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Abstract

This paper considers the analysis of data from randomized trials which offer a sequence of

interventions and suffer from a variety of problems in implementation. In experiments that

provide treatment in multiple periods (T > 1), subjects have up to 2T − 1 counterfactual
outcomes to be estimated to determine the full sequence of causal effects from the study.

Traditional program evaluation and non-experimental estimators are are unable to recover

parameters of interest to policy makers in this setting, particularly if there is non-ignorable

attrition. We examine these issues in the context of Tennessee’s highly influential randomized

class size study, Project STAR. We demonstrate how a researcher can estimate the full

sequence of dynamic treatment effects using a sequential difference in difference strategy that

accounts for attrition due to observables using inverse probability weighting M-estimators.

These estimates allow us to recover the structural parameters of the small class effects in the

underlying education production function and construct dynamic average treatment effects.

We present a complete and different picture of the effectiveness of reduced class size and find

that accounting for both attrition due to observables and selection due to unobservables is

crucial and necessary with data from Project STAR.
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1 Introduction

Recent years have seen an interdisciplinary resurgence of interest that examines the economics

and econometrics of broken randomized trials.1 These studies focus on the estimation of various

causal parameters in the presence of a variety of implementation problems in single period

programs where participants either comply fully with their assignment or choose not to comply

at all. Yet many randomized trials in social science and clinical medicine involve repeated or

multiple stages of intervention,when it is possible that the participation of human subjects in

the next stage is contingent on past participation outcomes. The study of causal effects from

a sequence of interventions is limited even in the case of perfect compliance.2 Only recently

in economics, Lechner and Miquel (2002) and Miquel (2002,2003) examine the identification of

dynamic treatment effects under alternative econometric approaches when attrition is ignorable.

This paper concerns itself with randomized trials that provide a sequence of interventions and

suffer from various forms of noncompliance including selective attrition.

We examine these issues in the context of Tennessee’s highly influential class size experiment,

Project STAR. The experiment was conducted for a cohort of students with refreshment in 79

schools over a four-year period from kindergarten through grade 3. Within each participating

school, incoming kindergarten students were randomly assigned to one of the three intervention

groups: small class (13 to 17 students per teacher), regular class (22 to 25 students per teacher),

and regular-with-aide class (22 to 25 students with a full-time teacher’s aide). Most published

results from this study have reported large positive impacts of class size reduction on student

achievement, which has provided much impetus in the creation of large-budget class size reduc-

tion policies in many states and countries.3 Several of these studies have noted and attempted

1Comprehensive surveys of recent developments in the economics literature can be found in Imbens and Rubin

(1997) and Heckman, LaLonde and Smith (2001). See Yau and Little (2001) and Frangakaris and Rubin (2002)

for developments in biostatistics and statistics.
2The original investigation on treatment effects explicitly in a dynamic setting can be traced to Robins (1986).

More recent developments in epidemiology and biostatistics can be found in Robins, Greenwald and Hu (1999).

In these papers, subjects are required to be re—randomized each period to identify the counterfactual outcomes.
3See Finn et al., 2001 and the references within for an updated list of STAR papers. The United States

Congress set aside $1.3 billion for class-size reduction in 2000-01, while individual states spend additional dollars.

California enacted legislation in 1996 that reduced K-3 class sizes by roughly ten students per class at an annual

cost of over $1 billion; the cost in 2002 was $1.6 billion. Minnesota and Nevada’s proposed budget reduction

recommend for $237 million and $80 million respectively. In Florida, estimates have shown the class-size initiative

could cost the state as much as $27.5 billion through 2010. The positive results have influenced education policies

in other countries such as Canada, where in 1997 the Education Improvement Commission in Ontario argued that

in order to achieve the modest gains that were witnessed in Project STAR funding would have to be increased by

2



to address complications due to missing background and outcome data and noncompliance with

the randomly assigned treatment that occurred during implementation.4 However, to the best of

our knowledge, an examination of the data as the result of a sequence of treatment interventions

with various non-compliance issues has not been formally explored.

A variety of complications arise in experiments involving human subjects. These include

subjects exiting the experimental sample (attrition bias), not taking the treatment when assigned

(drop-out bias), or receiving the treatment or similar treatments when not assigned (substitution

bias). Faced with these complications researchers often report either an intent to treat (ITT)

parameter that compares outcomes based on being assigned to, rather than actual receipt of

treatment or undertake an instrumental variables strategy. In his highly influential examination

of Project STAR, Krueger (1999) follows the latter approach using initial random assignment to

class type as an instrument for current class size to uncover the causal effect of reduced class size

on student achievement. The IV estimate is simply the ratio of the ITT estimates of the effect

of being assigned to different class types on outcomes to that on program participation. The

IV estimate obtains a causal interpretation provided a series of assumptions detailed in Angrist,

Imbens and Rubin (1995) are satisfied,5 and the resulting parameter estimate is often referred to

as a local average treatment effect (LATE) in the economics literature or as a complier average

causal effect (CACE) in the statistics literature.6 Further, without stronger assumptions we

generally cannot identify from the population who those compliers are, which barely shed light

on the corresponding policy questions.

In multi-period randomized experiments with noncompliance but ignorable attrition, estima-

tors employing initial assignment as instruments provide estimates of the cumulative effects of a

57%. The Ontario government passed the Education Quality Improvement Act in 1997 that placed a maximum

on average class sizes. The government provided school boards with $1.2 billion over three years to reduce class

sizes. In 2001, Quebec began spending $137 million annually to fund a four year class size reduction program.

Other provinces including British Colombia and Alberta have similar programs.
4 In his analysis, Krueger (1999) presents instrumental variable estimates to correct for biases related to de-

viations from assigned class type. Nye Hedges and Konstanioiulos (1999) show that the attrition patterns were

similar across small and large classes. Ding and Lehrer (2003) find that these attrition patterns by class type differ

by school type. Specifically, students initially assigned to small classes were significantly less likely to leave the

sample from schools where class size reductions were beneficial. About 25% of the sample schools in Kindergarten

saw their small classes perform better academically than their regular classes, while 50% of the schools saw things

the other way around.
5Without these assumptions which are detailed in footnote 12, the IV estimator has no interpretation as a

causal effect.
6Our use of “complier” here follows Angrist, Imbens and Rubin (1995), which defines complying individuals

to be those who would only receive the treatment when assigned.
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program only for those compliers who conformed with their initial assignment in all subsequent

years of the program. However, in the presence of non-ignorable attrition, ITT estimators are

biased and IV estimators are distorted from a causal effect even with a randomized instrument.7

The scope of non-compliance in Project STAR is extensive. Approximately ten percent of the

subjects switch class type annually and over half of the subjects who participated in kindergarten

sample attrited. These attritors differed significantly in their initial behavioral relationships.

Attritors received half of the average benefit of attending a small class in kindergarten. Further,

the pattern of attrition differed markedly between class types within and across schools. By

treating attrition as random and ignorable past studies may have overstated the benefits of

reduced class size.

In multi-period experiments, implementation problems proliferate as subjects may exit in

different periods or switch back and forth in between the treatment and control groups across

time. To estimate the average treatment effects of reduced class size in a multi-period setting,

the researcher must compute counterfactual outcomes for each potential sequence of classroom

assignment. In the context of Project STAR this yields 16 possible paths for the kindergarten

cohort in grade three. Note that even if the experiment perfectly re-randomized subjects annu-

ally, an instrumental variables approach would be unable to estimate the full sequence of causal

effects since the number of randomized instruments is less than the number of counterfactual

outcomes.

To estimate the average treatment effects of reduced class size in a multi-period setting, we

consider a sequential difference in difference strategy. We account for non-ignorable attrition

using inverse probability weighting M-estimators. Our parameter estimates have a direct struc-

tural interpretation since our underlying model allows cognitive achievement to be viewed as a

cumulative process as posited by economic theory. Further, we allow the effects of observed in-

puts and treatment receipt on achievement levels to vary at different grade levels. The structural

parameter estimates permit us to construct estimates of the full sequence of dynamic treatment

effects to present a more complete picture of the effectiveness of reduced class size.

We find there are benefits to attending a small class initially in all subject areas in kinder-

garten and grade one. However, there does not exist additional benefits from attending small

classes in both years in grade one. Further, we find there are no significant dynamic benefits from

continuous treatment versus never attending small classes in all subjects in grades two and three.

7Frangakis and Rubin (1999) demonstrates that neither standard ITT analyses (i.e. analyses that ignores the

discrepancy between assigned treatment and actual treatment) or standard IV analyses (i.e. analyses that ignores

the interaction between treatment and attrition) will obtain valid estimates of the ITT and LATE respectively.
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Attendance in small classes in grade three is significantly negatively related to performance in all

subject areas. The data suggests that the decreasing returns to small class attendance is related

to significantly greater variation in incoming academic performance in small classes relative to

regular classes. The weakest incoming students in mathematics in each classroom experienced

the largest gains in achievement, which is consistent with the story of teaching towards the

bottom. Finally, specification tests indicate that accounting for attrition due to observables and

controlling for selection due to unobservables is crucial and necessary with data from Project

STAR.

