit

Pt

)−θ

Ct

where:

Pt =
[∫ 1

0

P 1−θ
it di

] 1
1−θ

Moreover, consumer faces a cash-in-advance constraint14:

PtCt ≤ Mt

which is assumed to be binding. Doing so, we can close the model with the
simplest possible specification for the demand side of the economy, i.e. the
quantity theory. This is different from the specification used as a standard
framework of monetary policy evaluation, which derives an IS relationship from
a money-in-utility setup; otherwise, it is useful to simplify the analysis in this
early stage, and such a simplifying assumption has been already used in many

13We are assuming that firms are owned by the representative consumer.
14Note that, in writing this constraint, we are implicitly assuming that at time t the money

market closes before the opening of commodity markets.

6



of the papers that propose alternatives to the Calvo model15. The extention
of this approach to a more standard specification of the demand side of the
economy is left as future work.

Assuming separability of the U(·) function between its arguments, it is easily
shown that:

Wt

Pt
= −UN (Nt)

UC(Ct)
≡ G(Ct, Nt)

We assume that each firm produce a differenciated good according to the strictly
increasing and concave production function:

Yit = AtF (Nit)

where At denotes a technology indicator, and Nit is firm i labour demand, and
Yit good i output. In equilibrium, market clearing implies:

Yit = Cit, Yt = Ct

so that the demand schedule can be rewritten (in logs) as:

Yit =
(

Pit

Pt

)−θ

Yt (3)

To model firms’ behaviour, we make the same distinction between the opti-
mization and the inference problem underlined in Townsend (1983). In partic-
ular we assume:

• firms can freely reset prices in each period, but they can observe aggre-
gate variables only with a one period delay; so, in each period firm i’s
optimization problem is given by the static expected profit maximization:

max
Pit

Ei
t [PitYit −WtNit] (4)

where Ei
txt is firm i’s (in general non rational) expectations of xt, formed

using time t information set. This maximization is done subject to a perceived
demand schedule:

Yit =
(

Pit

Ei
tPt

)−θ

Ei
tYt (5)

As is shown in Woodford (2002), maximizing (4) subject to (5) yields:

Pit

Ei
tPt

=
θ

θ − 1
COi(Yit, Yt)

where COi denotes the cost function of firm i, and xz indicates the derivative of
x with respect to z. Loglinearizing this expression around the full-information
equilibrium Pit

Ei
tPt

= 1, Yt = Y N
t (where Y N

t represents natural output) yields:

pit = Ei
tpt + ξEi

tyt

15It is common to Mankiw and Reis (2002), Ball et al. (2003), and Woodford (2001); in a
learning framework, a similar assumption has been used by Adam (2003).
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where xt ≡ log Xt, and yt = log(Yt/Y N
t ), and ξ is defined as:

ξ ≡
εFI

COi
Yit

,Yit
+ εFI

COi
Yit

,Yt

1 + θεFI
COi

Yit
,Yit

where εFI
x,z denotes the elasticity of x with respect to z evaluated in the full-

information equilibrium. Using (5) to substitute for Ei
tyt, we get:

pit = Ei
tpt +

ξ

1− θξ
yit

Integrating over i, and assuming homogeneous expectations, we obtain:

pt = E∗
t pt +

ξ

1− θξ
yt (6)

Equation (6) can be rewritten as:

pt =
1− ξθ

1 + ξ(1− θ)
E∗

t pt +
ξ

1 + ξ(1− θ)
qt (7)

where qt = yt +pt. To close the model, we need a process for nominal output16,
and a rule for expectations formation; the first one is given by an AR(1) process
for the growth rate of nominal output17:

∆qt = (1− ρ)g + ρ∆qt−1 + ut (8)

where ut is an i.i.d. shock. Substituting out qt from (7) using (8)18, we get:

pt =
1− ξθ

1 + ξ(1− θ)
E∗

t pt +
ξ(1− ρ)

1 + ξ(1− θ)
g +

ξ(1 + ρ)
1 + ξ(1− θ)

qt−1 (9)

− ξρ

1 + ξ(1− θ)
qt−2 +

ξ

1 + ξ(1− θ)
ut

It can be easily shown that the minimum state variable (MSV) solution of the
model given by (8)-(9) under rational expectations is19:

pt = (1− ρ)g + (1 + ρ)qt−1 − ρqt−2 +
ξ

1 + ξ(1− θ)
ut

16Because of the cash-in-advance constraint, money and nominal output are equivalent.
17See for analogous processes Woodford
(2001), or Mankiw and Reis (2001). Moreover, Christiano et al. (1998) argue that an AR(1)

process for growth rate of money is empirically plausible.
18Since agents do not observe contemporaneous nominal output, we write the law of motion

for price level in terms of observable variables.
19I.e., E∗

t = Et.
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• The inference problem is modeled following the literature of adaptive
learning20. In particular, we assume that agents do not know the ex-
act MSV solution of the model given by (8)-(9) but, instead, form their
expectations according to the perceived law of motion (PLM):

pt = at−1 + bt−1qt−1 + ct−1qt−2 + ηt (10)

where the vector φt−1 ≡ (at−1, bt−1, ct−1)′ denotes the estimates of model pa-
rameters computed by agents using information available on aggregate variables
at time t21; these estimates are updated according to the recursive algorithm:

