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Abstract

Strong consistency and asymptotic normality of the Gaussian pseudo-
maximum likelihood estimate of the parameters in a wide class of
ARCH(∞) processes are established. The conditions are shown to
hold in case of exponential and hyperbolic decay in the ARCH weights,
though in the latter case a faster decay rate is required for the central
limit theorem than for the law of large numbers. Particular parame-
terizations are discussed.

1 Introduction

ARCH(∞) processes comprise a wide class of models for conditional het-
eroscedastacity in time series. Consider an observable process xt satisfying

xt = γ0 + εt = γ0 + ztσt, t ∈ Z, (1)

σ2
t = ω0 +

∞∑
j=1

ψ0jε
2
t−j, almost surely (a.s.), (2)

ω0 > 0, ψ0j ≥ 0 (j ≥ 1),
∞∑

j=1

ψ0j <∞, (3)

where zt is a sequence of independently identically distributed (i.i.d.) unob-
servable random variables and Z = {t : t = 0,±1, ...} . The coefficients ω0, γ0,
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ψ0j are unknown, but we know functions ψj(ζ) of the r × 1 vector ζ, where
r <∞, such that for some unknown ζ0, ψj(ζ0) = ψ0j, j ≥ 1. The case when
γ0 is known, e.g. γ0 = 0, is covered by a simplified version of our treatment.
If the xt were instead unobserved regression errors we have γ0 = 0 but would
then need to replace xt by least squares regression residuals in what follows;
the details of this extension would be relatively straightforward. On the other
hand another relatively straightforward extension of our theory would cover
the simultaneous estimation of regression parameters, ω0 and the ψ0j, after
replacing γ0 by a more general parametric function; in general an efficiency
gain is afforded by simultaneous estimation.

To discuss possible choices of the ψj(λ), define

ψ(z; ζ) =
∞∑

j=1

ψj(ζ)z
j. (4)

Consider the class of functions

ψ(z; ζ) = c(ζ)

{
1− a(z; ζ)

b(z; ζ)
(1− z)d(ζ)

}
, (5)

where c(ζ) and d(ζ) are known functions of ζ, and a(z; ζ) and b(z; ζ) are
polynomials in z of known degrees whose coefficients are known functions of
ζ, which have no zeros in common. With ζi denoting the ith element of ζ,
suppose in particular that b(z; ζ) is given by

b(z; ζ) = 1, if n = 0,

= 1−
n∑

j=1

ζj+mz
j, ζj+m > 0, j = 1, ..., n, if n > 0, (6)

b(z; ζ) 6= 0, |z| ≤ 1. (7)

If for m > 0 we also take

d(ζ) ≡ 0, (8)

c(ζ) ≡ 1, (9)

a(z; ζ) = b(z; ζ)−
m∑

j=1

ζjz
j, ζj > 0, j = 1, ...,m, (10)
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we have

ψ(z; ζ) =

{
m∑

j=1

ζjz
j

}
/

{
1−

n∑
j=1

ζj+mz
j

}
(11)

with r = m + n. For m ≥ 1, n ≥ 1, this is the GARCH(n,m) model of
Bollerslev (1987) when

a(z; ζ) 6= 0, |z| ≤ 1,

and the IGARCH(n,m) model of Engle and Bollerslev (1986) when

a(1; ζ) = 0.

(Often in the literature these are both referred to as GARCH.) It reduces
to the ARCH(n) model of Engle (1982) when m = 0. In these models ψj(ζ)
decays exponentially in j. Nelson (1990), Bougerol and Picard (1992a,b),
Davis, Mikosch and Basrak (1999), Mikosch and Starica (2000) and Berkes,
Horvath and Kokoszka (2001) have investigated theoretical properties of
GARCH(n,m) and IGARCH(m,n) processes.

If we instead combine (6) and (7) with

d(ζ) = ζm+n+1 ∈ (0, 1), (12)

a(z; ζ) = 1, if n = 0,

= 1−
m∑

j=1

ζjz
j, ζj > 0, j = 1, ...,m, if m > 0, (13)

so r = m + n + 1, we have the FIGARCH(n, ζm+n+1,m) model of Baillie,
Bollerslev and Mikkelsen (1996), for m ≥ 0, n ≥ 0. When ω = 0, where ω
is any admissible value of ω0, such specifications fall in a class of ARCH(∞)
models earlier considered by Robinson (1991), who employed this class in
testing for the null of no-ARCH against long memory alternatives; see also
Ding and Granger (1996). Such models are motivated by the slow decay in
autocorrelations of squared returns found in a variety of financial time series
(e.g. Whistler, 1990, Ding, Granger and Engle, 1993). Giraitis, Kokoszka
and Leipus (2000), Zaffaroni (2003) have investigated theoretical properties of
ARCH(∞) processes. For ω0 > 0, as required in the FIGARCH specification,
εt cannot have finite variance. The ‘fractional’ parameter d(ζ) should not
be identified too closely with the fractional parameter d arising in fractional
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ARIMA (FARIMA) models; in particular a FARIMA is covariance stationary
for 0 < d < 1/2, whereas xt is not covariance stationary for all d(ζ) > 0.

A modified version of FIGARCH combines (6), (7), (12) and (13) with

c(ζ) = ζm+n+2 ∈ (0, 1), (14)

so r = m+n+2. We call this ‘mFIGARCH(n, ζm+n+1,m)’, for m ≥ 0, n ≥ 0.
The only difference from the FIGARCH specification is the replacement of (9)
by (14). The scale parameter ζm+n+2 may afford some additional flexibility,
but more importantly, under (9) we have

ψ(1; ζ) =
∞∑

j=1

ψj(ζ) = 1, all ζ, (15)

whereas under (14)

ψ(1; ζ) =
∞∑

j=1

ψj(ζ) < 1, all ζ. (16)

Notice also that (15) holds for IGARCH models, but (16) for GARCH models.
Under (15), εt has infinite variance and checking one of our conditions in the
following section (Assumption F ) for FIGARCH and IGARCH models is
problematic. Under (16), εt has finite variance and we are able to give a
relatively convincing verification of our conditions in case of mFIGARCH
and GARCH models. Despite the differences between moment properties
across these models of interest, our theoretical treatment for the general
class of models which we cover does not require εt to have finite variance,
recognizing evidence of fat-tailedness found in much financial data.

As with FIGARCH, the ψj(ζ) for mFIGARCH decay only at hyperbolic
rate, like j−ζm+n+1−1. This suggests a more direct modelling of this behaviour,
indicated most simply by the ‘power law’ model

ψj(ζ) = ζ2j
−ζ1−1, ζ1 > 0, ζ2 > 0, (17)

which, unlike FIGARCH and mFIGARCH, imposes no upper bound on the
rate of decay (cf (12)).

We wish to estimate the (r+2)×1 vector θ0 = (ω0, γ0, ζ
′
0)
′ on the basis of

observations xt, t = 1, ..., T. For Gaussian zt an approximate maximum like-
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lihood estimate is defined as follows. Denote by θ = (ω, γ, ζ ′)′ any admissible
value of θ0 and define, for t ∈ Z,

εt(γ) = xt − γ, σ̂2
t (θ) = ω +

t−1∑
i=1

ψi(ζ)ε
2
t−i(γ),

q̂t(θ) =
ε2t (γ)

σ̂2
t (θ)

+ ln σ̂2
t (θ), Q̂T (θ) = T−1

T∑
t=1

q̂t(θ),

the hats referring to the truncation due to xt, t ≤ 0, being unobservable. Let
Θ be a prescribed compact subset of Rr+2 and define

θ̂T = arg min
θ∈Θ

Q̂T (θ).

We do not assume Gaussianity in our asymptotic theory, and thence refer to
θ̂T as a pseudo-maximum likelihood estimate (PMLE).