2 Parameters of Interest

We begin by providing a brief overview of the parameter estimates and the effect of several

sources of implementation biases in a one period model of treatment.8 In the context of the

STAR class size experiment, we refer to being in small classes as being in the treatment group

and otherwise in the control group. A student is initially assigned to a small class, M = 1 or a

regular class,M = 0 when she enters a school in the STAR sample.9 Due to the non-mandatory

compliance nature of this social experiment, each year the actual class type a student attends

may differ from the initial assignment. We use St = 1 to denote actually being in a small class

in grade t and St = 0 as being in a regular class. At the completion of each grade t, she takes

exams and scores At (potential outcomes, A1t if attending a small class and A0t if attending

a regular class). Notice that we cannot observe A1t and A0t for the same individual. Some

subjects leave the STAR sample over the four years, let Lt+1 = 1 indicates that a subject leaves

a STAR school and attends a school elsewhere after the completion of grade t, if she remains in

the sample for the next period Lt+1 = 0.

Project STAR was conducted to evaluate the effect of class size on student achievement to

determine whether small class size should be extended to the schooling population as a whole.

Thus, in a single period experiment the relevant parameter is the average treatment effect (ATE)

4ATEt = E(A1t− A0t) or in its conditional form E(A1t− A0t|Xt) where Xt are characteristics

8See Heckman, LaLonde and Smith (2001) for a comprehensive overview of the economics and econometrics

of program evaluation. Detailed discussions of dropout bias, substitution bias and attrition bias can be found

in Heckman Smith and Taber (1999), Heckman, Hohmann Smith and Khoo (2001) and in a special issue of The

Journal of Human Resources Spring 1998 respectively.
9Students were added to the sample in later years because either kindergarten was not mandatory, they had

previously failed their grade and had to repeat it, switched from a private school or recently moved to the school

district that contained a participating school.
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that affect achievement.

Project STAR was designed to use random assignment to circumvent problems result from

selection in treatment. By randomly assigning subjects to class types the researcher is assured

that the treatment and control groups are similar to each other (i.e., equivalent) prior to the

treatment and any difference in outcomes between these groups is due to the treatment, not

complicating factors. In implementation, however, if people self select outside of their assigned

treatment, risks rise that the groups may no longer be equivalent prior to a period of treatment

and the standard experimental approach identifies alternative parameters of interest in a single

period model of treatment intervention.

2.1 Sources of Bias in a Single Period Intervention

Self selection has given rise to three categories of bias in the economics literature: dropout bias,

substitution bias and attrition bias. The first two biases involve noncompliance with treatment

assignment while the last term deals with missing data. In the context of Project STAR, dropout

bias occurs if an individual assigned to the treatment group (small class) does not comply with

her assignment and attends a regular class (M = 1, S = 0). In total, 88.0% of the subjects who

were initially assigned to small classes and completed all four years of the experiment attended

small classes in all the years.10 Correspondingly substitution bias arises if members of the control

group transfer to small classes (M = 0, S = 1).11 Of those subjects assigned to regular classes

in kindergarten, only 83.3% comply with their assignment in all four years of the experiment.

In the presence of noncompliance with treatment assignment, the standard experimental

impact which compares means of the outcome variable between individuals assigned to the

treatment and the control group is an estimate of the intention to treat (ITT). The ITT effect

can be defined as dITT = _
AM=1 −

_
AM=0 (1)

where
_
AM=1and

_
AM=0 are the sample mean achievements of individuals assigned to small and

regular classes respectively. Thus, the researcher carries out an “as randomized” analysis in

place of an “as treated” analysis. The approach ensures that if randomization is violated, factors

associated with drop-out or substitution do not corrupt the interpretation of causal effects. ITT

10Of the 12% who dropped out, slightly more than half (68 students) were moved to regular classes in grade

1 after being termed incompatible (Finn and Achilles (1990)) with their classmates in Kindergarten. 18 of those

students returned to small classes after grade 1.
11Parental actions would result in substitution bias. It would also occur if members of the control group find a

close substitutes for the experimental treatment through the use of services such as private tutoring.
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is appropriate if one is interested in estimating the overall effects of treatment assignment. Since

education policies on class sizes are concerned with the actual experience of students in different

class sizes, the ITT estimates are not valid for cost benefit analysis of policies that mandate

caps on class size for every student.

Standard IV analysis that makes use of initial random assignment as an instrument for

current class size recovers an alternative parameter that is referred to in the statistics literature

as the complier average causal effect (CACE). Angrist, Imbens and Rubin (1996) list a series of

assumptions that if satisfied, allow IV estimates to be interpreted as average treatment effects

for compliers.12 Complying individuals are those who would only receive the treatment when

assigned.13 The identification of a group of compliers is not straightforward in general. The

CACE can be defined as dITT IV
=

_
A
c

M=1 −
_
A
c

M=0 (2)

where
_
A
c

M=1and
_

Ac
M0t refer to the sample mean potential achievement outcomes of complying

individuals if assigned to small and regular classes respectively.

The CACE estimate obtained using an IV approach implicitly re-scales the experimental

impact. Even with experimental data, non-experimental assumptions (see footnote 12) are

required to identify the CACE in the presence of drop-out bias or substitution bias. With

dropout, the CACE estimate is given as

\CACE1 =
_
AM=1 −

_
AM=0

Pr(St = 1|Mt = 1)
(3)

The experimental impact is re-scaled by the sample proportion of compliers in the treatment

group and implicitly assumes that those who dropout received a zero impact from the interven-

tion. With both substitution and dropout the IV estimate recovers an alternative CACE given

as

\CACE2 =
_
AM=1 −

_
AM=0

Pr(St = 1|Mt = 1)− Pr(St = 1|Mt = 0)
(4)

12The assumptions inlude random assignment of the instrument, strong monotonicity of the instrument (i.e.

instrument affects probability of treatment receipt in only one direction), instrument affects outcomes only through

the endogenous teatment regressor (i.e. exclusion restriction) and the stable unit value treatment assumption

which posits that there are no general equilibrium effects. Without these assumptions, the IV estimator is simply

the ratio of intention-to-treat estimators with no interpretation as an average causal effect.
13 In other words, these individuals were induced to switch classes by the instrument (complied with initial

assignment). This parameter is also referred to as a local average treatment effect (LATE). Since different

instruments exploit different sources of variation in the data, the use of alternative instruments result in different

LATE parameters.
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which re-scales the experimental impact by the difference between the sample proportion of

compliers in the treatment group and the sample proportion of non-compliers in the control

group. The estimator implicitly assumes that those who drop out and those who substitute in

received a zero impact from the intervention as the dropouts would never have attended a small

class and the substitutes would have attended a small class in the absence of the experiment.

While an intent-to-treat analysis is robust to the problem of students changing class types,

there still remains the problem of students being lost to follow-up. Attrition bias is a common

problem researchers face in longitudinal studies when subjects non-randomly leave the study

and the remaining sample for inference is no longer random but choice based. For example, only

48.77% of the kindergarten sample participated in all four years of the STAR experiment. The

ITT and CACE estimates presented above are not robust to attrition bias.14

More formally, assume that we are interested in the conditional population density f(At|Xt)

but in practice we observe g(At|Xt, Lt = 0) since At is observed only if Lt = 0. Addi-

tional information is required to infer f(∗) from g(∗). Assuming that attrition occurs when
Lt+1 = 1{L∗t+1 > 0} where L∗t+1 is a latent index that is a function of observables (Xt, At)

and unobservable components. Only when attrition is completely random (i.e. Pr(Lt+1 =

0|At,Xt) = Pr(Lt+1 = 0|Xt) = Pr(Lt+1 = 0)) would traditional experimental analysis that

compares outcomes of the treatment and control groups recover unbiased parameter estimates.

Attrition may be due to selection on observables and / or selection on unobservables. Fitzger-

ald, Gottschalk and Moffitt (1998) provide a econometric framework for the analysis of attrition

bias and describe specification tests to detect and methods to adjust estimates in its presence.

Econometric solutions require one to determine the factors leading to non-random attrition.

Selection on observables is not the same as exogenous selection since selection can be made on

endogenous observables such as past academic performance (lagged dependent variables) that

are observed prior to attrition. If only selective attrition on observables is present, the attrition

probability is independent of the dependent variable (and hence unobserved factor), which im-

plies that Pr(Lt = 0|At,Xt) = Pr(Lt = 0|Xt). As such, estimates can be re-weighted to achieve

unbiased estimates and f(∗) can be inferred from g(∗).
To test for selection on observables, we examine whether individuals who subsequently leave

14The majority of the literature that has examined the STAR data for issues related to non-compliance considers

attrition patterns between class types. Past studies have presented results from simple t-tests indicating that

there are significant differences between attritors and non-attritors in critical variables. In contrast, we consider

regression based tests as a simple comparision of means between subsamples of those lost to follow up and those

who remained in the STAR experiment, may be misleading regarding the extent of significant association of these

characteristics with sample attrition once the full set of educational inputs are controlled.
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the STAR experiment are systematically different from those who remain in terms of initial be-

havioral relationships. We estimate the following contemporaneous specification of an education

production function in kindergarten by subject area

Aij = β0Xij + β0LLijXij + vj + εij (5)

where Aij is the level of educational achievement for student i in school j , Xij is a vec-

tor of school, individual and family characteristics, Lij is an indicator for subsequent attrition

(Lij = Lit+s for s = 1...T − 1), vj is included to capture unobserved school specific attributes
and ijT captures unobserved factors. The vector β0L allows for both a simple intercept shift and
differences in slope coefficients for future attritors. Selection on observables is non-ignorable if

this coefficient vector is significantly related to scaled test score outcomes at the point of en-

try (completion of kindergarten) conditional on the individuals characteristics and educational

inputs at that point of the survey.15

The results are presented in table 1 and Wald tests indicate that the β0L coefficient vector is
significantly different for attritors and non-attritors in all subject areas. The attrition indicator

is significantly negatively related to test score performance in all three subject areas indicating

that the levels of performance for subsequent attritors is significantly lower in kindergarten.