φt = φt−1 + γtR
−1
t−1zt−1(pt − φ′t−1zt−1) (11)

Rt = Rt−1 + γt(zt−1z
′
t−1 −Rt−1)

where zt = (1, qt, qt−1)′ and {γt} is a sequence of nonincreasing values called
”gain parameters”. The precise path followed by this sequence will be described
in the next subsection. Equation (10) implies that:

E∗
t pt = at−1 + bt−1qt−1 + ct−1qt−2 (12)

which can be plugged into (9) to obtain the actual law of motion (ALM):

pt =
(

1− ξθ

1 + ξ(1− θ)
at−1 +

ξ(1− ρ)
1 + ξ(1− θ)

g

)
+

(
1− ξθ

1 + ξ(1− θ)
bt−1+ (13)

ξ(1 + ρ)
1 + ξ(1− θ)

)
qt−1 +

(
1− ξθ

1 + ξ(1− θ)
ct−1 −

ξρ

1 + ξ(1− θ)

)
qt−2

+
ξ

1 + ξ(1− θ)
ut

Given (13), the T -mapping is:

T (a) =
1− ξθ

1 + ξ(1− θ)
a +

ξ(1− ρ)
1 + ξ(1− θ)

g (14)

T (b) =
1− ξθ

1 + ξ(1− θ)
b +

ξ(1 + ρ)
1 + ξ(1− θ)

T (c) =
1− ξθ

1 + ξ(1− θ)
c− ξρ

1 + ξ(1− θ)

which can be easily shown to imply that the MSV solution under rational ex-
pectations is E-stable.

Equation (13), together with the process for nominal output (8) and the
stochastic recursive algorithm (11), constitutes our model.

20See Evans and Honkapohja (2001).
21I.e., the sequence {pi, qi, qi−1}t−1

i=1 .
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3.1 The Gain Parameter

At this stage of the analysis, it is necessary to be explicit about the form taken
by the γt’s in (11). In the learning literature there are two main strategies used
to calibrate them, corresponding to two different hypothesis of how the agents
conceive the world:

• decreasing gain: assume that it is a decreasing sequence with the proper-

ties that
∞∑

t=0
γt = ∞ and

∞∑
t=0

γ2
t < ∞, as we would obtain setting γt = t−1.

In this case, equation (11) becomes a particular case of the RLS algo-
rithm (1), assigning the same weight to every observation. This last re-
mark means that a decreasing gain is a reasonable assumption if agents
think that the model’s parameters are constant over time, so that each
observation has the same information content;

• constant gain: assume that γt = γ, where γ is a small positive constant.
In this case, our algorithm does not deliver the same estimates as the
OLS anymore, since past data are downweighted. The assumption behind
this behavior is that agents believe structural changes to occur, even if
they are able neither to model them nor to predict in which period they
will take place. As a result, they will update their estimates given their
belief that more recent data embed more information on the structure of
the economy. As mentioned in Section 2, this specification of the gain
sequence prevents the parameters’ estimates to converge to any particular
value, since they will be significantly influenced by any new shock.

In what follows, we will employ the constant gain specification; before pro-
ceeding, however, there are two logical problems that we have to take into
account.

First of all, in the standard adaptive learning setup, the agents take their
decisions treating their expectations as if they correspond to the ”true” model.
If this kind of behavior can be justified in a decreasing gain case22, it seems to
contrast with the basic assumption that motivates constant gain, i.e. that agents
are convinced that economic structure shifts over time. In Tetlow and von zur
Muehlen (2001) this issue is investigated in the context of the Sargent (1999)
model; they allow policy makers to make their decisions taking into account
model uncertainty in a Bayesian way23. Their conclusion is that this method
does not yields results quantitatively different from the Sargent’s more standard
approach.

Another relevant question that we now should address is how to calibrate γ.
In particular, this choice is potentially subject to a high degree of arbitrariness,

22Actually, the fact that the ALM has time varying parametrs, can arise misspecification
issues in a context of decreasing gain learning, as noted in Bray and Savin (1986); for a
time-varying parameters estimation approach in an adaptive learning approach, see McGough
(2000).

23In other words, taking into account the standard errors of the estimates.
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that could allow the model to replicate any empirical pattern we want: in fact,
as pointed out in Marcet and Nicolini (1998), the presence of too many degrees
of freedom in designing the learning algorithms has always made this class of
models hardly falsifiable, hence preventing many researchers from using them
to match data. The introduction in the setup of an additional exogenous pa-
rameter, that could in principle be used to make the model behave as we want,
makes this criticism particularly sound, and the ”wilderness of irrationality”
particularly dangerous.

