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Abstract

This paper develops a new covariance-based test of orthogonality that may
be attractive when regressors have roots close or equal to unity. In this case
standard regression-based orthogonality tests can suffer from (i) size distortions
and (ii) uncertainty regarding the appropriate model in which to frame the al-
ternative hypothesis. The new test has good size and power against a wide
range of reasonable alternatives for stationary, non-stationary, and local to unity
regressors, while avoiding non-standard limiting distributions, size correction,
and unit root pre-tests. Asymptotic results are derived and simulations sug-
gest good small sample performance. As an empirical application we test for
the predictability of stock returns using two persistent regressors, the dividend-
price-ratio and short-term interest rate. The recent literature highlights the role
of size distortions in traditional tests using these predictors. However, we ar-
gue that even size corrected regression tests still restrict attention to “balanced”
alternatives that become less plausible the more persistent the regressor. Thus
the net impact of persistent regressions on orthogonality tests remains uncertain.
Covariance based tests maintain correct size without restricting the alternatives,
allowing us to sort out the two effects. Using this test we find weaker evidence
of predictability using dividend price ratios but stronger evidence using interest
rates. This suggests a dominant effect of size distortion in the first case and
restrictions on the alternative in the second.
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1 Introduction

This paper develops a new covariance-based method for testing orthogonality con-
ditions when the conditioning variable has a root close or equal to unity. This new
method provides a t-test with good size properties without reference to prior knowl-
edge, estimates, or pre-tests regarding the size of the root. Furthermore it has non-
trivial power against a broad range of alternatives. In this sense the alternative
hypothesis is defined more broadly than in common regression specifications.

To fix ideas, consider the following simple orthogonality regression of yt on lagged
xt−1

yt = β0 + β1xt−1 + ε1t, (1)

together with a first order autoregressive specification for the marginal distribution
of xt

xt = ρ0 + ρ1xt−1 + ε2t, (2)

with a value of ρ1 close or possibly equal to unity and innovations given by

εt =
(

ε1t

ε2t

)
∼ i.i.d.

([
0
0

]
,

[
σ11 σ12

σ21 σ22

])
. (3)

This would appear to roughly characterize several common empirical applications,
including, for example, orthogonality tests involving the regression of log returns on
the lagged dividend yield or interest rate and the regression of excess foreign cur-
rency returns on the lagged forward premium.1 Several other applications, including
tests of the permanent income hypothesis, the expectations hypothesis of the term
structure, and the constant real interest rate hypothesis may also be cast in the form
of an orthogonality test.2 Although the dependent variables, such as returns, in
these regressions may show little persistence, the regressors are often highly serially
correlated and may be well characterized by roots near unity.

Typically it is the case that a risk-neutral market efficiency condition implies
orthogonality of yt with respect to Ix,t−1 = σ(xt−1,xt−2, xt−3, . . .), the information
contained in all past values of xt. The null hypothesis of orthogonality implies β1 = 0,
and a common test of market efficiency is provided by a standard t-test on this
parameter. This null hypothesis carries no implications regarding the root ρ1 of xt

and often this parameter may not be of direct economic interest. However, if the
value of ρ1 is close or equal to one, it can become a difficult nuisance parameter. In
particular, as discussed below, a large value of ρ1 can impact a standard orthogonality
t-test in two ways: (i) by causing size distortions and (ii) by leading to trivial power
under certain reasonable alternatives. Roots in xt equal to one may sometimes be
ruled out on a priori grounds (nominal interest rates, for example, should not be
negative), but roots close to one in a local to unity sense generally can not be.

The size problem is well documented in ? (?), ? (?), and ? (?). It results from
a Dickey-Fuller type bias in the nonstandard distribution of the estimator β̂1 when

1See ? (?) for an application to the forward rate unbiasedness test.
2See ? (?) and references therein.
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σ12 6= 0 and ρ1 is close to one.3 For a known value of ρ1 = 1 this bias may be
corrected using cointegration type adjustments in order to obtain correct asymptotic
size. More realistically, for fixed values of ρ1 ≤ 1, two stage procedures based on
a unit root pre-test can also provide correct large sample size. Unfortunately, such
procedures have been found to overcorrect under a local to unity specification, again
creating size distortions in the empirically relevant case of moderate sample sizes and
roots just slightly below one (? (?), ? (?)).4 The covariance based t-test proposed
here is fundamentally different than the regression t-test, and thus avoids this size
distortion problem altogether.

The second issue that arises for ρ1 close or equal to one is that of power under
reasonable alternatives. This appears to be less widely discussed. Under the null
hypothesis of orthogonality, we have β1 = 0, allowing yt (e.g. returns) to be stationary
even if xt (e.g. dividend yields) follows a local to unity or unit root process. The null
hypothesis is thus reasonably incorporated into a regression such as (1). However,
the exact form of the alternative is usually left unspecified by economic theory and
just what constitutes a sensible alternative may depend on the persistence properties
of the data. If xt is clearly stationary, then β1 6= 0 in (1) provides a reasonable
alternative hypothesis. However, if xt has a near unit root, this will only provide an
appropriate alternative if yt is thought to contain an equally persistent component, a
possibility that may often lack empirical support. Note, for example, that if xt has a
unit root then the model above allows just two possibilities: orthogonality (β1 = 0)
or cointegration (β1 6= 0). However, this seems unduly restrictive: orthogonality is
not synonymous with a lack of cointegration. In particular, this omits a large class of
“unbalanced” alternatives for which yt is stationary, xt has a near (or exact) unit root,
and yet, despite this imbalance, the past history of xt contains predictive content for
yt. For instance, if xt had an exact unit root, but yt was stationary, then a more
reasonable test of orthogonality would be a regression of yt on ∆xt−1 as in

yt = γ0 + γ1 (xt−1 − xt−2) + ε1t. (4)

But this requires a unit root pre-test, whose problem was discussed above. Of course,
more elaborate parametric regressions can also nest both alternatives, but are not
commonly employed in this context and may come at the expense of complicating
the size problem, particularly in the near unit root case (see ? (?)). The new test
we propose has reasonable power against both sets of alternatives: β1 6= 0 when
xt is stationary, and γ1 6= 0 when xt is a unit root process, without requiring size
correction or pre-test.

The covariance-based testing approach we develop begins with the following intu-
ition. Consider first xt stationary (I(0)). The regression coefficient β1 =cov(yt, xt−1)/var(xt−1)
is equal to 0 if and only if the numerator cov(yt, xt−1) = 0. For stationary xt the
orthogonality test may therefore be restated as a test of cov(yt, xt−1) = 0. Next,

3σ12 is unrestricted under the null hypothesis similarly to ρ1 and must also be considered a
nuisance parameter.

4? (?) provide more appropriate corrections based on first stage confidence intervals for the local
to unity parameter.
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rewrite xt−1 as an infinite sum of its past first-differences:

xt−1 = (xt−1 − xt−2) + (xt−2 − xt−3) + . . . = ∆xt−1 + ∆xt−2 + . . .

This purely algebraic decomposition then allows us to rewrite the contemporaneous
covariance between yt and xt−1 in terms of a (one-sided) long run covariance between
yt and the first-difference ∆xt−1 as

cov (yt, xt−1) =
∞∑

h=1

cov (yt,∆xt−h) . (5)

The next step is to extend this decomposition to the case where xt follows a
unit root (I(1)) process. In particular, we can define a contemporaneous covariance
between yt and xt−1 in analogous fashion, as the long-run covariance between yt and
the first-difference of xt−1, as5

cov (yt, xt−1) =
t−1∑
h=1

cov (yt,∆xt−h) ,

initializing xt at t = 0. Assume yt and ∆xt−1 are stationary, and define a quasi-
covariance between xt−1 and yt as

λy,∆x := lim
t→∞

t−1∑
h=1

cov (yt,∆xt−h) =
∞∑

h=1

cov (yt,∆xt−h) , (6)

which is well-defined if
∑∞

h=0 |cov(yt,∆xt−h)| < ∞. As seen from (5), when xt is
stationary, the quasi-covariance is written as

λy,∆x = cov (yt, xt−1) . (7)

Therefore, λy,∆x is well-defined both when xt is I(1) and I(0) and provides either an
exact (xt I(0)) or an approximate (xt I(1)) measure of the contemporaneous covari-
ance between yt and xt−1.

When xt has a root close to unity, a useful model of xt is the so-called local-to-
unity process

xt =
(
1 +

c

n

)
xt−1 + ut, t = 1, 2, . . . , c < 0,

with xt ≡ 0 for t ≤ 0. As shown in the Appendix, when
∑∞

p=1 p|cov(yt, ut−p)| < ∞,
the quasi-covariance takes the form

λy,∆x =
∞∑

h=1

cov(yt, ut−h) + O
(
n−1

)
, (8)

and it bears the same meaning as when xt is I(1).
5This concept, expanded upon here, was first given in ? (?).
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The proposed orthogonality test is then based on a test of the null hypothesis
that λy,∆x = 0, a parameter which is well defined for both stationary and unit root
nonstationary xt. To see the relationship between this parameter restriction and
more common tests of orthogonality, note first that yt orthogonal to Ix,t−1 implies
λy,∆x = 0. This follows from the fact that ∆xt−h belongs to Ix,t−1 for h ≥ 1 and is
therefore orthogonal to yt, implying cov(yt,∆xt−h) = 0 for all h ≥ 1. Thus a rejection
of λy,∆x = 0 constitutes a valid rejection of orthogonality.

Next consider the power of the test against various alternatives. When xt is
stationary, β1 = cov(yt,xt−1)

var(xt)
has a finite dominator, so that β1 = 0 if and only if

λy,∆x =cov(yt, xt−1) = 0. So for stationary xt the test has power against the same
alternatives as the standard t-test. For ρ1 = 1 (unit root) and β1 6= 0 yt and xt

are cointegrated unit roots, implying an infinite (and hence non-zero) value of λy,∆x.
Therefore the test still maintains power against β1 6= 0 for nonstationary xt. In
addition, it also provides power against other reasonable alternatives (e.g. γ 6= 0
in (4) when ρ1 = 1), which are not properly included in the alternative hypothesis
when testing the restriction that β1 = 0. For example, although no longer infinite,
λy,∆x 6= 0 also holds for ρ1 = 1 and γ 6= 0.

Estimation follows from the fact that the parameter λy,∆x is well defined and
consistently estimated by the same standard kernel covariance estimator for both
stationary and unit root nonstationary xt. Thus we can provide a single estimator for
λy,∆x without the necessity of pretesting or estimating ρ1. The feature may be useful
in applied work, as it is often difficult to distinguish with confidence between I(0) and
I(1) alternatives. A second desirable property of the estimator is that is shown to
have a unique limit distribution for all (finite) values of the local to unity parameter
c. This allows us to avoid two-stage inference procedures, such as Bonferroni bounds,
that are generally necessitated by the lack of a consistent estimator for the local
to unity parameter. We provide an asymptotically exact test, based on a single
t-statistic with a limiting standard normal distribution that is equally valid under
both unit root and local to unity (finite c) assumptions. No bias corrections or other
adjustments are required. This test is suggested primarily when roots are close to
unity so that a local to unity model is appropriate. However, it also shown to provide
conservative inference when xt is stationary.

These methods are used to revisit well-known orthogonality tests involving the
prediction of stock returns using dividend-yields and interest rates. Both variables
are highly persistent leading much recent literature to explore size distortions. In
fact, using size-corrected regression-based tests, original results suggesting strong
predictive content have often been weakened and sometimes overturned. However,
while properly correcting for size, such regressions may also restrict power to alter-
natives that imply near-nonstationarity in stock returns (i.e. near I(2) behavior in
stock prices). By using covariance-based tests we not only correct size, but also al-
low for alternatives that leave returns stationary, while still violating orthogonality.
Our tests agree with past literature in indicating substantially weaker evidence of
return predictability using dividend-yields. However, the results are reversed for the
short-term interest rate, in which we find even stronger evidence of predictability
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using our tests. Thus the size distortion associated with near unit roots appears
to be the overriding factor in the dividend yield regression, whereas the restriction
on the alternative matters more in the case of the interest rate. This difference in
outcomes makes sense in the light of the far stronger residual correlation found using
the dividend yield.

The size problem inherent in these regressions has generated an active area of
research and a number of alternative techniques have been proposed. However, they
all differ substantially in approach and most address primarily the issue of size. Be-
ginning with ? (?), several papers (? (?), ? (?), and ? (?)) employ local to unity
asymptotics to provide size corrections for regression based tests. ? (?) for example,
provide critical values using two-stage Bonferroni and Scheffe type bounds proce-
dures. ? (?) and ? (?) give finite sample corrections to regression based tests under
more restrictive assumptions, while ? (?) and ? (?) consider Bayesian approaches.
With suitable (strictly exogenous) instruments, the FM-IV estimator of ? (?) can
also eliminate size problems, even under local to unity assumptions and without prior
testing on ρ1. Finally, sign and rank tests (Campbell and Dufour (1995, 1997)) pro-
vide exact finite sample size without restrictions on xt under the null hypothesis,
though proper specification of the mean process for xt still matters for power and
white noise assumptions on yt may complicate their use in tests with long-horizon
returns. Bootstrap and subsampling approaches have also been employed under the
assumption of a fixed root less than unity (? (?), ? (?), and ? (?)).

The remainder of the paper is organized as follows. Section 2 introduces the
kernel-based estimator of λy,∆x and demonstrates its asymptotic behavior when xt is
I(1), I(0), and local-to-unity. Section 3 discusses how to conduct inference based on
the estimate of λy,∆x, and Section 4 reports some simulation results. The empirical
application is reported in Section 5, and Section 6 concludes. Proofs are given in the
Appendix in Section 7, and Section 8 collects some technical results.