In all subject areas, the joint effect of attrition on all student characteristics and class type

is significantly different from zero. Students on free lunch status that left scored significantly

lower than free lunch students who remained in the sample in mathematics only. Interestingly

female attritors out performed female non-attritors in kindergarten in all subject areas but

the magnitude is small. Finally, in both mathematics and word recognition attritors received

half the gain of reduced class sizes suggesting that non-attritors obtained the largest gains in

kindergarten which may bias future estimates of the class size effect upwards. These results

provide strong evidence that selection on observables exists and is non-ignorable. Correcting for

selection on observables in the panel will reduce the amount of residual variation in the data

due to attrition and likely reduce the biases due to selection on unobservables.16

15This test was originally developed in Becketti, Gould, Lillard and Welch (1988). Fitzgerald et al. (1998)

demonstrate that this test is be a simply the inverse of examining whether past academic performance significantly

affects the probability of attrition. Note, in this paper we subsequently estimate attrition logits to create weights

to account for non-compliance. As shown in table 3, past academic performance is also significantly related to

attrition further indicating that selection on observables is not ignorable.
16This occurs if the biases due to observables did not previously offset the biases due to unobservables. We

are unable to directly or indirectly test for selection on unobservables as this requires an auxillary data source

or a rich set of instruments. In our empirical approach we account for the possibility that attrition is due to
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In a single period intervention the estimated intent to treat and CACE parameter is distorted

from a causal effect unless the research accounts for the additional complications presented by

attrition which complicates the interpretation of past estimates from Project STAR. Moreover,

as we discuss in the next section it is important to treat the data as if it were from a multi-period

intervention.

3 Multi-Period Intervention

The STAR project occurred for students in kindergarten through grade three. Answers to many

hotly debated questions, such as when class size reductions are most effective or whether small

classes provided any additional benefits in grades two and three, can be properly answered in a

multi-period intervention framework. For policy purposes, one may be interested in determining

whether or not the benefits of small class attendance persist in subsequent grades or which

treatment sequence yields the largest benefits. In this context, the relevant parameters of interest

are the full sequence of dynamic average treatment on the treated parameters that we define in

the next section.

We begin by considering a two period case with constant effects, perfect compliance, no

attrition bias and no refreshment samples. Aij2 takes one of two possible values depending on

which treatment sequence [(Si2 = Si1 = M = 1) or (Si2 = Si1 = M = 0)] an individual was

assigned to. A standard economic model of individual achievement would postulate that both

current and lagged inputs affect current achievement. Equation 6 is a linearized representation

of the cumulative education production function at period two

Aij2 = β0x2Xij2 + β0S2Si2 + β0x1Xij1 + β0S1Si1 + vj + εij1 (6)

where Aij2 is the level of educational achievement for student i in school j in year 2, Xijt is a

vector of current school, individual and family characteristics in year t, vj is included to capture

unobserved school attributes and ijt captures unobserved factors in year t. Consider estimation

of the following contemporaneous specification of an education production function in period

two

Aij2 = γ0Xij2 + γ0SSi2 + vj + wij2 (7)

where wij2 may include lagged inputs if they affect current achievement. In this case, γ0S presents
an estimate of the cumulative effect (β0S2 + β0S1) of being in a small class for two periods.

unobserved factors.
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It is not possible to separately identify β0S2 and β
0
S1 by estimating equation 6 since Si2 = Si1

(perfectly colinear). With annual estimates of equation 7, one could examine the evolution of

the cumulative effect, β0S . With the exception of the initial year of randomization one would not
be able to estimate the effect of being in a small class in that particular year without invoking

strong assumptions. These assumptions are similar to those that underlie education production

function studies (value added models) in that one must assume how lagged inputs affect future

achievement. For instance, if the impacts are assumed to depreciate at a constant rate (as

in a linear growth or gains specification in the education production function literature), it is

straightforward using repeated substitution to recover estimates of the effect of being in a small

class in a particular year.

If compliance was not perfect then individual achievement outcomes in period 2 would take

one of four possible sequences [(Si2 = 1, Si1 = 1), (Si2 = 1, Si1 = 0), (Si2 = 0, Si1 = 1), (Si2 =

0, Si1 = 0)]. While this may break up the collinearity problem, unbiased estimates would be

obtained only if individuals switched class type exogenously. If these transitions were due

to observed test performance, individual characteristics (observed or unobserved), unobserved

parental education tastes, corresponding econometric solutions are required to address these

selection issues. Further, determining the causal effect of class size for each individual requires

the calculation of three counterfactuals as the effect of being in a small class in the first year

(Si1) on second period achievement (Aij2) may interact in unknown ways with second year class

assignment (Si2). For example, class size proponents argue that teaching strategies differ in

small versus large classes (i.e. “on-task events” versus “institutional events” (e.g., disciplinary

or organizational)). The effect of the current class may differ due to past learning experiences

as well as incoming knowledge or foundation.

In contrast to claims in Finn, Gerber, Achilles and Boyd-Zaharias (2001) that “with few

exceptions students were kept in the same class grouping throughout the years they partici-

pated in the experiment”, simple summary statistics indicate that 15.20% of the students who

participated in the experiment all four years switched class type at least once.17 Further, fewer

than half of the kindergarten students participated in all four years of the experiment (3085

out of 6325 students). The full set of transitions for the cohort of students who participated in

17Our comparision is small classes versus regular or regular with aide classes. As many schools contained

multiple classes of the same class type there is likely to be even more transitions between classes of the same

class type as well as switches between regular classes with and without teacher aides. Note that this pooling was

also undertaken in Krueger and Whitmore (2001) and Finn, Gerber, Achilles and Boyd-Zaharias (2001) since the

results are not significantly different between these two groups.
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Project STAR in kindergarten is shown in figure 1. Notice that excluding attrition in grade two,

there is support for all eight sequences and fourteen of the sixteen possible sequences in grade

three. Accounting for this large number of transitions further motivates treating the data as a

multi-period intervention.

4 Empirical Approach

Our approach builds on Miquel (2003), which demonstrates that a conditional difference-in-

differences approach can nonparametrically identify the causal effects of sequences of inter-

ventions.18 We consider a sequential linear difference in difference estimator which provides

estimates of the full sequence of dynamic average treatment effects for the treated. In a single

period intervention, a treatment effect for the treated estimates the average gain from treat-

ment from those that select into treatment and is the relevant parameter for policies that are

voluntary. Dynamic versions compare alternative sequences as individuals determine at the end

of each grade whether they wish to alter their participation sequence and are defined below.

For ease of exposition we consider a two period model and temporarily ignore the role of

attrition and school effects. An individual outcome at the conclusion of the second period is

given by

Ai2 = Si1Si2A
11
i + (1− Si1)Si2A

01
i + Si1(1− Si2)A

10
i + (1− Si1)(1− Si2)A

00
i (8)

where A11i indicates participation in small classes in both periods, A10i indicates small class

participation only in the first period, etc. It is clear that an individual who participated in

both periods (A11i ) has three potential counterfactual sequences to estimate (A
01
i , A10i and A00i )

assuming the four paths are all the sequences an individual can take.

As posited by a standard economic model we allow cognitive achievement to be viewed as

a cumulative process. We linearize the production function at each time period allowing us to

express an individual’s achievement outcome in period one as

Ai1 = υi + β01Xi1 + β0S1Si1 + εi1 (9)

where υi is a individual fixed effect. Similarly in period two achievement is given as

Ai2 = υi + α02Xi2 + α01Xi1 + α0S2Si2 + α0S1Si1 + α0S12Si2Si1 + t2 + εi2 (10)

18Miquel (2002) proves that instrumental variable strategies are unable to identify the full set of dynamic

treatment effects.
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and t2 reflects common period two effects. First differencing the achievement equations generates

the following system of two equations

Ai2 −Ai1 = α02Xi2 + α0S2Si2 + α0S12Si2Si1 + t2 + (α1 − β1)
0Xi1 + (αS1 − βS1)

0Si1 + ε∗i2(11)

Ai1 = β01Xi1 + β0S1Si1 + ε∗i1

where ε∗i2 = εi2− εi1 and ε∗i1 = υi+ εi1. Consistent estimates of the structural parameters of the

education production function in equations 9 and 10 are obtained from this system of equations

via full information maximum likelihood provided that the off-diagonal elements of the variance-

covariance matrix are restricted to equal zero to satisfy the rank condition for identification.19

Consistent structural estimates of β0S1 and of the teacher characteristics in the Xi1 matrix are

obtained since subjects and teachers were randomized between class types in kindergarten and

to the best of our knowledge compliance issues did not arise until the following year. A subset

of the structural parameter estimates for the Xi1 matrix may not be identified since they may

be correlated with ε∗i1.
20

This implementation allows the effects of observed inputs and treatment receipt on achieve-

ment levels to vary at different grade levels. This is also more flexible than other commonly used

empirical education production function specifications in that it does not restrict the deprecia-

tion rate to be the same across all inputs in the production process. However, by assumption

the effect of unobserved inputs are restricted to be constant between successive grades.