A possible way out of both these pitfalls is to endogenize the value of γ,
making it the outcome of some optimal choice of the agents. The way we
have decided to do it is using standard game-theoretic concepts. We assume
that firms are interested in minimizing the mean square error (MSE) of their
forecasted inflation; in this case, we can define a misspecified equilibrium as a
value γ∗ of the gain parameter which minimizes the MSE of an individual, when
all the rest of the economy update its expectations using the same γ∗. More
formally, we look for a fixed point of the function:

γ∗ = arg min
γ

1
T

T∑
t=1

[pt(γ̂)− E∗
t pt(γ)]2 ≡ f(γ̂) (15)

where T is the time horizon taken into account (in our case, 100 periods). This
is an equilibrium in the sense that no agent has an incentive to deviate from this
strategy, and is misspecified in the sense that agents behave as if they perceive
the economy as a time varying parameters system, when the ”true” model is
characterized by constant structural parameters24. This approach is closely
related to the concept of equilibrium in learning rules of Evans and Honkapohja
(1993), and to the internal consistency requirement introduced in Marcet and
Nicolini (1998).

Note that, in this way, the tracking parameter is not freely chosen anymore,
but becomes a function of the other structural parameters of the economy,
solving the second problem above mentioned; moreover, it implies that even if
an individual agent does not think that the model is really time-varying, he
will play according to the misspecified equilibrium if he thinks that the other
agents will do the same25. Hence, this kind of approach allows us to deal also
with the first problem that we discussed above26. If we model the choice of
the gain parameter in this way, standard issues of how the agents could end up
coordinating on a certain equilibrium (even with bounded rationality) arise, but
they are far beyond the scope of this paper.

As an additional remark, observe that in Orphanides and Williams (2003),
where a constant gain algorithm is implemented, γ is left as a free parameter,
and the behavior of the model for different values of it is studied.

24Note that, as we point out below, it is not necessary that each agent believes the economy
to be time varying, but only that in his opinion all the other agents have this belief.

25This is a typical coordination problem.
26Notice that some kind of myopic behavior from the agents’ side must be assumed since,

even if playing γ∗ minimize the MSE in finite time, it makes convergence to the rational
expectations equilibrium impossible.
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Moreover, a technical remark on the asymptotic behavior of parameters’
estimates under constant gain learning is to be done: as above mentioned,
under certain conditions, they will converge in distribution to a normal with an
E-stable equilibrium as a mean; unfortunately, in this model one of the sufficient
conditions required to obtain this result is not satisfied27. However, very long
simulations of the model (10000 periods) show that the parameters’ estimates
really converge to a neighborhood of the rational expectations values after a
few periods (less than the fifty that we usually discard at the beginning of each
simulation), around which they keep oscillating.

It is interesting to note that the problem that is behind the construction of
the best-reply function f(•) (i.e., the minimization of the MSE with respect to
the constant gain used by an individual that cannot influence the non-stationary
process that is trying to track) is similar to the framework analyzed in Chapter
4, Part I of Benveniste et al. (1990). In that context, the authors study how
to derive analytically the value of the tracking parameter that minimizes the
expected value of the square of the distance between the sequence of the actual
values of the time-varying coefficients of the process to track, and the estimated
values of these coefficients. First of all, they decompose the objective function
into the sum of the distance between the mean dynamics of the two sequences,
and the variance of their distance. Moreover, they show that the optimal choice
of γ is the result of a compromise between tracking and accuracy : in other
words, higher (lower) values of the gain parameter reduce (increase) the distance
between the mean dynamics of the two sequences, thus reducing (increasing)
the magnitude of the MSE, and increase (reduce) the variance of the distance
between the two sequences, hence increasing (reducing) the MSE.

These results cannot be directly applied to our model for the same reason we
outlined above, when we talked about the asymptotic behavior of parameters’
estimates. However, these tools provide useful insights on how our model will
behave: in fact, we observe that an increase (decrease) of γ̂, on one hand, does
not influence the mean dynamics of the time-varying coefficients of pt (which
are given by the rational expectations values, as mentioned above), while on the
other hand it increases (decreases) the variance of these coefficients. Loosely
applying the concepts sketched above, the best-reply of the individual firm would
be to reduce γ∗; hence, we can expect f(•) to be a decreasing function. And
this is exactly what we obtained, when we computed a numerical approximation
of f(•)28.

4 Empirical Results

4.1 Calibration Strategy

We need to calibrate five parameters (ξ, θ, ρ, g), plus the initial conditions φ0

for the RLS algorithm; the chosen values are summarized in Table 1.
27In particular, the law of motion of the state variables [qt−1, qt−2] contains a unit root.
28See next section.
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ξ θ ρ g a0 b0 c0

0.15 6 0.7 0 (1− ρ)g 0.05 −0.05

Table 1: Baseline calibration

The parameter γ is a function of these other seven coefficients, as clarified
in the previous section.

