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Abstract
A crucial assumption in the optimal auction literature has been

that each bidder�s valuation is known to be drawn from a single unique
distribution. In this paper we relax this assumption and study the op-
timal auction problem when there is ambiguity about the distribution
from which these valuations are drawn and where the seller or the
bidder may display ambiguity aversion. We model ambiguity aversion
using the maxmin expected utility model where an agent evaluates an
action on the basis of the minimum expected utility over the set of
priors, and then chooses the best action amongst them. We Þrst con-
sider the case where the bidders are ambiguity averse (and the seller is
ambiguity neutral). Our Þrst result shows that the optimal incentive
compatible and individually rational mechanism must be such that
for each type of bidder the minimum expected utility is attained by
using the seller�s prior. Using this result we show that an auction
that provides full insurance to all types of bidders is always in the set
of optimal auctions. In particular, when the bidders� set of priors is
the ²- contamination of the seller�s prior the unique optimal auction
provides full insurance to bidders of all types. We also show that in
general, many classical auctions, including Þrst and second price are
not the optimal mechanism (even with suitably chosen reserve prices).
We next consider the case when the seller is ambiguity averse (and the
bidders are ambiguity neutral). Now, the optimal auction involves the
seller being perfectly insured. Hence, as long as bidders are risk and
ambiguity neutral, ambiguity aversion on the part of the seller seems
to play a similar role to that of risk aversion.
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1 Introduction

Optimal auctions for an indivisible object with risk neutral buyers and inde-
pendently distributed valuations have been studied by, among others, Vickrey
[20], Myerson [16], Harris and Raviv [7], and Riley and Samuelson [18]. These
papers show that the set of optimal mechanisms or auctions is quite large.
The set contains both the Þrst and second price auctions with reserve prices.
One of the assumptions in this literature is that each bidder�s valuation is
drawn from a unique distribution. In this paper we relax this assumption.
The unique prior assumption is based on the subjective expected utility

model, which has been criticized among others by Ellsberg [3]. Ellsberg shows
that lack of knowledge about the distribution over states can effect choices in
a fundamental way that can not be captured within the subjective expected
utility framework. In one version of Ellsberg�s experiment, a decision maker
is offered two urns, one that has 50 black and 50 red balls, and one that has
100 black and red balls in unknown proportions. Faced with these two urns,
most decision makers bet on drawing either color from the Þrst urn, rather
than on drawing the same color from the second urn. It is easy to show that
such behavior is inconsistent with the expected utility model. Intuitively,
decision makers do not like betting on the second urn because they do not
have enough information or, put differently, there is too much ambiguity.
Being averse to ambiguity, they prefer to bet on the Þrst urn. Ellsberg
and many subsequent studies have1 demonstrated that ambiguity aversion is
common and incompatible with the standard expected utility theory.
Following Gilboa and Schmeidler [6], we model ambiguity aversion using

the maxmin expected utility (MMEU) model. In this model bidders have
a set of priors, (instead of a single prior), on the underlying state space.
Bidders compute their utility as the minimum expected utility over the set
of priors. The MMEU model is a generalization of the SEU model, and
provides a natural and tractable framework to study ambiguity aversion.
Under MMEU, when an ambiguity averse buyer is confronted with a

selling mechanism, he evaluates each action on the basis of the minimum
expected utility over the set of priors, and then chooses the best among
them. An ambiguity averse seller on the other hand evaluates a mechanism
on the basis of its minimum expected revenue over the set of priors and
chooses the best mechanism. In order to better contrast our results with the

1See, for example, Camerer and Weber [2] for a survey.
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risk case, we assume that the buyers and the seller are risk neutral (i.e. have
linear utility functions).
We consider two cases, one where the bidders are ambiguity averse (and

the seller is ambiguity neutral) and the other where the seller is ambiguity
averse (and the buyers are ambiguity neutral)2.
In the Þrst case, we show that the optimal mechanism is such that for each

type of the buyer the minimum expected utility is attained by the seller�s
prior. We also show that an auction that provides complete insurance to the
bidders (i.e., it keeps the bidders� payoffs constant for all reports of the other
bidders and consequently keeps them indifferent between winning or losing
the object) is always in the set of optimal mechanisms. We use our Þrst result
to obtain further insights to the optimal auction problem. First we show that,
unlike in the standard situation even when a small amount of ambiguity
is introduced the complete insurance auction may be the unique optimal
auction. To show this, we study an interesting example, ²-contamination.
Suppose that the seller�s prior is denoted by F, and the buyer�s set of priors
is given by ∆B = {G : G = (1− ²)F + ²H} where H is any distribution and
² is a small positive number. That is, in the case of ²-contamination the
buyers� set of beliefs contains all small perturbation of the seller�s belief.
The intuition is that the seller�s prior is a focal point, but the buyers allow
for an ²-order amount of noise. With ²-contamination we show that the
complete insurance auction is the unique optimal auction. Then we use this
result to show that in the often studied case of Choquet expected utility with
convex capacity complete insurance auction is the unique optimal auction as
well. One practical interpretation of this result is that the complete insurance
auction is the only auction within the traditional set of optimal auctions that
is robust to the introduction of a small amount of ambiguity. We also show
that in general, neither the Þrst price nor the second price auction is optimal
even with suitably chosen reserve prices.
To obtain some intuition for the Þrst, suppose that the optimal mecha-

nism is such that the minimizing set of distributions for some type of the
buyer does not include the seller�s prior. In this case, the particular type,
say θ, of the buyer and the seller will be willing to bet against each other;
essentially the seller recognizes that they have different beliefs about the un-
derlying state space and offers �side bets� using transfers. These additional

2See section 7 for a discussion of the case where both the buyers and the seller are
ambiguity averse.

