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Abstract

We introduce and solve a new class of static portfolio choice problems, where
only the best realized alternative matters. A decision maker must simultaneously
choose among independent ranked options, and the better alternatives have a lower
chance of panning out. Each choice is costly, and just one option may be exercised.
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• A student must make a costly and simultaneous application to many colleges,
and is accepted with smaller chances by the better schools.

• An economics department must decide which of several PhD job candidates
to fly out, and the better recruits will be available with smaller probability.

We show that such portfolio choice problems quite generally entail maximizing
a submodular function of finite sets — which is NP hard in general. Still, we
develop a marginal improvement algorithm that produces the optimal set for our
binary option structure in a quadratic number of steps. Applying it, we then
show that the optimal choices are less risky than the sequentially optimal ones
in Weitzman (1979), but riskier than the best singleton college choices. We also
give practical rules of thumb, such as: (i) don’t insure, choosing a safety school;
instead, take risks — unless success rates are positively correlated; (ii) apply to
an upwardly diverse portfolio of schools. We also provide comparative statics on
the chosen set.
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1 Introduction

We introduce and solve a new class of static portfolio choice problems, where only the

best realized alternative matters. A decision maker (DM) must choose from among many

ranked options, better alternatives have a lower chance of panning out, and only one

option may be exercised. We completely solve two search problems where a portfolio of

options is chosen simultaneously once-and-for-all: (i) the DM can choose sets of any size,

and each selection is costly, and (ii) the DM is restricted to choice sets of a given size.

Our paper generalizes the first 1961 search theory paper by Stigler who describes the

optimal fixed size wage search. But unlike Stigler, we do not assume a priori identical

prizes, and thus characterize not only the optimal search size but also the optimal choice

composition. As such, we provide a foundation for problems in directed search.

Weitzman (1979) also explored a problem with a priori distinct prizes — but in the

sequential world. Weitzman’s method is a nice application of Gittins’ solution of the

bandit problem. Each option can be assigned an index in isolation of all others; the

selection rule is simply to choose the unexplored option with the highest index. In our

paper, no such simple index rule presents itself. Instead, we find ourselves faced with

the maximization of a submodular function of sets of alternatives; formally equivalent

to maximizing a convex function, this problem is known to be NP hard, in general.

Nevertheless, we introduce an economically natural algorithm that produces the optimal

set in quadratically many steps. Since submodular maximization is intractable, this

algorithm alone allows us to derive all of our characterization results.

We explore basic properties of the optimal set. A key question we ask is how much of

a risk taker one should be. It is frequently mused, for instance, that one should include

an ‘insurance option’ or ‘safety school’. We show that unless the options have correlated

success rates, this conventional wisdom is false. The optimal choice set is riskier than

the one consisting solely of the best options evaluated in isolation. For instance, if a

tier two school is your best solo possibility, your optimal application portfolio cannot

include tier three schools. On the other hand, we show that the optimal static choices

are less risky than the sequential choices dictated in Weitzman (1979).

We also ask how varied should the choices be. We argue in favor of an upwardly

diverse portfolio: For a rich enough array of possible colleges, a connected ‘interval’
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of similarly-risky prospects is not optimal. With low enough costs, individuals should

eventually add a distinctly riskier option to their choice set. We also provide some

nonstandard comparative statics, showing how the choice set improves when acceptance

chances rise, and the acceptance chances of better alternatives rise proportionately more.

We believe that our problem is not without substantive practical value.

Example 1. A student must make a costly and simultaneously application to several

colleges, and is accepted with smaller chances by the better schools.

Example 2. An economics department must fly out several new PhD job candidates;

the fly-outs are costly. Each school ranks the job candidates, and schools have correlated

preferences. Thus, better candidates are harder to hire. To map the decision problem

confronting each school into our simple framework, assume that (i) fly-outs do not inform

the hiring decision; (ii) each department simply wishes to hire a single job candidate; (iii)

after the fly-out stage, the market clears top to bottom (the best schools choose first),

so that the better recruits are available with smaller chance to any school below the top.

Example 3. Akin to Weitzman’s inspirational application, a research department

of a large firm wishes to choose a technology; several are available, and all are costly to

explore; some will work out, and others will not. Finally, it is in a hurry (e.g., it is in a

race with other firms), and must simultaneously choose which technologies to explore.

Our algorithm yields the following practical advice to aspiring college applicants:

Identify your best singleton school, and apply to it. Next figure out which school adds

most value to this sample size one coalition, and ask “Does the marginal increment pay

for itself?” Continue, until the answer is ‘no’. We think that this economically natural

algorithm is new, and is the first recipe that identifies the optimal choice set for a class

of submodular maximization problems other than linear programming.

While our paper is very much of a sequel to Weitzman’s work, it may more topically

be viewed by search economists as a foundation work towards the recent literature on

directed search.1 This line of work seeks to improve upon purely random matching, by

allowing, for instance, employees to choose which jobs to apply to. Our paper solves

this decision problem for multiple applications and heterogeneous jobs.2

1A recent salient contribution here is Burdett, Shi, and Wright (2001).
2See Albrecht, Gautier, and Vroman (2002). Perhaps the first equilibrium paper with multiple

simultaneous searches is Burdett and Judd (1983).
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Finally, we offer a key theoretical perspective on our contribution. Optimization of

submodular set functions has appeared in the economics literature from time to time.

Our contribution, however, turns on an absolutely critical difference. We study the

open problem of maximization of a submodular set-function. The existing literature, for

instance, Gul and Stacchetti (1999) and Kelso and Crawford (1982), relies on the now

understood problem of the minimization of submodular set functions (Fujishige 1991).

We argue that our problem is formally the maximization of a convex function in R
N ,

whose complexity should be manifest. Absent a single tool to grasp onto — for instance,

methods developed in monotone comparative statics are worthless for a submodular

maximization — our proofs are mostly via induction or application of our algorithm.

We defer a discussion of ?, who studies a related problem, until §4.2-C.

While this paper will proceed for definiteness using the example and language of the

college admissions problem, the applications to other problems must be kept in mind.3 We

first describe the search problem and give its sequential solution. We then provide our

static algorithm and prove its optimality. We then explore the properties of the optimal

set: Do students insure themselves or gamble? Are their choices similar, or disparate?

What if success rates are correlated? The appendix collects the longer proofs.

2 The Model and Two Competing Approaches

A. The College Problem. A student must choose once and for all a portfolio S

of colleges from {1, 2, . . . , N} to which she wants to apply for admission. Here, N is

a natural number, but in an abuse of notation, we denote this set by N too, and its

subsets by 2N . We assume either a fixed sample size, or a fixed application cost c > 0.

The best college is 1, the second best 2, and so on. The student’s cardinal utility

from going to college i is ui, where u1 > u2 > · · · > uN . His chance of being admitted

to college i is αi ∈ (0, 1].4 We shall often posit the rather intuitive inverse ordering

α1 < α2 < · · · < αN , but this is inessential for most of our results. The acceptance

3To be precise, we hit this problem when trying to solve an equilibrium version of the College
Admissions problem, with uncertainty. That paper (Chade, Lewis, and Smith 2003) is a work in
progress, and uses the general results of this paper.

4In Chade, Lewis, and Smith (2003), these chances αi arise naturally as the probabilities that the
signal of the quality of a student lies above the standard of college i.
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decisions by any group of colleges are independent. In the college example, one can

rationalize this as follows: Colleges perceive noisy conditionally iid signals of a student’s

type, and a student fully knows his true type. We sometimes explore the problem with

correlated acceptance chances, where one does not fully know one’s type.