We discuss work on the weak consistency and asymptotic normality (with
convergence rate T 1/2) of θ̂T and other estimates. Such properties were first
established by Weiss (1986) in the ARCH(n) model, while Lee and Hansen
(1994), Lumsdaine (1996) dealt with GARCH(1, 1) and IGARCH(1, 1) mod-
els. The proofs of the latter two sets of authors make significant use of
the simple structure of their processes, and do not readily extend to the
GARCH(n,m) for general m,n. Giraitis and Robinson (2001) were recently
able to cover general GARCH(n,m) processes, and more general members
of the class (1)-(3), but not for θ̂T , rather for Whittle estimates based on
the squared observations x2

t (with γ0 known to be zero). Such estimates are
asymptotically equivalent to least squares regression of x2

t on past x2
t−s, s >

0, which is computationally especially simple in case of ARCH(n) models
(see Engle, 1982); they were also considered by Bollerslev (1987) in case of
GARCH(n,m) models. However they have a number of disadvantages, as
indeed discussed by Giraitis and Robinson (2001): they are not only asymp-
totically inefficient under Gaussian zt but they are never asymptotically ef-
ficient; they require finiteness of fourth moments of xt for consistency and
of eighth moments for asymptotic normality, which are considered unaccept-
able by financial analysts dealing with financial data; their limit covariance
matrix is relatively complicated to estimate; they are less well motivated in
ARCH models than in stochastic volatility models such as those of Taylor
(1986), Robinson and Zaffaroni (1997, 1998), Harvey (1998), Breidt et al
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(1998), Zaffaroni (2002) where the actual likelihood is computationally less
tractable, while Whittle estimation also plays a less special role in the short-
memory-in-x2

t ARCH models of Giraitis and Robinson (2001) than in the
long-memory-in-x2

t models of the previous four references as it entails auto-
matic ‘compensation’ for possible lack of square-integrability of the spectrum
of x2

t . Mikosch and Straumann (2002) have shown that a finite fourth mo-
ment is necessary for consistency of Whittle estimates, and that even with
finite fourth moment convergence rates are slowed by fat tails. Hall and Yao
(2003) have established that the asymptotic distribution of the PMLE θ̂T

for GARCH(n,m) models is non-normal when the distribution of the z2
t is

in the domain of attraction of a stable law with exponent between 1 and
2. Berkes, Horvath and Kokoszka (2001) have established the strong con-
sistency and asymptotic normality of the PMLE θ̂T for GARCH(n,m) and
IGARCH(n,m) models, their treatment entailing εt having unconditional
(fractional) moment of only small degree. Berkes, Horvath and Kokoszka
(2001) also comment on some of the work mentioned above, as well as re-
lated work of Jeantheau (1998), Comte and Lieberman (2000). Another re-
cent contribution, of Ling and McAleer (2001), considers the PMLE within
the framework of a vector ARMA process with GARCH(n,m) errors; they
establish weak consistency in case Eε2t < ∞ and asymptotic normality in
case Eε6t <∞.

The present paper establishes strong consistency and asymptotic normal-
ity for θ̂T under conditions that cover a wide variety of parametric forms
of (1)-(3), comprising both exponentially and hyperbolically decaying coef-
ficients ψj(ζ). The following section lists our assumptions, with discussion.
Section 3 presents the main results, with partial proof details, the remainder
being in the form of a series of lemmas contained in Section 4.

2 Assumptions

We list first a series of regularity conditions. With some abuse of notation we
shall write uv in place of |u|v even when u is negative and v is non-integral.
Define

Nε(ζ) =
{
ζ̃ :
∥∥∥ζ̃ − ζ

∥∥∥ ≤ ε; ζ̃ ∈ Υ
}
, Ψ(s)(ζ)=

∞∑
j=1

ψs
j (ζ), ψ

(1)
j (ζ) =

∂ψj(ζ)

∂ζ
,
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and denote by K a generic positive constant.

Assumption A(q). The zt are symmetric i.i.d. variates with Ez0 = 0,
Ez2

0 = 1, Ezq
0<∞ and probability density function f(z) satisfying

f(z) = O
(
L(z−1)zb

)
, as z → 0+,

for b > −1 and a function L that is slowly varying at the origin.

Assumption B. There exist ωL, ωU , γL, γUsuch that 0 < ωL < ωU < ∞,
−∞ < γL < γU < ∞, and a compact set Υ ∈ Rr,such that Θ = [ωL, ωU ] ×
[γL, γU ]×Υ.

Assumption C. θ0 is an interior point of Θ.

Assumption D. For some d > 0,

sup
ζ∈Υ

ψj(ζ) ≤ Kj−d−1. (18)

For some η > 0 and all ζ ∈ Υ, t ≥ 1

max
j≥t

ψj(ζ)j
1+η ≤ Kψt(ζ)t

1+η. (19)

For all n <∞ there exists ηn > 0 such that

inf
1≤j≤n,j /∈S

inf
ζ∈Υ

ψj(ζ) ≥ ηn > 0, (20)

where S = {j : ψj(ζ) = 0, all ζ ∈ Υ} .

Assumption E. For all η > 0 there exists ε > 0 such that, for all ζ ∈ Υ,
j ≥ 1

sup
ζ̃∈Nε(ζ)

ψj(ζ̃) ≤ Kψj(ζ)
1−η. (21)

Assumption F . For
ρ ∈ ((d+ 1)−1, 1] (22)

we have
Ez2ρ

0 Ψ(ρ)(ζ0) < 1. (23)
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Assumption G(l). For all j ≥ 1, ψj(ζ) has continuous kth derivative on Υ
such that ∣∣∣∣ ∂kψj(ζ)

∂ζi1 ...∂ζik

∣∣∣∣ ≤ Kψj(ζ)
1−η (24)

for all η > 0 and all ij = 1, ..., r, j = 1, ..., k, k ≤ l.

Assumption H. For each ζ ∈ Υ there exist integers ji(ζ), i = 1, ..., r, such
that 1 ≤ j1(ζ) < ... < jr(ζ) <∞ and the matrix{

ψ
(1)
j1

(ζ), ..., ψ
(1)
jr

(ζ)
}

(25)

has full rank.

Assumption I. There exists

d0 >
1

2
(26)

such that
ψ0j ≤ Kj−1−d0 , (27)

and (23) holds for

ρ ∈ (4/(2d0 + 3), 1]. (28)

It is useful to discuss these assumptions in relation to the following rate
specifications of ψj(ζ) and its derivatives. First suppose that, for all ζ ∈ Υ,
j ≥ 1

βj−1(ζ)/K ≤ ψj(ζ) ≤ K βj−1(ζ), (29)

for a boundedly differentiable function β(ζ) ∈ (0, 1), and∣∣∣∣ ∂kψj(ζ)

∂ζi1 ...∂ζik

∣∣∣∣ ≤ K jk βj(ζ) , k ≤ l. (30)

(29) and (30) hold for GARCH and IGARCH models. Second, suppose that,
for all ζ ∈ Υ,

j−d(ζ)−1/K ≤ ψj(ζ) ≤ K j−d(ζ)−1, (31)
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for a boundedly differentiable function d(ζ) > 0, and∣∣∣∣ ∂kψj(ζ)

∂ζi1 ...∂ζik

∣∣∣∣ ≤ K {ln( j + 1)}k j−d(ζ)−1, k ≤ l. (32)

(31) and (32) hold for FIGARCH, mFIGARCH and ‘power law’ models.
We remark on the assumptions as follows.

1. In Assumption A(q) we will require q > 2 for strong consistency of θ̂
T

and
q = 4 for asymptotic normality. Symmetry of zt simplifies the exposition but
is not essential to our results.

2. To satisfy Assumption B, we choose Υ such that

0 < βL ≤ β(ζ) ≤ βU < 1, 0 < dL ≤ d(ζ) ≤ dU <∞,

in cases (29) and (31) respectively, though for FIGARCH or mFIGARCH we
take dU < 1.

3. In Assumption D, (18) and (19) are satisfied in both cases (29) and (31),
In (29) we can take d arbitrarily large, and in (31), d = dL. The restriction
(20) implies that, if ψj(ζ0) = 0, we must know this and specify the model
accordingly, for example we cannot over-parameterize an ARCH(n) model.
In our proofs we therefore simplify matters by acting as if S is empty.