3



transfers (to the seller) can be chosen so that type θ under truth telling
gets the minimum expected utility that he gets in the original mechanism
in every state, and thus is completely insured against the ambiguity in the
new mechanism. Obviously type θ is indifferent between the original mech-
anism and the new mechanism since he gets the same minimum expected
utility under truth telling. More interestingly, no other type wants to imi-
tate type θ in the new mechanism. This is because the additional transfers
in the new mechanism have zero expected value under the minimizing set of
distributions in the original mechanism, and has strictly positive expected
value under any other distribution. Therefore, if type θ0 imitates type θ in
the new mechanism, he gets at best what he would get by imitating type θ
in the original mechanism. Since the original mechanism is incentive com-
patible, the new mechanism must also be incentive compatible. Moreover,
by assumption the seller�s distribution is not in the minimizing set for the
original mechanism, the additional transfers (to the seller) must have strictly
positive expected value under the seller�s distribution and the seller is better
off in the new mechanism. Note that the mechanism that is constructed here
gives complete insurance to the buyers and is always weakly preferred by the
seller. Therefore, a complete insurance auction must always be in the set of
optimal auctions. To see why in the case of ²-contamination the complete
insurance auction is the optimal auction, suppose that the optimal auction
does not provide complete insurance for some type of the buyer. Then that
buyer must evaluate this auction by a distribution that moves the ² weight
to the �unfavorable� states. But this contradicts our earlier result that the
set of distributions that the buyer uses to evaluate the optimal auction must
include the seller�s distribution. A very similar argument proves that the
Þrst and second price auctions are in general not optimal.
The second case we consider is when the seller is ambiguity averse (and the

bidders are ambiguity neutral). Within the risk framework, Eso and Futo [5]
consider auctions (in IPV environments) with a risk averse seller and risk (and
ambiguity) neutral buyers. They show that for every incentive compatible
selling mechanism there exists a mechanism which provides deterministically
the same (expected) revenue. From this it follows that the optimal selling
mechanism must provide complete insurance to the seller. We show that the
mechanism in Eso and Futo is the optimal mechanism in our case as well.
Hence, as long as bidders are risk and ambiguity neutral, ambiguity aversion
on the part of the seller plays a similar role to that of risk aversion.
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1.1 Related Literature

Matthews [14] and Maskin and Riley [13] relax the assumption of risk neu-
trality replacing it with risk aversion. They show that the classic auctions
(high bid, English) are no longer optimal. In order to contrast our results,
where buyers are ambiguity averse, with the results obtained when buyers
are risk averse, we will summarize the results of Maskin-Riley.
Maskin-Riley show that, in the setting with risk, the central problem

is preventing high valuation buyers from bidding too low. Suppose that
the seller devises an auction where bidders who bid low face risk, but high
valuation buyers who bid low face greater risk. The seller would derive
less revenue from the low valuation buyers than if he offered them complete
insurance, but this loss would be compensated by the high valuation buyers�
higher bids. Thus even though for a particular type of buyer, removal of risk
can be done in such a way that the buyer type�s utility remains unchanged
while the seller�s payoff increases, the usual screening condition dictates that
risk should not be completely eliminated for types other than the one with
the highest valuation.
Indeed Maskin-Riley show that the optimal way to confront a buyer with

risk is by using the transfers. For example, low valuation buyers may be
penalized if they lose and high valuation buyers may receive a subsidy if
they win. Moreover, only the buyer with the highest valuation gets perfectly
insured. In other words, all buyers except the most eager buyer are better
off winning than losing.
These results contrast with ours in the ambiguity setting. As we argued in

the previous section, it turns out that the optimal mechanism may provide
full insurance to all buyers, and, more generally, all types of buyers are
presented with some insurance. These results not only differ from those
under pure risk, but they are also driven by very different considerations. To
gain a better intuition on the difference between risk aversion and ambiguity
aversion, let�s consider the ²-contamination case where perfect insurance is
provided to all types of buyers, and contrast that with the situation when
buyers are risk averse but face no ambiguity. The problem faced by the seller
in the risk aversion case is that if risk is reduced for a particular type of
buyer then the expected utility of all types when they report this particular
type goes up. Reduction of risk for a type thus affects the IC constraints
adversely. With ambiguity averse, but risk-neutral, buyers that is not so.
Starting from a situation where a buyer type faces variable ex post utility in
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the mechanism, the seller can modify the mechanism in such a way as to make
that type�s ex post utility constant, keep the expected utility of this type the
same as before, and increase his own expected payoff. More importantly, this
can be done in such a way that the other type�s expected utility, when they
report the type whose payment scheme is being changed, is either unaffected
or actually goes down. In other words, unlike the risk aversion situation,
here, the seller can provide full insurance to a type in a way that beneÞts
the seller�s expected payoff that does not create any adverse effect on the IC
constraints.
There is a small but growing literature on auction theory with non-

expected utility starting with Karni and Safra ([9], [11], [10]) and Karni
[8]. The papers that look at auctions with ambiguity averse bidders, and
thus are closer to this paper are by Salo and Weber [19], Lo [12], Volij [21]
and Ozdenoren [17]. These papers look at speciÞc auction mechanisms, such
as the Þrst and second price auctions, and not the optimal auction problem.
Billot, Chateauneuf, Gilboa and Tallon [1] analyze the question of when it

is optimal to take bets for agents with MMEU preferences in a pure exchange
economy. They show that if the intersection of the set of priors for all agents is
non-empty, then any Pareto optimal allocation is a full insurance allocation.
This result is in the same spirit as our results. Another interpretation of
our results is that we show that Bilot et. al. [1] result is robust to the
introduction of incentive constraints. Another related paper is Mukerji [15]
that shows that in the investment hold-up model ambiguity aversion can
explain the existence of incomplete contracts. Incomplete contracts can be
thought of as providing full insurance to the agents since any variation in
ex-post payoffs makes the agents pessimistic.

2 Maxmin Expected Utility Model

In this section we introduce the MMEU model. Let Θ be the state space
representing the agent�s uncertainty. Let Σ be an algebra on Θ. LetM be
the space of all probability measures on (Θ,Σ) . Let X denote the set of
outcomes. Suppose the decision maker�s Von Neumann-Mongenstern utility
function is given by u : X → R and prior on Θ is given by a probability
measure µ ∈M. Let A be the set of all acts where an act is a Σ-measurable
function a : Θ→ X. In the standard expected utility model, utility of an act
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a ∈ A is,
U (a) =

Z
Θ

u (a (ω)) dµ (ω) .

In contrast, in the MMEU model, the decision maker�s prior is given by a
(weak*) closed and convex set of probability measures ∆m ⊆ M, and the
utility of an act h ∈ F is,

U (a) = min
µ∈∆m

Z
Θ

u (a (ω)) dµ (ω) .

The interpretation of the set of priors is, even if the information of the
decision maker is too vague to be represented by an additive prior, it may be
represented by a set of priors.
In this paper, the state space will be the possible valuations of the other

bidder: this is the domain of uncertainty. For simplicity we assume in the
following that Θ = [0, 1] and Σ is the Borel algebra on Θ. We assume risk
neutrality (linear utility function) throughout the paper.