2 Estimation of quasi-covariance

In this section, we develop an estimator of the quasi-covariance and derive its asymp-
totic properties. First we state the assumptions.

Assumption A

(yt,∆xt) are generated by

zt =
(

yt

∆xt

)
= A (L) εt =

∞∑
j=0

Ajεt−j ,

∞∑
j=0

j||Aj || < ∞, (9)

εt ∼ i.i.d. (0, I2) , with finite fourth moment,
∞∑

h=−∞
|h|q ‖Γ(h)‖ < ∞, q ≥ 1; Γ(h) =

[
Γyy(h) Γy∆x(h)
Γ∆xy(h) Γ∆x∆x(h)

]
= Eztz

′
t+h,

where ‖A‖ is the supremum norm of a matrix A.
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The assumption var(εt) = I2 is innocuous because we do not normalize the ele-
ments of Aj . We propose to estimate a quasi-covariance by

λ̂y,∆x =
n−1∑
h=1

k

(
h

m

)
Γ̂∆xy(h); Γ̂∆xy(h) =

1
n

n∑
t=h+1

yt∆xt−h, (10)

where m is the bandwidth and k(x) is the kernel.6 We assume k(x) and m satisfy
the following assumptions.

Assumption K

The kernel k(x) is continuous and uniformly bounded with k(0) = 1,
∫∞
0 |k(x)|x1/2dx <

∞,
∫∞
0 k2(x)dx < ∞ and

lim
x→0

1− k (x)
|x|q

= kq < ∞.

Assumption M

1
m

+
mq

n
→ 0 as n →∞.

Assumption K is satisfied by the Bartlett kernel with q = 1. Other kernels such
as the Parzen kernel, Tukey-Hanning kernel, and Quadratic Spectral kernel satisfy
Assumption K with q = 2. The following two lemmas show the asymptotic bias and
variance of λ̂y,∆x and its consistency.

2.1 Lemma

If Assumptions A, K and M hold, then

lim
n→∞

mqE
(
λ̂y,∆x − λy,∆x

)
= −kq

∞∑
h=1

Γ∆xy(h)hq.

The proof of this Lemma is omitted because it is the same as that of Theorem 10
in Hannan (1970, p. 283). Let fyy(λ) denote the spectral density of yt and f∆xy(λ)
denote the cross-spectral density between ∆xt and yt, and similarly for fy∆x(λ) and
f∆x∆x(λ). The following Lemma is a one-sided version of Theorem 9 of Hannan (1970,
p. 280).

2.2 Lemma

lim
n→∞

n

m
var
(
λ̂y,∆x

)
= V ≡ 4π2

∫ ∞

0
k2 (x) dx

{
fyy (0) f∆x∆x (0) + [fy∆x (0)]2

}
.

6Note that this is simply the off-diagonal element of a one-sided long-run covariance estimator of
the type employed in the HAC literature (e.g. ? (?), ? (?)) applied to (yt, ∆xt).
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2.3 Corollary

If Assumptions A, K and M hold, then λ̂y,∆x →p λy,∆x as n →∞.

2.4 Remarks

1. If k (x) is symmetric, we have

V =
(

1
2

)
4π2

∫ ∞

−∞
k2 (x) dx

{
fyy (0) f∆x∆x (0) + [fy∆x (0)]2

}
=
(

1
2

)
lim

n→∞
var (ω̂y,∆x) ,

where ω̂y,∆x is the estimate of the long-run covariance between yt and ∆xt.
So, the asymptotic variance of λ̂y,∆x is just half the limiting variance for the
two-sided case.

2. From Lemmas 2.1 and 2.2, the asymptotic mean squared error is minimized by
choosing m such that

m∗ =

2qk2
q

( ∞∑
h=1

Γ∆xy(h)hq

)2

n

/
V

1/(2q+1)

.

Assuming k(x) is symmetric, we can rewrite m∗ as

m∗ =
(

qk2
qα(q)n

/∫ ∞

−∞
k2 (x) dx

)1/(2q+1)

, (11)

α(q) =
4
(
(2π)−1

∑∞
h=1 Γ∆xy(h)hq

)2
fyy (0) f∆x∆x (0) + [fy∆x (0)]2

,

giving expressions similar to those in Andrews (1991, pp. 825, 830). If m is
chosen optimally, then the rate of convergence is nq/(2q+1).

3. When ∆xt follows ARFIMA(p, d, q) with −1 < d < 0, Lemma 2.2 still holds,
but f∆x∆x (0) = fy∆x (0) = f∆xy (0) = 0 and the limiting variance is 0. This
suggests that the rate of convergence is faster when ∆xt is overdifferenced and
will depend on d.

4. Lemma 1 (11) (p. 12) of ? (?) shows that
∑∞

h=0 h2 |Γy∆x(h)| < ∞, so Lemma
2.2 holds if ∆xt is I(d) with −1 < d < 0. Intuition for this result is given on p.
16-17 in the paragraph “Why then are the biases in Table 5 so reasonable...”
and the proof is in Appendix A3 (p. 29).

2.5 The limit distribution when xt is I(1)

It is well known that the estimator of the two-sided long-run covariance between
yt and ∆xt has normal limiting distribution (Hannan, 1970, Theorem 11, p. 289).
However, currently there are no results that show the asymptotic normality of the
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one-sided long-run covariance estimator. One of the reasons is because the one-
sided long-run covariance estimator does not admit a simple expression in terms of
periodograms. To see why, let Iz(ω) be the periodogram of zt, then it follows that

n−1∑
h=1

k

(
h

m

)
1
n

n∑
t=h+1

zt−hz′t =
n−1∑
h=1

k

(
h

m

)∫ π

−π
Iz(ω)eiωhdω

=
∫ π

−π
Iz(ω)Kn(ω)dω, Kn (ω) =

n−1∑
h=1

k

(
h

m

)
eiωh.

It is easy to see that Kn (ω) does not have a simple expression such as Fejér kernel,
and indeed it has a nonnegligible imaginary part. In the present paper, we work
directly with Γ̂y∆x by applying the martingale approximation a la ? (?) and show
the asymptotic normality of λ̂y,∆x. The following theorem establishes it.

2.6 Theorem

If Assumptions A, K and M hold, ∃ δ > 1 such that
∑∞

h=−∞ |h|δ||Γ(h)|| < ∞, and
m2/n + n/m2q+1 → 0, then√

n

m

(
λ̂y,∆x − λy,∆x

)
→d N(0, V ), as n →∞.

The optimal bandwidth m∗ does not satisfy the rate condition on m of Theorem
2.6, which is a standard result when the bandwidth is chosen to minimize the mean
squared error. m needs to grow faster than m∗ for Theorem 2.6 to hold. Since the
optimal rate of increase of m is n1/(2q+1) from Remark 2.4 (2), the upper bound on
m, m2/n → 0, does not appear to pose a severe problem when q is 1 or 2.

2.7 The limit distribution when xt is I (0)

The argument so far is based on the assumption that xt is I(1). However, in prac-
tice often we do not have strong prior knowledge about whether xt is I(1) or I(0).
With an additional Lipschitz continuity assumption on the kernel, λ̂y,∆x converges
to Eytxt−1 = λy,∆x when xt is an I(0) process. Let us first state the assumptions on
xt and yt.

Assumption B

vt =
(

yt

xt

)
= B (L) εt =

∞∑
j=0

Bjεt−j ,
∞∑

j=0

j||Bj || < ∞, (12)

εt ∼ i.i.d. (0, I2) , with finite fourth moment
∞∑
−∞

|h|q ‖γ(h)‖ < ∞, γ(h) =
[

γyy(h) γyx(h)
γxy(h) γxx(h)

]
= Evtv

′
t+h,

9



and fx(0), fy(0) > 0, where fx(λ) and fy(λ) are the spectral density of xt and yt.

We use γ(h) to denote the autocovariance of vt to distinguish it from the autoco-
variance of zt in Assumption A. Note that γxy (1) = Eytxt−1 = λy,∆x.

2.8 Lemma

If Assumptions B, K and M hold and k(x) is Lipschitz(1), then

√
n
(
λ̂y,∆x − λy,∆x

)
= k(1/m)

√
n
(
γ̂xy (1)− γxy(1)

)
+ Bn + op(1), (13)

where γ̂xy (1) = n−1
∑n

t=2 ytxt−1 and Bn is the bias term satisfying

Bn =
{

0, if Eytxt−h = 0 for all h ≥ 1,

O(n1/2m−q), otherwise.

In addition, k(1/m)
√

n(γ̂xy (1)− γxy(1)) →d N (0,Ξ) as n →∞, where

Ξ =
∞∑

u=−∞

{
γxx (u) γyy (u) + γxy (u + 1) γyx (u− 1)

}
+

∞∑
u=−∞

kxyxy (0, 1, u, u + 1) .

2.9 Remarks

1. When xt is I(1), Theorem 2.6 requires the rate condition m2/n+n/m2q+1 → 0.
Therefore, if Eytxt−h 6= 0 for some h, then we need to use a kernel with q = 2
and choose m so that m2/n + n/m4 → 0 for λ̂y,∆x to have a Gaussian limiting
distribution centered around λy,∆x both when xt is I(1) and I(0). However,
when the hypothesis of interest is the orthogonality between yt and Ix,t−1, then
m needs to satisfy only m2/n + n/m(2q+1) → 0.

2. If you knew xt = I(0), then you would estimate Eytxt−1 by γ̂xy (1), and the
limiting variance of λ̂y,∆x is the same as that of γ̂xy (1) . Therefore, λ̂y,∆x is
robust to misspecification of the integration of order, apart from the bias term
in (13).

2.10 The limit distribution when xt is modelled as local to unity

Let xt be a local-to-unity process:

xt =
(
1 +

c

n

)
xt−1 + ut, t = 1, 2, . . . , c < 0, (14)

with xt ≡ 0 for t ≤ 0. Then λy,∆x =
∑∞

h=1cov(yt, ut−h) + O(n−1) as seen in (8), and
also λ̂y,∆x behaves very similarly as when xt is I(1). The following Lemma establishes
the limiting behavior of λ̂y,∆x.
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2.11 Lemma

Suppose xt is generated by (14) with (yt, ut) satisfying Assumption A. Then λ̂y,∆x =∑n−1
h=1 k(h/m)Γ̂uy(h)+Op((m/n)), where Γ̂uy(h) is defined in (10) with ut replacing

xt.
This Lemma establishes the first order equivalence of the limit theory for λ̂y,∆x

under both I(1) and local to unity assumptions (finite, negative c) on xt. The fact
that the limiting distribution is the same for all finite c ≤ 0 has important practical
implications, since it means that no prior knowledge on c is required in order to
conduct inference. This would seem to be a desirable property. By contrast, many
econometric procedures, including several common cointegration tests, that are valid
for c = 0 may fail for c < 0 (? (?)).

3 Possible ways to conduct inference

3.1 Estimation of the limiting variance of the estimator

Suppose xt is I(1) and Lemma 2.6 gives the limiting distribution of λ̂y,∆x. To conduct
inference, we need to estimate V , the limiting variance of (n/m)1/2λ̂y,∆x. Of course,
we can use V̂ = 4π2

∫∞
0 k2 (x) dx{f̂yy (0) f̂∆x∆x (0) + f̂y∆x (0) f̂∆xy (0)}, where f̂ab is

a standard periodogram-based estimator of fab. By standard arguments, this is a
consistent estimator of V .

We may consider another estimator of V, Ṽ , whose particularly good performance
is suggested by simulations in Section 4. It is based on the exact finite sample variance
of λ̂y,∆x, which is given by (see equations (31)-(33) in the proof of Lemma 2.2)

n

m
var
(
λ̂y,∆x

)
=

1
m

n−1∑
h′=1

n−1∑
h=1

k

(
h′

m

)
k

(
h

m

) ∞∑
u=−∞

{
Γ∆x∆x (u) Γyy(u + h− h′)

+ Γ∆xy (u + h) Γy∆x(u− h′) + k∆xy∆xy(0, h′, u, u + h)
}

φn(u, h′, h),

where φn(u, h′, h) is defined in the proof of Lemma 2.2 . The terms involving the
cumulants disappear in the limit. Define Ṽ by replacing Γab with Γ̂ab, which reduces
the error from the approximation of the discrete sum in (29) by the integral in (36):

Ṽ =
1
m

n−1∑
h′=1

n−1∑
h=1

k

(
h′

m

)
k

(
h

m

) ∞∑
u=−∞

 k̃
(

uem) Γ̂∆x∆x (u) k̃
(

u+h−h′em
)

Γ̂yy(u + h− h′)

+k̃
(

u+hem )
Γ̂∆xy (u + h) k̃

(
u−h′em

)
Γ̂y∆x(u− h′)


×φn(u, h′, h), (15)

where k̃(x) and m̃ are kernel and bandwidth. k̃(x) and m̃ can, but do not need to, be
the same as k(x) and m. Estimating V by Ṽ gives better finite sample performance
than estimating V by V̂ . (The results using V̂ are not reported in the present paper).
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Suppose (yt,∆xt) satisfies Assumption A and hence xt is I(1). Then, if Ṽ →p V,
we may construct a t-type statistic

tλ =

√
n
m

(
λ̂y,∆x − λy,∆x

)
√

Ṽ
, (16)

that converges to a N(0, 1) random variable in distribution from Lemma 2.6. The
following Lemma shows that it is indeed the case.

3.2 Lemma

If Assumptions A, K, and M hold, the kernel k̃(x) satisfies Assumption K with k̃(x) =
0 if |x| > 1, and 1/m̃ + m̃q/n → 0, then Ṽ →p V as n →∞.

3.3 Corollary

If the assumptions of Theorem 2.6 and Lemma 3.2 hold, then tλ →d N(0, 1) as
n →∞.