4. Assumption E can be checked as follows. Under (29),

sup
Nε(ζ)

ψj(ζ̃) ≤ K

{
sup
Nε(ζ)

β(ζ̃)

}j

and by bounded differentiability of β(ζ),

sup
Nε(ζ)

β(ζ̃) ≤ β(ζ)

{
1 +

Kε

βL

}
≤ Kβ(ζ)1−η

for ε ≤ βL

(
β−η

U − 1
)
/K. Thus

sup
Nε(ζ)

ψj(ζ̃) ≤ K
{
βj(ζ)

}1−η ≤ Kψj(ζ)
1−η.
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Under (31),

sup
Nε(ζ)

ψj(ζ̃) ≤ Kj− infNε(ζ) d(ζ̃)−1

and by bounded differentiability of d(ζ),

inf
Nε(ζ)

d(ζ̃) ≥ d(ζ)−Kε ≥ {d(ζ) + 1} (1− η)− 1

for ε ≤ η(dL + 1)/K. Thus

sup
Nε(ζ)

ψj(ζ̃) ≤ K
{
j−d(ζ)−1

}1−η ≤ Kψj(ζ)
1−η.

5. The bounds (18) and (27) together imply d0 ≥ d, while (28) entails
no additional restriction over (22) when d0 ≥ 2d + 1/2, and (18) and (22)
together imply

∞∑
j=1

sup
ζ∈Υ

ψs
j (ζ) <∞, s ≥ ρ. (33)

6. Assumption F is satisfied whenever Ψ(1)(ζ0) < 1 (16), as in GARCH and
mFIGARCH models, and here we may choose ρ = 1, whence from Lemma 2
(see Section 4) Eε20 < ∞ is implied. The other possibility admitted by (23)
is Ψ(1)(ζ0) = 1 (15), which arises in IGARCH and FIGARCH models. Here
we must have ρ < 1, whence (again from Lemma 2 of Section 4) the milder
unconditional moment condition Eε2ρ

0 <∞ is implied. Whereas Ez2ρ
0 < 1 for

ρ < 1, and Ez2ρ
0 decreases in ρ, Ψ(ρ)(ζ0) increases in ρ. Analytic verification

of (23) for given ζ0, ρ seems impossible, and numerical verification highly
problematic due to the slow convergence of the ψρ

0j. However, consider the
family of densities

f(z) = exp
[
−{α(γ) |z|}1/γ

]
/ {2γΓ(γ)α(γ)} (34)

for γ > 0, where α(γ) = {Γ(γ)/Γ(3γ)}1/2 . (Such a family was also considered
by Nelson (1991) to model the innovation of the exponential GARCH model.)
We have Ez0 = 0, Ez2

0 = 1 as necessary, and assume A(q) is satisfied for all
q > 0 with

Ez2ρ
0 =

Γ((2ρ+ 1)γ)

Γ(γ)1−ρΓ(3γ)ρ
.
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In case γ = 0.5, (34) is the normal density, for which θ̂T is asymptotically
efficient. Here E(z2ρ

0 ) = 2ρΓ(ρ + .5)/
√
π, and numerical calculations for the

FIGARCH(0, ζ1, 0) model, in which ψj(ζ) = Γ(j− ζ1)/ {Γ(ζ1)Γ(j + 1)} , cast
doubt on (23). In case γ = 1, (34) is the Laplace density, with E(z2ρ

0 ) =
2ρ−1Γ(2ρ + 1). As γ increases, Ez2ρ

0 can be made small for fixed ρ < 1, for
example with p = 0.95 it is 0.64 when γ = 10 and 0.42 when γ = 20.

7. Assumption G(l) holds under (30) and (32) because, for all n and ζ ∈ Υ,
β(ζ)−jη ≥ β−jη

U ≥ jn and j{d(ζ)+1}η ≥ j(dL+1)η ≥ (log j)η for any η > 0 and j
sufficiently large.

8. AssumptionH is an identifiability condition, used to prove that Q̂T (θ) has,
asymptotically, a unique minimum. We check it first for mFIGARCH models.
Note that the restrictions on ζ in (6), (7), (10) and (12)-(14) are assumed to
hold throughout Υ; thus Υ excludes ζ such that either both of a(z; ζ) and
b(z; ζ) are over-specified (which would require ζm = 0 and/or ζm+n = 0), in
particular, as in ARMA models, ones such that a(z; ζ) and b(z; ζ) have one or
more zeroes in common (which would require ζm = ζm+n = 0). We suppose
that there are no restrictions linking elements of ζ, because a proof for this
case implies that Assumption H will hold in the presence of restrictions. Fix
ζ, and for brevity drop the ζ argument and write d = ζm+n+1, c = ζm+n+2.
We have

∂ψ(z)

∂ζk
= −czkφ(z), k = 1, ...,m, (35)

∂ψ(z)

∂ζk
= czkρ(z)φ(z), k = m+ 1, ...,m+ n, (36)

∂ψ(z)

∂d
= −ca(z) log(1− z)φ(z), (37)

∂ψ(z)

∂c
= 1− a(z)φ(z), (38)

where
φ(z) = b(z)−1(1− z)d, ρ(z) = b(z)−1a(z).

Suppose that m + n > 0. Choose ji = i for i = 1, ...,m + n, leaving jm+n+1

and jm+n+2 to be determined subsequently. Denote (25) by U , and partition
it in the ratio m+ n :2, calling its (i, j)th submatrix Uij. We first show that
the (m+ n)× (m+ n) matrix U11 is non-singular. Write Im for the m-rowed
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identity matrix, R for the n×(m+n) matrix with (i, j)th element ρj−i, and S
for the n+m×n+m matrix with (i, j)th element −cφj−i, where φj = ρj = 0
for j < 0, φ0 = ρ0 = 1, and for j > 0, φj and ρj are respectively given by

φ(z) = 1 +
∞∑

j=1

φjz
j, ρ(z) = 1 +

∞∑
j=1

ρjz
j,

these series converging absolutely in view of (7). Noting that ψ
(1)
j is given by

(∂/∂ζ)ψ(z) =
∑∞

j=1 ψ
(1)
j zj, and applying (35) and (36), we find that when

m ≥ 1, the first m rows of U11 can be written (Im, O)S, where O is the m×n
matrix of zeroes, and when n ≥ 1, the last n rows of U11 can be written RS.
Now S is upper-triangular with non-zero diagonal elements. Thus for n = 0,
U11 = S is non-singular, while for n ≥ 1 U11 is non-singular if and only if the
matrix, R2, consisting of the last n column of R, is non-singular. We have

R2 =

 ρm ρm+1 · · · ρm+n−1
...

...
ρm−n+1 ρm−n+2 · · · ρm

 .
Suppose m ≥ n. Then R2 is singular if and only if the ρj, j = m, ...,m+n−1,
are generated by a homogeneous linear difference equation of degree n − 1,
that is if there exist scalars λ1, ..., λn−1, not all zero, such that

ρj −
n−1∑
i=1

λiρj−i = 0, j = m, ...,m+ n− 1.