3 The Optimal Auction Problem

There are two bidders and a seller. We assume that both the bidders and the
seller have linear VNM utility functions. Bidders have one of a continuum
of valuations θ ∈ Θ. Each bidder knows his true valuation but not that of
the other. The set ∆B is a set of distribution functions corresponding to
a (weak*) closed, convex subset of the set of probability measures over Θ,
and this set represents each buyer�s belief about the other bidder�s valuation.
Buyers believe that valuations are generated independently, but they are not
conÞdent about the probabilistic process that generates the valuations. This
is reßected by the buyers having a set of priors rather than a single prior in
this model.
The seller is also allowed to be uncertainty averse. The set ∆S is a set of

distribution functions corresponding to a (weak*) closed, convex subset of the
set of probability measures over Θ, and it represents the seller�s belief about
the bidders� valuations. That is, the seller believes that buyers� valuations
are generated independently from some distribution in ∆S. We assume that
∆S ⊆ ∆B. Therefore the model covers two interesting cases. If ∆S is a
singleton set with the unique element F , then the seller is ambiguity neutral
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and believes that buyers� valuations are independently generated from the
distribution F. On the other hand, if ∆ = ∆S = ∆B, then both the seller
and the buyers are ambiguity averse with the common set of distributions
∆. We assume that the set of measures that generate ∆B and ∆S agree on
zero probability events. Therefore, if an event has zero probability under one
distribution in ∆B, it also has zero probability under all other distributions.
Each bidder�s reservation utility is 0. As is standard, we assume that all

of the above is common knowledge.
We focus on the direct revelation game. In the direct revelation game,

each bidder is asked to report his type, where a report is some θ ∈ Θ.
The mechanism stipulates a probability for assigning the item and a transfer
rule as a function of reported types. Let x(θ, θ0) be the item assignment
probability function and t(θ, θ0) the transfer rule. The convention is that the
Þrst entry is one�s own report, the second entry is the report of the other
bidder.
Now, let�s write the seller�s problem of Þnding the optimal direct incentive

compatible and individually rational mechanism:

max
(x,t)

·
min
F∈∆S

ZZ
[t (θ, θ0) + t (θ0, θ)] dF (θ) dF (θ0)

¸
subject to

(IC) min
G∈∆B

Z
(x (θ, θ0) θ − t (θ, θ0)) dG (θ0)

≥ min
G∈∆B

Z ³
x(�θ, θ0)θ − t(�θ, θ0)

´
dG(θ0) for all θ, �θ ∈ Θ

(IR) min
G∈∆B

Z
(x (θ, θ0) θ − t (θ, θ0)) dG (θ0) ≥ 0 for all θ ∈ Θ.

The Þrst inequality gives the incentive compatibility (IC) constraints, and
the second inequality gives the individual rationality (IR) or participation
constraint. These are the usual constraints except that the bidders compute
their utility in the mechanism using the MMEU rule. For example, the IC
constraint requires that the minimum expected utility a bidder of type θ gets
reporting his type truthfully is at least as much as the minimum expected
utility that he gets under reporting any other type θ0.
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4 Ambiguity averse buyers

The central result in this framework is that buyers and sellers �use the same
distribution� to evaluate an optimal mechanism. That is, if a mechanism
is optimal, then it must be the case that the intersection of the minimizing
set of distributions for a given type of the buyer and the minimizing set of
distributions for the seller must be non-empty for almost all types. Otherwise,
the seller can offer a lottery to each type for which this intersection is empty,
and be better off and keep the resulting mechanism incentive compatible and
individually rational.
More intuition can be obtained for the case where the seller is ambiguity

neutral, that is ∆S = {F} . Then our result says that the minimum payoff
for the buyers will be attained by F . To see why, Þrst Þx a mechanism
(x, t) and note that for each mechanism the minimum (under truthtelling) is
achieved by a possibly different set of distributions for each type. Let�s call
this set ∆ (θ) . Now suppose that (x, t) is optimal for the seller but F /∈ ∆ (θ)
for some type θ. This means that the buyer of type θ and the seller have
different beliefs about the value distribution of the other buyer. Therefore
the seller can Þnd a lottery over the valuations of the other bidder that will
have zero expected utility under any distribution in ∆ (θ) , but has strictly
positive expectation under any distribution in the complement of ∆ (θ) , i.e.
∆B −∆ (θ) . Since F is in the complement, under this new mechanism the
seller is better off. Also the buyer of type θ is indifferent under truthtelling,
since the lottery has zero expected utility under any distribution in ∆ (θ).
Moreover, under truthtelling all other types of buyers are trivially unaffected
by this change, since both mechanisms are identical for all the other types.
Moreover, any type who does not tell the truth in the new mechanism has
a weakly lower utility in the new mechanism by construction of the lottery.
Therefore, the new mechanism is also incentive compatible.
This argument shows that, if there is a positive measure of types θ for

which F /∈ ∆ (θ) , then the original mechanism can not be optimal in the
Þrst place since a lottery for each type can be constructed as outlined above.
This result imposes quite a lot of structure on the set of optimal mech-

anisms, because many mechanisms will not be evaluated with the same dis-
tribution by the buyer and seller, and are hence not optimal. Next, we give
the formal statement of the proposition. The formal proof also shows how
to construct the lotteries described above.
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Proposition 1 Suppose that the seller is ambiguity neutral with distribution
F and the buyers are ambiguity averse with the set of priors ∆B. Let (x, t) be
an arbitrary incentive compatible mechanism. For any θ ∈ Θ, let ∆(θ) ⊆ ∆B
be the set of minimizing distributions for θ under (x, t). That is,

∆(θ) = arg min
G∈∆B

Z
[x(θ, θ0)θ − t(θ, θ0)] dG(θ0).

If there exists some positive measure eΘ ⊆ Θ such that, F /∈ ∆(�θ) for all
�θ ∈ eΘ then (x, t) is not optimal.
To understand this result, suppose that the optimal mechanism is such

that the minimizing set of distributions for some type of the buyer does not
include the seller�s prior. In this case, the seller can offer additional transfers
to the particular type, say θ, of the buyer . These additional transfers (to
the seller) can be chosen so that type θ under truth telling gets the mini-
mum expected utility that he gets in the original mechanism in every state,
and thus is completely insured against the ambiguity in the new mechanism.
Obviously type θ is indifferent between the original mechanism and the new
mechanism since he gets the same minimum expected utility under truth
telling. More interestingly, no other type wants to imitate type θ in the
new mechanism. This is because the additional transfers in the new mech-
anism have zero expected value under the minimizing set of distributions in
the original mechanism, and has strictly positive expected value under any
other distribution. Therefore, if type θ0 imitates type θ in the new mecha-
nism, he gets at best what he would get by imitating type θ in the original
mechanism. Since the original mechanism is incentive compatible, the new
mechanism must also be incentive compatible. Moreover, by assumption the
seller�s distribution is not in the minimizing set for the original mechanism,
the additional transfers (to the seller) must have strictly positive expected
value under the seller�s distribution and the seller is better off in the new
mechanism, contradicting the optimality of the original mechanism.
Mechanisms where the payoff of any bidder for any report of the compet-

ing bidder is constant are called perfect (or full) insurance mechanisms. Our
next result shows that there is always a perfect insurance mechanism within
the set optimal mechanisms.