3.4 Conservative inference: inference when xt is modelled as I(1)
but is actually I(0)

Consider the case when (yt, xt) follows (12) and xt is actually I(0). Since tλ is based
on the autocovariance of yt and ∆xt, the inference based on tλ might be misleading.
However, if the Bartlett kernel k̃(x) = (1 − |x|)1{|x| ≤ 1} is used in Ṽ in (15) and
Eytxt−h = 0 for all h ≥ 1 (which holds under the null hypothesis of orthogonality),
then tλ is Op((m̃/m)1/2). Therefore, when m̃ is chosen appropriately, large values
of λ̂y,∆x suggest the rejection of the orthogonality between yt and Ix,t−1, and λ̂y,∆x

serves as a tool for conservative inference. The following Lemma establishes it. The
power property of tλ when xt is I(0) can be checked by simulation.

3.5 Lemma

If Assumptions B, K and M hold, k̃(x) = (1− |x|)1{|x| ≤ 1}, 1/m̃ + m̃q/n → 0, and
Eytxt−h = 0 for all h ≥ 1, then tλ = Op((m̃/m)1/2) as n →∞.

In order to understand the convergence, rewrite tλ as

tλ =
n1/2(λ̂y,∆x − λy,∆x)

(Ṽ )1/2m1/2
.

The numerator converges to a Gaussian random variable from Lemma 2.8. Ṽ in the
denominator is an estimate of f∆x∆x(0) = 0 and hence converges to 0 as m̃ → ∞.
Because m tends to infinity, the asymptotic behavior of tλ depends on the rate of
convergence of Ṽ . Letting m̃ tend to infinity but not too fast prevents Ṽ from
converging to 0 too fast and makes tλ converge to 0 in probability.
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In summary, by choosing m̃ appropriately, the tλ statistic provides a standard
inferential tool if xt is I(1) or local to unity but converges to zero when xt is I(0).
Simulation results reported below suggest that it works well in practice.

4 Finite sample performance: simulation results

This section provides a modest simulation study to gage the small sample accuracy
of the proposed test. The results indicate reasonable (and often quite good) size and
power in sample sizes as small as 100.

For the simulations below we have in mind a test of yt orthogonal to Ix,t−1, the
information contained in past xt, as is often tested in practice using a regression of yt

on xt−1. Since size distortions rule out standard regression only for xt highly serially
correlated, it is this case that we focus on. In particular, we consider both first and
second order autoregressive models for xt:

xt = ρ0 + ρ1xt−1 + u2t, AR(1) (17)
xt = ρ0 + ρ1xt−1 + ρ2xt−2 + u2t. AR(2) (18)

The AR(1) model may also be written as a unit root/local to unity process by letting

ρ1 = 1 +
c

n
, c ≤ 0. (19)

Often the primary economic interest centers on the relation between yt and xt−1.
Under the null hypothesis yt is orthogonal to Ix,t−1 and often an efficient market
condition will also imply that yt is orthogonal to its own past. In the simulations,
the process for yt under the null hypothesis is therefore specified by

yt = dt + u1t, (20)

where the innovation u1t is discussed below and the deterministic component dt con-
sists of either an intercept or a trend:

dt = δ0 or (21)
dt = δ0 + δ1t. (22)

We employ two different specifications for yt under the alternative when investigating
finite sample power. First we consider the standard regression specification

yt = dt + βxt−1 + u1t. (23)

In the unit root/local to unity context, this may be referred to as a balanced alterna-
tive, since for β 6= 0, both yt and xt contain an equally persistent component. In fact,
when xt is a unit root the two are cointegrated. While this has traditionally been the
alternative on which the literature has focused, in certain applications there may be
an unappealing aspect to it. For example, given the choice, it is not clear that one
would want to model near unit root components in stock or exchange rate returns,

13



especially as this implies near I(2) components in the levels. Moreover, empirically,
returns show little serial correlation.7 Thus, it also seems reasonable to consider test
performance under unbalanced alternatives, in which xt is persistent but yt is not. A
simple alternative of this type, is given by a regression of yt on prefiltered xt as in

yt = dt + γ (1− ρ1L) xt−1 + u1t, (24)

where xt is given by the AR(1) specification in (17). This may be rewritten as

yt = dt + γu2,t−1 + u1t, (25)

in which form it also makes sense for more general models of xt.
Finally, since the orthogonality between yt and past xt (i.e. xt−j , j ≥ 1) does not

rule out contemporaneous covariance between yt and xt, we allow the two innovation
processes to be correlated under both the null and alternative. They are specified by

u =
(

u1t u2t

)′ = Σ1/2εt, εt ∼ N (0, I)

Σ = Σ1/2(Σ1/2)′ =
(

1 σ12

σ21 1

)
.

Our primary interest lies in the performance of the covariance-based t-statistic
tλ given in (16), which was estimated as follows. In the trend model (22), we first
demeaned ∆xt (thereby removing the trend in xt) and detrended yt prior to estima-
tion. In the intercept model (21) only yt was demeaned. Using this detrended (or
demeaned) data we then estimated the quasi-covariance λy,∆x defined in (6) using
the standard kernel covariance estimator λ̂y,∆x given in (10). Likewise, we estimated
its asymptotic variance V (see Lemma 2.2) using the kernel estimator Ṽ following
(15).

Both kernel estimation procedures require the choice of kernel and bandwidth.
The theoretical results allow considerable flexibility in the choice of the kernel k(x)
in the estimation of λy,∆x. However, to ensure conservative inference for stationary
xt, Lemma 3.5 mandates use of the Bartlett (? (?)) kernel for k̃(x) in the estimation
of V . We therefore used the Bartlett kernel for both estimators, setting

k (x) = k̃ (x) = 1− |x| for |x| ≤ 1

and zero otherwise. The bandwidth parameter m in the estimation of λy,∆x is chosen
to minimize the asymptotic mean squared error in the spirit of Andrews (91) using the
optimal bandwidth formula given in (11). Implementation of this formula in practice
requires the use of a fist-stage parametric approximation model. As in Andrews (91)
this is assumed only to provide a parsimonious approximation, not a correct specifica-
tion. Although separate univariate AR(1) models are typically employed, the optimal
bandwidth in this case depends on the behavior of the cross auto-correlations and ne-
cessitates a joint model. Including a moving average component also seems desirable

7Conceivably, for fixed ρ1 < 1 the persistent component may be “hidden” by noise from a second
component, a conjecture which is not easily confirmed or refuted.
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given possible over-differencing in ∆xt. A VARMA(1,1) was therefore used as the
first stage model for (yt,∆xt). Employing the asymptotically efficient three stage lin-
ear regression method of ? (?) allowed us to avoid non-linear optimization, keeping
estimation simple.8 The choice of the second bandwidth parameter m̃ used in estima-
tion of V is constrained by Lemma 3.5 which requires m̃ = o (m). While this offers
many possibilities, our choice of m̃ = m0.9 appeared sufficient to insure conservative
inference in the stationary case, with minimal cost in overall performance.

We also provide some comparisons to both the standard regression t-test and the
size-adjusted regression based approach, using the two stage Bonferroni-bounds test
of ? (?) (hereafter CES). All results below are based on 2000 replications, with
results reported for sample sizes of n = 100 and 400.

4.1 Size

We first simulate under the null hypothesis with yt given by (20) and xt given by the
AR(1) process (17) with ρ1 modelled local to unity as in (19). Results are provided
for various values of both c (and therefore ρ1) and σ12. In order to set a basis
of comparison, Table 1 shows empirical rejection rates for the standard two-sided
regression t-test (yt regressed on xt−1) with a nominal level of 5 percent. The rejection
rates are reasonable for small values of ρ1 and/or σ12 but grow highly unreliable as ρ1

approaches one and the residual correlation increases. The size problem is particularly
severe in the model with trend, for which rejection rates can exceed 50 percent.

By contrast, the rejection rates for the covariance based t-test tλ shown in Table 2
are fairly accurate over the whole range of parameter values in the both the intercept
and trend models. Furthermore, the test generally works well in sample sizes as small
as one hundred and becomes quite reliable for n = 400. Consistent with the theory,
the test can become slightly conservative for large (negative) values of c. However,
with only a few exceptions, the empirical rejection rates remain within two percentage
points of the nominal value. This good performance results from the fact that the
covariance estimator upon which the test statistic is based is asymptotically normal
even for ρ1 = 1, and as a result is not effected by the same unit root biases as the
regression based tests. Good performance may also be obtained by properly size
adjusting the regression based tests, as in the bounds tests of CES, together with the
finite sample adjustments detailed therein (see their Table 4).

The model above is the baseline model most often used to evaluate size distortions
in this context. However, our test is designed to work in a more general setting
and it is also of interest to investigate finite sample performance under higher order
autoregressive specifications for xt, such as the AR(2) model (18), with roots on or
close to the unit circle. Such a specification may be of practical relevance. Rudebusch
(1992, Table 2), finds that an AR(2) with ρ1 + ρ2 slightly below unity (with ρ1 > 1
and ρ2 < 0) provides a good fit for a number of macroeconomic and financial time

8We impose some constraints on the ARMA parameters to insure stationarity and invertibility
and also impose n0.9 as an upper bound on m.
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series. In order to roughly match these estimates we set

ρ1 = 1.5 and ρ2 = −0.5 +
c

n
(26)

for the same values of c considered above. Thus, like in the AR(1) model, xt is unit-
root nonstationary for c = 0 (ρ2 = −0.5) and stationary but strongly correlated for
c < 0 (ρ2 < −0.5). The rejection rates for the covariance based tests are shown in
Table 3. In the demeaned case, the results remain fairly accurate even for n = 100.
In the detrended case there is a tendency to over-reject in certain cases for n = 100
but this improves considerably for n = 400. By contrast, finite sample rejection rates
for least squares (available upon request) reach to above 50% and do not improve
with sample size for fixed c.

In summary the size of the proposed covariance-based test seems generally to be
reasonable, and is often quite accurate, even in sample sizes as small as n = 100. We
next consider finite sample power.

4.2 Power

We first consider the power of the covariance based test tλ against the balanced
regression alternative given in (23) with β 6= 0 and local to unity xt given by (17)
and (19). For c = 0 this alternative constitutes a cointegrating relation, while for
c << 0 the alternative is a stationary regression. The results are shown in Table 4.
As expected the power of the test is reasonable, increasing in both sample size and
distance from the null.9

One of the goals of the covariance based test was to simultaneously maintain
power against “unbalanced” alternatives which allow yt (e.g. returns) to be station-
ary, despite near or even exact unit root behavior in xt. This avoids, for example,
the requirement that stock prices or exchange rates contain an I(2) or near-I(2)
component under the alternative hypothesis when predictor variables are persistent.
More generally, it avoids the transformation of the orthogonality test into a unit
root/cointegration test as the root in xt approaches one. The pre-filtered regression
(25), together with (17), therefore provides a natural alternative in which to consider
finite sample power in that it holds yt stationary (but not over-differenced) regardless
of the persistence in xt. In doing so, it incorporates both (1) and (4) as special cases
for ρ1 = 0 and ρ1 = 1 respectively. A second advantage of this model is that the
population R2 for a regression of yt on (1−ρ1L)xt−1 remains constant across different
values of ρ1 and σ12, allowing for a clearer interpretation of rejection rates.

Finite sample power results for the covariance based tests under the unbalanced
alternative (24) with xt given by (17) and (19) are shown in Table 5. These rejection
rates appear quite reasonable, again increasing in both sample size and distance from
the null hypothesis. With a sample size of one hundred rejection rates become sizable

9To save space we show only the results for the detrended case. Results for the demeaned case
(available upon request) are generally similar, except that the power appears a bit weaker for c = −1
and c = −2.5.
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at an R2 of about 0.10. With 400 observations rejection rates exceed fifty percent
even for an R2 of 0.02.

Many existing tests are based on a size adjusted regression of the type shown
in (1). These procedures may be expected to have good power against regression
alternatives when xt is stationary (e.g. ρ1 << 1 in (17) and β 6= 0 in (23)) and
against cointegration or near-cointegration alternatives when xt has a root close or
equal to unity (e.g. ρ1 ≈ 1 in (17) and β 6= 0 in (23)). This is confirmed in Table 6,
which shows finite sample power for the CES Bonferroni test procedure against β 6= 0
in (23) with local to unity xt given by (17) and (19). As expected, the test exhibits
very good power against this alternative and is in this case more powerful than tλ.

On the other hand, it is not clear that tests based on (1) should have much
power against unbalanced alternatives, since the parameter restriction tested (i.e.
β1 = 0) is satisfied for all unbalanced relations. In fact, if the size adjustments were
made using the fully-modified approach (? (?)) one would expect a rejection rate
equal to size when c = 0 for any unbalanced alternative. Since most existing tests
are not fully modified, exact rejection rates are less clear, but may be examined by
simulation. Table 7 provides rejection rates for the CES Bonferonni test against the
same unbalanced alternative (and same DGP) used to assess the power of tλ in Table
5. Confirming the reasoning above, the regression based test does quite well for the
larger values of c when xt and yt behave in a stationary manner, but performance
deteriorates rapidly as xt approaches nonstationarity (small c) and the alternative
becomes unbalanced. Moreover, for small c the power does not seem to improve as
we move further into the alternative. Nor, for fixed values of c, do rejection rates
increase much as the sample size increases. For example, in the worst case for c = 0
and σ12 = 0.95, the power remains under 10 percent even for a population R2 of 0.5
and a sample size of four-hundred.

These simulations suggest that the covariance based orthogonality test may pro-
vide power against a wider range of alternatives than do existing size-adjusted regres-
sion based tests. In particular, they appear to provide reasonable power against both
balanced and unbalanced alternatives whereas regression based tests do particularly
well against the balanced alternatives for which they were designed, but provide lit-
tle reliable power against unbalanced alternatives.10 This added generality does of
course come at some real cost in terms of power against certain specific alternatives
and in this sense, the two testing approaches (regression and covariance based) are
properly seen as compliments rather than substitutes.