But it follows from (5), (6) and (13) that they are instead generated by the
inhomogeneous linear difference equation

ρj −
n−1∑
i=1

ζm+iρj−i = πj, j = m, ...,m+ n− 1,

where πm = ζm+n − ζn, πj = ζm+nρj−m − ζn+m−j for j = m+ 1, ...,min(m+
n − 1, 2m − n), and πj = ζm+nρj−m for j = 2m − n + 1, ...,m + n − 1,
the last case being relevant only when m + 2 ≤ 2n. The fact that the
πj are not all zero follows from the initial conditions, also derivable from
(5), (6) and (13), and the implication that a(z) and b(z) have no common
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zeroes. For example when m = n we have πm = ζm+n − ζm 6= 0. The
demonstration that R2 is non-singular for m < n follows similar lines, while
when m = 0, R2 is upper-triangular with unit diagonal elements. Given
non-singularity of U11, non-singularity of U follows if U22 − U21U

−1
11 U12 is

non-singular. This can be achieved because of the form of (37) and (38) and
because we are free to choose jm+n+1 and jm+n+2 (depending on ζ) from all
integers that exceed m + n. This completes verification of Assumption H
when m + n > 0. In case m = n = 0 we can choose j1 = 1, j2 = 2, whence
U has determinant −cd2/2 6= 0. Though FIGARCH, GARCH and IGARCH
are strictly not special cases of the mFIGARCH specification, in view of
the inequality restrictions (12) and (14), nevertheless the above argument
indicates that Assumption H is verified in these cases also. The relevant
difference between FIGARCH and mFIGARCH in the present context is that
the former contains one less parameter, while for GARCH and IGARCH the
only difference in the argument above with respect to U = U11 is that Im
is replaced by −Im and the (i, i)th element of R is replaced by zero, for
i = 1, ..., n, while the remaining elements are changed in sign. We finally
observe that for the ‘power law’ model (17) we may choose j1 = 2, j1 = 3,
say, whence U has determinant ζ26

−ζ1−1(log 3− log 2) 6= 0.

9. Assumption I is not needed for the consistency of θ̂T , but seems to be
needed for the central limit theorem. In (29) it entails no additional restric-
tion because d0 can be arbitrarily large. In (31) we choose d0 = d(ζ0), and
here it rules out FIGARCH and mFIGARCH models with d0 = ζ0,m+n+1 ∈
(0, 1/2], and ‘power law’ models with d0 = ζ0,1 ∈ (0, 1/2]. There are good

reasons to suppose that when d0 ∈ (0, 1/2] the asymptotic bias in θ̂T is of
order at least T−1/2, and thus prevents a central limit theorem centered at
θ0. This is due to replacement of the uncomputable σ2

t (θ) by σ̂2
t (θ) in the ob-

jective function, entailing a truncation whose error varies inversely with d0.
In particular, looking ahead to the proof of Theorem 2 in the next section,
the source of bias is found in the term H−1B1T , where H is positive definite
and

B1T = −
T∑

t=1

z2
t

{
σ̂

2(1)
t

σ̂4
t

}(
σ2

t − σ̂2
t

)
, (39)

where σ̂2
t = σ̂2

t (θ0), σ̂
2(1)
t = (∂/∂θ) σ̂2

t (θ0). For B1T not to affect the central
limit theorem, we must have B1T = op(T

1/2), and this is shown under As-

13



sumption I in the proof of Theorem 2. To consider, more informally, the
possibility of a lower bound for B1T for any d0 > 0, note that

σ2
t − σ̂2

t =
∞∑
j=t

ψ0jε
2
t−j. (40)

This is nonnegative, and in (31) we have ψ0j ≥ j−d0−1/K, suggesting that
(40) exceeds t−d0/K as t → ∞ with probability approaching one. Also
Ez2

0 > 0, so the only possibility that B1T = op(T
1/2) for d0 ≤ 1/2 would be

due to ‘cancellation’ produced by the factor in braces in (39), where

σ̂
2(1)
t = (1,−2

∞∑
j=t

ψ0jεt−j,
∞∑
j=t

ψ
(1)′
0j ε

2
t−j)

′. (41)

The second element of σ̂
2(1)
t /σ̂4

t is thus an odd function, and the correspond-
ing element of B1T is thence op(T

1/2) for all d0 > 0. However, the first

element of σ̂
2(1)
t /σ̂4

t is an even function and while the ψ
(1)
0j can have ele-

ments of either sign there seems no reason why this should lead to such
cancellation that would sufficiently lower the order of magnitude of the last
r elements of (39). Notice that corresponding truncation in Whittle estima-
tion of fractional ARIMA models does not lead to a corresponding problem,
essentially because the truncation error has zero mean and variance which
decays slowly, but sufficiently fast, as t → ∞. The latter observation re-
lates to Baillie, Bollerslev and Mikkelsen’s (1996) practical solution to the
truncation problem, namely, replacing the ε2t−j(γ) in

σ2
t (θ) = ω +

∞∑
j=1

ψj(ζ)ε
2
t−j(γ), (42)

for j ≥ t, by the sample variance, s2
T , of xt. Some truncation is in gen-

eral still necessary for practical implementation, but the practitioner is free
to truncate as remotely as computational restrictions permit, and Baillie,
Bollerslev and Mikkelsen (1996) provide numerical evidence that the result-
ing error can be very small. They are also careful in their Monte Carlo study
to minimize the effects of truncation in data generation, and there is no ap-
preciable difference between their biases for d0 = 0.75 and d0 = 0.5, the
knife-edge case which Assumption I barely excludes - they did not consider

14



d0 ∈ (0, 0.5). Unfortunately, as they indicate, s2
T , like ε2t , does not have finite

expectation in FIGARCH models, and E(ε2
t −s2

T )ρ is non-zero for ρ < 1. We
have thus not been able to show that this modification solves the asymptotic
bias problem in the central limit theorem for d0 ≤ 1/2 (or that it does not
adversely affect other aspects of our proof). An alternative ‘solution’ to the
bias problem simply replaces σ2

t in the model (2) by σ̂2
t , so that the process

starts at t = 0 rather than t = −∞, as in nonstationary models. Whether
or not such a model has appeal, the details of the asymptotic theory would
be substantially affected, because xt would then be stationary in only an
asymptotic sense.

3 Main Results

We find it convenient to present the proofs of both consistency and asymp-
totic normality of θ̂T in two parts. First we establish these results (in Propo-

sitions 1 and 2) for the infeasible estimate θ̃T given by

θ̃T = arg min
θ∈Θ

QT (θ),

where

QT (θ) = T−1

T∑
t=1

qt(θ), qt(θ) =
ε2t (γ)

σ2
t (θ)

+ lnσ2
t (θ),

with σ2
t (θ) given in (42). Then in Theorems 1 and 2 we show that σ2

t (θ) can
be replaced by σ̂2

t (θ).

Proposition 1 For some δ > 0, let Assumptions A(2+δ), B, C, D, E, F, G(1)
and H hold. Then

θ̃T → θ0 a.s. as T →∞.

Proof. The proof follows from Lemmas 7 and 10 and a standard proof of
strong consistency of implicitly-defined extremum estimates. �

Theorem 1 For some δ > 0, let Assumptions A(2+δ), B, C, D, E, F, G(1)
and H hold. Then

θ̂T → θ0 a.s. as T →∞.

.
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Proof. The proof follows as in that of Proposition 1 and using also Lemma
8. �

Let e2 be the second column of the Ir+2-rowed identity matrix, and define

χt(θ) =
ε2t (θ)

σ2
t (θ)

, νt(θ) =
∂εt(γ)

∂θ
= −2εt(γ)e2,

σ
2(1)
t (θ) =

∂σ2
t (θ)

∂θ
, τt(θ) =

∂ log σ2
t (θ)

∂θ
=
σ2(1)(θ)

σ2
t (θ)

,

gt(θ) = τt(θ)τ
′
t(θ) {χt(θ)− 1}2 + σ−4

t (θ)νt(θ)ν
′
t(θ)

+σ−2
t (θ) {1− χt(θ)} {τt(θ)ν ′t(θ) + νt(θ)τ

′
t(θ)}

ht(θ) = σ−2
t (θ)

∂2σ2
t (θ)

∂θ∂θ′
{1− χt(θ)} − σ−2

t (θ) {νt(θ)τ
′
t(θ) + τt(θ)ν

′
t(θ)}

+σ−2
t (θ)

∂2 ε2t (γ)

∂θ∂θ′
+ τt(θ)τ

′
t(θ) {χt(θ)− 1} ,

G(θ) = Eg0(θ), H(θ) = Eh0(θ).