Proposition 2 There exists an auction, (x∗, t∗) , that maximizes the seller�s
revenue such that the payoff of any type of a bidder in his auction is constant
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as a function of the other bidder�s report. That is for all θ ∈ Θ, x∗(θ, θ0)θ −
t∗(θ, θ0) is constant in θ0.

To see how (x∗, t∗) is constructed, suppose that (x, t) is an auction that
maximizes the seller�s revenue and let q(θ, θ0) = x(θ, θ0)θ − t(θ, θ0). Let,

K(θ) = min
G∈∆B

Z
q(θ, θ0)dG(θ0)

so that K(θ) is buyer θ�s expected payoff.
DeÞne the function δ : Θ→ R as follows:

δ(θ, θ0) = [q(θ, θ0)−K(θ)] , for all θ ∈ Θ.
Now consider the mechanism (x∗, t∗) such that x∗(θ, θ0) = x(θ, θ0) and

t∗(θ, θ0) = t(θ, θ0)+δ(θ, θ0) for all θ ∈ Θ. Now note that x∗(θ, θ0)θ−t∗(θ, θ0) =
x(θ, θ0)θ − t(θ, θ0)− δ(θ, θ0) = K(θ), which does not depend on θ0.
We can prove using simple variations of the proofs of claims 1,2 and 3

in the proof of proposition 1 that (x∗, t∗) gives the seller at least as much
revenue as (x, t) and satisÞes IC and IR constraints for the buyers. Thus
(x∗, t∗) must be in the set of optimal auctions as well.
For complete insurance mechanisms any distribution in∆B gives the min-

imum expected utility and proposition (1) is trivially satisÞed. In general
though there may be other selling mechanisms that are optimal. On the
other hand, if the set ∆B is sufficiently rich and if a bidder�s ex post payoffs
vary enough with the report of the other bidder, then typically the set of
distributions that give the minimum expected utility will not include F. In
section 5.1, we give an example where the set of priors include all pertur-
bations of the seller�s prior F and show that in fact in this case the unique
optimal mechanism is the perfect insurance mechanism.

In the next section we provide some applications of these results.

5 Applications

For the examples in this section we again look at the case where the seller
is ambiguity neutral with ∆S = {F} . The strength of results ?? and 1 are
best seen through examples. We consider a very natural ∆B which results in
perfect insurance for the buyers. We also establish that, under some broad
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conditions on ∆B, Þrst and second price auctions with reserve prices are not
optimal.

5.1 Perfect insurance under ²-contamination

5.1.1 The optimal mechanism

A natural ∆B to investigate is one of �small� ambiguity.3 One such ∆B
is an ²-contamination of the seller�s prior F .4 In this setting, the seller�s
distribution F is a focal point, and buyers allow for an ²-order amount of
noise around this focal distribution. We assume F has a strictly positive
density f, and, we construct the buyers� ∆B as follows:

∆B = {G : G = (1− ²)F + ²H}
where H is any distribution on Θ and ² ∈ (0, 1]. We also make the standard
assumption that

L (θ) = θ − 1− F (θ)
f (θ)

is strictly increasing in θ.
We will argue that under ²-contamination there is perfect insurance�that

is, for a measure 1 set of buyers (with respect to the distribution F ), their
payoff is constant with probability one. The intuition is as follows; if there is
any deviation from a constant payoff, then one of the elements of ∆B\ {F}
will yield a lower payoff, since an H can be found which weighs the discrep-
ancies appropriately; namely inßates the low payoff states and understates
the high payoff states relative to F . It follows that since the mechanism
involving non-constant payoffs are being evaluated by a distribution other
than F, the results of the previous section show that the mechanism cannot
be the optimal one.
Next we provide a formal statement of this claim. The proof is in the

appendix.

Proposition 3 Suppose that (x, t) solves the seller�s problem and let ∆B be
the ²-contamination of the seller�s belief F :

∆B = {G : G = (1− ²)F + ²H}
3This is a generalization of the two type example given in section 1.
4See Epstein and Wang [4].
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Then there is a measure 1 subset Θ̄ ⊆ Θ, for which, for each θ̄ ∈ Θ̄, q(θ̄, θ)
is constant for almost all θ ∈ Θ.

Next, we explicitly solve for the optimal mechanism. For simplicity we
assume that x (θ, θ0) θ− t (θ, θ0) is constant for all θ0, rather than for a set of
measure one of θ0. Obviously, this does not effect our results in any funda-
mental way.
Next we deÞne some useful notation. Let

u (θ) = x (θ, θ0) θ − t (θ, θ0) ,
X (θ) =

Z
x(θ, θ0)dF (θ0)

Xmin (θ) = min
G∈∆b

Z
x(θ, θ0)dG(θ0),

Xmax (θ) = max
G∈∆b

Z
x(θ, θ0)dG(θ0).

Using the IC constraint we obtain,

u (θ) = min
G∈∆b

Z
(x (θ, θ0) θ − t (θ, θ0)) dG (θ0) (1)

≥ min
G∈∆b

Z ³
x(�θ, θ0)θ − t(�θ, θ0)

´
dG(θ0)

≥ u
³
�θ
´
+ min
G∈∆b

Z ³
θ − �θ

´
x(�θ, θ0)dG(θ0).

If θ > �θ,we obtain,

u (θ) ≥ u
³
�θ
´
+
³
θ − �θ

´
Xmin

³
�θ
´
. (2)

Exchanging the roles of θ and �θ in (1) we obtain.

u
³
�θ
´
≥ u (θ) + min

G∈∆b

Z ³
�θ − θ

´
x(θ, θ0)dG(θ0)

Again for θ > �θ,we obtain,

u
³
�θ
´
≥ u (θ) +

³
�θ − θ

´
Xmax (θ) . (3)
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First observe that u is non-decreasing since, for θ > �θ by the IC constraint
we have,

u (θ) ≥ u
³
�θ
´
+
³
θ − �θ

´
Xmin

³
�θ
´
≥ u

³
�θ
´
.