Denote by zi = αiui the unconditional expected payoff of applying just to college i.

Given an application cost, we assume zi > c for all i, pruning weakly dominated colleges.

B. The Sequential Choice Problem. Consider first the case where a student can

apply to the colleges sequentially, observing whether one accepts her before she applies

to the next. In which order should she apply, given the cost c > 0? The optimal policy

in Weitzman (1979) — which coincides with the Gittins index for bandits (Gittins and

Jones 1974) — is derived as follows for our context. To each college i, associate an

intrinsic index or reservation value Ii; this leaves the student indifferent between a

terminal payoff Ii, and applying to college i and then earning payoff Ii if rejected:

Ii = zi − c + (1 − αi)Ii ⇒ Ii = (zi − c)/αi = ui − c/αi (1)

The optimal policy orders the colleges by their indices Ii; the student starts at the

colleges with the maximal Ii, moving down the list until one accepts him.

C. The Objective Function for the Static Optimization. We are concerned in

this paper with a one-shot decision. First of all, let f(S) be the expected gross value of

school subset S, ignoring application costs. Working recursively, one either gets into the

best college, or one does not; if rejected, one either gets into the next best, or not, etc.

Let ρ(S) ≡ Πi∈S(1−αi) be the probability of being rejected by all colleges in the set S.

Thus, we compute a few decompositions for the gross payoff as follows:

f(S) =
∑|S|

i=1 z(i)

∏i−1
ℓ=0(1 − α(ℓ)) =

∑|S|
i=1 z(i)ρ(i−1)(S) (2)

⇒ f(U + L) = f(U) + ρ(U)f(L) for all sets U above L in N (3)

where (i) is the i-th best ranked college in the set S, so that z(i) ≡ α(i)u(i), and ρ(i−1)(S) =
∏i−1

ℓ=0(1 − α(ℓ)) is the chance of being rejected by the top-ranked i − 1 schools in set S.
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The (net) value of applying to the set S of schools is v(S) ≡ f(S) − |S| c. Applying

nowhere is worthless: v(∅) = 0. We consider two problems. First, for fixed c > 0,

maximize the net value:

max
S⊆N

v(S) ≡ f(S) − |S| c (4)

Let S∗(c) = arg maxS⊆N v(S) be the optimal set. Second, for fixed sample size n ∈ N ,

maximize the gross payoff:

max
S⊆N&|S|=n

f(S) (5)

Denote the optimal set for (5) by S∗
n = arg maxS⊆N f(S). Since all applications are

equally costly, for any c > 0, if n = |S∗(c)|, then S∗
n = S∗(c). Call this set S∗.

C. Consistency Checks on the Optimal Set. Computing the optimal set turns

out to be very hard, but we are able now to provide two useful tests that it must obey.

Lemma 1 Let the optimal portfolio be S∗
n = {j1, . . . , jn}, where j1 < · · · < jn. Then:

(a) For all k, {jk, . . . , jn} is an optimal (n − k + 1) selection from5 [jk, N ].

(b) Assume zi > zj and αi < αj. If j ∈ S∗, then i ∈ S∗.

Proof Part (a) follows from the ‘downward recursive’ structure of (2), as seen in (3).

Part (b) is intuitive: College i not only has a higher expected payoff but also yields

a higher rejection externality for lesser schools. Formally, since i < j, we may write

S∗ = U + j + M + L and S∗ − j + i = U + M + i + L, where (upper set) U = [1, j)∩S∗,

(middle set) M = (i, j) ∩ S∗, and (lower set) L = (i, N ] ∩ S∗. Consider the following

suboptimal implementation policy for S∗−j + i: Accept the best available option, unless

it is i, in which case accept the best opportunity in M (if available) over i. So by (3),

f(S∗ − j + i) ≥ f(U) + ρ(U) (f(M) + ρ(M)[zi + (1 − αi)f(L)])

> f(U) + ρ(U) (f(M) + ρ(M)[zj + (1 − αj)f(L)]) = f(S∗)

where we use the facts that ρ(U)ρ(M) > 0 and zi + (1 − αi)f(L) > zj + (1 − αj)f(L).

Hence, we have shown that if i 6∈ S∗ then j 6∈ S∗. �

5We hereby introduce the suggestive notation (i, j) for the set of colleges ranked strictly between i

and j; similarly, define (i, j]. Thus, [1, j) ∩ S is the set of all colleges in S that are better than j.
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3 Portfolio Choice Problems are Submodular

Let’s consider a generalization of the problem (4), for a stronger result. Assume N

options, each characterized by a c.d.f. Gi, i = 1, 2, . . . , N , over the set of prizes that i

can deliver. Let [0, ū] contain the union of the supports of all Gi. The decision maker

chooses a subset S ⊆ N at a cost c per option included in S; after the choice is made,

he draws a prize from each Gi, i ∈ S; and chooses the maximum of the realized prizes:

max
S⊆N

v(S) ≡ f(S) − |S|c =

∫ ū

0

(

1 −
∏

i∈S

Gi(u)

)

du − c|S|. (6)

This formula owes to the well-known fact that the expected value of a nonnegative

random variable equals the integral of the survivor distribution.

Lemma 2 (Value Submodularity) The function v : 2N 7→ R in (6) is submodular.

Proof We need to show that for any two subsets S and T of N , v(S∩T )+v(S∪T ) ≤

v(S)+v(T ). A simpler characterization (Proposition 1.1 in Lovász (1982)) is diminishing

returns: for any j /∈ S ⊂ N , the function v(S + j) − v(S) is decreasing in S.6, 7

First, −c|S| is a modular, and thus submodular, function. Thus, it suffices to show

that f(S + j) − f(S) is decreasing in S. But this is clear, as
∏

i∈S Gi(u) falls in S, and

f(S + j)−f(S) =

∫ ū

0

(1−Gj(u))
∏

i∈S

Gi(u)du. �

The intuition is simply that with more options, any addition to the current portfolio

is less valuable. As noted, this ‘diminishing returns’ suffices to establish submodularity.

By Lemma 2, problem (6) entails the maximization of a submodular function over the

set of subsets of N . For pedagogical reasons, we provide a brief simple intuition from §4 of

Lovász (1983) for the inherent difficulty of maximizing submodular functions. Associate

to the set function f another function f̂ on 0-1 vectors in R
N as follows: For each S ⊂ N ,

let aS be a vector of 0’s and 1’s, with aS
i = 1 if and only if school i belongs to S. First

6We will use the shorter and suggestive notation S + j = S ∪ {j} and S − j = S \ {j}.
7This property has most recently appeared in the economics literature in Gul and Stacchetti (1999).

See also related work by Kelso and Crawford (1982) on the gross substitutes condition.
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set f̂(aS) = f(S). Next, given 0-1 vectors a1 ≥ a2 ≥ · · · ≥ aN , uniquely express any

b ∈ R
N as b =

∑N

i=1 λiai, for scalars λi > 0. Finally, define f̂(b) =
∑N

i=1 λif̂(ai).

Proposition The extension f̂ is convex on R
N if and only if f is submodular on 2N .