Also define

M(θ) = E {τ0(θ)τ ′0(θ)} , P (θ) = E
{
σ−4

0 (θ)ν0(θ)ν
′
0(θ)

}
= 4E

{
σ−4

0 (θ)ε20(γ)
}
e2e

′
2,

M = M(θ0), P (θ0) = 4σ−2
t e2e

′
2,

where we have

G = G(θ0) = (2 + κ)M + P, H = M + P/2,

in which κ is the fourth cumulant of zt. In case γ0 is known (for example,
to be zero), we have G = (2 + κ)M , H = M . In case zt is Gaussian, κ = 0.
The formula for G uses the symmetry of zt but holds if zt only has zero third
cumulant; indeed our results would allow a non-zero third cumulant with G
redefined accordingly.

Proposition 2 Let Assumptions A(4 ), B, C, D, E, F, G(3 ) and H hold.
Then

T
1
2

(
θ̃T − θ0

)
→d N(0, H−1GH−1), as T →∞.

Proof. Write

Q
(1)
T (θ) =

∂QT (θ)

∂θ
=

1

T

T∑
t=1

ut(θ),
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where
ut(θ) = τt(θ)(1− χ2

t (θ)) + σ−2
t (θ)νt(θ). (43)

By the mean value theorem

0 = Q
(1)
T (θ̃T ) = Q

(1)
T (θ0) + H̃T (θ̃T − θ0), (44)

where H̃T has as its ith row the ith row of HT (θ) =T−1
∑T

t=1 ht(θ) evalu-

ated at θ = θ̃
(i)
T where

∥∥∥θ̃(i)
T − θ0

∥∥∥ ≤ ∥∥∥θ̃(i)
T − θ̃T

∥∥∥ . Now ut(θ0) = τt(θ0)(1 −
z2

t ) − 2e2zt/σt is, by Lemmas 2, 3 and 7 a stationary ergodic martingale
difference vector with finite variance, so from Brown (1971) and the Cramer-

Wold device, T
1
2Q

(1)
T (θ0) →d N (0, G) as T →∞. Finally, by Lemma 7 and

Theorem 1 H̃T →p H, whence the proof is completed in standard fashion. �
Define

ût(θ) = (∂/∂θ)q̂t(θ), ĝt(θ) = ût(θ) û
′
t(θ), ĥt(θ) =

∂2q̂t(θ)

∂θ∂θ′
,

ĜT (θ) =
1

T

T∑
t=1

ĝt(θ), ĤT (θ) =
1

T

T∑
t=1

ĥt(θ).

Theorem 2 Let Assumptions A(4), B, C, D, E, F, G(3), H and I hold.
Then

T
1
2

(
θ̂T − θ0

)
→d N(0, H−1GH−1), as T →∞. (45)

and H−1GH−1is strongly consistently estimated by Ĥ−1
T (θ̂T )ĜT (θ̂T )Ĥ−1

T (θ̂T ).

Proof. We have

0 = Q̂
(1)
T (θ̂T ) = Q̂

(1)
T (θ0) + ĤT (θ̂T − θ0),

where ĤT has as its ith row the ith row of ĤT (θ) evaluated at θ = θ̂
(i)
T where∥∥∥θ̂(i)

T − θ0

∥∥∥ ≤ ∥∥∥θ̂T − θ̂0

∥∥∥ . Thus from (44)

θ̂T − θ̃T = (H̃−1
T − Ĥ−1

T )Q̂
(1)
T (θ0)− H̃−1

T

{
Q̂

(1)
T (θ0)−Q

(1)
T (θ0)

}
.

In view of Proposition 2 and Lemma 8, (45) follows on showing that

Q̂
(1)
T (θ0)−Q

(1)
T (θ0) = op(T

−1/2).
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The left hand side can be written (B1T +B2T +B3T )/T, where

B1T =
T∑

t=1

z2
t b1t, B2T = −

T∑
t=1

(z2
t − 1)b2t, B3T = −2e2

T∑
t=1

ztb3t,

with

b1t = − σ̂
2(1)
t (σ2

t − σ̂2
t )

σ̂4
t

, b2t =
σ

2(1)
t

σ2
t

− σ̂
2(1)
t

σ̂2
t

, b3t =
σ2

t − σ̂2
t

σ̂2
t σt

,

and σ̂
2(1)
t given in (41). We show that BiT = op(T

1/2), i = 1, 2, 3.
Henceforth we drop the zero subscript in ψ0j. Using (41) and Assumption

G(l)

1

σ̂2
t

∥∥∥σ̂2(1)
t

∥∥∥ ≤ 1

σ̂2
t

{
2

t−1∑
j=1

ψj |εt−j|+ 1 +K
t−1∑
j=1

ψ1−η
j ε2t−j

}
.

Now
t−1∑
j=1

ψj |εt−j| ≤

(
t−1∑
j=1

ψjε
2
t−j

)1/2( ∞∑
j=1

ψj

)1/2

≤ Kσ̂t

so since σ̂t ≥ ωL > 0

σ̂−2
t

t−1∑
j=1

ψj |εt−j| ≤ Kσ̂−1
t <∞.

From (19),
ψk ≤ Kψj, k ≥ j, (46)

so
t−1∑
j=1

ψ1−η
j ε2t−j ≤ Kψ−η

t σ̂2
t .

It follows that ∥∥∥σ̂2(1)
t

∥∥∥ /σ̂2
t ≤ Kψ−η

t . (47)

On the other hand

E(σ2
t − σ̂2

t )
ρ ≤ K

∞∑
j=t

ψρ
jEε

2ρ
t−j ≤ K

∞∑
j=t

ψρ
j . (48)
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Thus using (46) again

E ‖b1t‖ρ ≤ Kψ−η
t

∞∑
j=t

ψρ
j ≤ K

∞∑
j=t

ψ
ρ(1−η)
j ≤ Kt1−ρ(d0+1)(1−η).

It follows that

E‖B1T‖ρ ≤ K

T∑
t=1

Ez2ρ
0 Eb

ρ
1t ≤ KT 2−ρ(d0+1)(1−η)

≤ KT ρ/2−{1+2(d0+1)(1−η)}[ρ/2−2/{1+2(d0+1)(1−η)}] = o(T 1/2),

using (28) (which requires (26)) and arbitrariness of η. Next, by elementary
inequalities

E ‖B2T‖2ρ ≤ K
T∑

t=1

(Ez2ρ
0 + 1)E ‖b2t‖2ρ ≤ K

T∑
t=1

{
E ‖b4t‖2ρ + E ‖b5t‖2ρ} ,

where

b4t =
σ

2(1)
t − σ̂

2(1)
t

σ2
t

= σ−2
t

(
−2

∞∑
j=t

ψjεt−j, 0,
∞∑
j=t

ψ
(1)′
j ε2t−j

)′

, b5t =
σ̂

2(1)
t (σ2

t − σ̂2
t )

σ̂2
t σ

2
t

.

Now

‖b4t‖ ≤

(
2

∞∑
j=t

ψj |εt−j|+
∞∑
j=t

∥∥∥ψ(1)
j

∥∥∥ ε2t−j

)
/σ2

t .

≤ σ−2
t

2

{
∞∑
j=t

ψj

}1/2

+

{
∞∑
j=t

(∥∥∥ψ(1)
j

∥∥∥2

/ψj

)
ε2t−j

}1/2
 {

∞∑
j=t

ψjε
2
t−j

}1/2

≤ K


(

∞∑
j=t

j−d0−1

)1/2

+

(
∞∑
j=t

ψ1−2η
j ε2t−j

)1/2


≤ K

t−d0/2 +

{
∞∑
j=t

j−(d0+1)(1−2η)ε2t−j

}1/2
 ,
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so

E ‖b4t‖2ρ ≤ Kt−ρd0 +K
∞∑
j=t

j−(d0+1)ρ(1−2η) ≤ Kt1−(d0+1)ρ(1−2η).