The value for ξ is suggested in Woodford (2002) as an empirically plausible
value for U.S. economy, and is used also in Woodford (2001); it also lies in the
range of values examined in Mankiw and Reis (2001). θ is chosen according to
the standard New Keynesian literature, while ρ is chosen to match empirical
facts (see below). The choice to set the trend g to zero is justified by the aim
to concentrate on the model’s behaviour at business cycle frequency.

We now need to be more explicit on the strategy adopted to set the value of
the tracking parameter. First of all, note that neither a formal proof of the exis-
tence and the uniqueness of a fixed point of the expression (15)29, nor an analyt-
ical expression of γ∗ as a function of the parameters’ vector (ξ, θ, ρ, g, a0, b0, c0)

′

have been obtained; hence, we had to search for a numerical approximation of
this equilibrium30. We used the following procedure: first of all, we set up a
grid of 19 values (0.05, 0.1, 0.15,...,0.95), then we draw 1000 realizations of the
nominal output shock {ui}150i=1; then, we computed the corresponding sequences
{pi}150i=1 using a fixed value of γ̂. Then, we throw away the first fifty values of
each sequence, to dampen the influence of initial conditions, compute the em-
pirical MSE for each {pi} and for each possible γ, average across all realization,
and look for the γ for which the resulting value is minimum. This procedure
has been repeated for all the 19 possible values of γ̂, and we got that the only
fixed point is at γ∗ = 0.55.

Note that this value is much higher than those used in Orphanides and
Williams (2003)31; in Figure 1 we have plotted the evolution over time of the
parameters’ estimates in one of the 10000 stochastic simulations that we per-
formed to analyze the behavior of our model (see subsections below). As we
can observe in Figure 1, we have a very rapid convergence to a neighborhood of
the rational expectations equilibrium, followed by wide oscillations around it.
This last feature is due to the very high value of the tracking parameter, which
makes the estimates of the parameters very sensible to any new shock.

To conclude, the expectations has been initialized at values that have the
same sign as the rational expectations parameters, but that deliver the desired
hump-shaped impulse response for inflation; for values closer than those to the
rational expectations, would yield a peak response only two periods after the
nominal shock.

29As is instead derived, in a simpler context, in Evans and Ramey (2001).
30However, since the values obtained numerically for γ∗ are a monotonic decreasing function

of γ̂, as explained in the previous section, this makes us conjecture that the ”true” equilibrium
exists and is unique.

31The largest value of the tracking parameter that they adopt is 0.1.
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4.2 Persistence of Monetary Shocks

A well-known shortcoming of the Calvo staggered price framework is that, even
if prices responds sluggishly to monetary shocks, inflation does not: the highest
effect of the shock is experienced in the first period, and then it monotonically
decays.

In a framework similar to the one developed in the previous section, this
drawback of the Calvo model can be easily seen starting from the well known
New Keynesian Phillips Curve32:

πt = kyt + βEtπt+1 (16)

where β denotes the subjective discount rate, Et[·] is the rational expectations
operator, and k is a function of the parameters ξ, β and α, where the latter indi-
cates the probability that a given firm does not review its price in a given period;
the exact form of this function of parameters is not important for our purposes:
the only relevant point is that it assumes positive values, as shown in Woodford
(2001).With a nominal demand process like (8), it can be shown that inflation
can be written in terms of an MA(∞) process, whose coefficients are a mono-
tonic decreasing sequence, independently of the values of the parameters33; this
result has an immediate consequence in terms of the impulse response function:
as claimed before, the peak effect of a monetary shock is reached on impact,
and the inflation returns monotonically towards the pre-shock value.

This is at odds with what is empirically observed, and with what is consid-
ered conventional wisdom; in fact, there is an extensive literature34 that stresses
the fact that the maximum effect of a monetary shock is reached between 1 and
2 years after the impact of the shock.

As shown in Figure 2, with a value of ρ of 0.7, our model is able to generate
some persistence of the nominal shock; in particular, the peak effect of the shock
is reached after three periods. Even if it is not as much as in data, nevertheless
it is a better performance than the Calvo model. The reason is straightforward:
since agents do not know the exact model, when they observe a discrepancy
between the actual and the forecasted inflation, they are not aware how much
of it is due to the presence of a shock, and how much to an imprecise estimate
of the parameters; hence, they react with more caution than what would be
optimal for a Calvo-agent, and smooth their reaction over more than one period.
Formally, we can observe from equation (7):

∆pt ≡ πt =
1− ξθ

1 + ξ(1− θ)
(
E∗

t pt − E∗
t−1pt−1

)
+

ξ

1 + ξ(1− θ)
∆qt

which can be rewritten as:

πt =
1− ξθ

1 + ξ(1− θ)
(
E∗

t πt − E∗
t−1πt−1

)
+

1− ξθ

1 + ξ(1− θ)
πt−1 +

ξ

1 + ξ(1− θ)
∆qt

(17)
32For the derivation, see for e.g. Woodford (2001).
33For the proof, see the Appendix.
34See, e.g. Adam (2003) and Christiano et al. (2001).
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This equation makes explicit the fact that adaptive learning has introduced
a backward-looking element in the inflation dynamics; this element would dis-
appear only in the case in which the agent comes from a period of no forecasting
error (i.e., in the case of πt−1 = E∗

t−1πt−1).
Even if the model can generate more realistic dynamics, it still has to be

improved to match data better. Moreover the impulse response of Figure 2
is clearly dependent on the initial conditions; so we could consider different
initial conditions, like extracting them from an assumed prior distribution, or
introducing a ”training period”35, i.e. a period during which the economy is run
in the rational expectations equilibrium, and after which the agents use OLS to
estimate the coefficients; this estimates would constitute the initial conditions
for the impulse response exercise. Unfortunately the model has problems in
replicating an enough hump-shaped impulse response function for inflation with
initial conditions too close to the rational expectations equilibrium, since the
backward-looking element above mentioned is too weak to ensure enough delay
in the inflation response to the shock. However, at least two periods of delay in
the peak effect of the shock can be obtained for a wide range of initial conditions.

We are also interested in checking whether the inflation inertia generated by
adaptive learning (and captured by equation (17)) is enough to match empirical
data on first order autocorrelation of inflation; in particular, we consider the
value of 0.76 reported in Mankiw and Reis (2002), who compute first order
autocorrelation of the CPI using Hodrick-Prescott filtered U.S. data. Since the
model cannot be solved analytically, the population value of any statistic is
not available. Hence, the only way is to perform stochastic simulations, and
then to compare the value of the statistic for this simulated sample with the
empirical one. In doing so, a standard problem arises: since we want to assess
how ”close” is our model to reality, we need a metric. Our choice, following the
approach outlined in Canova and Ortega (2000), is to perform 10000 stochastic
simulations of the model, reporting not only the mean of the simulated statistic
of interest (i.e., the first order autocorrelation of inflation), as is usually done,
but to use information on all the simulated distribution. In other words, we
check whether the actual value lies between the 5TH and the 95TH percentiles36.
It turns out that 0.76 almost coincides with the 95TH percentile of the empirical
distribution, denoting the capacity of adaptive learning to generate a realistic
degree of inflation inertia, even without any other source of rigidity.

This result is more remarkable, if we take into account the extremely high
value of γ we are using: in fact, we would expect that a learning scheme so sen-
sitive to every forecast error would induce a more erratic behavior of inflation
expectations, hence dampening the possibility of the model of replicating the
empirical value of inflation autocorrelation. More properly, we can think about
increasing the value of γ as a trade-off: in fact, a value too small of the tracking

35See Williams (2003).
36In a sense, we are taking our model as a null hypothesis; for a survey of these techniques

to evaluate calibrated dynamic stochastic general equilibrium models, see Canova and Ortega
(2000).
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parameter would nullify the role of learning37, while a value too large would
make the expectations ”overreact”, introducing noise in the inflation process.
To confirm this conjecture, we performed stochastic simulations of the model
for different values of the constant gain, and for each of them we computed
the median and the 95TH percentile, plotting the results in Figure 4. A quick
inspection of the figure shows that the highest values of both are reached when
γ = 0.05; for every level of the tracking larger than this, the first order auto-
correlation generated by the model starts declining monotonically. In Figure
5 we have plotted the evolution over time of the parameters’ estimates of one
of the simulations conducted with γ = 0.05; it is evident just by comparing
Figure 5 and Figure 1 how the smaller value of the constant gain let the esti-
mates vary in smoother waves than those observed for γ = 0.55, when we had
a very ”nervous” behavior. Moreover, the estimates of the coefficients on qt−1

and qt−2 tend to change in a trascurable way and to keep close to the rational
expectations equilibrium value, when agents have had enough time to learn.

The pattern displayed in Figure 4 could help explaining why Orphanides
and Williams (2002) observe that inflation persistence is increasing in the value
of γ: actually, they assumed magnitudes of the gain parameter so small38 that
their simulations moved along the increasing side of Figure 4. Actually, we see
that, setting exogenously the constant gain39 would have allowed us to obtain
a better performance in replicating the empirical patterns.

The fact that our approach was able to generate a first order autocorrelation
of inflation broadly consistent with data, even with an endogenously determined
value for the constant gain, strengthen the result.