In other words, our problem is tantamount to the maximization of a convex function

on the space [0, 1]N . The difficulty of our exercise now should be apparent. The argmin

of a convex function is a convex set, and more generally, the argmin of a submodular

function is a well-behaved sublattice. However, the argmax of a convex function has no

known regularity properties, nor does the argmax of a submodular function. Intuitively,

one expects a corner solution — but which corner? (There are 2N corners.) By exploiting

the special functional form of our objective function v, we next provide an algorithm

that quickly finds the optimal portfolio S∗.

4 An Optimal Marginal Improvement Algorithm

4.1 The College Problem Solved

The Marginal Improvement Algorithm (MIA) identifies a choice set S∗ via a simple

inductive procedure as follows:

Step 1 Let i1 = arg maxi∈N f({i}). Then S1 = {i1} ⊆ S∗.

Step n Let ik = arg maxi∈N−Sk−1
f(Sk−1 + i) − f(Sk−1), for k = 1, . . . , n − 1. Fix

Sn−1 = {i1, . . . , in−1} ⊆ S∗. Define in = arg maxi∈N\Sn−1
f(Sn−1 + i) − f(Sn−1).

Stopping Rule for (4) If f(Sn−1 + in)− f(Sn−1) > c, then in ∈ S∗. Otherwise, stop.

In other words, one first identifies the college i = i1 whose unconditional expected

payoff zi is largest. In the induction step, one finds the college in that affords the

largest marginal benefit over the college set constructed so far. For problem (4) with an

application cost, one stops if the net marginal benefit turns negative.

Theorem 1 The MIA identifies the optimal set for problem (5). With the stopping

rule, it identifies the optimal set for problem (4).
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As we mentioned, this problem is, in general, NP-hard.8 One must in principle

calculate the values of all 2N college application patterns. Yet our algorithm works in

polynomial time. Initially, the student examines N application patterns and then finds

the best college to apply first. At the second round, she examines N−1 patterns and finds

the second college, etc. At most, she will examine a total of N +(N − 1)+ · · ·+2+1 =

N(N+1)/2 patterns. We thus reduce the difficulty of the problem from O(2N) to O(N2).

The optimality of the MIA is shown in the appendix, but since it is a key result,

we will summarize our proof, which proceeds by policy improvement. Specifically, for

Step 1, it suffices to show that for any given nonempty subset S ⊂ N that does not

contain i1, there is another set S ′ that includes i1 and dominates S. But which set S ′

works? Our proof works by policy improvement. We have discovered that if there is

some lower-ranked college than i1 in S, then it is optimal to replace it by i1. Otherwise,

if there are no colleges worse than i1 in S, then it is optimal to replace the worst better-

ranked school w by i1. The argument for the induction step is analogous.

An example illustrates the importance of choosing w. Assume three colleges, with

α1 = 0.1, α2 = 0.9, α3 = 1, u1 = 1, u2 = 0.5, u3 = 0.48. Notice that z3 = 0.48 >

z2 = 0.45 > z1 = 0.1. Hence, 3 ∈ S∗. In order to prove it, we must show that {1, 2} is

dominated by a set that contains college 3. Here college 2 plays the role of w. It is easy

to show that {1, 3} dominates {1, 2} but that {2, 3} does not.

Note that the true marginal benefit v(S + i)− v(S) of a school i to a portfolio S lies

below v(i)− v(∅) = zi − c, whenever S 6= ∅, by Lemma 2. So the naive rule of applying

to all schools N whose expected payoffs exceed their cost c yields too many applications.

Related Algorithms. We believe that the marginal improvement algorithm has not

already been explored. This perhaps speaks to the foundation of this literature in

combinatorics and graph theory. We have found two main classes of algorithms. The

Greedy Algorithm successfully solves problems having a linear programming structure:

Specifically, assume we wish to maximize bx over all x ∈ R
n obeying

∑

r∈S xr ≤ f(S)

across all subsets S ⊂ N , where b ≥ 0. This algorithm first ranks the coefficients

bi1 ≥ · · · ≥ bin , and then selects xr+1 = f(Sr+1) − f(Sr), where Sr+1 = Sr + ir+1. Note

8So as a function of the number of options, it is not solvable in a polynomial number of steps.
Consult the inviting survey article Lovász (1983).
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that our submodular optimization problem cannot be written in the linear programming

form, due to the multiplicative spill-overs across college choices.9

The Dichotomy Algorithm applies to more general submodular optimizations over

sets, and thus is relevant for our context. This recipe narrows the optimal set from the

inside and outside at each stage, shrinking the ‘interval’ [S, T ] of possible schools (sets

again ordered by inclusion) that contain the optimal set. We can produce an example

in our context where it stops before hitting the optimal set.10

4.2 Boundaries of the Marginal Improvement Algorithm

While the MIA may be ‘intuitive’, any success at all for a submodular maximization

problem is remarkable. Does it extend beyond the environment with binary success-

or-failure prizes? We first provide a different class of portfolio choice problems with

general prize distributions ordered by stochastic dominance where the MIA succeeds.

We then temper this success by showing that the MIA fails in a simple enrichment of

the success-or-failure binary prize context, or with highly correlated chances.

A. Prize Distributions Ordered by Stochastic Dominance. Our appendicized

proof of the optimality of the MIA exploits the property that
∏

i∈S−Sn−1−w Gi(u) is

constant on [0, w]. This is not true in general. This property is invoked whenever, at

stage n, there is no worse-ranked school than in not yet selected. Therefore, a natural

starting point is to look for a class of problems in which the algorithm chooses 1 first,

and proceeds through 2, 3, . . . until the marginal benefit falls below the application cost.

We now show that the algorithm extends to general prize distributions ordered by

stochastic dominance — first order or a quasi-second order one.

Theorem 2 If
∫ ū

x
Gi(u)du ≤

∫ ū

x
Gi+1(u)du, i = 1, . . . , N − 1, x ∈ [0, ū], with strict

inequality at x = 0, then the MIA is optimal and S∗ = [1, k], for some k ≤ N .

Vishwanath (1992) uses the same condition to show that Weitzman’s (1979) solution

still holds when, at each stage, more than one option can be tried. It is easy to see that

9While this too uses margins, it is not a marginal improvement algorithm. Rather, it chooses controls
so that they are ‘assortatively mated’ to the highest coefficients.

10See Goldengorin, Tijssen, and Tso (1998) for a precise statement of this algorithm.
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Figure 1: General Binary Prizes.

the index Ii of an option solves c =
∫ ū

0
max{0, u− Ii}dGi(u); the right side is decreasing

in i as max{0, u − Ii} is increasing and convex in u. So Ii > Ii+1 for all i.

In our success-or-failure binary prize context, the premise of Theorem 2 reduces

(using x = 0) to z1 > z2 > · · · > zn. This immediately yields an interval rule for those

students for whom Harvard is the unconditionally expected best college, etc.11 Such

students include those at the ‘top’, for whom acceptance rates fall proportionately less

than the college payoffs, at better schools. They should just apply to the top schools:

Corollary 1 Let expected payoffs be ranked z1 > · · · > zN . Then the optimal set S∗ is

an interval around the best school 1, for any cost c > 0.

B. General Binary Prizes and Costs. Is the MIA optimal for any simultaneous

search problem with independent options? The next example shows that the answer is

negative. Assume three independent options, i = 1, 2, 3, each with two positive prizes,

ui > vi > 0, with an αi chance of ui. Thus, v(i) = αiui +(1−αi)vi−c, assumed positive.