Thus

T∑
t=1

E ‖b4t‖2ρ ≤ KT 2−(d0+1)ρ(1−2η) ≤ KT ρ−(d0+2){ρ−2/(d0+2)}+2(d0+1)ρη = o(T ρ)

from (28) and arbitrariness of η. Also ‖b5t‖ ≤ K
∥∥∥σ̂2(1)

t /σ̂2
t

∥∥∥ (σ2
t − σ̂2

t )
1/2 so

from (47) and (48) we have E ‖b5t‖2ρ ≤ Kt1−(d0+1)ρ(1−2η), and as before

T∑
t=1

E ‖b5t‖2ρ = o(T ρ)

and thence B2T = op(T
1/2). Next we have

E ‖B3T‖2ρ ≤ KE

∣∣∣∣∣
T∑

t=1

ztb3t

∣∣∣∣∣
2ρ

≤ K
T∑

t=1

Ez2ρ
0 Eb

2ρ
3t . (49)

from Von Bahr and Esseen (1965). Now b3t ≤ (σ2
t − σ̂2

t )
1/2σ̂−2

t so (49) is
bounded by

K
T∑

t=1

E
{
(σ2

t − σ̂2
t )

ρσ̂−4ρ
t

}
≤ K

T∑
t=1

E(
∞∑
j=t

ψjε
2
t−j)

ρ ≤ KT 2−ρ(d0+1)

as before. This is o(T ρ), and so B3T = op(T
1/2) by Markov’s inequality.

It remains to consider the last statement of the theorem, which follows on
standard application of Propositions 1 and 2, Theorem 1 and Lemmas 7 and
8. �
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4 Technical Lemmas

Define

σ∗2t (θ) = ω +
∞∑

j=1

ψj(ζ)ε
2
t−j, σ∗2t = ωU +

∞∑
j=1

sup
ζ∈Υ

ψj(ζ)ε
2
t−j.

Lemma 1 Under Assumptions Band D, for all θ ∈ Θ, t ∈ Z

K−1σ∗2t (θ) ≤ σ2
t (θ) ≤ K σ∗2t (θ) a.s.

Proof. A simple extension of Lee and Hansen (1994, Lemma 1). �

Lemma 2 Under Assumptions A(2), B, D and F,

Eε2ρ
t < Eσ2ρ

t ≤ sup
θ∈Θ

σ2ρ
t (θ) ≤ KEσ∗2ρ

t <∞. (50)

E sup
θ∈Θ

∣∣lnσ2
t (θ)

∣∣ ≤ K <∞. (51)

Proof. We first prove (50), in which the first inequality follows from Jensen’s
inequality, the second is obvious and the third follows from Lemma 1. Writing
ψj = supζ∈Υ ψj(ζ), by recursive substitution

σ∗2t ≤ K +K
∞∑
l=1

(
∞∑

j1=1

...
∞∑

jl=1

ψj1ψj2 ...ψjl
z2

t−j1
z2

t−j1−j2
...z2

t−j1...−jl

)

and so by Hardy, Littlewood and Polya (1964, Theorem 27),

σ∗2ρ
t ≤ K +K

∞∑
l=1

(
∞∑

j1=1

...
∞∑

jl=1

ψ
ρ

j1
ψρ

j2
...ψρ

jl
z2ρ

t−j1
z2

t−j1−j2
...z2ρ

t−j1...−jl

)
.

Thus

Eσ∗2ρ
t ≤ K +K

(
Ez2ρ

t

∞∑
j=1

ψ
ρ

j

)
∞∑
l=0

(
Ez2ρ

0

∞∑
j=1

ψρ
j

)l

<∞,
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in view of (23) and (33), to complete the proof of (50). To prove (51), we
have |ln x| ≤x+ x−1 for x > 0 and σ2

t (θ) ≥ ωL > 0, so

E sup
θ∈Θ

∣∣ln σ2
t (θ)
∣∣ ≤ ρ−1E sup

θ∈Θ
σ2ρ

t (θ)+ ω−1
L ≤ K <∞.

�

Lemma 3 Under Assumptions A(2) and D, {σ2
t }, {εt} are strictly station-

ary and ergodic. Under also Assumptions F and G(l),

inf
θ∈Θ

σ2
t (θ) > 0 , sup

θ∈Θ
σ2

t (θ) < σ∗2t <∞ a.s., (52)

and forall θ ∈ Θ,{σ2
t (θ)}, {qt(θ)}and their first l derivatives are strictly

stationary and ergodic.

Proof. The first part of (52) follows from ωL > 0 and the second from
Lemma 2 and Lòeve (1977, p. 121). The strict stationarity and ergodicity
follows by adapting Nelson (2000, proof of Theorem 2). �

Lemma 4 Under Assumption A(0), for positive integer k < (b+ 1)n/2,

E

(
n∑

t=1

z2
t

)−k

<∞. (53)

Proof. Denote by MX(t) = E(etX) the moment-generating function of a
random variableX. By Cressie et al (1981) the left side of (53) is proportional
to ∫ ∞

0

tk−1MΣz2
t
(−t)dt =

∫ ∞

0

tk−1Mn
z2
0
(−t)dt

≤
∫ 1

0

tk−1dt+

∫ ∞

1

tk−1Mn
z2
0
(−t)dt. (54)

It suffices to show that the last integral is bounded. For all δ > 0, there
exists ε > 0 such that L(z−1) ≤ z−δ , z ∈ (0, ε), so

Mz2
0
(−t) = 2

∫ ∞

0

e−tz2

f(z)dz ≤ K

∫ ε

0

e−tz2

zb−δdz + 2e−tε2

.
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The last integral is bounded by

K t(δ−b−1)/2

∫ ∞

0

e−zz(δ−b−1)/2−1dz ≤ K t(δ−b−1)/2.

Thus (54) is finite if k + n(δ − b − 1)/2 < 0, that is, since δ is arbitrary, if
k < (b+ 1)n/2. �

Lemma 5 Under Assumptions A(q), B, C and D, for p < q/2,

E sup
θ∈Θ

(
σ2

t

σ2
t (θ)

)p

≤ K <∞.

Proof. By repeated substitution, for j > 0,

σ2
t = ω0 +

∞∑
k=1

ψj+kε
2
t−j−k +

j∑
r1=1

ψr1z
2
t−r1

(
ω0 +

∞∑
k=1

ψj+k−r1ε
2
t−j−k

)

+

j−1∑
r1=

j−r1∑
r2=1

ψr1ψr2z
2
t−r1

z2
t−r1−r2

(
ω0 +

∞∑
k=1

ψj+k−r1−r2ε
2
t−j−k

)

+ . . .+ ψj
1

j∏
r=1

z2
t−rσ

2
t−j

≤ htj σ
2
t−j a.s.

where htj = Πj
i=1(1 + z2

t−i) and we apply (46) and

1 +

j∑
r1=1

ψr1z
2
t−r1

+

j−1∑
r1=1

j−r1∑
r2=1

ψr1ψr2z
2
t−r1

z2
t−r1−r2

+ ...+ ψj
1

j∏
r=1

z2
t−r ≤ htj.

Thus

σ2
t

σ2
t (θ)

≤ Kσ2
t

σ2∗
t (θ)

≤ K

(
ω

σ2
t

+
∞∑

j=1

ψj(ζ) z
2
t−j

σ2
t−j

σ2
t

)−1

≤ K

(
∞∑

j=1

ψj(ζ)
z2

t−j

ht,j

)−1

≤ K

(
n∑

j=1

ψj(ζ)
z2

t−j

ht,j

)−1

a.s ,
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for all n, so

sup
θ∈Θ

σ2
t

σ2
t (θ)

≤ sup
θ∈Θ

K
htn/ψn(ζ)∑n

j=1 z
2
t−j

≤ K

εn

htn∑n
j=1 z

2
t−j

a.s.,

from (20). By Hölder’s inequality,

E

(
htn∑n

j=1 z
2
t−j

)p

≤ K
(
Eh

q/2
tn

)2p/q

E


(

n∑
j=1

z2
t−j

)−pq/(q−2p)


1−2p/q

. (55)

Now

Eh
q/2
tn =

n

Π
i=1
E(1 + z2

t−i)
q/2 ≤ 2n(q/2−1)(1 + Ezq

0)

so the first expectation on the right of (55) is finite, while by Lemma 4 the
second expectation is finite on choosing n > 2pq/[(b+ 1)(q − 2p)]. �

Lemma 6 Under Assumptions A(2), B, C, D, E, F and G(l), for all p >
0and k ≤ l,

E sup
θ∈Θ

∣∣∣∣ 1

σ2
t (θ)

∂kσ2
t (θ)

∂θi1 ...∂θik

∣∣∣∣ p <∞, (56)

E sup
θ∈Θ

∣∣∣∣ 1

σ̂2
t (θ)

∂kσ̂2
t (θ)

∂θi1 ...∂θik

∣∣∣∣ p <∞. (57)

Proof. By compactness of Θ, (56) follows if for some ε > 0,

E

 sup
θ̃:‖θ̃−θ‖<ε

∣∣∣∣∣ 1

σ2
t (θ̃)

∂kσ2
t (θ̃)

∂θi1 ...∂θik

∣∣∣∣∣
p
 <∞.