Now, we are ready to prove a lemma that is useful in characterizing the
optimal auction.

Lemma 4 The function u is Lipschitz.

Since u is Lipschitz, it is absolutely continuous and therefore is differen-
tiable almost everywhere. For θ > �θ we use (2) and (3) to obtain,

Xmax (θ) ≥
u (θ)− u

³
�θ
´

θ − �θ ≥ Xmin
³
�θ
´
.

We can take the limit as �θ goes to θ to obtain for almost all θ that,

Xmax (θ) ≥ ∂u

∂θ
≥ Xmin (θ) .

Since an absolutely continuous function is the deÞnite integral of its deriva-
tive, we obtain,Z θ

0

Xmax (y) dy ≥ u (θ)− u (0) ≥
Z θ

0

Xmin (y) dy. (5)

Equation (5) suggests that the auctioneer may set,

u (θ) =

Z θ

0

Xmin (y) dy (6)

and

t (θ, θ0) = x (θ, θ0) θ −
Z θ

0

Xmin (y) dy, (7)

since for a given allocation rule x, transfers as in (7) are the highest transfers
the auctioneer can set without violating (5). Of course, (5) is only a necessary
condition and for a given allocation rule x, the resulting mechanism (x, t)may
not be incentive compatible. Fortunately, this difficulty does not arise if the
allocation rule x is chosen optimally for transfers given as in (7). In other
words, our strategy is to Þnd the optimal allocation rule x, assuming that
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the transfers are given by (7), and then show that the resulting mechanism,
(x, t) is incentive compatible.
For transfer function given by (7), we can rewrite the seller�s revenue as,

R = 2

Z 1

0

Z 1

0

µ
θx (θ, θ0)−

Z θ

0

Xmin (y) dy

¶
dF (θ0) dF (θ) .

Using integration by parts we obtain,

R = 2

Z 1

0

θX (θ) f (θ) dθ −
Z 1

0

(1− F (θ))Xmin (θ) dθ. (8)

DeÞne,

L² (θ) = θ − (1− ²) 1− F (θ)
f (θ)

,

and let r ∈ (0, 1) be such that L² (r) = 0.
The following proposition characterizes the optimal allocation when trans-

fer function is given by (7).

Proposition 5 For any θ and θ0, the allocation rule given by x (θ, θ0) = 1 if
θ > θ0 and θ ≥ r, x (θ, θ0) = 1

2
if θ = θ0 and θ ≥ r, and x (θ, θ0) = 0 otherwise,

is optimal for the seller if the transfer function is given by (7).

Proof. First note that L² is increasing in θ, if L is increasing in θ. To
seee this note that,

θ − 1− F (θ)
f (θ)

> θ0 − 1− F (θ
0)

f (θ0)

⇒ θ − θ0 > 1− F (θ)
f (θ)

− 1− F (θ
0)

f (θ0)

⇒ θ − θ0 > (1− ²)
µ
1− F (θ)
f (θ)

− 1− F (θ
0)

f (θ0)

¶
⇒ θ − (1− ²) 1− F (θ)

f (θ)
> θ0 − (1− ²) 1− F (θ

0)
f (θ0)

.

Note that Xmin (θ) ≤ X (θ) . Therefore if X (θ) = 0, Xmin (θ) = 0 as well.
Letting Xmin(θ)

X(θ)
= 1 whenever X (θ) = 0, we deÞneM (θ) = θ− Xmin(θ)

X(θ)
1−F (θ)
f(θ)

.
We can rewrite R as,

R = 2

Z 1

0

Z 1

0

M (θ)x (θ, θ0) f (θ0) f (θ) dθ0dθ. (9)
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Nowwe can show that the optimal allocation rule is given by setting x (θ, θ0) =
1 if θ > θ0 and θ ≥ r, x (θ, θ0) = 1

2
if θ = θ0 and θ ≥ r, and x (θ, θ0) = 0 other-

wise. First note that, in the ²-contamination case, Xmin (θ) ≥ (1− ²)X (θ)
for all θ such that X (θ) < 15. Under the above allocation rule Xmin (θ) =
(1− ²)X (θ) for all θ such that X (θ) < 1. Therefore this allocation rule
maximizes M (θ) . By construction x (θ, θ0) = 1 if and only if M (θ) > M (θ0)
and M (θ) ≥ 0 therefore maximizing (9).
The following proposition concludes our discussion of the optimal mech-

anism in the ²-contamination case.

Proposition 6 The mechanism described in proposition 5 is incentive com-
patible, and thus optimal for the seller in the ²-contamination case.

Proof. First we show that if Xmin is non-decreasing selecting u as in (6)
satisÞes IC. We check two cases.
Case 1: If θ > �θ,

u (θ)− u
³
�θ
´
=

Z θ

�θ

Xmin (y) dy

≥ Xmin
³
�θ
´³
θ − �θ

´
which is the IC constraint.
Case 2: If θ < �θ,

u
³
�θ
´
− u (θ) =

Z �θ

θ

Xmin (y) dy

≤ Xmin
³
�θ
´³
�θ − θ

´
again giving us the IC constraint.

5This is true since:

Xmin (θ) = min
G∈∆b

Z
x(θ, θ0)dG(θ0)

= min
H∈D

Z
x(θ, θ0)d ((1− ²)F + ²H) (θ0)

≥ (1− ²)
Z
x(θ, θ0)dF (θ0).
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Now, note that for the allocation rule in proposition 5, Xmin is non-
decreasing, and thus the mechanism (x, t) is incentive compatible.

Remark 7 A natural question is how to implement the optimal mechanism
described above. There are several ways to implement the mechanism. We
will describe one such auction here. Consider an auction where bidders bid
for the object, the highest bidder who bids above the reservation value r ob-
tains the object, and any bidder (regardless of winning or losing) who bids b
receives a gift S(b) = (1− ε) R b

r
F (y) dy from the seller. In this auction, the

equilibrium strategy of a bidder with valuation θ is to bid his valuation. To
see this note that the allocation rule is the same as the one in proposition
5. Moreover, a bidder who bids θ pays θ − (1− ε) R b

r
F (y) dy if he wins the

auction and −(1− ε) R b
r
F (y) dy if he loses the auction, and these transfers

are also the ones in proposition 5. Since reporting your value is incentive
compatible in the optimal mechanism, it is also optimal to bid your value in
this auction.