Let c = 4.9, u1 = 100 > u2 = 80 > u3 = 55.4 > v1 = 50 > v2 = 49 > v3 = 0,

and α1 = 0.1 < α2 = 0.2 < α3 = 1. (See Figure 1.) Then v({1}) = 55.0 − 4.9 = 50.1,

v({2}) = 55.2 − 4.9 = 50.3, v({3}) = 55.4 − 4.9 = 50.5, so that the algorithm chooses

11Readers from Princeton, Yale, etc. should assume a typo, and read their school’s name here.
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college 3 in the first step. Notice, however, that 3 /∈ S∗ = {1, 2}, for

v({1, 2}) = α1u1 + (1 − α1)α2u2 + (1 − α1)(1 − α2)v1 − 2c = 60.40 − 9.8 = 50.60

v({1, 3}) = α1u1 + (1 − α1)α3u3 + (1 − α1)(1 − α3)v1 − 2c = 59.86 − 9.8 = 50.06

v({2, 3}) = α2u2 + (1 − α2)α3u3 + (1 − α2)(1 − α3)v2 − 2c = 60.32 − 9.8 = 50.52

v({1, 2, 3}) = α1u1 + (1 − α1)α2u2 + (1 − α1)(1 − α2)u3 − 3c = 64.28 − 14.7 = 49.58

We omit an example showing that the restriction to identical application costs is also

important: The MIA can be suboptimal for sufficiently disparate application costs ci.

C. Correlated Values. We now very briefly discuss relaxing the assumption that the

acceptance decisions by any group of colleges are independent. Specifically, we suppose

that students do not fully know their type: Some common unobserved attribute of

one’s type affects one’s admission prospects into all schools. Colleges still observe noisy

conditionally iid signals of a student’s type; however, from a student’s unconditional

perspective, the acceptance events are positively correlated; therefore, getting into any

school weakly raises the admission chance to any other school.

Section 5.1-A gives an example with imperfect correlation, but where the MIA works.

In general, the MIA is defined by inequalities, and so by continuity, a small amount of

correlation does not affect the optimality of a strictly optimal set — barring ties. Here,

seeking a generic failure, we consider an extreme world with perfect correlation, where

a student’s admission to college i assures his admission to college i + 1. In this case,

f(S) =

|S|
∑

i=1

Pr(rejected by (i − 1), accepted by (i))u(i) =
∑

i

(α(i) − α(i−1))u(i)

Now, assume college payoffs u1 = 11, u2 = 4, u3 = 1, and admission chances α1 =

0.1, α2 = 0.3, α3 = 1. Then the MIA chooses i1 = 2 (maximal zi), which does not belong

to the best sample size-two set {1, 3}, with value f({1, 3}) = α1u1 + (α3 − α1)u3 = 2.

? studies another world with perfect correlation, which is different in many ways.

She assumes a continuum of colleges, each perfectly informed of the students’ types;

the students’ are only partially informed, with normally distributed beliefs. Her main

results are local characterizations of comparative statics on the optimal policy.
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5 Properties of the Optimal Set

5.1 Riskiness of the Optimal Choices

We first address head-on the main stylized street insight into this problem: Insure

yourself. Add that (worse) safety school. Is this wise? Or should students ‘gamble’?

First, what does it mean to gamble or insure? To flesh this out, we employ vector

first order stochastic dominance (FSD). The set S ⊆ N is riskier 12 than the same-size

set S ′ ⊆ N in the sense of FSD when si ≤ s′i for all i, where si is the ith best school in S

and s′i in S ′. Write this as S � S ′, and as S ≻ S ′ if also S 6= S ′. Thus, {1, 2} ≻ {2, 3}.

• • ⋄ • • • ⋄ ⋄ ⋄

⋄ • • • ⋄⋄ ⋄ • • ⋄C
C
CO

C
C
CO 6

A
A

AK

A
A

AK

1 2 3 4 5 6 7 8 9

S

T

S � T

• • ⋄ • • • ⋄ ⋄ •

⋄ • • • ⋄ • • • ⋄C
C
CO

C
C
CO 6

C
C
CO

C
C
CO

�
�
��

1 2 3 4 5 6 7 8 9

S ′

T ′

S ′ 6� T ′

Figure 2: Riskiness Order on Sets of Colleges. At the left are two ordered sets
of colleges, S � T — as reflected in the non-positive slopes of the vectors joining
corresponding first, second, etc. order statistics. At the right, we have added one college
to each set, and now S ′ 6� T ′. Such pictures underlie our proofs of Theorems 3, 4, and 6.

We now consider two compelling comparison sets. Firstly, there are the colleges

Zn ⊂ N with the n highest unconditionally expected payoffs zi = αiui. Unlike the

optimal portfolio Sn, this set ignores the subtle web of cross college external effects.

Secondly, there are the n colleges Wn(c) ⊂ N with the highest indices Ii; these are

chosen initially by Weitzman’s sequentially-optimal rule. We establish the twin sandwich

inequalities Wn(c) � Sn and Sn � Zn. Comparing Sn to these sets is natural because

they are (a) easily computed benchmarks, and (b) transparently ordered. Indeed:

Lemma 3 For any application cost c > 0, Wn(c) � Zn for all n.

Proof The ranking can only fail if for some i < j, the higher ranked school i is

unconditionally better, or zi ≥ zj, but yet is sequentially searched last, given Ij ≥ Ii.

Thus, zj − c

αj

≥
zi − c

αi

12Typically, SSD is associated with riskiness. To clarify, we are using riskiness here in the street sense
of being less likely to succeed. For instance, it is riskier to apply to {1, 2} than {2, 3}.
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But this inequality is obviously impossible, given αj > αi > 0 and zi ≥ zj > c. �

This is consistent with the message of Weitzman (1979), that dynamic optimization

encourages risk-taking. But we now argue that even static optimization of our portfolio

variety encourages risk taking in the exact same sense, but to a slightly muted extent.

A. Portfolio Choices are Riskier than Top Singletons. Consider for a moment

a three college world. Assume that the expected payoffs obey z2 > z1 > z3, so that

Z2 = {1, 2}. Then weakly S2 = {1, 2} � Z2. Indeed, for a low enough c > 0, the

algorithm first calls for an application to college 2. At that point, adding college 3

cannot be optimal, because if it were, it would confer greater marginal benefit than 1:

(1 − α2)z3 ≥ z1 − α1z2 ⇔ (1 − α2) ≥ (z1/z3)[1 − α1(z2/z1)] > 1 − α1(z2/z1) ⇔ u2 > u1

which is false, as college 2 is lower ranked than college 1, and yields a lower payoff. A

strict ordering S2 ≻ Z2 is impossible if Z2 = {1, 2}. But let’s add a new top college 0 ≻ 1

with z0 < z2. Then the proof of {1, 2} ≻ {2, 3} still obtains. But now S2 = {0, 2} ≻ Z2

when {0, 2} ≻ {1, 2} — namely, if z0−α0z2 > z1−α1z2 ⇔ z0−z1 > (α0−α1)z2. This is

true for z0 − z1 big enough. We now state the general result (proof is in the appendix).

Theorem 3 The set of the first n colleges Sn chosen by the MIA is riskier than the

set Zn of colleges i with largest expected payoffs zi. Fix a cost c > 0. The optimal set

S∗(c) is riskier than the set Z|S∗(c)| of top expected payoff schools.

Theorem 3 also yields the interval rule in Corollary 1: Sn�Zn =[1, n] implies Sn = [1, n].

Static portfolio maximization thus precludes ‘safety schools’. One never applies to a

school for its high admissions rate, when not otherwise justified by its expected payoff.