5 Application to tests of stock return predictability

We use the method developed above to test the orthogonality of stock returns to the
information in past short-term interest rates and dividend yields. Under the market

10While one may conceivably provide size adjustments for larger more flexible regressions, which
nest both alternatives, we are not aware of any existing results, and note also that size corrections,
particular those based on bounds procedures, may become increasingly complicated and conservative
as additional regressors are added.
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efficiency/constant risk premium hypothesis it should not be possible to systemat-
ically forecast stock returns. Early tests of this hypothesis found fairly substantial
predictability and thus had a large impact on the finance literature (see Campbell
and Shiller (1988a,b), ? (?), ? (?), ? (?)).

Although theoretical considerations may rule out exact unit root behavior in
dividend yields11 and interest rates, near unit roots in the local to unity sense can not
be ruled out a priori. Empirically, both series are highly persistent, with confidence
intervals on the largest root often containing one (? (?)). Moreover, although pre-
determined, there is no reason to believe that these regressors are fully exogenous. For
example, the stock price enters both the return and dividend yield. The combination
of near unit root behavior and a failure of strict exogeneity is a recipe for size problems
(? (?)). Consequently, beginning with ? (?) and ? (?) subsequent doubts have been
raised regarding the evidence for predictability on account of the strong persistence
in the regressors. Also of concern have been the accuracy of the standard errors in
long-horizon regressions (? (?), ? (?)).

A large literature has since developed using various techniques to evaluate and/or
correct for the size distortion in these regressions. These include resampling and
simulation methods,12 local to unity corrections along the lines of ? (?),13 and
finite sample or Bayesian approaches.14 A reading of the literature suggests some
consensus that size problems may have led the original regressions to overstate the
degree of predictability. However, the extent of this overstatement remains a subject
of ongoing debate, with some studies finding little or no predictability and other
finding significant predictability even after adjusting for size distortion.15

? (?) and ? (?) offer a second perspective. They argue that if returns are linearly
related to interest rates or dividend yields and if these show near unit-root behavior,
then one must expect a near-unit component to returns as well. Since persistent com-
ponents to stock returns are neither theoretically appealing nor empirically observed,
they take this as evidence against predictability. Our interpretation is somewhat dif-
ferent. Rather than viewing this as evidence against predictability, we view it instead
as a shortcoming of tests based on (1) that may in fact make predictability harder
to detect. Under the null hypothesis of risk-neutral market efficiency, the returns are
not only linearly unrelated to the level of past interest rates or dividend-yields, but
are fully orthogonal to all information in the past history of these regressors. This
includes first-differences, high-frequency components, and deviations of the regres-
sors from recent historical averages, all of which could contain potential predictive
value for a stationary return series, even if the regressor itself displays near unit root
behavior. By insisting on a balanced alternative, in which both sides of the equa-
tion share the same persistent component, a test based on (1), even if size-adjusted,

11Campbell and Shiller (1988a,b), but see ? (?) for an alternative viewpoint.
12See ? (?), ? (?), ? (?), ? (?), and ? (?).
13See ? (?), ? (?), ? (?), and ? (?).
14See ? (?) and ? (?).
15It is hard to categorize past work neatly into these two groups, but very roughly speaking ? (?),

? (?), ? (?), ? (?), and ? (?) fall into the first group, while ? (?), ? (?), ? (?), and ? (?) belong
to the second.
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may potentially overlook predictive content of this type, leaving us to consider only
alternatives that arguably become less attractive the more persistent the regressor.

In principle, the net impact of persistent regressors on predictability tests is there-
fore uncertain as they may lead regression tests either to overstate predictability as
a result of bias and size distortion or to understate predictability by restricting the
nature of the alternative. Since the covariance based tests address both issues simul-
taneously they may be useful in untangling these two effects.

Following Campbell et al. (1997, chapter 7), we use monthly returns from 1927
to 1994 and also consider separately the two subperiods: 1927-1951 and 1952-1994.16

Monthly log returns are calculated as rt+1 = ln ((Pt+1 + Dt+1)/Pt), where Pt and
Dt are the stock price and dividend from the CRSP value-weighed index of NYSE,
AMEX, and NASDAQ stocks. Real returns are formed by deflating nominal returns
by the CPI.17 The dividend-price ratio is calculated in the standard way as the sum
of dividends paid over the past twelve months, divided by the current level of the
index: dt − pt = ln ((Dt + . . . + Dt−11)/Pt)). We denote the one month treasury bill
rate by it.

Following the literature, we also consider longer-horizon returns of the form rt+1+
. . . + rt+k for k = 1, 3, 12, and 24. The relatively weak assumptions that we place on
the univariate behavior of yt, even under the null hypothesis, becomes an advantage
in the context of long-horizon approaches. Thus we require no explicit corrections
or extensions to handle the moving average components induced by the overlapping
returns.18 The test statistic tλ remains asymptotically standard normal, as both the
estimator and variance estimate adjust automatically to the properties of the data.
Nevertheless, the critique of ? (?)19 may still apply when the horizon is large relative
to sample size and for this reason we limit ourselves to a maximum horizon of two
years.20

Table 8 shows the standard results from separate regressions of the k period
return on interest rates and dividend yields using HAC standard errors for k > 1.
The interest rate regressions show only very modest evidence of predictability whereas
evidence using dividend yields is quite strong. Intuition for the potential bias and
size distortion in these regressions is provided by ? (?) who expresses the bias in β̂
in (1) in terms of the bias in ρ̂ in (2) and the residual covariance σ12 in (3):

E
[
β̂ − β

]
=

σ12

σ22
E [ρ̂− ρ] . (27)

The two ingredients needed to produce bias are thus persistent regressors and residual
serial correlation. Table 9 shows the ? (?) confidence interval on the largest root in

16We thank John Campbell for kindly providing us with this data.
17Similar results were also found replacing real by excess returns.
18? (?) and ? (?) extend the local to unity approach of CES to apply to long-horizon returns.

It may be more complicated to extend exact finite sample approaches (? (?), ? (?), Campbell and
Dufour, (95 & 97)) to the long-horizon case.

19See also ? (?).
20Following much of the literature, the tests are conducted separately at each horizon and must

be interpreted accordingly. A joint covariance based test is conceivable but well beyond the scope of
the current paper.
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xt together with the estimated residual correlation δ = corr(ε1t, ε2t). The two series
both show large roots, with confidence intervals on the largest root containing one, but
display quite different residual correlation properties. Estimates of δ are small for the
interest rate series, suggesting only modest size distortion, but are close to negative
one for the dividend price ratio. Intuitively, an increase in the current stock price
corresponds to a higher return but lower dividend yield. Since the AR(1) coefficient
estimate ρ̂1 is downward biased (? (?)), negative residual correlation implies positive
bias in β̂ (see 27). In other words, the bias runs in the same direction as the observed
alternative, leaving the results difficult to interpret.

Thus the preliminary analysis suggests a priori that size distortion likely plays a
central role in the case of the dividend price ratio, whereas the specification/power
issues associated with near unit roots may be of greater importance for the interest
rate regressions. Roughly speaking, this is what we find in Table 10 by applying our
covariance based method to test the orthogonality of the returns to the information
in past interest rates and dividend price ratios. The tests are conducted in the same
way as in the simulations and the reader is referred to Section 4 for details.21 The
table shows both the optimal bandwidth m∗ and the value of the test statistic tλ
based on this bandwidth. Standard normal critical values apply in all cases.

Our results tell two different tales: one for the dividend price ratio and a second
for the interest rate. In the case of the dividend price ratio the covariance-based tests
show far weaker evidence of predictability than do the standard regression based tests.
This agrees with the conclusion in several previous studies which size correct these
regressions (? (?), ? (?), ? (?), ? (?)) and based on the results shown it would be
difficult to make a strong case for predictability using the dividend yield. However,
before drawing too strong a conclusion, we note a few marginally significant t-statics
in additional robustness results (available upon request), as well as some disagreement
on this in the literature.22 As always, one must exercise caution in interpreting a
failure to reject. Nevertheless it seems safe to conclude that the evidence and degree
of predictability found in regressions using dividend yields is, at the least, overstated.

Thus, in the case of the dividend yield, the near unit root problem seems to arise
primarily in the context of size distortion. For the interest rate, the specification of
the alternative appears instead to be more important. This becomes evident upon
comparison of the covariance based tests in Table 10 with the regression tests in
Table 8. During the 1930s and 1940s the short rates were pegged by the Federal
Reserve23 and thus neither test shows evidence of predictability during the earlier
sample. However, during the later sample, while the regressions in Table 8 show
just a hint of predictability at short-horizons, the covariance based t statistics in
Table 10 show clear evidence of predictability at the three and, to a lesser extent,
the twelve month horizon.24 Moreover, this suggests predictability in the full sample

21The detrended version of the estimator is employed both because of its more general applicability
and because of relative power advantages revealed in simulation even in the absence of any trend.
Quite similar results (available upon request) were obtained using the demeaned version.

22See, for example, ? (?) and ? (?).
23See Campbell et al. (1997, p. 268).
24Additional results available upon request also show this significance to be quite robust.
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as well, an implication which is detected quite clearly at the three month horizon
by the covariance based test, but not at all by the regression t-test. The inability
of the regression tests to fully detect this predictability may be on account of their
restricting the alternative to a direct linear relation between returns (which show
little persistence) and highly persistent interest rates. We confirm this conjecture in
Table 11 by showing that a stronger relation in fact exists between stock returns and
an ad hoc stochastically detrended version of the interest rate, xt = it −

∑11
j=0 it−j ,

sometimes employed in this literature (see ? (?)).25 In conclusion, we find that
standard regression tests based on (1) overstate predictability using the dividend
yield due to size distortion, but understate the predictive content in interest rates by
restricting the nature of the alternative.

6 Conclusion

In regression-based orthogonality t and F tests it is often the case that the regressor is
highly serially correlated, with an autoregressive root close or possibly equal to unity.
This is well known to cause size problems in standard tests, due to the nonstandard
nature of the test statistic under both unit root and local to unity assumptions.
Simple two-stage procedures employing unit root tests together with size correction
can generally correct this problem in the I(1) case, but still produce size distortions
under local to unity assumptions.

Roots near unity may also artificially restrict the allowable alternatives hypothe-
sis, leading to poor size-adjusted power under reasonable alternatives. For example,
when the regressor has a unit root but the dependent variable does not, no linear
relation between the two can exist, so that the true regression coefficient is forcibly
equal to zero. A properly adjusted t-test based on this regression coefficient should
therefore generally support the null of orthogonality. However, such a regression im-
balance would not rule out a violation of orthogonality due to a linear relationship
between the dependent variable and stationary transformations of the regressor.

The covariance-based t-test proposed here produces good size and power against
reasonable alternatives regardless of whether the regressor is stationary, nonstation-
ary, or local to unity. This comes without resort to unit root pre-tests or other forms
of prior information. Furthermore, because nonstandard distributions are avoided,
size adjustments are unnecessary. Simulation results suggest reasonably good size
and power in samples as small as one hundred, making this a practical tool for use
in empirical applications.

7 Appendix: Proofs

In the following sections, C denotes a generic constant such that C ∈ (0,∞) unless
specified otherwise, and it may take different values in different places.

25This amounts to a gradual differencing over a 12 month period.
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7.1 Proof of (8)

From the definition of xt, we have

∆xt = ut +
c

n
xt−1 =

{
ut + c

n

∑t−2
k=0

(
1 + c

n

)k
ut−1−k, t ≥ 1,

0, t ≤ 0,
(28)

with
∑−1

k=0 ≡ 0. It follows that

cov(yt,∆xt−h) =

{
cov(yt, ut−h) + c

n

∑t−h−2
k=0

(
1 + c

n

)k cov(yt, ut−h−1−k), t ≥ h + 1,
0, t ≤ h.

Therefore,

λy,∆x = lim
t→∞

t−1∑
h=1

cov (yt,∆xt−h)

= lim
t→∞

t−1∑
h=1

cov(yt, ut−h) +
c

n
lim
t→∞

t−1∑
h=1

t−h−2∑
k=0

(
1 +

c

n

)k
cov(yt, ut−h−1−k).

The first term converges to
∑∞

h=1cov(yt, ut−h). The second term is bounded by (by
letting p = k + h)

c

n
lim
t→∞

t−1∑
h=1

t−h−2∑
k=0

|cov(yt, ut−h−1−k)| =
c

n
lim
t→∞

t−2∑
p=1

p−1∑
k=0

|cov(yt, ut−1−p)|

= O

 1
n

∞∑
p=1

p |cov(yt, ut−1−p)|

 = O

(
1
n

)
,

giving the stated result. �

7.2 Proof of Lemma 2.2

The proof closely follows that of Theorem 9 of Hannan (1970, p. 280). See Hannan
(1970) pp. 313-316 for details. Observe that

n

m
var
(
λ̂y,∆x

)
=

n

m

n−1∑
h′=1

n−1∑
h=1

k

(
h′

m

)
k

(
h

m

)
cov

(
Γ̂∆xy

(
h′
)
, Γ̂∆xy (h)

)
. (29)

Hannan (1970) p. 313 gives

cov
(
Γ̂∆xy

(
h′
)
, Γ̂∆xy (h)

)
(30)

= n−1
∞∑

u=−∞
{Γ∆x∆x (u) Γyy(u + h− h′) + Γ∆xy(u + h)Γy∆x(u− h′)

+k∆xy∆xy(0, h′, u, u + h)}φn(u, h′, h),
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where k∆xy∆xy(0, h′, u, u+h) is the fourth cumulant of zt (see Hannan, 1970, p.23 for
the definition) and φn(u, h′, h) is given by (the formula of φn(u, h′, h) for −n + h′ ≤
u ≤ 0 in Hannan has a typo)

φn(u, h′, h)


= 0, u ≤ −n + h′; = 1− h′−u

n , −n + h′ ≤ u ≤ 0;
= 1− h′/n, 0 ≤ u ≤ h− h′; = 1− h+u

n , h− h′ ≤ u ≤ n− h;
= 0, u ≥ n− h.