The full sequence of dynamic effects can be estimated as follows

τ (1,1)(0,0)(1, 1) = α0S1 + α0S2 + α0S12 (12)

τ (1,1)(1,0)(1, 1) = α0S2 + α0S12
τ (0,1)(0,0)(0, 1) = α0S2

where τ (x,y)(v,w)(x, y) presents the dynamic average treatment effect for the treated for an in-

dividual who participated in program x in period 1 and program y in period 2 and compares

her actual sequence (x, y) with potential sequence (v, w). The parameters presented in (12) are

of policy interest. For example, τ (1,1)(0,0)(1, 1) provides an estimate of the average cumulative

19Note it is possible to exploit cross-equation restrictions by accounting for the error-component structure of

the residual but requires the assumption that υi is uncorrelated with the regressors. We discuss extensions in the

concluding section of the paper.
20Since outcome data prior to kindergarten was not collected by the STAR research team alternative approaches

that explicitly allow for pre-kindergarten inputs are not possible and prevent obtaining consistent estimates of

the non teacher characteristic elements of Xi1 matrix.
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dynamic treatment effect for individuals who received treatment in both periods, τ (1,1)(1,0)(1, 1)

provides an estimate of the effect of receiving treatment in the second year for individuals who

received treatment in both periods, and τ (0,1)(0,0)(0, 1) is the effect of receiving treatment in the

second period for individuals who received treatment only in period two.

It is straightforward to extend the above two period regression example to T periods. Miquel

(2003) proves that the full sequence of causal effects are estimated under the straightforward

assumptions of common trend, no pretreatment effects and a common support condition.21 Intu-

itively, the idea builds upon classical difference in difference analysis which uses pre-intervention

data to remove common trends between the treated and controls. In this setting, data between

periods of the interventions is used in addition to remove common trends between individuals

on alternative sequences.

While concerns regarding substitution bias and dropout bias can also be addressed through

the individual fixed effect under the plausible assumption that substitution or dropout reflect

some time invariant unobservables such as parental concern over their child’s development over

this short time period, attrition bias may contaminate the results.22 As shown in the preced-

ing subsection it is possible to reweight the data to account for attrition due to selection on

observables. We consider estimating the following attrition logit

Pr(Lit+1 = 0|Ait,Xit) = 1{α0Zit + wit ≥ 0) (13)

where t is the period being studied and Zt is a matrix of variables that are observed conditional

on Lt = 0 and may include lagged dependent variables; At−s. The predicted probability of
staying in the sample (

f
pit) are then constructed

f
pit = Fw(α̂

0Zit) (14)

where Fw is the logistic cumulative distribution function.

21The common support assumption ensures that there are comparable individuals in each of the counterfactual

sequence. The latter assumptions affect conditional expectations and are taken for a full sequnce. In a one

period case, the common trend assumption assumes that the sole difference before and after is due to treatment

across groups as in the absence of treatment both groups would have in expectation similar gains in academic

performance. Finally, the pretreatment assumption is that there is no effect of the treatment on outcomes at any

point in time prior to actual participation. The extension to multi-period is not complex as described in Miquel

(2003).
22Note that the individual fixed effect can also account for attrition due to selection on unobservables provided

permanent unobserved heterogeniety is the driving force. Thus, the term captures both initial achievement and

parental concern that is assumed fixed between two consecutive grades.
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Table 3 presents results from a series of logistic regressions for the determinants of remaining

in the STAR experiment. The sample for each time period is restricted to units that were in

the sample in the previous period. Notice that subjects who scored higher on their most recent

mathematics examination are more likely to remain in the sample at each grade level. The

significance of earlier test score performance in the different subject areas further demonstrates

that attrition due to observables is not ignorable.

Returning to our two period example, we now assume a random sample in period one and

non-random attrition due to observables at the end of period one after removing the permanent

unobservable factors affecting attrition. We calculate the probability of remaining in the sample

for period two
f
pi1, and following Wooldridge (2002) use it to reweight observations in estimating

equation (11) as follows

Ai2 −Ai1

f
pi1

=
α02Xi2 + (α1 − β1)

0Xi1 + α0S2Si2 + α0S12Si2Si1 + (αS1−βS1)0Si1+t2+ε∗i2
f
pi1

(15)

Ai1 = β01Xi1 + β0S1Si1 + εi1

This method provides consistent
√
N asymptotic normal estimates. However, the asymptotic

variance is conservative since it ignores the fact that we are weighting on the estimated and not

the actual
f
pi1 .

23

We estimate equation 15 for grade one as well as corresponding versions for grade two and

grade three with the kindergarten sample. Attrition is an absorbing state and the weights used

in estimation for grades two and three (
f
r
2

i and
f
r
3

i ) are simply the product of all past estimated

probabilities

f
r
2

i =
f
pi2 ∗ fpi1 (16)

f
r
3

i =
f
pi3 ∗ fpi2 ∗ fpi1

where
f
pis are estimated probabilities for staying in the sample for period s from a logit regression

using all subjects in the sample at s−1.24 Note, it is trivial to add school effects to the estimating
equations, however, identification of school effects will only come from the limited number of

school switchers.
23The asymptotic variance matrix that adjusts for first stages estimates is smaller. See Wooldridge (2002) for

details and a discussion of alternative estimation strategies.
24The assumption that attrition is an absorbing state holds in the STAR sample used in our analysis and allows

the covariates used to estimate the selection probabilities to increase in richness over time. See Wooldridge (2002)

for a discussion.
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Finally, in the above analysis we treat attrition as leaving the sample permanently and

assume other missing data problems are at random. That is if a student only has reading and

mathematics scores in the dataset we assume that she randomly missed the word recognition

test. Selective test completion would be simple to correct for in this setting replacing the

Lit+1 indicator with a subject specific missing data indicator Ls
it+1 and following the same

estimation strategy assuming that test completion in kindergarten is random. The advantage

of this approach is that we can use more observations for each subject area. We implement this

approach as a robustness check on our earlier results.

5 Data

In our analysis, we include only the sample of students who participated in the STAR experiment

starting in kindergarten. Pooling the kindergarten sample with the refreshment samples (stu-

dents who joined the experiment after kindergarten) rests on two assumptions. First, individuals

leave the sample in a random manner. Second, subsequent incoming groups are conditionally

randomly assigned (based on seat availability/capacity constraint) within each school. We have

shown in section 2.1 the selective attrition pattern. The second claim can be examined through

simple regressions of the random assignment indicator (RAijT ) on individual characteristics and

school indicators as follows

RAijT = γ0XijT + vj + eijT (17)

for each group of students entering the experiment in year T. The results are presented in the

top panel of table 2.

The results clearly demonstrate that incoming students were not conditionally randomly

assigned in grades one and three. The incoming students in grades one and three as well as the

full samples (bottom panel) in grades one, two and three have a significantly higher percentage

of students on free lunch status in the control groups. Since the incoming subjects are not

conditionally randomly assigned in grade one and grade three this invalidates the use of initial

random assignment as an instrument for these cohorts of students.25

25A linear probability model is used to assess conditional random assignment in Krueger and Whitmore (2001)

for the full sample of incoming students with year of entry indicators. This approach simply weights the data across

grades and schools over three times as much weight on the kindergarten sample than the grade one sample. Note

the statistical signifigance of the results does not change if a logit was estimated in place of a linear probability

model. We did not consider checking whether extrinsic measures of teacher quality were randomly assigned since

they are known to have minimal correlation with actual teacher quality.
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Our outcome measures are total scaled scores from the Reading, Mathematics, Word Recog-

nition sections of the Stanford Achievement test. The Stanford Achievement Test is a norm-

referenced multiple choice test designed to measure how well a student performs in relation to

a particular group, such as a sample of students from across the nation. The scaled scores are

calculated from the actual number of items correct adjusting for the difficulty level of the ques-

tion to a single scoring system across all grades.26 Ding and Lehrer (2003) demonstrate that

transformations of scaled scores to other outcome measures such as percentile scores or standard

scores either reduce the information contained in the outcome data or require assumptions that

are likely to be violated by the underlying data. We treat each test as a separate outcome

measure because subjects are not comparable and one may postulate that small classes may be

more effective in some subject areas such as mathematics where classroom instruction is used

as opposed to group instruction for reading.

6 Results: Dynamic Treatment Effects

Our structural estimates of the causal effects of reduced class size are provided in table 4. For

example, Si1 captures the unique regression adjusted contribution of attending a small class in

grade one on achievement at different points in time. Thus alternative sequences at a given time

(i.e. SiKSi1Si2 versus SiKSi1(1−Si2)) are restricted to receiving the same common effect of Si1.
Several interesting patterns emerge from these estimates. In kindergarten and grade one

small class attendance ((SiK) and (Si1)) has a positive and significant effect in all subjects

areas. However, there does not exist additional (nonlinear) benefits from attending small classes

in both years (SiKSi1) in grade one. Moreover, Ding and Lehrer (2003) find that the positive

effect of small class in kindergarten is driven by 25% of the schools in the STAR sample, which

show positive effects of small class in all three subjects; while 50% of the schools in kindergarten

experienced either significantly negative or statistically insignificant small class effects in all

three subjects.