But one might apply to a high-ranked ‘stretch school’, despite the low expected payoff.

Insight into the proof of Theorem 3 is afforded by the expression (2) for expected

payoffs as
∑

i ρi−1(S)z(i). So inasmuch as the optimal set S∗ differs from that with

highest expected values zi, it compensates with a higher rejection rate ρi−1 from better

schools. Acceptance chances must be lower, and these schools must be better ranked.

The ‘no safety school’ substance of Theorem 3 is undermined by assuming correlated

acceptances. For an extreme example with perfect correlation, assume three colleges,

13



with payoffs u1 = 1, u2 = u < 1, α1 = α2 = α, u3 = v < u, α3 = β > α, and αu > βv.

Suppose the student is either accepted in both 1 and 2 (chance α), or rejected in both.

Then f({1}) = f({1, 2}) = α, f({2}) = αu, f({1, 3}) = f({1, 2, 3}) = α + (1 − α)βv,

and f({2, 3}) = αu + (1 − α)βv. So S1 = Z1 = {1}. Also, exhaustive checking reveals

that S2 = {1, 3}, while Z2 = {1, 2} ≻ S2.

B. Portfolio Choices are Less Risky than Sequential Choices. The solution

of the static problem that we study substantially differs from the sequential approach.

For instance, we have shown that one must above all else be sure to apply to the

college yielding the largest expected payoff zi. Easily, this need not coincide with the

one having the highest Gittins index Ii. Indeed, consider two colleges with payoffs

u1 = 1 > 4/5 = u2 having acceptance chances α1 = 1/4 < 1/3 = α2. Their expected

values are thus z1 = 1/4 < 4/15 = z2, while the indices are ordered from (1) by

I1 = u1 − c/α1 = 1 − 4c > 4/5 − 3c = u2 − c/α2 = I2

Provided the application cost obeys c < 1/4, both colleges are acceptable, as z1, z2 > c.

In other words, the sequentially optimal rule calls for choosing college 1 first, and then

college 2, if rejected. The optimal portfolio, by contrast, will only select college 2

provided c > 11/60. For then adding college one yields a greater marginal benefit:

MB of {1,2} over {2} = [z1+(1−α1)z2]−z2 = z1−α1z2 = 1/4−(1/4)4/15 = 11/60 < 1/5

In the above example, the sequential decision-maker plays a more high-risk strategy

than does our portfolio one. This turns out to be generally true, as we now assert.

Theorem 4 Fix a cost c > 0. The set Sn of the first n elements chosen by the MIA is

less risky than the set Wn(c) of the first n elements with the n highest indices Ii. Also,

the optimal portfolio S∗(c) is weakly smaller than the set W (c) of sequentially chosen

schools, and is less risky than W|S∗(c)|(c).

For the size comparison, consider that the sequential rule continues as long as Ii ≥ 0,

or zi ≥ c. The static decision-maker, by contrast, stops when the marginal value of the

last college i — which is at most zi − c, due to the externalities — turns negative.

14



The riskiness ordering Sn � Wn(c) is trivial with c = 0, for then Ii = ui. We now

summarize the spirit of the general proof. Consider the simplest possible case with

three colleges such that z2 > z3 > z1. For a contradiction, suppose S1 = W1(c) = {2},

but that the ordering fails at the next stage: S2 = {1, 2} ≻ W2(c) = {2, 3}. Since

(α2z3/α3) − z2 = α2(u3 − u2) < 0,

I1 − I3 =
z1 − c

α1

−
z3 − c

α3

>
z1 − α1z2 − c

α1

−
z3 − α2z3 − c

α3

(7)

But given S1 = {2} and S2 = {1, 2}, the marginal benefit of adding college 1 must exceed

that of adding college 3, or z1 − α1z2 > (1 − α2)z3. Thus, expression (7) is positive, so

that I1 > I3. But W1(c) = {2} and W2(c) = {2, 3} requires I3 ≥ I1, a contradiction.

5.2 Portfolio Choice Sets are Upwardly Diverse

We turn to another key characteristic of the statically optimal set. How similar should

be the colleges in the application set? For instance, suppose that a very good but not

stellar student is applying to college. Should she then apply just to an interval of schools

in the ‘very good but not stellar’ category? Namely, if any two colleges lie in the optimal

set S∗(c), are all intermediate schools? Note that Theorem 3 does not preclude interval

rules, since the optimal set could be a range of similar schools that are riskier than Z.

We now show that beyond the interval rules for the best students in Corollary 1, the

optimal portfolio is not an interval, and diversity is natural. The reason is that a force

to gamble upwards emerges for non-top students.

Theorem 5 (Upward Diversity) For any sufficiently dense and diverse collection of

colleges, any non-top student does not apply to an interval of colleges,13 for small enough

c > 0. There is always at least one higher-ranked school above any choice interval.

Proof Let the unique maximal expected payoff be z∗. We consider a stylized case with

just one college i and N − 1 copies of college j > i, with zj = z∗. If the result is strictly

true in this extreme environment, by continuity it obtains with (a) densely distributed

colleges (captured by the college j copies) and (b) sufficient diversity (college i).

13Density is measured by the partition size max |ui − ui+1|, while diversity is captured by |u1 − uN |.
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Figure 3: Portfolio Gambling Illustrated. The computation represents an application
of our optimal algorithm using c = 2. At the left is the graph of college payoff u against
acceptance chance α. At the right is the graph of expected college payoff z = αu against
actual college payoff u. This corresponds to a student with linear payoffs u, and therefore
single-peaked expected payoffs z. Chosen schools are represented by filled circles. While
she does pick the best expected college, she does not exclusively choose the highest expected
schools; rather, she generally gambles upward. Observe how no safety school (high expected
value z, but lesser ranked) is chosen. This illustrates Theorem 3 and 5.

The algorithm starts with j, as zj = z∗. We claim that for N large enough and c > 0

small enough, the algorithm chooses college i before exhausting college j copies. Indeed,

suppose the algorithm has chosen the n − 1 colleges Sn−1, but not yet college i, so that

i /∈ Sn−1. The marginal benefit of choosing another college j copy is

Pr(rejected n − 1 times by j)αjuj − c = (1 − αj)
n−1αjuj − c, (8)

which is geometrically falling in n. But the marginal benefit of choosing college i is

αiui − αif(Sn−1) − c = αiui − αiuj(1 − (1 − αj)
n) − c, (9)

which tends to αi(ui − uj) − c > 0 for small c > 0. This exceeds (8) for large n.

By continuity, this result obviously holds even when all the college j copies are not

literally identical. So for low enough application costs, one always has an incentive to

gamble upward, and apply to a discretely higher college than the rest! �

Thus, the marginal value of a ‘safety school’ is geometrically vanishing in the number
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of schools given independent acceptances. Conversely, the marginal value of a risky

school is boundedly positive, depending only on the (possibly small) admission chance.

The event that one is rejected by all better schools need no longer be vanishingly unlikely

— so that the marginal gain from insurance needn’t be exponentially vanishing.

6 Comparative Statics

We finally consider some natural comparative statics. Obviously, the size of the optimal

set S∗(c) decreases in the application cost c, for our algorithm stops sooner.