It follows that (29) is comprised of

1
m

n−1∑
h′=1

n−1∑
h=1

k

(
h′

m

)
k

(
h

m

) ∞∑
u=−∞

Γ∆x∆x (u) Γyy(u + h− h′)φn(u, h′, h) (31)

+
1
m

n−1∑
h′=1

n−1∑
h=1

k

(
h′

m

)
k

(
h

m

) ∞∑
u=−∞

Γ∆xy(u + h)Γy∆x(u− h′)φn(u, h′, h) (32)

+
1
m

n−1∑
h′=1

n−1∑
h=1

k

(
h′

m

)
k

(
h

m

) ∞∑
u=−∞

k∆xy∆xy(0, h′, u, u + h)φn(u, h′, h). (33)

Let v = h′ − h, and we can rewrite (31) as

n−2∑
v=−n+2

∞∑
u=−∞

Γ∆x∆x (u) Γyy(u− v)

{
1
m

∑
h

′φn(u, h + v, h)k
(

h + v

m

)
k

(
h

m

)}
,

(34)
where the summation

∑′
h runs only for {h : 1 ≤ h ≤ n− 1 and 1 ≤ h + v ≤ n− 1}.

The bracketed expression converges to
∫∞
0 k2 (x) dx by the argument in ? (?) pp.

314-15. Furthermore,

n−2∑
v=−n+2

∞∑
u=−∞

Γ∆x∆x (u) Γyy(u− v) → 4π2f∆x∆x (0) fyy (0) as n →∞,

and hence (31) converges to 4π2f∆x∆x (0) fyy (0)
∫∞
0 k2 (x) dx as n → ∞. Similarly,

(32) converges to 4π2f∆xy (0) fy∆x (0)
∫∞
0 k2 (x) dx = 4π2[fy∆x (0)]2

∫∞
0 k2 (x) dx. For

(33), from Hannan (1970, p. 211), the fourth cumulant of zt satisfies
∞∑

q=−∞

∞∑
r=−∞

∞∑
s=−∞

|kijkl(0, q, r, s)| < ∞, i, j, k, l = {y, ∆x}. (35)

Therefore, (33) is bounded by

C
1
m

∞∑
h′=−∞

∞∑
h=−∞

∞∑
u=−∞

∣∣k∆xy∆xy(0, h′, u, u + h)
∣∣ = O

(
1
m

)
,

and it follows that
n

m
var
(
λ̂y,∆x

)
→ 4π2

∫ ∞

0
k2 (x) dx

{
f∆x∆x (0) fyy (0) + [fy∆x (0)]2

}
, (36)

as n →∞, giving the stated result. �
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7.3 Proof of Theorem 2.6

In view of Lemma 2.1, it suffices to show that
√

n/m(λ̂y,∆x − Eλ̂y,∆x) →d N(0, V ).
First, observe that√

n

m

(
λ̂y,∆x − Eλ̂y,∆x

)
=

1√
m

n−1∑
h=1

k

(
h

m

)
1√
n

n∑
t=h+1

(yt∆xt−h − Eyt∆xt−h) = I + II, (37)

where

I =
1√
m

n−1∑
h=1

k

(
h

m

)
1√
n

n∑
t=1

(yt∆xt−h − Eyt∆xt−h) ,

II = − 1√
m

n−1∑
h=1

k

(
h

m

)
1√
n

h∑
t=1

(yt∆xt−h − Eyt∆xt−h) .

From Lemma 8.1 and Minkowski’s inequality, we have

E(II)2 = O

 1
mn

(
n−1∑
h=1

∣∣∣∣k( h

m

)∣∣∣∣h1/2

)2


= O

m2

n

(
n−1∑
h=1

∣∣∣∣k( h

m

)∣∣∣∣ ( h

m

)1/2 1
m

)2
 = O

(
m2

n

)
, (38)

because
∑n−1

h=1 |k (h/m)| (h/m)1/2 m−1 ∼
∫∞
0 |k(x)|x1/2dx < ∞. Lemma 8.3 gives

I =
n∑

t=1

Zt + Rn; Zt = n−1/2m−1/2
n−1∑
h=1

k

(
h

m

) ∞∑
r=1

ε′t−rf
hr(1)εt, (39)

where ER2
n = o(1) and fhr(1) is defined in the statement of Lemma 8.3. Therefore,√

n/m(λ̂y,∆x − Eλ̂y,∆x) →d N(0, V ) follows if we show

n∑
t=1

Zt →d N(0, V ), as n →∞. (40)

Let It = σ(εt, εt−1, . . .). Since Zt ∈ It and E(Zt|It−1) = 0, Zt is a martingale
difference sequence and (40) follows from martingale CLT ? (?) if

(i)
n∑

t=1

E(Z2
t |It−1) =

1
n

n∑
t=1

E(nZ2
t |It−1) →p V,

(ii)
n∑

t=1

E(Z2
t 1{|Zt| ≥ δ) →p 0 for all δ > 0.
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First we show (i). Observe that

E(nZ2
t |It−1) = m−1

n−1∑
h=1

n−1∑
u=1

k

(
h

m

)
k
( u

m

) ∞∑
r=1

∞∑
s=1

ε′t−rf
hr(1)(fus(1))′εt−s.

E(nZ2
t |It−1) is stationary and ergodic because εt is i.i.d. Furthermore, from the law

of iterated expectations we have

E
[
E(nZ2

t |It−1)
]

= nEZ2
t .

Therefore, (i) follows from the ergodic theorem if

nEZ2
t → V. (41)

From (37)-(39), we have√
n

m

(
λ̂y,∆x − Eλ̂y,∆x

)
=

n∑
t=1

Zt + II + Rn, E(II + Rn)2 = o(1),

or equivalently,

n∑
t=1

Zt =
√

n

m

(
λ̂y,∆x − Eλ̂y,∆x

)
− (II + Rn).

Taking the second moment of the both sides gives

E

(
n∑

t=1

Zt

)2

= E

(√
n

m

(
λ̂y,∆x − Eλ̂y,∆x

)
− (II + Rn)

)2

. (42)

The left hand side of (42) is
∑n

t=1 EZ2
t = nEZ2

t , since Zt is a stationary martingale
difference sequence. From

E

(√
n

m

(
λ̂y,∆x − Eλ̂y,∆x

))2

= var
(√

n

m

(
λ̂y,∆x − Eλ̂y,∆x

))
→ V,

E(II + Rn)2 = o(1), and Cauchy-Schwartz inequality, the right hand side of (42) is

var
(√

n

m

(
λ̂y,∆x − Eλ̂y,∆x

))2

+ o(1) → V.

Therefore, we establish (41) and (i). For (ii), the stationarity of Zt gives
∑n

t=1 E(Z2
t 1{|Zt| ≥

δ) = E(nZ2
t 1{|nZ2

t | ≥ nδ2), and E(nZ2
t 1{|nZ2

t | ≥ nδ2) → 0 follows from E(nZ2
t ) →V <

∞ and the dominated convergence theorem. Therefore, (40) and the stated result
follow. �
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7.4 Proof of Lemma 2.8

Some simple algebra gives

λ̂y,∆x =
n−1∑
h=1

k

(
h

m

)
1
n

n∑
t=h+1

yt∆xt−h

=
n−1∑
h=1

k

(
h

m

)
1
n

n∑
t=h+1

ytxt−h −
n−1∑
h=1

k

(
h

m

)
1
n

n∑
t=h+1

ytxt−h−1

=
n−1∑
h=1

k

(
h

m

)
1
n

n∑
t=h+1

ytxt−h −
n∑

p=2

k

(
p− 1

m

)
1
n

n∑
t=p

ytxt−p (p = h + 1)

= k

(
1
m

)
1
n

n∑
t=2

ytxt−1 +
n−1∑
h=2

[
k

(
h

m

)
− k

(
h− 1

m

)]
1
n

n∑
t=h+1

ytxt−h

−
n−1∑
p=2

k

(
p− 1

m

)
1
n

ypx0 − k

(
n− 1

m

)
1
n

ynx0

= T1n + T2n + T3n + T4n.

For T1n, we have (note that λy,∆x = Eytxt−1 = γxy(1))
√

n(Tn1 − λy,∆x) = k(1/m)
√

n(γ̂xy (1)− γxy(1)) + (k(1/m)− 1)
√

nEytxt−1.

From Theorem 14 of Hannan (1970, page 228) and k(1/m) → 1, we have

k(1/m)
√

n(γ̂xy (1)− γxy(1)) →d N(0,Ξ), as n →∞,

where Ξ is given by ? (?) in equation (3.3) on page 209 and line 5 on page 211. The
second term is O(n1/2m−q)Eytxt−1 from Assumption K.

For T2n, first observe that

E(T2n) =
n−1∑
h=2

[
k

(
h

m

)
− k

(
h− 1

m

)]
n− h

n
γxy(h).

ET2n = 0 when Eytxt−h = γxy(h) = 0 for all h ≥ 1. Otherwise, fix a small ε > 0 so
that

E(T2n) =
εm∑
h=2

[
k

(
h

m

)
− k

(
h− 1

m

)]
n− h

n
γxy(h)

+
n−1∑

h=εm+1

[
k

(
h

m

)
− k

(
h− 1

m

)]
n− h

n
γxy(h)

= B1n + B2n.

Since k(x) − 1 = O(xq) as x → 0 from Assumption K, choosing ε sufficiently small
gives B1n = O(

∑m
h=2(h/m)q|γxy(h)|) = O(m−q). Since k(x) is Lipschitz(1), B2n is
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bounded by

C
1
m

n−1∑
h=εm

|γxy(h)| ≤ C
1
m

(
1

εm

)q n−1∑
h=εm

hq|γxy(h)| = O(m−q).

Therefore, defining Bn = (k(1/m)− 1)
√

nEytxt−1 + ET2n gives the bias term Bn in
(13).

It remains to show that var(
√

nT2n) = o(1) and
√

n(T3n + T4n) = op(1). From ?
(?) (equation (3.3) on page 209 and line 5 on page 211), we have

cov
(√

nγ̂xy (h) ,
√

nγ̂xy

(
h′
))

=
n−1∑

u=−n+1

(
1− |u|

n

){
γxx (u) γyy(u + h− h′) + γxy(u + h)γyx(u− h′)

}
+

n−1∑
u=−n+1

(
1− |u|

n

)
kxyxy(0, h, u, u + h′).

Therefore, from the Lipschitz condition on k(·), the terms composing the variance of√
nT2n that do not involve kxyxy are bounded by

1
m2

m∑
h=1

m∑
h′=1

n−1∑
u=−n+1

∣∣γxx (u) γyy(u + h− h′) + γxy(u + h)γyx(u− h′)
∣∣

≤ 1
m

[ ∞∑
u=−∞

|γxx (u)|
∞∑

h=−∞

∣∣γyy(h)
∣∣+ ∞∑

u=−∞

∣∣γxy (u)
∣∣ ∞∑

h′=−∞

∣∣γyx(h′)
∣∣] = O(m−1).

The term in the variance of
√

nT2n that involves kxyxy is bounded by

1
m2

m∑
h=1

m∑
h′=1

n−1∑
u=−n+1

∣∣kxyxy(0, h, u, u + h′)
∣∣ = O(m−2),

because
∑∞

q=−∞
∑∞

r=−∞
∑∞

s=−∞ |kxyxy(0, q, r, s)| < ∞ from Hannan (1970, p. 211).
Finally,

√
n(T3n + T4n) = op(1) follows from

√
n(T3n + T4n) =

n∑
p=2

k

(
p− 1

m

)
1√
n

ypx0,

x0 = Op(1), and

E

 n∑
p=2

k

(
p− 1

m

)
1√
n

yp

2

=
1
n

n∑
p=2

k

(
p− 1

m

) n∑
r=2

k

(
r − 1
m

)
γyy(p− r)

≤ 1
n

n∑
p=2

∣∣∣∣k(p− 1
m

)∣∣∣∣ ∞∑
r=−∞

∣∣γyy(r)
∣∣ = O

(m

n

)
,

and the stated result follows. �
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7.5 Proof of Lemma 2.11

From (28), we have

1
n

n∑
t=h+1

yt∆xt−h =
1
n

n∑
t=h+1

ytut−h −
c

n2

n∑
t=h+1

t−h−2∑
k=0

(
1− c

n

)k
ytut−h−1−k.

The stated result follows if we show

Tn =
c

n2

n−1∑
h=1

k

(
h

m

) n∑
t=h+1

t−h−2∑
k=0

(
1− c

n

)k
ytut−h−1−k = Op

(m

n

)
.

Since (1− c
n) k = O(1), E|Tn| is bounded by

1
n2

n−1∑
h=1

k

(
h

m

) n∑
t=h+1

t−h−2∑
k=0

|Eytut−h−1−k|

≤ 1
n2

n−1∑
h=1

k

(
h

m

) n∑
t=h+1

∞∑
k=−∞

|Γuy(k)| = O

(
1
n

n−1∑
h=1

k

(
h

m

))
= O

(m

n

)
,

giving the stated result. �

7.6 Proof of Lemma 3.2

From equations (31), (32) and (34) in the proof of Lemma 2.2, Ṽ comprises of two
parts, the first of which is

n−2∑
v=−n+2

∞∑
u=−∞

k̃
( u

m̃

)
Γ̂∆x∆x(u)k̃

(
u− v

m̃

)
Γ̂yy(u− v)

{∫ ∞

0
k2 (x) dx + o (1)

}
.