After grade one, no significantly positive effect of small class exists (P (t) ≤ 10%) except

26The raw score is simply the number of correct responses a student gives to test items. Total percent scores

divide the raw score by the total number of items on the test. Raw scores are converted to scaled scores by use

of a psychometric technique called a Rasch model process. The Rasch model developed by George Rasch in 1960,

is a one parameter logistic model that examines how performance relates to knowledge as measured by items on

a test. Intuitively the idea is that the probability that an exam taker of a certain ability level answers a question

correctly is based solely on the difficulty level of the item. The estimated coefficient is on the ability continuum

where the probability of a correct response is 50%.
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for grade two math. In the higher grades nearly all of the estimated structural parameters are

statistically insignificant. Thus, the structural estimates do not lend much support for positive

effect of small class attendance beyond grade one. In fact, the average small class effect in grade

three (Si3) is significantly (≤ 10%) negatively related to contemporaneous achievement in all
three subject areas.

Estimates of the dynamic average treatment effect for the treated are presented in table 5

and are calculated with the structural parameter estimates discussed above using the formulas

presented in equations 12. A maximum of 1, 6, 28, and 120 effects can be calculated for each

grade. However, due to lack of support of some treatment paths only 78 effects can be calculated

for grade 3. We present evidence comparing sequences with the largest number of observations.

These treatment effects can also be interpreted as policy simulations explaining how much one

would increase achievement by switching sequences conditional on your full history of student,

family and teacher characteristics.

In grade one, the set of dynamic treatment effects suggest that the largest gains in perfor-

mance in all subject areas occur for students who attended small classes in either kindergarten

or in grade one (τ (0,1)(0,0)(0, 1) or τ (1,0)(0,0)(1, 0)). Benefits from attending small classes in

both kindergarten and grade one versus attendance in either but not for both of these years

(τ (1,1)(0,1)(1, 1) or τ (1,1)(1,0)(1, 1)) are statistically insignificant. While the economic significance

of attending a small class in grade one alone is slightly larger in all subject areas than attendance

in kindergarten alone (i.e. τ (0,1)(0,0)(0, 1) > τ (1,0)(0,0)(1, 0)), there does not exist a significant

difference between either sequence (τ (0,1)(1,0)(0, 1)). From a policy perspective the results sup-

port class size reductions, but only a single dose of small class treatment instead of continuing

treatment.

These estimates provide a more complete picture of the structure and source of the gains

in small class reductions. In kindergarten there was a significant effect driven by a subset of

schools. Following kindergarten there are positive effects in grade one for students who made a

transition between class types. Both students who substituted into small classes and dropped out

of small classes scored significantly lower than their grade one classmates in each kindergarten

subject27 and received a significantly greater improvement in grade one achievement compared

to their grade one classmates.28 It is possible that teachers were targeting the weaker students

27These results are from within classroom regressions controlling for grade one student, family and teacher

characteristics.
28These results are from within classroom regressions controlling for kindergarten and grade one student and

teacher characteristics.
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in the class. Further, these growth rates were significantly larger than those achieved by their

kindergarten classmates who did not switch in grade one.29 These tests are possible since scaled

scores are developmental and can be used to measure growth across grades since within the same

test subject area. The Stanford Achievement Tests use a continuous scale from the lowest to

the highest grade levels of the tests. Thus a one point change from 50 to 51 is equivalent to a

one point change from 90 to 91.30

The pattern in higher grades presents several additional insights into the effectiveness of re-

duced class size. The dynamic benefits from continuous treatment versus never attending small

classes (τ (1,1,1)(0,0,0)(1, 1, 1) and τ (1,1,1,1)(0,0,0,0)(1, 1, 1, 1)) become both statistically and econom-

ically insignificant in all subject areas. This result contrasts sharply with prior work (Finn et al.,

2001) that find the benefits of small classes persisting in later grade and increasing the longer an

individual stayed in small classes. Moreover, the economic significance of these dynamic benefits

from continuous treatment are smaller in magnitude than τ (1,1)(0,0)(1, 1). Together, this suggests

a erosion of the early gains in later grades. The raw data supports these findings as simple t-tests

between these two groups of students (always versus never attended small classes) indicate that

the growth in performance in each subject area was significantly higher for students who never

attended small classes in higher grades.31 Multiple regression results further demonstrate that

students who never attended small classes experienced larger growth in mathematics both from

grade one to grade two and grade two to grade three. These students also had greater gains in

reading from grade one to grade two.32

29 It is worth noting that those students who substituted into small classes in grade one scored significantly

higher than their classmates on kindergarten reading and word recognition.
30Other test score measures such as percentile scores, grade equivalent scores, raw scores or standard scores do

not offer these benefits in interpretability.
31Students who never attended small classes has greater growth in performance from grade one to two in

mathematics and reading than those always in small classes ( t = 2.3068 with P > t = 0.0106 on one-sided test in

math and t = 2.1296, P > t = 0.0166 on one-sided test in reading. The hypothesis is that gains for those never

attended small classes is greater than gains for those always in small classes.), with no significant differences in

word recognition ( t = 0.9905, P > |t| = 0.3220). From grade two to three, never attenders gained more than

always attenders in math (t = 1.6844, P > t = 0.0461 in one sided test) with no significant differences in reading

and word recognition ( t = -0.1373, P > |t| = 0.8908, t = 0.0024, P > |t| = 0.9981 two-sided test respectively)

between these groups.
32The regressions include school incators as well as student and teacher characteristics. The regreesor if interest

is an indicator variable set equal to 1 if SiK = Si1 = Si2 = 1 and set to 0 if SiK = Si1 = Si2 = 0. Individuals

whose treatment history are on alternative paths are not included in the regressions. The effect (and standard

error) of this regressor is -4.18 (1.46) in grade two reading gains and -2.75 (1.35), -2.18 (1.28) in grade two and

grade three mathematics gains respectively. Note in grade one, there are positive and significant gains for always
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Krueger (1999) reports that students received large benefits the first year they spent in a

small class. Our results support this finding in all subject areas in grade one and in grade

two mathematics. Grade two reading and word recognition have insignificantly small effects

(τ (0,0,1)(0,0,0)(0, 0, 1)). In grade three, first time entrants (τ (0,0,0,1)(0,0,0,0)(0, 0, 0, 1)) had signifi-

cantly negative returns from small class attendance in all subject areas.

In grade one, approximately 250 students substituted into the treatment and received pos-

itive benefits. Continuing along this path and remaining in small classes in higher grades did

not provide any additional benefits as both τ (0,1,1)(0,0,0)(0, 1, 1) and τ (0,1,1,1)(0,0,0,0)(0, 1, 1, 1) are

statistically insignificant. Further, their economic significance is smaller than τ (0,1)(0,0)(0, 1).

The dynamic treatment effects for the treated for students who switched class types for the

first time motivated a closer examination of their behavior and changes in performance. We

find that switching to small classes yielded benefits to students who had significantly lower past

performance in math. We compared students who dropped out of or substituted into small

classes with their new classmates based on prior performance on examinations by subject area.

In all subject areas and grades, students who joined small classes scored significantly lower than

their new classmates with the exception of reading for those who substituted in grade two.

Yet, only in mathematics did these students receive significantly greater growth in performance

between grades for each period.

Coleman (1992) suggests that the focus of US education is on the bottom of the distribution

and it is much easier for teachers to identify weaker students in mathematics than other subject

areas. To investigate this claim which may explain what we have found in Project STAR, we

identified the five students in each grade one class who had the weakest subject area performance

in kindergarten. We included an indicator variable for being one of these “weak” students in

the classroom in regression equations to explain growth in performance controlling for teacher

indicators and the full history of teacher, family and student characteristics. We found that

being a “weak” student in the classroom in any subject area led to significantly higher growth in

mathematics. Further, being a “weak” student in any subject area significantly reduced growth

in reading.33 At all grade levels we found that being one of the “weakest" students in the

classroom in mathematics and word recognition led to significantly larger gains in performance

within the classroom in the respective subject areas.

attending a small class in reading and word recognition which explains the dynamic benefits at that time.
33These results are robust to several alternative definitions of being a “weak” student. The results in word

recognition varied by definition of a “weak” students. Relative to classmates growth, the “weak" students expe-

rienced i) significantly larger gains in word recognition, ii) significantly smaller gains in mathermatics and iii) no

significant difference in performance gains in reading.
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The benefits occurring to students who made transitions between class types following kinder-

garten runs counter to the hypothesis that students benefit from environmental stability. We

conduct a more detailed examination of small classes in grade one. In each grade one small

class, we identified members of the largest subgroup of students who were taught by the same

teacher in kindergarten. We then ran regressions of growth in performance by subject area on

this indicator controlling for school indicators and the full history of student and teacher charac-

teristics. Members of this largest subgroup had significantly smaller gains than their classmates

in mathematics (coeff.=-6.129, s.e. 2.714) and word recognition (coeff.=-4.524, s.e. 3.008) and

no significant differences in readings. Multiple regressions using the number of your classmates

who were taught by the your kindergarten teacher (instead of a simple indicator variable) also

find significantly smaller gains in mathematics (coeff.=-1.797, s.e. 0.572) and word recognition

(coeff.=-1.179, s.e. 0.572) for each additional former classmate. These results do not support

arguments for environmental stability.34 Neither do they directly contradict the stability hy-

pothesis since peer groups (classmates) were no longer exogenously fromed after kindergarten.