More interestingly, how will the student’s behavior change when acceptance rates

change? Assume that a student’s prospects change. Will her application set, for instance,

grow riskier? Let us parameterize such changes by θ = (α1, . . . , αN). We first argue that

comparative statics here are far from obvious. Topkis (1998) gives the simplest cardinal

condition for the optimization of v(S, θ) in S to be monotone in θ — namely, v(S, θ)

must be supermodular in (S, θ). While Topkis provides Milgrom and Shannon’s various

(1994) ordinal relaxations of this condition, neither are relevant in our case. For we have

the opposite cardinal structure here, since Lemma 2 shows that v(S, θ) is submodular

in S alone. Summarizing, we cannot deduce comparative statics by standard monotone

methods. Instead, we shall use induction, and the MIA.

Theorem 6 (Increasing Riskiness) Assume β proportionately favors better schools

more, or βi/αi > βi+1/αi+1, for i = 1, . . . , N − 1, and that βi ≥ αi for all i.

(a) Fix n ≥ 1. The optimal size n sample Sβ
n is riskier than Sα

n , or Sβ
n � Sα

n .

(b) Fix c > 0. Let zα
1 > · · · > zα

N and zβ
1 > · · · > zβ

N , so that Sα(c) = [1, nα] and

Sβ(c) = [1, nβ]. If also (1 − α1)α2 > (1 − β1)β2, then nβ < nα.

One might suppose that the only necessary ingredient for the proof of part (a) is

that α favors better schools proportionately more than does β. Indeed, this suffices for

sample size n = 1. However, we omit a three college example showing necessity of the

absolute relation too — that βi ≥ αi for all i.

Notice that in the college application context, part (b) applies to the ‘top’ students.

The top student applies to fewer schools when the acceptance rates rise from α to β. We

omit a simple example showing that the condition (1 − α1)α2 > (1 − β1)β2 is needed.
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Figure 4: Comparative Statics Illustrated. We build on Figure 3. An upward shift
in acceptance rates (rightward, in the left graph) that proportionately favors higher colleges
improves the acceptance set. Either n = 4 for both choice sets, or we posit c = 2.

Proof of (a): The proof is instructive — a simultaneous double induction on n and N . Let

Sα
n (N) be the optimal n-choice set from N for acceptance chances α. Define σα

n,k(N) =

|Sα
n (N) ∩ [1, k]|. Then Sβ

n � Sα
n if and only if σβ

n,k(N) ≥ σα
n,k(N) for all k.

The result holds for n = 1 and all N , by the MIA. Otherwise, if j = arg maxi βiui >

arg maxi αiui = k, then βjuj ≥ βkuk and αkuk ≥ αjuj imply βj/βk ≥ uk/uj ≥ αj/αk,

contrary to our premise.

Assume the result holds for all n′ ≤ n and N ′ ≤ N , with one inequality strict, for all

utility payoffs and acceptance chances. We use this induction hypothesis in many ways.

First, if some j ∈ Sβ
n(N) ∪ Sα

n (N) is not chosen by either optimization, then the

problem reduces to choosing from N − 1 colleges, where Sβ
n(N − 1) � Sα

n (N − 1) holds

by induction hypothesis. So we may assume there are no such omitted colleges j.

Next, if the result fails at n,N , we now argue that we can decompose

Sα
n (N) = 1 + M + Lα, where M = [2, k − 1], and Lα = Sα

n (N) ∩ [k,N ]

Sβ
n(N) = M + k + Lβ, where M = [2, k − 1], and Lβ = Sβ

n(N) ∩ [k,N ]

where |Lα| = |Lβ|. Define ∆(k) = σβ
n,k(N) − σα

n,k(N). Then our decomposition is

equivalent to ∆(k) = −1 for k = 1, . . . , k̄, after which ∆(k) ≥ 0. Indeed, ∆(k) changes

by at most 1 each time k increments. As stochastic dominance held for Sn(N − 1) by

18



assumption, and Sn(N − 1) ⊆ Sn(N) by Theorem 1, we have ∆(k) ≥ −1 for all k. For a

contradiction, assume 0 = ∆(k−1) > ∆(k) = −1 at some k > 1. Since by Lemma 1-(a),

Lα and Lβ are each optimal selections from [k,N ], and |Lα| = |Lβ|, they are FSD-ranked

by induction assumption: ∆(k)≥0.

The appendix deduces fβ(1 + M + Lβ) > fβ(Sβ
n(N)), contradicting Sβ optimal. �

7 Conclusion

Static optimization is rapidly becoming yesterday’s struggle in economics. In this paper,

we have identified a common and yet unsolved class of static portfolio choice problems,

where one earns only the best prize from the portfolio. The main lesson of this paper is

that such portfolio choices are intriguing, as the value of a portfolio is subtly less than the

sum of its parts. Such problems are also practically important, being faced by millions

of college applicants, thousands of employers competing to hire in student-driven job

markets, as well as firms making choosing among uncertain technologies to explore.

In other words, there is a wealth of accumulated conventional wisdom by teenagers,

academics, and company executives alike.

We have derived a natural algorithm for computing the optimal portfolio, and used

it to characterize the optimum. The first concrete lesson here is to apply to one’s

best singleton school. We have shown that one should proceed more cautiously than

sequentially, but still gamble upward relative to a selection from the best singletons. So

inasmuch as other included schools are not good singletons, they must be highly ranked.

Further, the portfolio generally need not consist of an interval of like choices. Unless one’s

admission chances to schools are affected by some common component, gamble upward

within the portfolio. One’s bottom tier of schools must separately optimize among the

bottom schools. Finally, when one’s success chances rise, and proportionately more at

better schools, apply to a higher-ranked set of schools.

Maximizing — as opposed to minimizing — submodular functions is a currently

unexplored topic in economics worthy of future research. The problem is theoretically

quite rich, as we have underscored. We have completely solved the success-or-failure

world, and shown that it may fail with richer prize spaces. This paper therefore opens
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this new door to research on this exciting open problem, where a richer algorithm is

needed. Furthermore, high correlation undoes our algorithm — although this failure is

less surprising, because correlation is also an unresolved problem in the closely-related

multi-armed bandit problem in dynamic choice theory.

We hope that our results not only have practical value, but can also prove to be a

building block for directed search applications, or other foundational work. One very

natural extension of this work would allow the decision maker to accept more than one

option. This naturally arises in hiring contexts where multiple positions must be filled.

Another more intriguing extension would ask about a combination of our work with

Weitzman, combining static and dynamic optimality. For instance, Weitzman restricted

the decision-maker to a single choice per period, but that is not necessarily optimal.

For instance, the growing phenomenon of early admission has such a static-dynamic

feature: future research beckons. Just as well, one might imagine a generalization of the

multi-armed bandit, where one is permitted to choose a portfolio of arms.

A Appendix: Omitted Proofs

A.1 Optimality of the MIA: Proof of Theorem 1

This proof ignores the non-generic possibility of tied values of two choice subsets. This

is without loss of generality, because any choice S made is optimal in the event of a

sequence of ties. To see this, assume the MIA is valid absent ties. Then there clearly

exists a vanishing sequence of ε-perturbations of the payoffs that render the choice S

made strictly optimal at each stage. By the Theorem of the Maximum, the maximized

values of the ε-perturbed problems converge to the maximized value of the unperturbed

problem. But by continuity, the values of the perturbed problems converge to the value

of the unperturbed problem with choice S. I.e., the choice S is optimal.
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Figure 5: Prize Distributions. Here, we depict two cdf’s for the binary prize case,
and show that they enjoy a simple, but useful, single crossing property.