Because k̃ (x) = 0 for |x| > 1 and m̃/n → 0, this simplifies to

em∑
u=−em k̃

( u

m̃

)
Γ̂∆x∆x (u)

em∑
u−v=−em k̃

(
u− v

m̃

)
Γ̂yy(u− v)

{∫ ∞

0
k2 (x) dx + o (1)

}
,

which converges to 4π2f∆x∆x (0) fyy (0)
∫∞
0 k2 (x) dx in probability by the standard

argument. A similar argument gives
∑n−2

v=−n+2

∑∞
u=−∞ k̃((u+h)/m̃)Γ̂∆xy(u+h)k̃((u−

h′)/m̃)Γ̂y∆x(u− h′) →p 4π2[fy∆x (0)]2
∫∞
0 k2 (x) dx, and the stated result follows. �

7.7 Proof of Lemma 3.5

The Lemma follows if we show that there exists η > 0 such that

Pr(Ṽ ≥ ηm̃−1) → 1, as n →∞. (43)
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From the arguments in the proof of Lemma 3.2, Ṽ is equal to em∑
u=−em k̃

( u

m̃

)
Γ̂∆x∆x (u)

em∑
v=−em k̃

( v

m̃

)
Γ̂yy(v)

{∫ ∞

0
k2 (x) dx + o (1)

}
(44)

+

 em∑
u=−em k̃

( u

m̃

)
Γ̂∆xy (u)

em∑
v=−em k̃

( v

m̃

)
Γ̂y∆x(v)

{∫ ∞

0
k2 (x) dx + o (1)

}
.(45)

and (45) is equal to em∑
u=−em k̃

( u

m̃

)
Γ̂y∆x (u)

2{∫ ∞

0
k2 (x) dx + o (1)

}
≥ 0 a.s.,

for sufficiently large n. For (44), because
∑em

v=−em k̃(v/m̃)Γ̂yy(v) →p fy(0) > 0 by the
standard argument, (43) follows if there exists ε > 0 such that

Pr

 em∑
v=−em k̃

( v

m̃

)
Γ̂∆x∆x(v) ≥ εm̃−1


= Pr

(
2π

∫ π

−π
Wem (λ) I∆x(λ)dλ ≥ εm̃−1

)
→ 1, as n →∞, (46)

where (Priestley, 1981, p. 439)

Wem(λ) =
1
2π

em∑
h=−em k̃

(
h

m̃

)
eiλh =

1
2πm̃

sin2(m̃λ/2)
sin2(λ/2)

≥ 0,

is the Fejer kernel. From Phillips (1999, Theorem 2.2 and Remark 2.4), we have

w∆x(λ) =
(
1− eiλ

)
wx(λ) + ei(n+1)λ(2πn)−1/2Xn.

It follows that ∫ π

−π
Wem (λ) I∆x(λ)dλ

=
∫ π

−π
Wem (λ) |1− eiλ|2Ix(λ)dλ (47)

+(2πn)−1/2Xn

∫ π

−π
Wem (λ) 2Re

[
(1− eiλ)wx(λ)e−i(n+1)λ

]
dλ (48)

+
∫ π

−π
Wem (λ) dλ(2πn)−1X2

n. (49)
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We can ignore (49) because it is nonnegative. For (48), it follows from the Cauchy-
Schwartz inequality and Lemma 8.7 (b) that∫ π

−π
Wem (λ) 2Re

[
(1− eiλ)wx(λ)e−i(n+1)λ

]
dλ

≤
(∫ π

−π
Wem (λ)

∣∣∣2Re
[
(1− eiλ)wx(λ)e−i(n+1)λ

]∣∣∣2 dλ

)1/2(∫ π

−π
Wem (λ) dλ

)1/2

= Op

((∫ π

−π
Wem (λ) λ2dλ

)1/2
)

= Op(m̃−1/2),

and (48)= Op(n−1/2m̃−1/2) = op(m̃−1) follows. Rewrite (47) as∫ π

−π
Wem (λ) |1− eiλ|2EIx(λ)dλ

+
∫ π

−π
Wem (λ) |1− eiλ|2 (Ix(λ)− EIx(λ)) dλ

= A1 + A2.

For A1, because fx(0) > 0 and fx(λ) is continuous in the neighborhood of the origin
since

∑
j||Bj || < ∞, there exist D ∈ (0, 1) and c1, c2 > 0 such that, sufficiently large

n (Hannan, Theorem 2, p. 248)

infλ∈[−Dπ,Dπ] |1− eiλ|2λ−2 ≥ c1, infλ∈[−Dπ,Dπ] EIx(λ) ≥ c2.

Therefore, in conjunction with Lemma 8.7 (a), we obtain

A1 ≥ c1c2

∫ Dπ

−Dπ
Wem (λ) λ2dλ ≥ c1c2κm̃−1, κ > 0.

For A2, it follows from Theorem 2 and Corollary 1 of Hannan (1970, pp. 248-9) and
their proof that {

supλ,λ′∈[−π,π]

∣∣cov (Ix(λ), Ix(λ′)
)∣∣ = O(1),

cov
(
Ix(λ), Ix(λ′)

)
= o(1), λ 6= λ′.

(50)

Therefore,

E(A2)2 =
∫ π

−π

∫ π

−π
Wem (λ) Wem (λ′) |1− eiλ|2|1− eiλ′ |2cov

(
Ix(λ), Ix(λ′)

)
dλdλ′

≤ C

∫ π

−π

∫ π

−π
Wem (λ) Wem (λ′)λ2(λ′)2

∣∣cov (Ix(λ), Ix(λ′)
)∣∣ dλdλ′

= o(m̃−2)

where the interchange of expectation and integration in the first line is valid by
(50) and Fubini’s Theorem, and the last line follows from Lemma 8.7 (b), (50),
and the dominated convergence theorem. Therefore, there exists η′ > 0 such that
(47)+(48)+(49)≥ η′m̃−1 with probability approaching one, and (46) and the stated
result follow. �
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8 Appendix B: technical results

8.1 Lemma

Under the assumptions of Theorem 2.6,

E

(
h∑

t=1

(yt∆xt−h − Eyt∆xt−h)

)2

= O(h), h = 1, . . . , n− 1.

8.2 Proof

Observe that

E

(
h∑

t=1

(yt∆xt−h − Eyt∆xt−h)

)2

= var

(
h∑

t=1

yt∆xt−h

)
≤ E

(
h∑

t=1

yt∆xt−h

)2

.

From the product theorem (e.g. Hannan, 1970, pp. 23, 209), E(
∑h

t=1 yt∆xt−h)2 is
equal to (recall Γy∆x(h) = Eyt∆xt+h)

E

(
h∑

t=1

yt∆xt−h

h∑
s=1

ys∆xs−h

)

=
h∑

t=1

h∑
s=1

Γy∆x(h)Γy∆x(h) +
h∑

t=1

h∑
s=1

Γyy(s− t)Γ∆x∆x(s− t)

+
h∑

t=1

h∑
s=1

Γy∆x(s− h− t)Γ∆xy(s− t + h) +
h∑

t=1

h∑
s=1

ky∆xy∆x(t, t− h, s, s− h)

= h2(Γy∆x(h))2 +
h−1∑

l=−h+1

(h− |l|)Γyy(l)Γ∆x∆x(l)

+
h−1∑

l=−h+1

(h− |l|)Γy∆x(l − h)Γ∆xy(l + h) +
h−1∑

l=−h+1

(h− |l|)ky∆xy∆x(0,−h, l, l − h).

The first term on the right is bounded by (sups s|Γy∆x(s)|)2 < ∞. The second and
third terms on the right are bounded by h sups ||Γ(s)||

∑∞
l=−∞ ||Γ(l)|| ≤ Ch. From

(35), the fourth term on the right is bounded by h
∑∞

l=−∞
∑∞

r=−∞ |ky∆xy∆x(0,−r, l, l − r)| ≤
Ch, and the stated result follows. �

8.3 Lemma

Under the assumptions of Theorem 2.6,

1√
m

n−1∑
h=1

k

(
h

m

)
1√
n

n∑
t=1

(yt∆xt−h − Eyt∆xt−h) =
n∑

t=1

Zt + Rn,
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where ER2
n = o(1) and

Zt = n−1/2m−1/2
n−1∑
h=1

k

(
h

m

) ∞∑
r=1

ε′t−rf
hr(1)εt,

fhr(1) =
∞∑

j=0

[
(A2

j+r−h)′A1
j + (A1

j+r)
′A2

j−h

]
,

and A1
j and A2

j denote the first and second row of Aj , respectively.

8.4 Proof

The proof follows from an argument similar to Remark 3.9 (i) of Phillips and Solo
(1992, p. 980). First, we find an alternate expression of

∑n
t=1 yt∆xt−h so that it can

be approximated by a martingale. Express yt and ∆xt as(
yt

∆xt

)
=
(

A1(L)εt

A2(L)εt

)
=
( ∑∞

j=0 A1
jεt−j∑∞

j=0 A2
jεt−j

)
,

where A1
j and A2

j are the first and second row of Aj , respectively. Observe that

yt∆xt−h = A1(L)εtA
2(L)εt−h

=
∞∑

j=0

A1
jεt−j

∞∑
k=0

A2
kεt−h−k

=
∞∑

j=0

A1
jεt−jA

2
j−hεt−j +

∞∑
j=0

A1
jεt−j

∞∑
s=h, 6=j

A2
s−hεt−s, (s = h + k).

Since A2
j−hεt−j is a scalar, the first term on the right is

tr

 ∞∑
j=0

(A2
j−h)′A1

jεt−jε
′
t−j

 = tr
(
fh0(L)εtε

′
t

)
, fh0(L) =

∞∑
j=0

(A2
j−h)′A1

jL
j =

∞∑
j=0

fh0
j Lj .

The second term on the right is, since A2
s ≡ 0 for s < 0,

∞∑
j=0

A1
jεt−j

∞∑
s=0, 6=j

A2
s−hεt−s

= tr

 ∞∑
j=0

∞∑
s=0, 6=j

(A2
s−h)′A1

jεt−jε
′
t−s
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= tr

 ∞∑
j=0

∞∑
s=j+1

(A2
s−h)′A1

jεt−jε
′
t−s

+ tr

 ∞∑
j=0

j−1∑
s=0

(A2
s−h)′A1

jεt−jε
′
t−s


= tr

 ∞∑
j=0

∞∑
s=j+1

(A2
s−h)′A1

jεt−jε
′
t−s

+ tr

 ∞∑
s=0

∞∑
j=s+1

(A1
j )
′A2

s−hεt−sε
′
t−j


= tr

 ∞∑
j=0

∞∑
s=j+1

[
(A2

s−h)′A1
j + (A1

s)
′A2

j−h

]
εt−jε

′
t−s


= tr

 ∞∑
j=0

∞∑
r=1

[
(A2

j+r−h)′A1
j + (A1

j+r)
′A2

j−h

]
εt−jε

′
t−j−r

 (r = s− j)

= tr

( ∞∑
r=1

fhr(L)εtε
′
t−r

)
,

where

fhr(L) =
∞∑

j=0

fhr
j Lj , fhr

j = (A2
j+r−h)′A1

j + (A1
j+r)

′A2
j−h.

Therefore, we may express yt∆xt−h as

yt∆xt−h = tr

(
fh0(L)εtε

′
t +

∞∑
r=1

fhr(L)εtε
′
t−r

)
.

Apply the B/N decomposition ? (?) to fhr(L) and rewrite it as

fhr(L) = fhr(1)− (1− L)f̃hr(L), r = 0, 1, . . . ,

with

f̃hr(L) =
∞∑

j=0

f̃hr
j Lj , f̃hr

j =
∞∑

s=j+1

fhr
s =

∞∑
s=j+1

[
(A2

s+r−h)′A1
s + (A1

s+r)
′A2

s−h

]
. (51)

It follows that

1√
n

n∑
t=1

yt∆xt−h = tr

(
fh0(1)

1√
n

n∑
t=1

εtε
′
t +

∞∑
r=1

fhr(1)
1√
n

n∑
t=1

εtε
′
t−r

)
+ rnh, (52)

where

rnh =
1√
n

tr
(
f̃h0(L)(ε0ε

′
0 − εnε′n)

)
+

1√
n

tr

( ∞∑
r=1

f̃hr(L)(ε0ε
′
−r − εnε′n−r)

)
.

From Lemma 8.5, we have

E|rnh|2 ≤ Cn−1, h = 1, . . . , n− 1. (53)
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Furthermore, observe that

Eyt∆xt−h = E

 ∞∑
j=0

∞∑
k=0

A1
jεt−jε

′
t−k−h(A2

k)
′


=

∞∑
j=0

A1
j (A

2
j−h)′ = tr

 ∞∑
j=0

(A2
j−h)′A1

j

 = tr
(
fh0(1)

)
.

In conjunction with (52), it follows that

1√
n

n∑
t=1

(yt∆xt−h − Eyt∆xt−h)

= tr

(
fh0(1)

1√
n

n∑
t=1

(
εtε

′
t − I2

)
+

∞∑
r=1

fhr(1)
1√
n

n∑
t=1

εtε
′
t−r

)
+ rnh,

and hence

1√
m

m∑
h=1

k

(
h

m

)
1√
n

n∑
t=1

(yt∆xt−h − Eyt∆xt−h) = I + II + III,

where III = m−1/2
∑m

h=1 k (h/m) rnh and

I =
1√
m

m∑
h=1

k

(
h

m

)
tr

(
fh0(1)

1√
n

n∑
t=1

(
εtε

′
t − I2

))

= tr

(
1√
n

n∑
t=1

(
εtε

′
t − I2

) 1√
m

m∑
h=1

k

(
h

m

)
fh0(1)

)

II =
1√
m

m∑
h=1

k

(
h

m

)
tr

( ∞∑
r=1

fhr(1)
1√
n

n∑
t=1

εtε
′
t−r

)

=
n∑

t=1

Zt; Zt = n−1/2m−1/2
n−1∑
h=1

k

(
h

m

) ∞∑
r=1

ε′t−rf
hr(1)εt.