5.2 First and Second Price auctions are not optimal

It has been established in Lo [12] that the second price auction is not optimal
since the Þrst price auction may generate more revenue than the Þrst price
auction when the bidders are ambiguity averse. Yet, it was an open question
whether the Þrst price auction with an optimally chosen reserve price is the
optimal auction. Our result gives a negative answer to this question. Under
rather general conditions, the Þrst and second price auctions, as well as many
other natural auction types, will not be optimal in this setting. The intuition
is as follows. In most auctions, sellers obtains more revenue the higher the
valuations of the buyers. Thus under ambiguity aversion, they consider high
valuations unlikely. Similarly, buyers hope that their opponents� valuations
are low; hence they consider low valuations unlikely. Quite naturally, then,
one would expect that seller and buyer�s beliefs would depart; and hence
these auctions are not optimal. Even, as we assumed above, F is Þxed,
unless F is the lower envelope of ∆B, these auctions will not be optimal.
We propose the following corollary which describes one possible restriction

on ∆B which would result in the non-optimality of Þrst- and second-price
auctions.
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Formally, consider the following corollary of the theorems presented in
section 4:

Corollary 8 Suppose there exists some distribution G ∈ ∆B such that G
Þrst-order stochastically dominates F . Now, if under some mechanism (x, t),
there exists a positive measure subset eΘ ⊆ Θ such that for all �θ ∈ eΘ,

q(�θ, θ0) = x(�θ, θ0)�θ − t(�θ, θ0)
is weakly decreasing in θ0 and over some interval strictly decreasing, then
(x, t) is not optimal.

Proof. First-order stochastic dominance implies:Z
q(�θ, θ0)dG(θ0) <

Z
q(�θ, θ0)dF (θ0)

By Proposition 1, (x, t) is not optimal.

Now, to show that the Þrst and second price auctions are not optimal, we
need only establish that under Þrst and second price auctions, there exists
some eΘ which meets this criterion.
Consider a positive measure set eΘ of Θ such that, for all �θ ∈ eΘ, �θ is

strictly above the reserve price (if there is one) and �θ is strictly below the
highest in Θ. We will show that the Þrst and second price auctions are not
optimal for any �θ ∈ eΘ.
Now, consider an arbitrary �θ ∈ eΘ. The following describes the Þrst-price

auction for type �θ:

x(�θ, θ0) =

 1, if �θ > θ0
1
2
, if �θ = θ0

0, otherwise

t(�θ, θ0) =

 b(�θ), if �θ > θ0
1
2
b(�θ), if �θ = θ0

0, otherwise

for a Þxed optimal bid b(�θ) < �θ. Hence,

q(�θ, θ0) =


�θ − b(�θ) > 0, if �θ > θ0

1
2

³
�θ − b(�θ)

´
> 0, if �θ = θ0

0, otherwise
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So as θ0 increases, q(�θ, θ0) falls monotonically from
³
�θ − b(�θ)

´
to zero. So

the Þrst price auction is not optimal as long as there is some distribution in
∆B which Þrst-order stochastically dominates F .
Similarly, for second price auctions,

x(�θ, θ0) =

 1, if �θ > θ0
1
2
, if �θ = θ0

0, otherwise

t(�θ, θ0) =

 θ0, if �θ > θ0
1
2
θ0, if �θ = θ0

0, otherwise

So, for second price auctions,

q(�θ, θ0) =
½
�θ − θ0 > 0, if �θ > θ0
0, otherwise

So as θ0 increases, q(�θ, θ0) falls monotonically from �θ to zero. So the
second price auction is also not optimal as long as there is some distribution
in ∆B which Þrst-order stochastically dominates F .

5.3 Choquet Expected Utility with Convex Capacity

Choquet expected utility (CEU) model is an alternative to MMEU model
that is used to represent ambiguity averse preferences. In the CEU model an
ambiguity averse agent�s subjective belief is represented by a convex capacity
µ satisfying the following properties: 0 ≤ µ (A) ≤ 1 for all A ∈ Σ, µ (∅) = 0,
µ (Θ) = 1 and µ (A)+µ (B) ≤ µ (A ∩B)+µ (A ∪B) for A,B ∈ Σ. It is this
last property that captures ambiguity aversion and says that the union of
disjoint events may be assigned a larger weight than the sum of the weights
assigned to each event, since these events may be more ambigous than their
union. The core of a convex capacity µ, denoted by Π (µ) , is given by:

Π (µ) = {p ∈M : p (A) ≥ µ (A) for all A ∈ Σ} .
The Choquet expected utility (with respect to the convex capacity µ) of an
agent who evaluates an act f : Θ→ R is given by:

CE (f) =

Z
fdµ = min

p∈Π(µ)

Z
fdp.
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Here the Þrst integral is the Choquet integral of f with respect to capacity
µ, and the second integral is the usual Lebesgue integral of f with respect
to probability measure p where the minimum is taken over all probability
meaures in the core of capacity µ.
In the case of CEU with convex capacity we can apply proposition 1 to

show optimality of the complete insurance auction. To see this let�s Þrst in-
troduce some additional notation. For p ∈M, let Gp denote the distribution
function associated with p. Let ∆ (µ) be the set of all distribution functions
associated with measures in Π (µ) . Now suppose that p̄ ∈M is associated
with the seller�s distribution F. Suppose that p̄ (A) ≥ µ (A)+ ε for all A ∈ Σ
and some ε > 0. In this case we can show that the ε-contamination set of F
is a subset of the core and by proposition ?? complete insurance auction is
the unique optimal auction.
Now suppose that for some θ̄ ∈ Θ̄, q(θ̄, θ) is a simple function that is not

constant for a positive measure set of θ. Therefore there existsK1 > · · · > Km

and Θj for j = 1, ...,m such that q(θ̄, θ) = Kj for all θ ∈ Θj and ∪mj=1Θj = Θ.

CE
¡
q(θ̄, ·)¢ =

Z
q(θ̄, ·)dµ

=
mX
i=1

(Ki −Ki+1)µ
¡∪ij=1Θj¢

<

Z
q(θ̄, ·)dF.

6 Ambiguity Averse Seller

In this section we Þrst provide a counterpart of proposition 1 when the seller
is ambiguity averse. The proof of the result is in the appendix.

Proposition 9 Suppose that the seller is ambiguity averse, with a set of
priors ∆S and the buyers are ambiguity neutral with a prior F ∈ ∆S. Let
(x, t) be an arbitrary incentive compatible mechanism. Let ∆minS ⊆ ∆S be the
set of minimizing distributions for the seller under (x, t). That is,

∆minS = arg min
G∈∆S

ZZ
t(θ, θ0) + t(θ0, θ)dG(θ)dG(θ0).