A.1.1 Optimality of the Selection Made in Step 1

Let S ⊂ N , and suppose i1 /∈ S. Suppose first that (i1, N ] ∩ S 6= ∅, and let b be the

best college in this set. Define S ′ = S − b + i1. Easy algebra reveals that

v(S ′) − v(S) =

∫ ū

0

(Gb(u) − Gi1(u))
∏

i∈S−b

Gi(u)du (10)

We will use (10) to show that v(S ′) > v(S). Notice that (i)
∫ ū

0
Gb(u)du >

∫ ū

0
Gi1(u)du

since i1 = argmaxi∈S

∫ ū

0
(1 − Gi(u)) du; (ii) Gb(u) − Gi1(u) (weakly single) crosses zero

from below at ub (see Figure 5); (iii)
∏

i∈S−b Gi(u) is increasing in u. It follows from an

inequality in ? that the right side of (10) is positive.

If (i1, N ]∩S = ∅, then let S ′ = S−w+ i1, where w is the worst element of [1, i1)∩S.

Then

v(S ′) − v(S) =

∫ ū

0

(Gw(u) − Gi1(u))
∏

i∈S−w

Gi(u)du. (11)

Notice that (i)
∫ ū

0
Gw(u)du >

∫ ū

0
Gi1(u)du since i1 = argmaxi∈S

∫ ū

0
(1 − Gi(u)) du; (ii)

Gw(u) − Gi1(u) 6= 0 if u ∈ [0, w] and vanishes outside this interval; (iii) S − w consists

of colleges that are better than w and i1, and therefore
∏

i∈S−w Gi(u) remains constant

on [0, w]. Thus, for any u∗ ∈ [0, w],

v(S ′) − v(S) =
∏

i∈S−w

Gi(u
∗)

∫ ū

0

(Gw(u) − Gi1(u)) du > 0, (12)
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A.1.2 Optimality of the Selection Made in the Induction Step

Let S ⊂ N , and suppose Sn−1 ⊂ S but in /∈ S. There are two cases:

Case 1. (in, N ] ∩ (S − Sn−1) 6= ∅

Let S ′ = S − b + in, where b is the best element of (in, N ] ∩ (S − Sn−1). Then

v(S ′) − v(S) =

∫ ū

0

(Gb(u) − Gin(u))
∏

i∈S−b

Gi(u)du

=

∫ ū

0

(Gb(u) − Gin(u))
∏

i∈S−Sn−1−b

Gi(u)
∏

j∈Sn−1

Gj(u)du. (13)

Notice that:

•
∫ ū

0
Gb(u)

∏

j∈Sn−1
Gj(u)du >

∫ ū

0
Gi1(u)

∏

j∈Sn−1
Gj(u)du since

in = argmaxi∈S−Sn−1

∫ ū

0
(1 − Gi(u))

∏

j∈Sn−1
Gj(u)du;

• Gb(u) − Gin(u) (weakly) single crosses zero from below at ub;

•
∏

i∈S−Sn−b Gi(u) is increasing in u.

By another application of Beesack’s inequality, (13) is positive and so S ′ improves S.

Case 2. (in, N ] ∩ (S − Sn−1) = ∅

Let S ′ = S − w + in, where w is the worst element of [1, in) ∩ (S − Sn−1). We will

show that v(S ′) > v(S). Then

v(S ′) − v(S) =

∫ ū

0

(Gw(u) − Gin(u))
∏

i∈S−w

Gi(u)du

=

∫ ū

0

(Gw(u) − Gin(u))
∏

i∈S−Sn−1−w

Gi(u)
∏

j∈Sn−1

Gj(u)du (14)

Notice that (i)
∫ ū

0
Gw(u)

∏

j∈Sn−1
Gj(u)du >

∫ ū

0
Gin(u)

∏

j∈Sn−1
Gj(u)du since

in = argmaxi∈S−Sn−1

∫ ū

0

(1 − Gi(u))
∏

j∈Sn−1

Gj(u)du;

(ii) Gw(u)−Gin(u) 6= 0 if u ∈ [0, w] and vanishes outside this interval; (iii) S−Sn−1−w
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consists of colleges that are better than w and in, and therefore
∏

i∈S−Sn−1−w Gi(u)

remains constant on [0, w]. Thus, for any u∗ ∈ [0, w],

v(S ′)−v(S) =
∏

i∈S−Sn−1−w

Gi(u
∗)

∫ ū

0

(Gw(u) − Gi1(u))
∏

j∈Sn−1

Gj(u)du > 0. �

Observe that the choice of b is not crucial for constructing a set that improves upon

S; any school in S − Sn−1 worse than in will do. The choice of w, however, is critical;

otherwise, we could not use the property that
∏

i∈S−Sn−1−w Gi(u) is constant on [0, w].

Further note that the counterexample of §4.2 violates two key properties exploited

in this proof: The cdf’s should not cross more than once and should be constant over

the set of prizes of lower-ranked options.

A.2 MIA and General Ranked Options: Proof of Theorem 2

Modifying the proof of the Second Order Stochastic Dominance Ranking Theorem, the

condition imposed on the Gi is equivalent to
∫ ū

0
h(u)dGi(u) >

∫ ū

0
h(u)dGi+1(u) for all

increasing and convex functions h.

Notice that i1 = 1, and therefore 1 ∈ S∗ if v(S ′) − v(S) > 0, where S ′ = S − b + i1,

and b > 1. Integrating (10) by parts yields

v(S ′) − v(S) =
∫ ū

0

(∫ u

0

∏

i∈S−b Gi(ξ)dξ
)

dG1(u) −
∫ ū

0

(∫ u

0

∏

i∈S−b Gi(ξ)dξ
)

dGb(u), (15)

which is positive since
∫ u

0

∏

i∈S−b Gi(ξ)dξ is increasing and convex in u.

Suppose Sn−1 = [1, n − 1]. If j ∈ [n,N ], then

v(Sn−1 + j) − v(Sn) =
∫ ū

0

(

∫ u

0

∏

i∈Sn−1
Gi(ξ)dξ

)

dGj(u), (16)

which is clearly maximized at j = n.

To show that n ∈ S∗, it suffices (by the induction hypothesis) to show that

v(S ′) − v(S) =
∫ ū

0

(∫ u

0

∏

i∈S−b Gi(ξ)dξ
)

dGn(u) −
∫ ū

0

(∫ u

0

∏

i∈S−b Gi(ξ)dξ
)

dGb(u) (17)

is positive, which holds since
∫ u

0

∏

i∈S−b Gi(ξ)dξ is increasing and convex in u. �
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A.3 Portfolio vs. Top Singletons: Proof of Theorem 3

Fixed Sample Size. Consider first the case in which the DM is restricted to choice

sets of size n. We will show that S∗
n � Zn. Proceeding by contradiction, suppose not.

Since S∗
n 6� Zn, and |S∗

n| = |Zn| = n, there exists i ∈ Zn −S∗
n, and j ∈ S∗

n −Zn such that

j > i.14 Since j 6∈ Zn and i ∈ Zn, it follows that zi > zj. Apply Lemma 1-(b).

Endogenous Sample Size. If the DM can choose sets of any size, and each selection

costs c > 0, then the optimal algorithm determines the cardinality of the optimal set S∗,

denoted by |S∗|. The result for the fixed sample size case implies that S∗ � Z|S∗|. �

A.4 Static vs. Dynamic Choices: Proof of Theorem 4

We’ll show that W|S∗(c)|(c) � S∗(c). Proceeding as in the proof of Theorem 3, there

exists a college i∈S∗(c)−W|S∗(c)|(c) and a college j ∈ W|S∗(c)|(c)−S∗(c) such that j >i.