Take i1 ≤ i2 ≤ ... ≤ ik. First assume i1 ≥ 3, whence, for given k and i1, ...ik

∂kσ2
t (θ)

∂θi1 ...∂θik

=
∞∑

j=1

ξj(ζ)ε
2
t−j(γ)

where ξj(ζ) = ∂kψj(ζ)/∂ζi1−2...∂ζik−2. Now∣∣∣∣∣
∞∑

j=1

ξj(ζ)ε
2
t−j(γ)

∣∣∣∣∣ ≤ 2
∞∑

j=1

|ξj(ζ)| (ε2t−j + γ2),
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so using Lemma 1∣∣∣∣ 1

σ2
t (θ)

∂sσ2
t (θ)

∂θi1 ...∂θik

∣∣∣∣ ≤ 2
∑∞

j=1 |ξj(ζ)| ε2t−j

σ∗2t (θ)
+K

∞∑
j=1

|ξj(ζ)| .

Denote by ζ̃ the column vector consisting of the last r elements of θ̃. It suffices
to take p > 1. By Hölder’s inequality

∞∑
j=1

∣∣∣ξj(ζ̃)∣∣∣ ε2t−j ≤

{
∞∑

j=1

∣∣∣ξj(ζ̃)∣∣∣p/ρ

ψj(ζ̃)
1−p/ρε2t−j

}ρ/p{ ∞∑
j=1

ψj(ζ̃)ε
2
t−j

}1−ρ/p

,

so 
∑∞

j=1

∣∣∣ξj(ζ̃)∣∣∣ ε2t−j

σ∗2t (θ)


p

≤ K
∞∑

j=1

∣∣∣ξj(ζ̃)∣∣∣p ψj(ζ̃)
ρ−pε2ρ

t−j.

By Assumptions E and G(l), for all η1 > 0, η2 > 0 there exists ε such that

sup
ζ̃∈Nε(ζ)

∣∣∣ξj(ζ̃)∣∣∣p ψj(ζ̃)
ρ−p ≤ K sup

ζ̃∈Nε(ζ)

ψj(ζ̃)
p(1−η1)+ρ−p

≤ Kj−(d+1)(ρ−pη1)(1−η2).

We may choose η1 and η2 such that (d+ 1)(ρ− pη1)(1− η2) > 1 so that

E sup
θ̃:‖θ̃−θ‖<ε


∑∞

j=1

∣∣∣ξj(ζ̃)∣∣∣ ε2t−j

σ∗2t (θ̃)


p

<∞.

The above proof implies that also

sup
ζ̃∈Nε(ζ)

{
∞∑

j=1

∣∣∣ξj(ζ̃)∣∣∣}p

<∞

whence the proof of (56) with i1 ≥ 3 is concluded. Next take i1 = 2. If i2 > 2

∂kσ2
t (θ)

∂θi1 ...∂θik

= −2
∞∑

j=1

ξj(ζ)εt−j(γ) (58)
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where ξj(ζ) = ∂k−1ψj(ζ)/∂ζi2−2...∂ζik−2, while if i2 = 2, i3 > 2

∂kσ2
t (θ)

∂θi1 ...∂θik

= −2
∞∑

j=1

ξj(ζ)

where ξj(ζ) = ∂k−2ψj(ζ)/∂ζi3−2...∂ζik−2. In the first of these cases the proof
is seen to be very similar to that above after noting that by the Cauchy
inequality (58) is bounded by

K

{
∞∑

j=1

|ξj(ζ)| ε2t−j

∞∑
j=1

|ξj(ζ)|

}1/2

+K
∞∑

j=1

|ξj(ζ)| ,

while in the second it is more immediate; we thus omit the details. We are
left with the cases i1 = i2 = i3 = 2 and i1 = 1, both of which are trivial. The
details for (57) are very similar (because the truncations in numerator and
denominator match) and are thus omitted. �

Define

Q(θ) = Eq0(θ), GT (θ) = T−1

T∑
t=1

gt(θ), HT (θ) = T−1

T∑
t=1

ht(θ).

Lemma 7 For some δ > 0, under Assumptions A(2 + δ), B, C, D, E, F
and G(1),

sup
θ∈Θ

|QT (θ)−Q(θ)| → 0 a.s. as T →∞, (59)

and Q(θ)is continuous in θ.
If also Assumption G(2) holds,

sup
θ∈Θ

‖GT (θ)−G(θ)‖ → 0 a.s. as T →∞, (60)

If also Assumption G(3) holds,

sup
θ∈Θ

‖HT (θ)−H(θ)‖ → 0 a.s. as T →∞, (61)

and H(θ) is continuous in θ.
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Proof. To prove (59), note first that by Lemmas 1, 2, 3 and 5

sup
Θ
E |q0(θ)| ≤ sup

Θ
E
∣∣log σ2

0(θ)
∣∣+ sup

Θ
Eχ0(θ) <∞.

Thus by ergodicity
QT (θ) → Q(θ), a.s.,

for all θ ∈ Θ. Then uniform convergence follows on establishing the equicon-
tinuity property

sup
θ̃:‖θ̃−θ‖<ε

∣∣∣QT (θ̃)−QT (θ)
∣∣∣→ 0, a.s.,

as ε → 0, and continuity of Q(θ). By the mean value theorem it suffices to
show that

sup
Θ

∥∥∥∥∂QT (θ)

∂θ

∥∥∥∥+ sup
Θ

∥∥∥∥∂Q(θ)

∂θ

∥∥∥∥ <∞, a.s.,

which, by Lòeve (1977, p. 121) and identity of distribution, is implied by
Esup

Θ
‖u0(θ)‖ < ∞. Using (43) and ε2t (γ) ≤ K(ε2t + 1), ‖νt(θ)‖ ≤ 2(|εt| + 1)

we have

‖ut(θ)‖ ≤ K

[
‖τt(θ)‖

{
1 + z2

t

σ2
t

σ2
t (θ)

}
+ |zt|

σt

σt(θ)
+ 1

]
.

Thus E supΘ ‖u0(θ)‖ is bounded by a constant times

Esup
Θ
‖τ0(θ)‖+

[
Esup

Θ

{
σ2

0

σ2
0(θ)

}p]1/p [
Esup

Θ
‖τ0(θ)‖p/(p−1)

]1−1/p

+Esup
Θ

{
σ0

σ0(θ)

}
+ 1

for all p > 1. On choosing p < q/2, this is finite, by Lemmas 5 and 6. This
completes the proof of (59). Then (60) and (61) follow by applying analogous
arguments to those above, and so we omit the detail, indeed (60) and (61)

are only used in the proof of consistency of Ĝ, Ĥ for G,H, where convergence
over only a neighbourhood of θ0 would suffice. �
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Lemma 8 Under Assumptions A(2 + δ), B, C, D, E, F and G(1),

sup
θ∈Θ

∣∣∣QT (θ)− Q̂T (θ)
∣∣∣→ 0 a.s. as T →∞. (62)

If also Assumption G(2) holds,

sup
θ∈Θ

∥∥∥GT (θ)− ĜT (θ)
∥∥∥→ 0 a.s. as T →∞. (63)

If also Assumption G(3) holds,

sup
θ∈Θ

∥∥∥HT (θ)− ĤT (θ)
∥∥∥→ 0 a.s. as T →∞. (64)

Proof. We have Q̂T (θ)−QT (θ) = AT (θ) +BT (θ), where

AT (θ) = T−1

T∑
t=1

ln

[
σ̂2

t (θ)

σ2
t (θ)

]
, BT (θ) = T−1

T∑
t=1

ε2t (γ)
{
σ̂−2

t (θ)− σ−2
t (θ)

}
.