If F /∈ ∆minS , then (x, t) is not optimal.
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The idea of the proof is based on Eso and Futo [5] who consider auc-
tions with a risk averse seller in independent private values environments
with risk (and ambiguity) neutral buyers. They show that for every incen-
tive compatible selling mechanism there exists a mechanism which provides
deterministically the same (expected) revenue. From this it follows that the
optimal selling mechanism must provide complete insurance to the seller. We
next show that the mechanism in Eso and Futo is the optimal mechanism in
our case as well.

Proposition 10 Then there exists an incentive compatible and individually
rational selling mechanism, (x∗, t∗) , that maximizes minimum expected rev-
enue of the seller over the set of priors �s ∆S and provides the same revenue
to the seller no matter what the buyer�s types are. That is t(θ, θ0) + t(θ0, θ)
is constant for all θ, θ0 ∈ Θ.

The proof is omitted since it is a straightforward extension of the proof
of proposition 9. The basic idea is very simple. For any individually rational
and incentive compatible mechanism (x, t) , one can deÞne a new mechanism
(x, t0) with the same allocation rule, but with the following transfers:

t0(θ, θ0) = T (θ)− T (θ0) +
Z
T (i)dF (i).

Note that in the new mechanism t0(θ, θ0) + t0(θ0, θ) is always
R
T (i)dF (i)

which is constant. It is straightforward to check that this mechanism incen-
tive compatible as well. The reason this mechanism works in both risk and
ambiguity settings is that, since the buyers are risk and ambiguity neutral
(x, t0) is incentive compatible in both settings and provides perfect insurance
to the seller against both ambiguity and risk.

7 Conclusion

In this paper we analyzed selling mechanisms (or auctions) from the seller�s
point of view when either the buyers or the seller is ambiguity averse. We
have showed that selling mechanisms that provide full insurance to the buyers
when the buyers are ambiguity averse and to the seller when the seller is
ambiguity averse are in the set of optimal mechanisms for the seller. We have
also showed that a necassary condition for the optimality of a mechanism is

21



that the buyers and the seller use the same subjective beliefs to evaluate the
mechanism.
There are at least two directions these results may be extended. The

Þrst one is to allow the buyers and the seller both be ambiguity averse. Our
results easily extend to the case when the buyers are more ambiguity averse
(i.e., have a larger set of priors) then the seller. On the other hand, when the
seller is more ambiguity averse than the buyers the above results may break
down. This point is left for further research.
The second is to use the methods developed here in mechanism design

problems in quasilinear environments with incomplete information where the
agent�s are ambiguity averse. We believe that the results in this paper will
naturally extend to these environments. For example in a bargaining problem
(see Myerson) we conjecture that efficiency (from the mechanism designer�s
point of view) would require that the agent�s are completely insured against
the ambiguity. This extension is also left for further research.

8 Appendix

First we prove a proposition that is more general than proposition 1. In the
following proposition the seller is allowed to be ambiguity averse with a set
of priors ∆S ⊆ ∆B. For the case where ∆S = {F} , this proposition implies
proposition 1 in the text.

Proposition 11 Suppose that the seller and the buyers are ambiguity averse.
Suppose that the seller�s set of priors is ∆S and the buyers� set of priors is
∆B. Suppose further that ∆S ⊆ ∆B. Let (x, t) be an arbitrary incentive
compatible mechanism. Let ∆minS ⊆ ∆S be the set of minimizing distributions
for the seller under (x, t). That is,

∆minS = arg min
G∈∆S

ZZ
2t(θ, θ0)dG (θ) dG (θ0) .

For any θ ∈ Θ, let ∆(θ) ⊆ ∆B be the set of minimizing distributions for θ
under (x, t). That is,

∆(θ) = arg min
G∈∆B

Z
[x(θ, θ0)θ − t(θ, θ0)] dG(θ0).

If there exists some positive measure eΘ ⊆ Θ such that, for all �θ ∈ eΘ,
∆minS ∩∆(�θ) = ∅
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then (x, t) is not optimal.

Proof. DeÞne,

q(θ, θ0) = x(θ, θ0)θ − t(θ, θ0).
Now let,

K(θ) = min
G∈∆B

Z
q(θ, θ0)dG(θ0)

so that K(θ) is buyer θ�s expected payoff.
Now we will Þnd a set of transfers for types in eΘ which will make the

seller better off and keep the mechanism incentive compatible. DeÞne the
function δ : eΘ→ R as follows:

δ(�θ, θ0) =
h
q(�θ, θ0)−K(�θ)

i
, for all �θ ∈ eΘ

Now consider the mechanism (x, t0) such that:

t0(θ, θ0) =
½
t(θ, θ0) + δ(θ, θ0), for all θ ∈ eΘ
t(θ, θ0), otherwise

.

We show that the mechanism (x, t0) makes the seller strictly better off,
leaves the buyers� payoffs unchanged, and is incentive compatible.

Claim 1: (x, t0) makes the seller strictly better off
The seller�s payoff for a general symmetric t is:

min
G∈∆S

ZZ
[t(θ, θ0) + t(θ0, θ)] dG(θ)dG(θ0)

= 2 min
G∈∆S

ZZ
t(θ, θ0)dG(θ)dG(θ0)

Hence the seller�s payoff for the mechanism (x, t0) is:

min
G∈∆S

ZZ
2t0(θ, θ0)dG(θ)dG(θ0) (10)

= min
G∈∆S

·ZZ
2t(θ, θ0)dG(θ)dG(θ0) +

Z
eΘ
Z
Θ

2δ(�θ, θ0)dG(θ0)dG(�θ)
¸
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Note that,

min
G∈∆S

Z
eΘ
Z
Θ

2δ(�θ, θ0)dG(θ0)dG(�θ) (11)

= 2 min
G∈∆S

Z
eΘ
·Z

Θ

q(�θ, θ0)dG(θ0)−K(�θ)
¸
dG(�θ)

= 2 min
G∈∆S

Z
eΘ
·Z

Θ

q(�θ, θ0)dG(θ0)− min
H∈∆B

Z
q(�θ, θ0)dH(θ0)

¸
dG(�θ).