Consider the ranked sets U = S∗(c) ∩ [1, i), M = S∗(c) ∩ (i, j), L = S∗(c) ∩ (j,N ].

Since S∗(c) is optimal, it must be true that f(U + i + M + L) ≥ f(U + M + j + L),

which, by a repeated application of (3), can be written as (noting f(i) = zi):

f(i) + (1 − αi)f(M + L) ≥ f(M) + ρ(M)[f(j) + (1 − αj)f(L)]

= f(M + L) + ρ(M)[f(j) − αjf(L)]

⇒ zi − αif(M + L) ≥ ρ(M)[zj − αjf(L)]

⇒
zi − αif(M + L) − c

αi

>
ρ(M)[zj − αjf(L)] − c

αj

⇒ Ii − f(M + L) > Ij − [1 − ρ(M)]uj − ρ(M)f(L)

⇒ Ii − Ij > f(M) − [1 − ρ(M)]uj

=
∑

M

u(k)α(k)ρ(k−1) − uj

∑

M

α(k)ρ(k−1) > 0

as uk > uj for all k∈M . So Ii > Ij — impossible if j ∈ W|S∗(c)|(c) but i 6∈ W|S∗(c)|(c). �

14This intuitive result follows from an equivalent definition of S � S′ that there exists a mapping
µ : N 7→ N with µ(i) ≤ i such that for each element i ∈ S′, there is an element µ(i) ∈ S.
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A.5 Comparative Statics: Proof of Theorem 6

Part (a). We need fβ(Ŝβ
n(N)) > fβ(Sβ

n(N)), where Ŝβ
n(N) = 1 + M + Lβ. Now,

fα(Sα
n (N)) = α1u1 + (1 − α1)[f

α(M) + ρα(M)fα(Lα)]

≥ fα(M) + ρα(M)[αkuk + (1 − αk)f
α(Lα)] = fα(Sβ

n(N)),

since Sα
n (N) is optimal. This holds if and only if

α1

αk

(

u1 − fα(M)

ρα(M)

)

+

(

1 −
α1

αk

)

fα(Lα) ≥ uk. (18)

Replacing α by β in (18) is equivalent to fβ(Ŝβ
n(N)) > fβ(Sβ

n(N)). We now justify this:

• Since 1 dominates every college in M +Lα and M +Lβ, we have u1 > fα(M +Lα)

and u1 > fβ(M + Lβ). These are equivalent to

u1 − fα(M)

ρα(M)
> fα(Lα) and

u1 − fβ(M)

ρβ(M)
> fβ(Lβ)

• Since β1/βk > α1/αk, the weight on the first term of (18) increases.

• fβ(Lβ) ≥ fβ(Lα) > fα(Lα) by Lemma 1-(a) and βi ≥ αi, for all i, respectively

• Finally,

∂

∂αℓ

(

u1 − fα(M)

ρα(M)

)

> 0 ∀ℓ ∈ M ⇒
u1 − fβ(M)

ρβ(M)
≥

u1 − fα(M)

ρα(M)
(19)

where the inequality on the RHS of (19) is desired. Applying (3), we have fα(M) =

fα(U) + ρα(U)[αℓuℓ + (1 − αℓ)f
α(L)], where L = (ℓ,N ] ∩ M and U = [1, ℓ) ∩ M . Thus,

u1 − fα(M) = u1 − (fα(U) + ρα(U)[αℓuℓ + (1 − αℓ)f
α(L)])

= [u1 − fα(U) − ρα(U)fα(L)] − ρα(U)[uℓ − fα(L)]αℓ

= A − Bαℓ

hereby implicitly defining A and B. The derivative on the LHS of (19) has the sign of

∂

∂αℓ

A − Bαℓ

ρα(M − ℓ)(1 − αℓ)
=

A − B

ρα(M − ℓ)(1 − αℓ)2
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since ρα(M) = ρα(M − ℓ)(1 − αℓ). But this is positive given

A − B = [u1 − fα(U) − ρα(U)fα(L)] − ρα(U)[uℓ − fα(L)] = u1 − fα(U) − ρα(U)uℓ > 0

because college 1 dominates colleges in [1, ℓ] ∩ M , and using decomposition (3).

Part (b). We reinterpret this result using standard monotone methods. Consider the

optimization problem: maxS⊆C v(S, θ), where C = {S ⊆ N |S = [1, n], n ≤ N}. Note

that restricting attention to C has no loss of generality for ‘top’ students, by Corollary 1.

Since C is a chain (i.e. a totally-ordered set) v(S, θ) is quasi-supermodular in S.

Thus, to show that the maximizer is increasing in θ, we need to show that the single

crossing property holds (Milgrom and Shannon (1994)), namely

v(SH , θL) − v(SL, θL) ≥ 0(> 0) ⇒ v(SH , θH) − v(SL, θH) ≥ 0(> 0), (20)

where θH is above θL, SH = [1, nH ], SL = [1, nL], and nL > nH . Rewrite (20) as

ρθL([1, nH ])f θL((nH , nL]) ≤ c(nL − nH) ⇒ ρθH ([1, nH ])f θH ((nH , nL]) ≤ c(nL − nH)

for which a sufficient condition is

ρθH ([1, nH ])f θH ((nH , nL]) ≤ ρθL([1, nH ])f θL((nH , nL]). (21)

Claim 1 Inequality (21) holds if αθH

2 (1−αθH

1 ) ≤ αθL

2 (1−αθL

1 ) and αθH

i /αθL

i > αθH

i+1/α
θL

i+1.

Proof First, (21) holds if and only if

ρθH ([1, n])zθH

n+1 ≤ ρθL([1, n])zθL

n+1 (22)

for all n. For (21) implies (22). To prove the converse, notice that

ρθH ([1, nH ])f θH ((nH , nL]) = ρθH ([1, nH ])zθH

nH+1 + · · · + ρθH ([1, nL − 1])zθH

nL

≤ ρθL([1, nH ])zθL

nH+1 + · · · + ρθL([1, nL − 1])zθL

nL

= ρθL([1, nH ])f θL((nH , nL]),
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where the inequality follows from repeated application of (22).

Next, we claim that (22) is equivalent to

ρθH ([1, n])αθH

n+1 ≤ ρθL([1, n])αθL

n+1 (23)

If n = 1, then (23) reduces to αθH

2 (1−αθH

1 ) ≤ αθL

2 (1−αθL

1 ), which holds by assumption.

Suppose the result holds for n − 1, i.e., ρθH ([1, n − 1])αθH

n ≤ ρθL([1, n − 1])αθL

n . Then

ρθH ([1, n])αθH

n+1 < ρθH ([1, n])αθH

n+1

αθH

n

αθL

n

αθL

n+1

αθH

n+1

(1 − αθL

n )

(1 − αθH

n )

= ρθH ([1, n − 1])
αθH

n

αθL

n

(1 − αθL

n )αθL

n+1

< ρθL([1, n − 1])(1 − αθL

n )αθL

n+1

= ρθL([1, n])αθL

n+1

where the first inequality owes to αθH

i /αθL

i > αθH

i+1/α
θL

i+1 and αθH

i > αθL

i , the second to

the induction hypothesis, and the last equality to ρθL([1, n]) = ρθL([1, n − 1])(1 − αθL

n ).

Finally, set βi = αθH

i and αi = αθL

i .
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