5 Acceleration Phenomenon

The hump-shaped impulse response function of inflation is not the only empirical
pattern which is difficult to reconcile with the Calvo model; another example is
the widely documented positive and significant correlation between the level of
real output and the growth rate of inflation40. This same pattern is reported also
in Mankiw and Reis (2002), who computed this correlation for Hodrick-Prescott
filtered U.S. data for CPI inflation, obtaining a value of 0.38. On the other hand,
the Calvo model does not exhibit this pattern; the main reason is the interaction
between a monotonically decreasing impulse response of inflation, and a positive
response of real output (at least in the short run) to the nominal shock. These
two features generate (after a positive shock) the contemporaneous presence
for many periods of decreasing inflation and high output, thus explaining the
negative correlation. To check formally this intuition, Mankiw and Reis (2002)
calculated the population cross-correlation corr(yt, πt+2−πt−2) for a Calvo-type

37In the limit, for γ = 0, we would have φt = φt−1.
38The largest value they assume is 0.1.
39In particular, giving it a value of 0.05.
40See, e.g. Abel and Bernanke (1998) and Blanchard (2000), who use a scatterplot to
document this phenomenon.
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staggered price model for a wide range of values of the key parameters, always
obtaining negative numbers.

To check whether our model can instead match this feature of the data,
we followed a procedure analogous to that outlined in the previous subsection,
performing 10000 stochastic simulations, and then computing the simulated
distribution of corr(yt, πt+2 − πt−2) (which is plotted in Figure 5); the mean of
this distribution is 0.4, very ”close” to the actual value of 0.38. To evaluate how
”close” it is, we need a metric; we choose to check whether 0.38 lies between the
5TH and the 95TH percentiles of the simulated distribution. These percentiles
are equal to 0.24 and 0.54, which implies that our model is broadly consistent
with this empirical pattern. Moreover, we obtained that no one of the draws has
delivered a negative value of corr(yt, πt+2−πt−2)41, denoting a stark difference
with respect to the Calvo model.

6 An Alternative Specification

The previous results have been obtained assuming that firms form their expec-
tations on current prices regressing p on nominal output lagged of one and two
periods (plus a constant). It seems reasonable, since individual profits depend
on the difference between individual and aggregate price level, so that we can
expect agents to estimate the law of motion of the relevant aggregate variable
(i.e., the price level), and then forecasting its current value.

As a robustness check, we will try also a different approach. In particular,
we want to check whether the previous results42 have been driven by the fact
that the price level is a nonstationary variable; hence, we will assume now that
firms estimate the law of motion of the inflation rate (which is stationary), and
that they forecast its current level using the most recent estimates of this law
of motion; then, given the value of pt−1 (which is known at time t) and the
identity:

E∗
t πt ≡ E∗

t pt − pt−1

they obtain E∗
t pt, which is used in their decision process. To derive the PLM,

note that from equation (9) we get:

πt =
1− ξθ

1 + ξ(1− θ)
E∗

t pt +
ξ(1− ρ)

1 + ξ(1− θ)
g +

ξ(1 + ρ)
1 + ξ(1− θ)

qt−1

− ξρ

1 + ξ(1− θ)
qt−2 +

ξ

1 + ξ(1− θ)
ut − pt−1

=
1− ξθ

1 + ξ(1− θ)
E∗

t πt +
ξ(1− ρ)

1 + ξ(1− θ)
g +

ξ(1 + ρ)
1 + ξ(1− θ)

qt−1

− ξρ

1 + ξ(1− θ)
qt−2 −

ξ

1 + ξ(1− θ)
pt−1 +

ξ

1 + ξ(1− θ)
ut

41Note that, on the contrary of what is observed for inflation persistence, the acceleration
phenomenon is a robust feature of the model, since it holds for a wide range of values of ρ.

42In particular, the very high value of the tracking parameter.
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which implies a PLM of the form:

πt = ãt−1 + b̃t−1qt−1 + c̃t−1qt−2 + d̃t−1pt−1 + ηt

and the ALM:

πt =
(

1− ξθ

1 + ξ(1− θ)
ãt−1 +

ξ(1− ρ)
1 + ξ(1− θ)

g

)
+

(
1− ξθ

1 + ξ(1− θ)
b̃t−1+ (18)

ξ(1 + ρ)
1 + ξ(1− θ)

)
qt−1 +

(
1− ξθ

1 + ξ(1− θ)
c̃t−1 −

ξρ

1 + ξ(1− θ)

)
qt−2(

1− ξθ

1 + ξ(1− θ)
d̃t−1 −

ξ

1 + ξ(1− θ)

)
pt−1 +

ξ

1 + ξ(1− θ)
ut

It is easy to see that this model has a unique rational expectations equilib-
rium given by:

πt = (1− ρ)g + (1 + ρ)qt−1 − ρqt−2 − pt−1 +
ξ

1 + ξ(1− θ)
ut

which is equivalent to say:

pt = (1− ρ)g + (1 + ρ)qt−1 − ρqt−2 +
ξ

1 + ξ(1− θ)
ut

In other words, the two forecasting strategy are equivalent under rational
expectations.