Because

σ2
t (θ) = σ̂2

t (θ) +
∞∑

j=0

ψj+t(ζ)ε
2
−j(γ),

|ln(1 + x)| ≤ |x|, and σ2
t (θ) ≥ ωL > 0, it follows that

|AT (θ)| ≤ KT−1

T∑
t=1

{
σ2

t (θ)− σ̂2
t (θ)

}
≤ KT−1

T∑
t=1

T∑
j=t

ψj(ζ)ε
2
t−j(γ)

≤ KT−1

∞∑
t=0

{
t+T∑

j=t+1

ψj(ζ)

}
ε2−t(γ). (65)

Now from (19)

t+T∑
j=t+1

ψj(ζ) ≤ Kψt+1(ζ)(t+ 1)η+1

t+T∑
j=t+1

j−η−1

≤ Kmin(t+ 1, T )ψt+1(ζ),

28



so (65) is bounded by

K

T

T−1∑
t=0

(t+ 1)ψt+1(ζ)ε
2
−t(γ) +K

∞∑
t=T

ψt(ζ)ε
2
−t(γ).

Thus

sup
Θ
AT (θ) ≤ K

T

T∑
t=0

(t+ 1)ψt+1(ε
2
−t + 1) +K

∞∑
t=T

ψt(ε
2
−t + 1). (66)

From (33) and Lemma 2,
∑∞

t=1 ψt(ε
2
−t +1) <∞ a.s. Thus the second term of

(66) tends to zero a.s. as T →∞ while the first does so for the same reasons
combined with the Kronecker lemma. Next

|BT (θ)| ≤ KT−1

T∑
t=1

χt(θ)
∞∑
j=t

ψj(ζ)ε
2
t−j(γ)

≤ KT−1

T∑
t=1

χt(θ)
∞∑
j=t

ψj(ε
2
t−j + 1). (67)

From (33) and Lemma 2,
∑∞

j=t ψj(ε
2
t−j + 1) → 0, a.s. Also, for each θ, a.s.

T−1

T∑
t=1

χt(θ) → Eχ0(θ) ≤ K

{
E

(
σ2

0

σ2
0(θ)

)
+ 1

}
≤ K <∞

by ergodicity and Lemma 5. Thus (67) → 0 a.s. by the Toeplitz lemma.
The convergence is uniform in θ because, from the proof of Lemma 7, for all
θ ∈ Θ

sup
θ̃:‖θ̃−θ‖<ε

∥∥∥χ0(θ̃)− χ0(θ)
∥∥∥→ 0, a.s.,

as ε→ 0. This completes the proof of (62). We omit the proofs of (63) and
(64) as they involve the same arguments. �

Lemma 9 For some δ > 0, under Assumptions A(2 + δ), B, C, D,E , F,
G(1) and H, for all θ ∈ Θ, M(θ) is finite and positive definite.

Proof. Fix θ ∈ Θ. Finiteness of M(θ) follows from Lemma 6. Positive
definiteness follows if, for all non-null (r + 2) × 1 vectors λ, λ′M(θ)λ =
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E{λ′τ0(θ)}2 > 0, that is, that

λ′τ0(θ)σ
2
0(θ) 6= 0, a.s. (68)

since 0 < σ2
0(θ) <∞ a.s. Define

τtω(θ) =
∂

∂ω
lnσ2

t (θ) = σ−2
t (θ),

τtγ(θ) =
∂

∂γ
lnσ2

t (θ) = −2σ−2
t (θ)

∞∑
j=1

ψj(ζ)εt−j(γ),

τtζ(θ) =
∂

∂ζ
lnσ2

t (θ) = σ−2
t (θ)

∞∑
j=1

ψ
(1)
j (ζ)ε2t−j(γ),

so that τt(θ) = (τtω(θ), τtγ(θ), τ
′
tζ(θ))

′. Write λ = (λ1, λ2, λ
′
3)
′, where λ1 and

λ2 are scalar and λ3 is r × 1. Consider first the case λ1 = λ2 = 0, λ3 6= 0.
Suppose (68) does not hold. Then we must have

∞∑
j=1

λ′3ψ
(1)
j (ζ)ε2t−j(γ) = 0, a.s.

If λ′3ψ
(1)
1 (ζ) 6= 0 it follows that

(σt−1zt−1 + γ0 − γ)2 = −
{
λ′3ψ

(1)
j (ζ)

}−1
∞∑

j=2

λ′3ψ
(1)
j (ζ)ε2−j(γ). (69)

However since σt−1 > 0 a.s. the left side involves the non-degenerate random
variable zt−1, which is independent of the right side, so (69) cannot hold.

Thus λ′3ψ
(1)
j (ζ) = 0. Repeated application of this argument indicates that,

for all ζ, λ′3ψ
(1)
j (ζ) = 0, j = 1, ..., J . This is contradicted by Assumption H,

so that (68) cannot hold. Next consider the case λ1 = 0, λ2 6= 0, λ3 = 0. If
(68) does not hold we must have

∞∑
j=1

ψj(ζ)εt−j(γ) = 0, a.s. (70)
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Let k be the smallest integer such that ψk(ζ) 6= 0. Then (70) implies

zt−k = σ−1
t−k(θ)

{
γ − γ0 − ψ−1

k (ζ)
∞∑

j=k+1

ψj(θ)εt−j(γ)

}
.

But the left side is nondegenerate and independent of the right side, so (70)
cannot hold. Next consider the case λ1 = 0, λ2 6= 0, λ3 6= 0. If (68) is not
true then, taking λ2 = 1, we must have

∞∑
j=1

{
λ′3ψ

(1)
j (ζ)εt−j(γ)− 2ψj(ζ)

}
εt−j(ζ) = 0, a.s. (71)

Let k be the smallest integer such that either λ′3ψ
(1)
k (ζ) 6= 0 or ψk(ζ) 6= 0;

the preceding argument indicates that there exists such k. Then we have{
2ψk(ζ)− λ′3ψ

(1)
k (ζ)(σt−kzt−k + γ − γ0)

}
{σt−kzt−k + γ − γo}

=
∞∑

j=k+1

{
λ′3ψ

(1)
j (ζ)εt−j(γ)− 2ψj(ζ)

}
εt−j(ζ), a.s.

The left side is a.s. non-zero and involves the non-degenerate random variable
zt−k that is independent of the right side, so (71) cannot hold. We are left
with the cases where λ1 = 0, σ2

t (θ)τtω(θ) ≡ 1, and the preceding arguments
indicate that there exist no λ2 and λ3 such that

λ2τtγ(θ) + λ′3τtζ(θ) = 1, a.s.

�

Lemma 10 For some δ > 0, under Assumptions A(2 + δ), B, C, D,E, F,
G(1) and H,

inf
θ∈Θ
θ 6=θ0

Q(θ) > Q(θ0).

Proof. We have

Q(θ)−Q(θ0) = E

[
σ2

0

σ2(θ)
− ln

{
σ2

0

σ2(θ)

}
− 1

]
+ (γ − γ0)

2E

[
1

σ2
0(θ)

]
.
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The second term on the right hand side is zero only for γ = γ0 and is positive
otherwise. Because x−lnx−1 ≥ 0, with equality only when x = 1, it remains
to show that

lnσ2
0(θ) = lnσ2

0, a.s., some θ 6= θ0. (72)

By the mean value theorem, (72) implies that (θ − θ0)
′τ0(θ̄) = 0, a.s., for

θ 6= θ0 and some θ̄ such that
∥∥θ̄ − θ0

∥∥ ≤ ‖θ − θ0‖. But by Lemma 9 there is
no such θ̄. �
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