An additional effect of these transitions is they substantially increased the variation of back-

ground subject knowledge within small classrooms in higher grades. The variation in past

performance was twice as large in grade two and three than grade one in reading and word

recognition. In higher grades, small classes had significantly more variation in past performance

in mathematics and reading than regular classes.35 Faced with relatively less variation in the

incoming knowledge of students, regressions indicate students in regular classes were able to

achieve significantly larger gains in mathematics and reading between grades one and two and

in mathematics from grade two to three.36 As regular classes gained more, the dynamic benefits

of small class attendance vanished. There were no significant differences in the variation of

prior performance on word recognition tests between class types in higher grades nor significant

34We do not analyze students in regular classes since they were re-randomized between classes with and without

aides following kindergarten.
35T-tests on the equality of variances in incoming test scores indicate significantly larger variation in small

classes in mathematics in grades two (P < F_obs = 0.04) and three (P < F_obs = 0.11) and in grade two

reading (P < F_obs = 0.06). Variation may influence student performance through teaching methods as having a

more diverse classroom may lead to increased difficulties for instructors at engaging the different levels of students.

Note that in grade one, we believe heterogeneity in the class room is driven by the incoming students some of

which did not attend kindergarten.
36Regressions including school indicators demonstrate that gains in reading between grades one and two (coef-

ficient =-2.54, std. err.=1.05) and gains in mathematics between between grades one and two (coefficient =-2.22,

std. err.=1.11) and between grades two and three (coefficient =-2.21, std. err.=0.88) were significantly lower in

small classes.
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differences in gains in performance on word recognition examinations between class types in

grades two and three. While the patterns exhibited in higher grade may be explained by the

existence of a trade-off between variation in incoming student performance and class type, more

investigation is needed and the underlying economic model must be expanded to include peer

effects to directly test this hypothesis.37

Overall, the patterns of the results does not provide systematic evidence of positive small

class size effect. It is interesting to see when small classes work and when it fails by comparing

growth rates in performances between alternative sequences. Yet, the evidence clearly finds that

small classes do not work unconditionally.

6.1 Specification Tests

This studies differs from past research on Project STAR not solely through the focus of treating

the experiment as a multi-period intervention but also in accounting for both attrition due to

observables and the possibility that other forms of non-compliance are due to unobservables.

The importance of accounting for attrition due to observables is examined using a test proposed

by DuMouchel and Duncan (1983). The test evaluates the significance of the impact of sampling

weights on unweighted estimation results by including first order interactions between the covari-

ates and the weighting variable. Weighted and unweighted estimates are significantly different

if the F test on these additional covariates is significant. In the absence of sample selection bias,

unweighted estimates are preferred since they are more efficient than the weighted estimates.

Test results are presented in table 6 and demonstrate that weighted estimates are preferred in

all subject areas and grade levels at conventional levels in reading and mathematics and below

the 20% level in word recognition.

37A discussion of peer effects estimation is beyond the scope of the current paper. Since students switch class

types, refreshment samples may be non randomly assigned to class type there are a variety of selection issues that

need to be considered. An attempt at peer effect estimation with this data can be found in Boozer and Cacciola

(2001) who examine peer effects in class type and not actual class attended and use an instrumental variables

procedure to overcome the myriad of selection issues where initial class type assignment is used as the instrument

under the assumption that initial assignment in each year of the program was random. Note that the hypothesis

is also consistent with evidence on elementary school students presented in Hoxby (2000a) and Hoxby (2000b)

who exploited natural variation in age cohorts in the population and found evidence that class size does not

affect student achievement in Conneticut and peer group composition affects achievement in Texas respectively.

Further, international evidence from the TIMMS study finds grade four Korean students who are ability streamed

in classrooms were the only country to significantly outperform the US in both science and mathematics had the

largest teacher-pupil ratio of the countries that participated in the study (28.6 pupils per teacher in Korea versus

17.1 pupils per teacher in the US; OECD (1997)).
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Assuming there does not exist selection on unobservables permits direct estimation of the

structural equations 9 and 10. This approach is implicitly undertaken in past studies using STAR

data (even those that include school fixed effects) since υi is assumed to be both uncorrelated

with the regressors and equal to zero.38 A likelihood ratio test can be conducted to test whether

the individual intercept effects can be restricted to equal zero. Under the Null, the restriction is

valid and the efficient estimator is least squares estimation without differencing. Table 7 present

results of this specification test. In all subject areas and grades the Null hypothesis is strongly

rejected supporting the presence of unobserved heterogeneity and the estimation of equation

11. Finally, it is worth noting that DuMouchel and Duncan (1983) tests confirm that weighted

estimates are preferred for these direct estimates of the structural equations further indication

that ignoring selective attrition in past studies leads to inconsistent parameter estimates.39

6.2 Robustness Checks

To check the robustness of our structural parameter estimates, we estimate a simpler attrition

model by subject area with only the most recent lagged test score is used as an explanatory

variable to predict whether the subject completes the examination in the next period. This

has the advantage of substantially increasing the sample for analysis by over one thousand

observations per subject area. In each attrition model, the lagged dependent variable entered

significantly demonstrating that selection on observables is not ignorable. We present weighted

structural parameter estimates in Table 8.40

There are a few minor differences between the samples in the structural parameters. For

example, in grade one, the combined effect of being in treatment both years is significantly neg-

38Past studies have not directly estimated the structural parameters of the education production function

without imposing additional assumptions. For example, Krueger (1999) estimates a contemporaneous version

assuming past inputs do not affect achievement and also considered alternative specifications that restricted the

manner in which past inputs affect current achievement. Ding and Lehrer (2003) present evidence that these

assumptions are rejected by the underlying data and these alternative empirical education production function

models do not recover the structural parameters.
39Structural parameter estimates that do not account for either selection or unobservables or attrition due to

observables are available from the authors by request. Not surprisingly, these estimates yield alternative policy

reccomendations that is more supportive of past conclusions drawn from Project STAR. Finally, the significance

of the results does not change if we compare inverse probability weighted estimates of the likelihood functions.

These are not presented as the likelihood for weighted MLE does not fully account for the "randomness" of the

weighted sampling and is not a true likelihood.
40Unweighted estimates that correspond to the same sample are available from the authors by request. Note

the DuMouchel and Duncan (1983) test suggest that the weighted estimates are preffered for this sample.
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ative in both mathematics and word recognition. The larger sample also permits identification

of additional parameters in grade three such as Si1Si2Si3. Our focus is on the impact of changes

in these estimates on the dynamic treatment effects. We find few changes in the statistical sig-

nificance of the dynamic treatment effects presented in table 5. In higher grades, we find the the

dynamic benefits of substituting into a small class in grade two become significantly smaller in

mathematics. Further, substituting in to small classes in grade three (τ (0,0,0,1)(0,0,0,0)(0, 0, 0, 1))

becomes insignificant in all subject areas.

In grade one, the results continue to lend increased support to only a single dose of class size

reductions. The economic significance of kindergarten increases and τ (0,1)(0,0)(0, 1)< τ (1,0)(0,0)(1, 0).

However, (τ (0,1)(1,0)(0, 1)) remains statistically insignificant. The trade-off between small class

attendance in kindergarten versus grade one is settled when examining higher grades. Kinder-

garten small class attendance (SiK) is positively related to performance in grade two reading and

grade three reading and word recognition examinations. Attendance in small classes in grade

one (Si1) is either negatively related or unrelated to performance in grades two and three.

Overall, these results suggest that the benefits of attending a small class early may extend

only in reading and word recognition. Following grade one, receiving additional treatment does

not accrue any additional benefits and it remains a subject for future research to pin point why

the benefits of small class instruction do not grow and actually declined in the STAR study.

Further, it remains a subject of further study to understand why the benefits of early small

class attendance do not persist in mathematics. We find evidence that students with the lowest

entry scores gained the most within the classroom in mathematics and it remains open the exact

mechanism that led to this result. In conclusion, the results suggest from a policy perspective

that the single dose of small class treatment should be received in kindergarten to yield persistent

positive benefits in reading at all grade levels and benefits in word recognition in kindergarten

and grades one and three.

7 Conclusion

This paper considers the analysis of data from randomized trials which offer a sequence of

interventions and suffer from a variety of problems in implementation. In this setting, neither

traditional program evaluation estimators or non-experimental estimators recover parameters of

interest to policy makers, particularly if there is non-ignorable selective attrition. Our approach

is applied to the highly influential randomized class size study, Project STAR. We discuss how

a researcher could estimate the full sequence of dynamic treatment effects for the treated using
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a sequential difference in difference strategy that accounts for attrition due to observables using

inverse probability weighting. These estimates allow us to recover the structural parameters of

the small class effect in the underlying education production function and construct dynamic

average treatment effects.

The evidence presented in this study (and our companion paper) presents a more complete

picture of the effectiveness of reduced class sizes. Past estimates generally treat the data as if

it were from a single period intervention, ignore the influences of past educational inputs and

recover parameters not of interest to policy makers. Further, by ignoring selective attrition

on observables past estimates are likely to be upward biased since attritors received half the

benefits of reduced class size in kindergarten. Past estimates generally treat other forms of non-

compliance as random whereas we find strong evidence for selection due to individual unobserved

heterogeneity. Finally, estimates of conditional random assignment demonstrate that analysis

with any sample above the kindergarten year may require further bias corrections.