To see what changes under constant gain learning, we repeated the same
excercises described in the previous section. First of all, we looked for the
equilibrium value of the tracking parameter in this new context, obtaining γ∗ =
0.15. A couple of remarks are now necessary:

• this value is considerably lower than the 0.55 obtained in the previous
section. The reasons why it is so are still an open question. A possible
explanation would be that now agents are trying to forecast a stationary
variable;

• the best reply function is monotonically decreasing also under this alter-
native specification, making us conjecture that this is a common feature
of this kind of models.

Even with these different assumptions on how firms forecast the aggregate
level of prices, the adaptive learning approach does well in accounting for in-
flation dynamics43. In fact, setting the initial condition of d̃ in a small enough
neighborhood of the rational expectations value44, the shape of the impulse
response function is analogous to the one obtained previously. Moreover, the

43In all the simulations, we used the same set of realizations of the shock that we used in
the baseline case, in order to make the comparison consistent.

44In particular, for d̃ ∈ (−0.6,−1.5).
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5TH and the 95TH percentiles of the simulated distribution of the first order
autocorrelation of inflation are 0.57 and 0.79, respectively, so that they include
the actual value of 0.76.

Also the correlation between the level of real output and the growth rate of
inflation implied by the model is consistent with the one empirically observed:
in fact, the 5TH and the 95TH percentiles of the simulated distribution are 0.18
and 0.46, respectively, so that 0.38 is included between them, but zero is not.

7 Conclusions and Future Research

The starting point of this paper is the difficulty of the Calvo model to replicate
some well-established empirical facts. In particular, this model per se is not
able to generate an hump-shaped impulse response function for inflation, nor a
positive correlation between real output and inflation growth. To reconcile this
approach with empirics, additional sources of inertia have been introduced by
the New Keynesian literature.

However, a new line of research has been recently developed, whose key
points are flexible prices coupled with some form of boundedly rational behavior;
this paper shares this modeling strategy, and aims to investigate the properties
of a simple flexible prices, monopolistic competitive setup augmented by non-
rational expectations, modeled following the adaptive learning approach.

The main result is that, with reasonable parameters values, this setup can
considerably improve the performance of the Calvo model, generating inflation
and output dynamics that are broadly consistent with the two stylized facts
above mentioned; moreover, also the inflation autocorrelation is not at odds
with what is empirically observed.

As a side issue, we studied the relationship between the constant gain and
inflation autocorrelation to show how, keeping this parameter free to assume
any value, we could make the model match almost any empirical pattern, hence
stressing the importance of endogenizing this coefficient, linking it to some op-
timal behavior of the agents.

As future research, we could possibly extend the model modifying the de-
mand side under two respects: first of all, we could make the consumer’s problem
fully dynamic, dispensing with the cash-in-advance constraint and introducing
a riskless bond in the budget constraint, in order to obtain an Euler equation
as an optimization condition, from which we could derive an IS schedule; on
the other hand, we could introduce adaptive learning also on the consumer’s
side, in a way consistent with what we assume for the firms. Unfortunately, as
shown in Preston (2003), the union of an Euler-type condition and non-rational
adaptive learning lead to a suboptimal behavior, since it does not take into
proper account the intertemporal budget constraint. Hence, we should look for
a formulation that is compatible with optimization behavior, but that can still
be used as a demand schedule.

Another interesting issue would be to remove the exogeneity assumption for
money, and to suppose instead that the monetary authority pursues an optimal
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policy; Orphanides and Williams (2002) went in this direction, but considered
only the optimal rule in the restricted class of linear rules, while, as they pointed
out, the ”true” optimal rule is a nonlinear function of the states of the system
(including the time-t estimates). Moreover, they used an exogenously deter-
mined constant gain, when it would be preferable to implement an endogenous
one.

8 Appendix

In this section we will prove the statements made in the text about the impulse
response function of the Calvo price setting model.

First of all, we will solve the model formed by the New Keynesian Phillips
Curve (equation (16)) and the nominal demand process that we have used
throughout this paper (equation (8)), finding the MA(∞) representation of the
inflation process. Then, we will prove that the coefficients of this MA(∞) rep-
resentation (and, therefore, the impulse response function) are a monotonic
decreasing sequence.