From (53) and Minkowski’s inequality, we have E(III)2 = O(m−1(
∑m

h=1 n−1/2)2) =
O(mn−1). For I, first observe that, since Aj ≡ 0 for j < 0,

||fh0(1)|| =

∥∥∥∥∥∥
∞∑

j=0

(A2
j−h)′A1

j

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑

j=h

(A2
j−h)′A1

j

∥∥∥∥∥∥
≤ sup

s
||As||

∞∑
j=h

||Aj || ≤ Ch−δ
∞∑

j=h

jδ||Aj || ≤ Ch−δ, h = 1, . . . , n− 1.

Therefore, ||m−1/2
∑m

h=1 k(h/m)fh0(1)|| ≤ Cm−1/2, and it follows that E(I)2 =
O(m−1), giving the stated result. �
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8.5 Lemma

Under the assumptions of Theorem 2.6, for t = 0, n and h = 1, . . . , n− 1,

(a) E
(
tr
(
f̃h0(L)εtε

′
t

))2
< ∞, (b) E

(
tr

( ∞∑
r=1

f̃hr(L)εtε
′
t−r

))2

< ∞.

8.6 Proof

We need to show the result only for t = n, because εt is i.i.d. For part (a), since
tr(f̃h0(L)εnε′n) =

∑∞
j=0tr(f̃

h0
j εn−jε

′
n−j) =

∑∞
j=0 ε′n−j f̃

h0
j εn−j , we have

E
(
tr
(
f̃h0(L)εnε′n

))2
=

∞∑
j=0

∞∑
k=0

E
(
ε′n−j f̃

h0
j εn−jε

′
n−kf̃

h0
k εn−k

)

≤ C

 ∞∑
j=0

||f̃h0
j ||

2

+ C
∞∑

j=0

||f̃h0
j ||2.

This is finite because, uniformly in h = 1, . . . , n− 1,

||f̃h0
j || =

∥∥∥∥∥∥
∞∑

s=j+1

fh0
s

∥∥∥∥∥∥ ≤
∞∑

s=j+1

||(A2
s−h)′A1

s|| ≤ sup
r
||Ar||(j+1)−δ

∞∑
s=j+1

sδ||As|| ≤ Cj−δ,

and δ > 1.
For part (b), rewrite tr(

∑∞
r=1 f̃hr(L)εnε′n−r) as

∞∑
r=1

∞∑
j=0

tr
(
f̃hr

j εn−jε
′
n−r−j

)
=

∞∑
r=1

∞∑
j=0

ε′n−j

(
f̃hr

j

)′
εn−r−j =

∞∑
j=0

ξh
n−j ,

where ξh
n−j = ε′n−j

∑∞
r=1(f̃

hr
j )′εn−r−j . Since ξh

n−j ∈ In−j = σ(εn−j , εn−j−1, . . .) and
E(ξh

n−j |In−j−1) = 0, it follows that

E

 ∞∑
j=0

ξh
n−j

2

=
∞∑

j=0

E(ξh
n−j)

2 ≤ C
∞∑

j=0

∞∑
r=1

||f̃hr
j ||2 ≤ C

(
sup
j,r

||f̃hr
j ||

) ∞∑
j=0

∞∑
r=1

||f̃hr
j ||.

(54)
Now

||f̃hr
j || =

∥∥∥∥∥∥
∞∑

s=j+1

fhr
s

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑

s=j+1

(A2
s+r−h)′A1

s +
∞∑

s=j+1

(A1
s+r)

′A2
s−h

∥∥∥∥∥∥ .

Hence suph supj,r ||f̃hr
j || ≤ supp ||Ap||

∑∞
s=0 ||As|| < ∞. Furthermore, uniformly in

h = 1, . . . , n− 1,
∞∑

j=0

∞∑
r=1

||f̃hr
j || ≤

∞∑
j=0

∞∑
r=1

∞∑
s=j+1

||As+r−h||||As||+
∞∑

j=0

∞∑
r=1

∞∑
s=j+1

||As+r||||As−h||

≤
∞∑

j=0

∞∑
s=j+1

||As||
∞∑

r=0

||Ar||+
∞∑

j=0

∞∑
s=j+1

||As−h||
∞∑

r=0

||Ar||. (55)
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The first term in (55) is bounded by
∑∞

j=0

∑∞
s=j+1 ||As|| =

∑∞
j=1 j||Aj || < ∞. The

second term in (55) is bounded by

∞∑
j=0

∞∑
p=max{j−h+1,0}

||Ap|| =
∞∑

j=h+1

∞∑
p=j−h+1

||Ap|| =
∞∑

s=1

∞∑
p=s+1

||Ap|| =
∞∑

s=1

s||As|| < ∞.

Therefore, the right hand side of (54) is finite, and part (b) follows. �

8.7 Lemma

For Wem (λ) = (2πm̃)−1[sin2(m̃λ/2)/ sin2(λ/2)], there exist D ∈ (0, 1) and κ > 0 such
that

(a)
∫ Dπ

−Dπ
Wem (λ) λ2dλ ≥ κm̃−1, (b) supλ∈[−π,π] |Wem (λ) |λ2dλ ≤ Cm̃−1.

8.8 Proof

We can find a constant c ∈ (0, 1) such that, for λ ∈ [−π, π],

c(λ/2)2 ≤ sin2(λ/2) ≤ (λ/2)2. (56)

Therefore, there exists κ > 0 such that∫ Dπ

−Dπ
Wem (λ) λ2dλ ≥ Cm̃−1

∫ Dπ

−Dπ
sin2(m̃λ/2)dλ

= 2Cm̃−2

∫ emDπ/2

−emDπ/2
sin2(θ)dθ ≥ 2Cm̃−2[m̃D]

∫ π/2

−π/2
sin2(θ)dθ

∼ 2CDm̃−1

∫ π/2

−π/2
sin2(θ)dθ ≥ κm̃−1,

giving part (a). Part (b) follows from (56) and | sinx| ≤ 1. �
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Table 1: Regression t-statistic: Finite Sample size (local to unity)

c ρ1 + ρ2 σ12 =0 0.25 0.50 0.75 0.95 σ12 =0 0.25 0.50 0.75 0.95
Demeaned Case (n = 100) Detrended Case (n = 100)

0 1.000 0.054 0.062 0.109 0.204 0.267 0.052 0.087 0.177 0.351 0.549
-1 0.990 0.057 0.071 0.104 0.161 0.220 0.059 0.087 0.159 0.300 0.463
-5 0.950 0.056 0.057 0.068 0.087 0.114 0.047 0.077 0.116 0.166 0.237
-10 0.900 0.054 0.052 0.066 0.078 0.080 0.057 0.058 0.083 0.117 0.162
-20 0.800 0.060 0.060 0.043 0.058 0.065 0.053 0.060 0.064 0.082 0.106

Demeaned Case (n = 400) Detrended Case (n = 400)
0 1.000 0.052 0.070 0.109 0.187 0.270 0.046 0.087 0.172 0.367 0.565
-1 0.998 0.050 0.059 0.087 0.158 0.216 0.052 0.080 0.145 0.281 0.466
-5 0.988 0.049 0.049 0.066 0.092 0.126 0.058 0.063 0.093 0.165 0.247
-10 0.975 0.049 0.051 0.062 0.073 0.088 0.055 0.066 0.087 0.117 0.158
-20 0.950 0.057 0.056 0.065 0.060 0.072 0.052 0.054 0.066 0.088 0.093

The table shows rejection rates under the null hypothesis for a nominal 5% test using tβ . yt is given by (20) and
xt by (17) with ρ1 given by (19). Details are given in the text.

Table 2: Covariance based t-statistic: Finite Sample size (local to unity)

c ρ1 + ρ2 σ12 =0 0.25 0.50 0.75 0.95 σ12 =0 0.25 0.50 0.75 0.95
Demeaned Case (n = 100) Detrended Case (n = 100)

0 1.000 0.034 0.033 0.042 0.052 0.067 0.037 0.037 0.055 0.067 0.087
-1 0.990 0.032 0.027 0.033 0.037 0.042 0.036 0.036 0.049 0.052 0.079
-5 0.950 0.033 0.032 0.037 0.034 0.040 0.032 0.041 0.040 0.050 0.061
-10 0.900 0.036 0.030 0.040 0.036 0.037 0.030 0.033 0.041 0.042 0.051
-20 0.800 0.028 0.026 0.032 0.036 0.033 0.026 0.028 0.033 0.033 0.043

Demeaned Case (n = 400) Detrended Case (n = 400)
0 1.000 0.034 0.036 0.036 0.044 0.048 0.041 0.038 0.036 0.052 0.053
-1 0.998 0.034 0.034 0.044 0.047 0.050 0.038 0.036 0.039 0.050 0.054
-5 0.988 0.037 0.033 0.046 0.042 0.044 0.031 0.034 0.041 0.045 0.053
-10 0.975 0.041 0.032 0.044 0.043 0.038 0.037 0.035 0.034 0.049 0.048
-20 0.950 0.035 0.036 0.036 0.041 0.032 0.032 0.033 0.042 0.042 0.035

The table shows rejection rates under the null hypothesis for a nominal 5% test using tλ. yt is given by (20) and
xt by (17) with ρ1 given by (19). Details are given in the text.
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Table 3: Covariance based t-statistic: Finite Sample size (AR(2))

c ρ1 + ρ2 σ12 =0 0.25 0.50 0.75 0.95 σ12 =0 0.25 0.50 0.75 0.95
Demeaned Case (n = 100) Detrended Case (n = 100)

0 1.000 0.046 0.050 0.054 0.048 0.061 0.051 0.061 0.072 0.073 0.092
-1 0.990 0.044 0.060 0.067 0.060 0.066 0.061 0.046 0.062 0.060 0.089
-5 0.950 0.053 0.048 0.060 0.060 0.056 0.042 0.061 0.054 0.056 0.057
-10 0.900 0.051 0.056 0.058 0.056 0.043 0.060 0.057 0.057 0.074 0.045
-20 0.800 0.047 0.060 0.051 0.060 0.052 0.053 0.058 0.067 0.064 0.065

Demeaned Case (n = 400) Detrended Case (n = 400)
0 1.000 0.064 0.058 0.059 0.059 0.061 0.050 0.058 0.057 0.065 0.068
-1 0.998 0.056 0.053 0.056 0.060 0.070 0.060 0.061 0.059 0.063 0.064
-5 0.988 0.067 0.060 0.052 0.055 0.055 0.058 0.060 0.062 0.064 0.059
-10 0.975 0.062 0.056 0.052 0.062 0.060 0.054 0.057 0.065 0.052 0.060
-20 0.950 0.052 0.063 0.064 0.058 0.056 0.074 0.058 0.054 0.060 0.065

The table shows rejection rates under the null hypothesis for a nominal 5% test using tλ. yt is given by (20) and
xt by (18) with ρ1 and ρ2 given by (26). Details are given in the text.
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Table 4: Covariance based t-statistic: Finite Sample power (yt = βxt−1 + ε1,t)

c σ12 β =0.15 0.20 0.35 0.50 0.75 1.00
A. Detrended Case (n = 100)

c = 0 0.000 0.115 0.226 0.745 0.975 1.000 1.000
(ρ1 = 1.000) 0.500 0.105 0.202 0.684 0.961 1.000 1.000

0.950 0.071 0.153 0.656 0.968 1.000 1.000
c = −1 0.000 0.210 0.349 0.636 0.781 0.805 0.831
(ρ1 = 0.990) 0.500 0.135 0.268 0.564 0.671 0.759 0.760

0.950 0.060 0.118 0.341 0.536 0.678 0.730
c = −2.5 0.000 0.207 0.339 0.667 0.790 0.843 0.854
(ρ1 = 0.975) 0.500 0.150 0.252 0.586 0.714 0.792 0.817

0.950 0.074 0.124 0.383 0.573 0.739 0.780
c = −7.5 0.000 0.226 0.349 0.750 0.910 0.936 0.948
(ρ1 = 0.925) 0.500 0.171 0.267 0.671 0.837 0.914 0.915

0.950 0.077 0.144 0.439 0.661 0.850 0.887
c = −20 0.000 0.220 0.365 0.794 0.962 0.997 0.999
(ρ1 = 0.800) 0.500 0.138 0.266 0.690 0.922 0.988 0.993

0.950 0.049 0.122 0.477 0.809 0.968 0.983
B. Detrended Case (n = 400)

c = 0 0.000 0.594 0.881 1.000 1.000 1.000 1.000
(ρ1 = 1.000) 0.500 0.559 0.863 1.000 1.000 1.000 1.000

0.950 0.539 0.863 1.000 1.000 1.000 1.000
c = −1 0.000 0.747 0.824 0.850 0.857 0.853 0.837
(ρ1 = 0.998) 0.500 0.730 0.800 0.846 0.831 0.849 0.836

0.950 0.700 0.775 0.816 0.840 0.842 0.831
c = −2.5 0.000 0.774 0.867 0.896 0.884 0.895 0.887
(ρ1 = 0.994) 0.500 0.754 0.828 0.864 0.879 0.882 0.870

0.950 0.735 0.811 0.831 0.860 0.879 0.871
c = −7.5 0.000 0.841 0.949 0.968 0.965 0.970 0.976
(ρ1 = 0.981) 0.500 0.843 0.939 0.964 0.963 0.971 0.976

0.950 0.822 0.905 0.948 0.959 0.965 0.962
c = −20 0.000 0.831 0.966 0.998 0.999 0.999 0.998
ρ1 = 0.950) 0.500 0.859 0.976 0.996 0.997 0.998 0.997