We find that small class attendance is most effective in kindergarten. The benefits of attend-

ing a small class in early years does not have lasting impacts in mathematics and some lasting

impact in reading and word recognition. This result is surprising, since in practice, teachers

generally divide the full class of students in to small groups for reading whereas they teach the

full class mathematics. The dynamic treatment effects indicate that there were no significant

benefits of receiving instruction in small classes in the current and all prior years of the ex-

periment as compared to never being in a small class in mathematics and above grade two in

reading and word recognition. Finally, we present evidence that teachers are able to identify

weak students in mathematics and boost their achievement relative to their classmates and in

higher grades a trade-off between variation in background knowledge and class size may account

for decreasing small class achievement gap.

While this paper presents compelling new evidence to one of the hotly debated education

policy areas several methodological limitations remain. First, for identification we assume that

the variance covariance matrix is diagonal and that there is no serial correlation after controlling

for person-specific fixed effects and grade effects. If this assumption is valid, more efficient

estimates can be obtained by exploiting the zero covariance restrictions via nonlinear GMM

as proposed by Hausman, Newey and Taylor (1987). However, serial correlation would exist if

unobserved factors affect achievement in a different manner each period. Ding and Lehrer (2003)

propose a simple specification test based on an instrumental variables procedure to test if the

growth rate of unobserved factors (i.e. innate ability) is constant between periods. If the growth

rate is not equal to one, the achievement equations could be quasi-differenced and instrumental
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variables regression techniques used to obtain consistent estimates of the structural parameters.

Third, this study considers a weighting strategy rather than an imputation method to deal with

attrition or selective test completion. To the best of our knowledge studies have yet to examine

which of these approaches performs better with panels that have a triangular structure. Fourth,

translating the benefits of alternative sequences of small classes to later academic and labor

market outcomes is of importance for policy purposes. Krueger and Whitmore (2001) present

strong evidence that being initially assigned to a small class increased the likelihood that a

subject took the SAT or ACT college entrance examination using the full sample. Fifth, a more

complete understanding of the trade-off between increased student variability, class size and

teaching methods is needed to see if this hypothesis accounts for the reduced class size benefits

in higher grades and larger benefits to low achieving students in mathematics. Data on teaching

practices has been collected by the original STAR researchers but has yet to be made available

to the general research community. Answers to these and other questions present an agenda for

future research.
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Figure 1: Transitions During Project Star for Kindergarten Cohort
Kindergarten Grade One Grade Two Grade Three

Si3 = 1, [858]
Si3 = 0, [32]

Si2 = 1, [1027] % Li3 = 1, [137]
Si2 = 0, [27] & Si3 = 1, [18]

% Li2 = 1, [239] Si3 = 0, [18]
Si1 = 1, [1293] Li3 = 1, [6]
Si1 = 0, [108] & Si3 = 1, [15]
Li1 = 1, [499] Si3 = 0, [0]

Si2 = 1, [17] % Li3 = 1, [2]
% Si2 = 0, [55] & Si3 = 1, [3]

Li2 = 1, [36] Si3 = 0, [46]
Si0 = 1, [1900] Li3 = 1, [6]

Si3 = 1, [158]
Si0 = 0, [4425] Si3 = 0, [9]

Si2 = 1, [187] % Li3 = 1, [20]
& Si2 = 0, [8] & Si3 = 1, [0]

Li2 = 1, [53] Si3 = 0, [4]
Si1 = 1, [248] % Li3 = 1, [4]
Si1 = 0, [2867] & Si3 = 1, [75]
Li1 = 1, [1310] Si3 = 0, [5]

Si2 = 1, [93] % Li3 = 1, [13]
Si2 = 0, [2135] & Si3 = 1, [101]
Li2 = 1, [639] Si3 = 0, [1758]

Li3 = 1, [276]
Note: Number or individuals are in [*] brackets.
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Table 1: Are Attritors Different from Non-attritors
Subject Area Mathematics Reading Word Recognition

Kindergarten Class Size
-1.252
(0.306)

-0.795
(0.182)

-0.902
(0.209)

White or Asian Student
20.183
(2.769)

8.446
(2.004)

8.300
(2.526)

Female Student
2.578
(1.365)

3.341
(1.074)

2.478
(1.296)

Student on Free lunch
-13.688
(1.695)

-12.233
(1.191)

-13.895
(1.483)

Years of Teaching Experience
0.334
(0.220)

0.262
(0.124)

0.337
(0.135)

White Teacher
-1.425
(4.423)

-1.927
(3.116)

-1.945
(3.556)

Teacher has Master Degree
-1.962
(2.396)

-1.506
(1.412)

-0.820
(1.719)

Attrition Indicator
-32.800
(7.221)

-20.236
(4.583)

-23.016
(5.754)

Attrition Indicator Interacted with
Kindergarten Class Size

0.670
(0.310)

0.285
(0.198)

0.431
(0.240)

Attrition Indicator Interacted with
White or Asian Student

-3.622
(2.756)

-0.117
(1.829)

-0.968
(2.377)

Attrition Indicator Interacted with
Female Student

5.552
(2.079)

2.915
(1.455)

3.720
(1.734)

Attrition Indicator Interacted with
Student on Free lunch

-5.301
(2.400)

-0.544
(1.561)

0.468
(1.897)

Attrition Indicator Interacted with
Years of Teaching Experience

0.190
(0.211)

0.079
(0.130)

-0.059
(0.164)

Attrition Indicator Interacted with
White Teacher

1.495
(3.520)

2.421
(2.150)

0.783
(2.700)

Attrition Indicator Interacted with
Teacher has Master Degree

-1.095
(2.513)

1.042
(1.589)

1.701
(1.879)

Number of Observations, R-Squared 5810, 0.304 5729, 0.294 5789, 0.258
Joint Effect of Attrition on Constant
and Coefficient Estimates

42.22
[0.000]

33.19
[0.000]

26.28
[0.000]

Joint Effect of Attrition on all
Coefficient Estimates but not constant

3.08
[0.003]

1.39
[0.207]

1.58
[0.135]

Effect of Attrition
on Constant Alone

20.63
[0.000]

19.50
[0.000]

26.28
[0.000]

Note:Regressions include school indicators. Standard errors corrected at
the classroom level are in ( ) parentheses. Probability > F are in [ ] parentheses.
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Table 2: Testing Randomization of Student Characteristics across Class Types
Kindergarten Grade One Grade Two Grade Three

INCOMING STUDENTS

White or Asian Student
2.35*10E-4
(0.012)

-0.275
(0.193)

-0.061
(0.041)

7.63*10E-4
(0.063)

Female Student
0.012
(0.019)

0.199
(0.126)

-0.020
(0.021)

-0.017
(0.028)

Student on Free lunch
-8.74*10E-3
(0.017)

-0.262
(0.167)

0.013
(0.022)

-0.057
(0.037)

Joint Test of Student
Characteristics

0.29
[0.831]

1.83
[0.150]

1.24
[0.301]

1.01
[0.392]

Number of Observations 6300 2211 1511 1181
R Squared 0.318 0.360 0.248 0.411

FULL SAMPLE

White or Asian Student
2.35*10E-4
(0.012)

-0.003
(0.021)

-0.008
(0.025)

-0.021
(0.027)

Female Student
0.012
(0.019)

0.007
(0.009)

0.004
(0.009)

0.008
(0.009)

Student on Free lunch
-8.74*10E-3
(0.017)

-0.038
(0.016)

-0.030
(0.016)

-0.044
(0.016)

Joint Test of Student
Characteristics

0.29
[0.831]

2.05
[0.114]

1.38
[0.255]

2.98
[0.037]

Number of Observations 6300 6623 6415 6500
R Squared 0.318 0.305 0.328 0359
Note:Regressions include school indicators. Standard errors corrected at
the school level are in ( ) parentheses. Probability > F are in [ ] parentheses.
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Table 3: Logit Estimates of the Probability of Remaining in the Sample
Grade One Grade Two Grade Three

Kindergarten
Reading

.00720
(.00322)

.00230
(.00494)

.00041
(.00597)

Kindergarten
Mathematics

.00865
(.00116)

-.00152
(.00189)

.00126
(.00252)

Kindergarten
Word

-.00035
(.00242)

-.00061
(.00369)

-.00546
(.00464)

Grade One
Reading

*
.00189
(.00293)

.00053
(.00397)

Grade One
Mathematics

*
.01262
(.00222)

-.00494
(.00307)

Grade One
Word

*
.00834
(.00260)

.00834
(.00258)

Grade Two
Reading

* *
.00868
(.00404)

Grade Two
Mathematics

* *
.00728
(.00289)

Grade Two
Word

* *
-.00195
(.00292)