To begin with, recall the New Keynesian Phillips Curve:

πt = kyt + Etπt+1

where we have set β = 1 for notational simplicity; since β is usually calibrated
at 0.99, it does not seem a restrictive assumption; k is a function of structural
parameters which assumes positive values. For any arbitrary sequence{qt}∞t=0

for the nominal output,the only stationary solution is45:

pt = λpt−1 + (1− λ)2
∞∑

j=0

λjqt+j (19)

We now assume that qt follows the process given by (8), which can be repre-
sented in an MA(∞) form as46:

∆qt =
∞∑

j=0

ρjut−j

so that:

qt =
∞∑

k=0

∞∑
j=0

ρjut−j−k

To derive the process of inflation, we follow Mankiw and Reis (2002) and
guess that it is stationary, so that can be represented in the MA(∞) form:

πt =
∞∑

j=0

ϕjut−j

45See the appendix of Mankiw and Reis (2002).
46We omit the constant term in the process for nominal output, since we calibrate it to zero

throughout the paper.
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and the price level is the non-stationary process:

pt =
∞∑

k=0

∞∑
j=0

ϕjut−j−k

where the {ϕj} are unknown. Plugging this guess into equation (19), and taking
into account the particular process considered for nominal output, we get:

∞∑
k=0

∞∑
j=0

ϕjut−j−k = λ
∞∑

k=0

∞∑
j=0

ϕjut−1−j−k+(1−λ)2
∞∑

j=0

λj
∞∑

i=0

∞∑
k=max{j−i,0}

ρiut+j−i−k

Matching coefficients, we get:

ϕ0 = (1− λ)2
∞∑

j=0

λj

j∑
i=0

ρi =
1− λ

1− ρλ
(20)

for the coefficient on ut, and for an arbitrary m > 1:

ϕm = (λ− 1)
m−1∑
j=0

ϕj +
[
(1− λ)2/(1− ρ)

] [
1/(1− λ)− ρm+1/(1− ρλ)

]
(21)

Now that the sequence of MA coefficients {ϕj} as been characterized, it is
possible to show that it is monotonic decreasing. First of all, we will show that
ϕ1 − ϕ0 < 0; in fact, using (21):

ϕ1 − ϕ0 = (λ− 2)ϕ0 +
(1− λ)2

(1− ρ)(1− λ)
− (1− λ)2ρ2

(1− ρ)(1− ρλ)

= (λ− 2)
1− λ

1− ρλ
+

(1− λ)2

(1− ρ)(1− λ)
− (1− λ)2ρ2

(1− ρ)(1− ρλ)

Simple algebra shows that:

ϕ1 − ϕ0 =
(1− λ)

[
−(1− ρ)2 + λ− 2λρ + λρ2

]
(1− ρ)(1− ρλ)

=
(1− λ)

[
−(1− ρ)2 + λ(1− ρ)2

]
(1− ρ)(1− ρλ)

Since λ < 1, λ(1− ρ)2 − (1− ρ)2 is less than zero, and so is ϕ1 − ϕ0.
Now, observe that for any m ≥ 2, from (21) we obtain:

ϕm − ϕm−1 = (λ− 1)

m−1∑
j=0

ϕj −
m−2∑
j=0

ϕj

 +
(1− λ)2

(
ρm − ρm+1

)
(1− ρ)(1− ρλ)

or, equivalently:

ϕm = λϕm−1 +
(1− λ)2ρm

(1− ρλ)
(22)
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Now we will show directly that also ϕ2 − ϕ1 is less than zero; in fact, from
(22) we get:

ϕ2 − ϕ1 = (λ− 1) ϕ1+
(1− λ)2ρ2

(1− ρλ)

Using equation (21) for m = 2 to substitute out ϕ1, and equation (20) to
substitute out for ϕ0, we can write:

ϕ2 − ϕ1 =
(
ρ2 + 1− λ

) 1− λ

1− ρλ
+

(1− λ)2

(1− ρλ) (1− ρ)
ρ2 − 1− λ

1− ρ

Simple algebra shows that this expression is negative if and only if ρ2 (2− λ− ρ)+
2ρλ − λ − ρ ≡ H(λ, ρ) is negative; but this function is always negative valued,
provided that ρ < 1, which is a stationarity condition always assumed. In fact,
we have that:

∂

∂λ
H(λ, ρ) = −ρ2 − 1 + 2ρ

which is negative whenever ρ 6= 147; so, it is sufficient to check that H(·) is
negative valued when λ has the minimum admittable value (i.e., zero). Note
that:

H(0, ρ) = ρ2 (2− ρ)− ρ ≷ 0 ⇔ ρ (2− ρ)− 1 ≷ 0

But the last expression is −ρ2 − 1 + 2ρ, which we have already see that is
negative; thus, we conclude that ϕ2 − ϕ1 is negative whenever ρ < 1.

To prove that also the rest of the sequence is decreasing, we proceed by
induction: we assume that ϕm−1 − ϕm−2 < 0 for an arbitrary m ≥ 3; we want
to show that ϕm − ϕm−1 < 0 as well. Using equation (21) we get:

ϕm − ϕm−1 = λ(ϕm−1 − ϕm−2) +
(1− λ)2

(1− ρλ)
(
ρm − ρm−1

)
Since ϕm−1 − ϕm−2 < 0 for the induction hypothesis, and ρm − ρm−1 < 0

because 0 ≤ ρ < 1, we conclude that ϕm − ϕm−1 < 0.
47In fact, the discriminant of this quadratic expression is zero, so that it has only one root

at ρ = 1.
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