0.950 0.864 0.959 0.992 0.991 1.000 1.000
The table shows rejection rates under the alternative hypothesis for a nominal 5%
test using tλ. yt is given by (23) and xt by (17) with ρ1 given by (19). Details are
given in the text.
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Table 5: Covariance based t-statistic: Finite Sample power (yt = β(1−ρL)xt−1+ε1,t)

c σ12 β = 0.15 0.20 0.35 0.50 0.75 1.00
(ρ1) r2 =0.02 0.04 0.11 0.20 0.36 0.50

A. Detrended Case (n = 100)
c = 0 0.000 0.161 0.275 0.689 0.923 0.999 1.000
(ρ1 = 1.000) 0.500 0.127 0.225 0.671 0.923 0.999 1.000

0.950 0.109 0.191 0.634 0.913 0.998 1.000
c = −1 0.000 0.173 0.263 0.696 0.931 0.999 1.000
(ρ1 = 0.990) 0.500 0.136 0.248 0.649 0.926 0.999 1.000

0.950 0.106 0.204 0.640 0.921 0.998 1.000
c = −2.5 0.000 0.164 0.271 0.703 0.936 0.999 1.000
(ρ1 = 0.975) 0.500 0.139 0.262 0.666 0.928 1.000 1.000

0.950 0.128 0.208 0.642 0.932 1.000 1.000
c = −7.5 0.000 0.166 0.305 0.722 0.944 1.000 1.000
(ρ1 = 0.925) 0.500 0.158 0.260 0.673 0.927 0.999 1.000

0.950 0.074 0.168 0.639 0.931 1.000 0.999
c = −20 0.000 0.159 0.242 0.691 0.939 1.000 1.000
(ρ1 = 0.800) 0.500 0.106 0.197 0.608 0.922 0.998 1.000

0.950 0.025 0.074 0.442 0.870 0.998 1.000
B. Detrended Case (n = 400)

c = 0 0.000 0.584 0.834 1.000 1.000 1.000 1.000
(ρ1 = 1.000) 0.500 0.569 0.830 1.000 1.000 1.000 1.000

0.950 0.581 0.845 0.998 1.000 1.000 1.000
c = −1 0.000 0.602 0.824 0.998 1.000 1.000 1.000
(ρ1 = 0.998) 0.500 0.608 0.852 1.000 1.000 1.000 1.000

0.950 0.606 0.832 0.998 1.000 1.000 1.000
c = −2.5 0.000 0.609 0.842 1.000 1.000 1.000 1.000
(ρ1 = 0.994) 0.500 0.592 0.825 0.999 1.000 1.000 1.000

0.950 0.598 0.843 0.999 1.000 1.000 1.000
c = −7.5 0.000 0.583 0.832 0.999 1.000 1.000 1.000
(ρ1 = 0.981) 0.500 0.597 0.849 0.999 1.000 1.000 1.000

0.950 0.597 0.833 0.999 1.000 1.000 1.000
c = −20 0.000 0.582 0.836 0.998 1.000 1.000 1.000
(ρ1 = 0.950) 0.500 0.549 0.815 0.999 1.000 1.000 1.000

0.950 0.490 0.771 0.999 1.000 1.000 1.000
The table shows rejection rates under the alternative hypothesis for a nominal 5%
test using tλ. yt is given by (24) and xt by (17) with ρ1 given by (19). Details are
given in the text.
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Table 6: CES Bonferroni Method: Finite Sample power (yt = βxt−1 + ε1,t)

c σ12 β =0.15 0.20 0.35 0.50 0.75 1.00
A. Demeaned Case (n = 100)

c = 0 0.000 0.327 0.503 0.938 0.999 1.000 1.000
(ρ1 = 1.000) 0.500 0.387 0.600 0.945 0.999 1.000 1.000

0.950 0.404 0.587 0.963 1.000 1.000 1.000
c = −1 0.000 0.955 0.989 1.000 1.000 1.000 1.000
(ρ1 = 0.990) 0.500 0.913 0.967 1.000 1.000 1.000 1.000

0.950 0.848 0.928 0.998 1.000 1.000 1.000
c = −2.5 0.000 0.929 0.988 1.000 1.000 1.000 1.000
(ρ1 = 0.975) 0.500 0.883 0.974 1.000 1.000 1.000 1.000

0.950 0.829 0.928 0.996 1.000 1.000 1.000
c = −7.5 0.000 0.863 0.966 1.000 1.000 1.000 1.000
(ρ1 = 0.925) 0.500 0.814 0.936 1.000 1.000 1.000 1.000

0.950 0.763 0.893 0.997 1.000 1.000 1.000
c = −20 0.000 0.628 0.853 0.999 1.000 1.000 1.000
(ρ1 = 0.800) 0.500 0.636 0.816 0.994 1.000 1.000 1.000

0.950 0.598 0.807 0.987 1.000 1.000 1.000
B. Demeaned Case (n = 400)

c = 0 0.000 0.840 0.984 1.000 1.000 1.000 1.000
(ρ1 = 1.000) 0.500 0.882 0.988 1.000 1.000 1.000 1.000

0.950 0.891 0.990 1.000 1.000 1.000 1.000
c = −1 0.000 1.000 1.000 1.000 1.000 1.000 1.000
(ρ1 = 0.998) 0.500 1.000 1.000 1.000 1.000 1.000 1.000

0.950 1.000 1.000 1.000 1.000 1.000 1.000
c = −2.5 0.000 1.000 1.000 1.000 1.000 1.000 1.000
(ρ1 = 0.994) 0.500 1.000 1.000 1.000 1.000 1.000 1.000

0.950 1.000 1.000 1.000 1.000 1.000 1.000
c = −7.5 0.000 1.000 1.000 1.000 1.000 1.000 1.000
(ρ1 = 0.981) 0.500 1.000 1.000 1.000 1.000 1.000 1.000

0.950 1.000 1.000 1.000 1.000 1.000 1.000
c = −20 0.000 1.000 1.000 1.000 1.000 1.000 1.000
(ρ1 = 0.950) 0.500 1.000 1.000 1.000 1.000 1.000 1.000

0.950 1.000 1.000 1.000 1.000 1.000 1.000
The table shows rejection rates under the alternative hypothesis for a nominal 5%
test using the CES Bonferroni test. yt is given by (23) and xt by (17) with ρ1 given
by (19). Details are given in the text.
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Table 7: CES Bonferroni Method: Finite Sample power (yt = β(1− ρL)xt−1 + ε1,t)

c σ12 β = 0.15 0.20 0.35 0.50 0.75 1.00
(ρ1) r2 =0.02 0.04 0.11 0.20 0.36 0.50

A. Demeaned Case (n = 100)
c = 0 0.000 0.075 0.087 0.138 0.213 0.291 0.369
(ρ1 = 1.000) 0.500 0.039 0.042 0.067 0.098 0.137 0.201

0.950 0.034 0.041 0.035 0.051 0.071 0.099
c = −1 0.000 0.085 0.090 0.178 0.270 0.386 0.519
(ρ1 = 0.990) 0.500 0.047 0.059 0.081 0.137 0.238 0.343

0.950 0.032 0.025 0.043 0.062 0.119 0.180
c = −2.5 0.000 0.078 0.137 0.214 0.334 0.537 0.696
(ρ1 = 0.975) 0.500 0.071 0.072 0.149 0.227 0.376 0.550

0.950 0.038 0.044 0.074 0.149 0.249 0.362
c = −7.5 0.000 0.101 0.156 0.343 0.544 0.800 0.934
(ρ1 = 0.925) 0.500 0.103 0.138 0.308 0.461 0.755 0.911

0.950 0.082 0.113 0.235 0.381 0.653 0.857
c = −20 0.000 0.146 0.247 0.580 0.837 0.985 0.999
(ρ1 = 0.800) 0.500 0.150 0.257 0.543 0.839 0.987 1.000

0.950 0.146 0.234 0.519 0.787 0.994 1.000
B. Demeaned Case (n = 400)

c = 0 0.000 0.074 0.088 0.150 0.197 0.307 0.387
(ρ1 = 1.0) 0.500 0.038 0.038 0.066 0.089 0.141 0.218

0.950 0.034 0.038 0.030 0.044 0.060 0.098
c = −1 0.000 0.073 0.096 0.184 0.299 0.399 0.534
(ρ1 = 0.998) 0.500 0.049 0.050 0.084 0.137 0.247 0.345

0.950 0.029 0.026 0.040 0.073 0.133 0.193
c = −2.5 0.000 0.067 0.115 0.240 0.362 0.577 0.738
(ρ1 = 0.994) 0.500 0.058 0.073 0.141 0.232 0.420 0.568

0.950 0.040 0.048 0.098 0.145 0.257 0.393
c = −7.5 0.000 0.123 0.162 0.381 0.617 0.858 0.964
(ρ1 = 0.981) 0.500 0.088 0.119 0.294 0.516 0.784 0.927

0.950 0.097 0.103 0.224 0.388 0.688 0.915
c = −20 0.000 0.182 0.273 0.640 0.886 0.994 1.000
(ρ1 = 0.950) 0.500 0.150 0.253 0.583 0.863 0.992 1.000

0.950 0.162 0.221 0.511 0.819 0.992 1.000
The table shows rejection rates under the alternative hypothesis for a nominal 5%
test using the CES Bonferroni test. yt is given by (24) and xt by (17) with ρ1 given
by (19). Details are given in the text.
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Table 8: Regressions of k-period long-horizon real stock returns on the treasury bill
and dividend price ratio

Treasury Bills Dividend Price Ratio
Forecast Horizon (k) Forecast Horizon (k)

sample k = 1.0 3.0 12.0 24.0 k = 1.0 3.0 12.0 24.0
1927- β̂ -0.702 -1.906 -3.014 -1.388 0.016 0.043 0.200 0.386
1994 R2 0.001 0.002 0.002 0.000 0.007 0.014 0.073 0.143

tβ -0.962 -0.964 -0.402 -0.136 2.389 1.598 2.658 4.221
1927- β̂ -1.224 -6.179 -27.898 -106.2 0.024 0.054 0.304 0.667
1951 R2 0.000 0.002 0.011 0.089 0.007 0.011 0.086 0.217

tβ -0.300 -0.528 -0.698 -1.277 1.472 0.886 2.134 3.796
1952- β̂ -1.343 -3.497 -6.114 -0.993 0.027 0.080 0.327 0.579
1994 R2 0.006 0.013 0.009 0.000 0.018 0.049 0.188 0.322

tβ -1.785 -1.669 -0.726 -0.082 3.098 3.728 3.845 3.589
Entries show results from a regression yt+k = rt+1 + . . . + rt+k on xt = it or xt = dt − pt.
Regressions are estimated by OLS with HAC standard errors, using the Bartlett (Newey-West)
kernel with bandwidth set to k − 1.

Table 9: Confidence intervals on largest roots and residual correlation

xt = µx + vt (1− αL)b(L)vt = ε2,t

yt = β0 + β1xt−1 + ε1,t δ = corr (ε1,t, ε2,t)
Treasury Bills Dividend Price Ratio
(yt = rt xt = it) (yt = rt xt = dt − pt)

sample 95 % CI on 95 % CI on
period largest root in xt δ̂ largest root in xt δ̂

1927 to 1994 (0.9836 1.004) -0.0768 (0.9623 0.998) -0.9615
1927 to 1951 (0.9421 1.010) 0.1169 (0.9273 1.007) -0.9601
1952 to 1994 (0.9680 1.006) -0.3036 (0.9543 1.003) -0.9754
Confidence intervals on the largest root are based on ? (?) using the ? (?) MIC
criteria to select lag-length with a maximum of six lags.
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Table 10: Covariance-based orthogonality tests on k-period long-horizon real stock
returns using the treasury bill and dividend price ratio

Treasury Bills Dividend Price Ratio
Forecast Horizon (k) Forecast Horizon (k)

sample k = 1.0 3.0 12.0 24.0 k = 1.0 3.0 12.0 24.0
1927- tλ -0.3934 -2.2120 -0.5063 0.4190 0.5381 -0.1317 1.6114 0.6324
1994 m∗ 1.9371 3.2009 21.3161 12.2515 0.7306 5.2664 101.5913 11.7834
1927- tλ 0.5946 -0.6085 0.4691 1.7341 0.1987 0.5993 0.2207 -0.0952
1951 m∗ 0.7821 3.9311 3.2306 17.8799 0.1565 4.1292 48.7965 15.9576
1952- tλ -1.1613 -2.4188 -1.8863 -0.8217 0.7235 -0.9962 0.7878 0.9637
1994 m∗ 1.7534 5.7159 25.6198 16.1262 0.3661 3.8794 5.4009 52.7930

Standard normal critical values apply. tλ is the test statistic and m∗ is the optimal bandwidth. The estimation
and bandwidth procedures are described in detail in the text.

Table 11: Regression of long horizon real stock returns on stochastically detrended
one-month treasury bill rates

Forecast Horizon (k) Forecast Horizon (k)
k = 1.0 3.0 12.0 24.0 k = 1.0 3.0 12.0 24.0

β̂ 1927- -5.468 -17.181 -41.663 -4.492 1927- 3.144 -6.183 73.712 158.98
R2 1994 0.005 0.016 0.023 0.000 1951 0.000 0.000 0.012 0.031
tβ -2.119 -2.888 -1.840 -0.156 0.304 -0.183 0.618 1.073
β̂ 1952- -6.547 -18.621 -56.406 -26.115
R2 1994 0.019 0.047 0.103 0.013
tβ -3.182 -3.597 -3.055 -1.245

Entries show results from a regression yt+k = rt+1 + . . . + rt+k on xt = it−
P11

j=0 it−j . Regressions are estimated
by OLS with HAC standard errors, using the Bartlett (Newey-West) kernel with bandwidth set to k − 1.
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