Log likelihood -2755.54 -1239.39 -743.39
Number of Observations 5703 3127 2452
Note: Specifications include the complete history of teacher
characteristics, free lunch status and class size. Specifications
also includes school indicators, child gender and child race.
Standard errors corrected at the teacher level in parentheses.
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Table 4: Structural Estimates of the Treatment Parameters in Education Production Functions
Subject Area Mathematics Reading Word Recognition
Kindergarten
SiK 8.595 (1.120)*** 5.950 (0.802)*** 6.342 (0.945)***
Grade One
SiK 7.909 (4.625)** 8.785 (5.284)** 11.868 (6.722)**
Si1 9.512 (3.307)*** 9.315 (4.350)*** 15.394 (5.730)***
SiKSi1 -6.592 (5.648) -2.229 (6.992) -11.060 (8.965)
Grade Two
SiK -2.078 (7.276) 11.320 (7.240) 9.959 (8.438)
Si1 -4.010 (3.855) -20.036 (19.189) 4.298 (7.763)
Si2 15.150 (5.430)*** 3.040 (4.428) 0.526 (5.814)
SiKSi1 3.851 (11.678) 1.148 (24.059) -12.074 (17.673)
SiKSi2 -4.049 (13.112) -31.513 (17.366)** -23.084 (13.237)**
Si1Si2 -4.944 (6.617) 25.122 (19.480) 7.868 (8.537)
SiKSi1Si2 6.653 (16.067) 23.634 (28.632) 30.111 (19.851)
Grade Three
SiK -7.298 (10.901) 1.215 (10.372) 13.071 (12.202)
Si1 43.514 (32.898) 22.083 (30.097) -6.920 (37.200)
Si2 25.263 (42.080) -22.085 (26.069) -25.024 (22.031)
Si3 -6.835 (3.932)** -10.590 (4.179)*** -12.738 (5.952)***
SiKSi1 -38.612 (30.944) 7.978 (39.071) -18.002 (32.872)
SiKSi2 37.355 (28.625) -42.740 (25.731)** -2.932 (22.527)
SiKSi3 -39.819 (19.922) 17.870 (18.147) 7.328 (14.855)
Si1Si2 -61.947 (52.749) 25.388 (35.964) -7.586 (36.814)
Si1Si3 17.163 (43.057) -6.613 (32.183) -7.954 (29.718)
Si2Si3 -14.366 (42.280) 35.547 (22.836) 29.203 (26.267)
SiKSi1Si3 -4.651 (52.881) -41.180 (43.335) -14.706 (35.985)
SiKSi1Si2Si3 48.084 (48.704) 6.834 (30.521) 14.377 (33.920)
Note: Corrected standard errors in parentheses. The
sequences SiKSi1Si2, SiKSi2Si3 and Si1Si2Si3 lack
unique support to permit identification in grade 3.
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Table 5: Dynamic Average Treatment Effect for the Treated Estimates
Subject Area Mathematics Reading Word Recognition
Kindergarten

τ (1)(0)(1) 8.595 (1.120)*** 5.950 (0.802)*** 6.342 (0.945)***
Grade One
τ (0,1)(0,0)(0, 1) 9.512 (3.307)*** 9.315 (4.350)*** 15.394 (5.730)***
τ (1,0)(0,0)(1, 0) 7.909 (4.625)** 8.785 (5.284)** 11.868 (6.722)**
τ (1,1)(0,0)(1, 1) 10.829 (8.021)* 15.872 (9.787)* 16.203 (12.587)*
τ (1,1)(1,0)(1, 1) 2.920 (6.544) 7.086 (8.235) 4.334 (10.640)
τ (1,1)(0,1)(1, 1) 1.317 (7.300) 6.556 (8.764) 0.808 (11.205)
τ (0,1)(1,0)(0, 1) 1.603 (5.686) 0.530 (6.844) 4.066 (8.833)
Grade Two
τ (0,0,1)(0,0,0)(0, 0, 1) 15.150 (5.430)*** 3.040 (4.428) 0.526 (5.814)
τ (1,0,0)(0,0,0)(1, 0, 0) -2.078 (7.276) 11.320 (7.240)* 9.959 (8.438)
τ (1,1,1)(0,0,0)(1, 1, 1) 10.574 (26.606) 12.714 (50.199) 17.603 (33.463)
τ (1,1,1)(1,0,0)(1, 1, 1) 12.651 (25.589) 1.394 (49.674) 7.644 (32.381)
τ (1,1,1)(1,1,0)(1, 1, 1) 12.810 (22.436) 20.282 (38.993) 15.421 (25.999)
τ (0,1,1)(0,0,0)(0, 1, 1) 6.196 (9.400) 8.125 (27.700) 12.691 (12.920)
τ (0,0,1)(1,0,0)(0, 0, 1) 17.228 (9.084)** -8.208 (8.490) -9.433 (10.249)

Grade Three
τ (0,0,0,1)(0,0,0,0)(0, 0, 0, 1) -6.835 (3.932)** -10.590 (4.179)*** -12.738 (5.952)***
τ (1,1,1,1)(0,0,0,0)(1, 1, 1, 1) -2.148 (129.436) -17.192 (93.135) -20.985 (102.228)
τ (1,1,1,1)(1,1,0,0)(1, 1, 1, 1) 0.247 (120.810) -22.487 (81.117) -35.114 (85.973)
τ (1,1,1,1)(1,1,1,0)(1, 1, 1, 1) -0.424 (96.033) 10.115 (63.543) 7.262 (70.360)
τ (1,1,1,1)(0,1,1,1)(1, 1, 1, 1) -4.940 (86.378) -20.263 (64.365) -30.626 (75.468)
τ (0,1,1,1)(0,0,0,0)(0, 1, 1, 1) 2.792 (96.397) 3.071 (67.314) 9.641 (68.958)
τ (0,0,1,1)(0,0,0,0)(0, 0, 1, 1) 4.062 (59.781) -3.472 (37.243) -2.215 (32.284)
τ (0,0,1,1)(1,1,0,0)(0, 0, 1, 1) 6.458 (75.714) -8.767 (59.001) -16.344 (64.043)

Note: Standard Errors in parentheses.
***,** indicate statistical significance at the 5%, and 10% level respectively

35



Table 6: Tests of Weighted versus Unweighted Estimates
Subject Area Mathematics Reading Word Recognition

Grade One
8.74
[0.000]

3.39
[0.000]

1.35
[0.169]

Grade Two
1.48
[0.071]

3.86
[0.000]

2.08
[0.002]

Grade Three
1.72
[0.008]

1.91
[0.002]

1.03
[0.424]

Note: Probability > F are in [ ] parentheses.

Table 7: Likelihood Ratio Tests for the Presence of Selection on Unobservables
Subject Area Mathematics Reading Word Recognition

Grade One
2661.91
[0.000]

4468.98
[0.000]

3293.98
[0.000]

Grade Two
1648.11
[0.000]

1478.86
[0.000]

5480.28
[0.000]

Grade Three
1606.95
[0.000]

1421.94
[0.000]

839.84
[0.000]

Note: Probability > χ2 are in [ ] parentheses.
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Table 8: Structural Estimates of the Treatment Parameters in Education Production Functions
using Simpler Attrition Model to Account for Test Completion

Subject Area Mathematics Reading Word Recognition
Kindergarten
SiK 8.595 (1.120)*** 5.950 (0.802)*** 6.342 (0.945)***
Grade One
SiK 12.794 (4.742)*** 11.221 (5.088)*** 12.580 (5.433)***
Si1 10.322 (2.798)*** 4.032 (2.962) 9.282 (3.568)***
SiKSi1 -12.748 (5.461)*** -3.164 (5.914) -10.514 (6.603)
Grade Two
SiK 8.993 (7.063) 17.40 (8.054)*** -1.690 (4.068)
Si1 -15.755 (11.672) -37.592 (16.710)*** -23.035 (16.522)
Si2 9.001 (4.839)** -2.471 (4.4149) 7.278 (8.297)
SiKSi1 0.437 (15.122) -0.044 (22.636) 0.061 (21.173)
SiKSi2 -0.933 (8.931) -19.001 (11.704) -10.165 (21.262)
Si1Si2 14.477 (12.686) 43.044 (17.248)*** 29.128 (17.002)**
SiKSi1Si2 -7.712 (16.250) 8.050 (24.184) 9.189 (28.858)
Grade Three
SiK 2.512 (11.252) 12.487 (9.726) 20.241 (11.072)**
Si1 7.347 (11.921) 3.743 (19.584) 3.533 (27.390)
Si2 32.700 (25.589) -14.059 (11.435) -16.140 (8.272)**
Si3 -2.991 (3.932) -3.547 (3.411) -5.491 (4.815)
SiKSi1 -2.424 (19.982) -14.738 (27.662) -18.626 (33.645)
SiKSi2 42.515 (28.165) -19.929 (26.944) -49.423 (35.623)
SiKSi3 -9.926 (26.641) 20.363 (23.145) 29.862 (26.369)
Si1Si2 -30.957 (29.537) 6.710 (27.010) -3.718 (36.282)
Si1Si3 -34.354 (28.549) -45.065 (25.648)** -65.591 (29.914)***
Si2Si3 -27.291 (25.802) 13.957 (11.755) 25.368 (9.699)***
SiKSi1Si2 -43.321 (34.722) 38.333 (40.920) 94.618 (53.809)**
Si1Si2Si3 66.369 (39.566)** 46.807 (31.803) 69.728 (38.514)**
SiKSi1Si2Si3 8.646 (28.371) -34.171 (28.758) -72.552 (36.493)***
Note: Corrected standard errors in parentheses. The
sequences SiKSi1Si3 and SiKSi2Si3 lack unique
support to permit identification in grade 3.
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