For G ∈ ∆(�θ), Z
Θ

q(�θ, θ0)dG(θ0)− min
H∈∆B

Z
q(�θ, θ0)dH(θ0) = 0

by deÞnition of ∆(�θ). On the other hand for G /∈ ∆(�θ), the difference above
is strictly positive. From this we can conclude that,

min
G∈∆S

·ZZ
2t(θ, θ0)dG(θ)dG(θ0) +

Z
eΘ
Z
Θ

2δ(�θ, θ0)dG(θ0)dG(�θ)
¸
(12)

> min
G∈∆S

ZZ
2t(θ, θ0)dG(θ)dG(θ0) + min

G∈∆B

Z
eΘ
Z
Θ

2δ(�θ, θ0)dG(θ0)dG(�θ)

To see this Þrst suppose that the min of the l.h.s. of equation (12) is achieved
by G ∈ ∆mins . Since ∆(�θ) ∩ ∆mins = ∅, we know that the min of the second
term on the r.h.s. can not be achieved by this G. On the other hand, suppose
that the min of the l.h.s. of equation (12) is achieved by G /∈ ∆mins , this time
the min of the Þrst term on the r.h.s. can not be achieved by this G. So in
either case, we obtain the strict inequality.
But, by the IR constraint

min
G∈∆B

Z
eΘ
Z
Θ

2δ(�θ, θ0)dG(θ0)dG(�θ) ≥ 0,

and putting equations (10) and (12) together delivers the result.

Claim 2: (x, t0) leaves the buyers� payoffs unchanged under truth-
telling
For all buyers θ /∈ eΘ, the mechanisms (x, t) and (x, t0) are identical un-

der truth-telling. So their payoffs are trivially identical. Now, consider an
arbitrary buyer �θ ∈ eΘ. Under truth-telling, the payoff for this buyer is:
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min
G∈∆B

Z h
x(�θ, θ0)�θ − t0(�θ, θ0)

i
dG(θ0)

= min
G∈∆B

Z h
x(�θ, θ0)�θ − t(�θ, θ0)− δ(�θ, θ0)

i
dG(θ0)

= min
G∈∆B

Z h
q(�θ, θ0)− q(�θ, θ0) +K(�θ)

i
dG(θ0) = K(�θ)

where K(�θ) is buyer �θ�s original payoff.

Claim 3: (x, t0) is incentive compatible
For θ /∈ eΘ, (x(θ, θ0), t0(θ, θ0)) is identical to (x(θ, θ0), t(θ, θ0)). Furthermore,

truth-telling payoffs for all types are unchanged. This immediately implies
that, since (x, t) was incentive compatible, no θ can proÞtably deviate to any
�θ /∈ eΘ. Hence we only check if any type has an incentive to deviate to some
�θ ∈ eΘ.
The payoff for θ ∈ Θ to deviate to an arbitrary �θ ∈ eΘ, θ 6= �θ, is:

min
G∈∆B

Z h
x(�θ, θ0)θ − t0(�θ, θ0)

i
dG(θ0)

= min
G∈∆B

Z h
x(�θ, θ0)θ − t(�θ, θ0)− δ(�θ, θ0)

i
dG(θ0)

≤ min
G∈∆B

Z h
x(�θ, θ0)θ − t(�θ, θ0)

i
dG(θ0)− min

G∈∆B

Z
δ(�θ, θ0)dG(θ0)

Because

min
G∈∆B

Z h
x(�θ, θ0)θ − t(�θ, θ0)− δ(�θ, θ0) + δ(�θ, θ0)

i
dG(θ0)

≥ min
G∈∆B

Z h
x(�θ, θ0)θ − t(�θ, θ0)− δ(�θ, θ0)

i
dG(θ0) + min

G∈∆B

Z
δ(�θ, θ0)dG(θ0)

But note that

min
G∈∆B

Z
δ(�θ, θ0)dG(θ0) = min

G∈∆B

Z h
q(�θ, θ0)−K(�θ)

i
dG(θ0)

= min
G∈∆B

Z
q(�θ, θ0)dG(θ0)−K(�θ) = 0

This implies that
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min
G∈∆B

Z h
x(�θ, θ0)θ − t0(�θ, θ0)

i
dG(θ0)

≤ min
G∈∆B

Z h
x(�θ, θ0)θ − t(�θ, θ0)

i
dG(θ0)− min

G∈∆B

Z
δ(�θ, θ0)dG(θ0)

= min
G∈∆B

Z h
x(�θ, θ0)θ − t(�θ, θ0)

i
dG(θ0)

Now the payoff for type θ to truth-telling must be weakly larger than the
last expression, because the mechanism (x, t) was assumed to be incentive
compatible. Hence the payoff to truth-telling is weakly larger than deviating
to any type �θ ∈ eΘ. Hence the mechanism (x, t0) is incentive compatible.
Since the mechanism (x, t0) makes the seller strictly better off, leaves

buyers� payoffs unchanged, and remains incentive compatible, the mechanism
(x, t) must not have been optimal. This completes the proof.

Proof of Proposition 3
Proof. We know by Proposition ?? that there is a measure 1 set Θ̄ ⊆ Θ

such that for all θ ∈ Θ̄ we have F ∈ ∆ (θ). For any θ ∈ Θ̄ we have

min
H∈∆

Z
q(θ, θ0)dH (θ0) =

Z
q(θ, θ0)dF (θ0) = K(θ).

Now suppose that for some θ̄ ∈ Θ̄, q(θ̄, θ) is not constant for a positive
measure set of θ. Let Θ+ be the set of all θ

0 ∈ Θ such that q(θ̄, θ0) > K(θ̄) and
let Θ− be the set of all θ0 ∈ Θ such that q(θ̄, θ0) < K(θ̄). Clearly both Θ+ and
Θ− have positive measure. Let Θ+

S
Θ− = �Θ and note that Θ+

T
Θ− = ∅.

Now construct the following measure dH (corresponding to the distribu-
tion H) which increases the probability weight on the low-payoff states:

dH(θ0) =


= 1

2
dF (θ0), if θ0 ∈ Θ+

= (1 + 1
2
γ)dF (θ0), if θ0 ∈ Θ−

= dF (θ0), if θ0 ∈ Θ− �Θ

where γ =
R
Θ+

dFR
Θ− dF

6. Note that Θ− �Θ could be the empty set. This would
not inßuence our results.

6Since Θ− and Θ+ are of positive measure, 0 < γ <∞. If one of these sets were not of
positive measure, then there would not be positive probability mass that could be moved
relative to F , so no such H could be constructed.
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Claim: H is a well-deÞned distribution, in that H(θ) is increasing in θ,
and

R
dH(θ0) = 1.

Proof: H(θ) increasing trivially, since dF is a measure and dH is con-
structed as a positive multiple of dF .
NowZ
dH(θ0) =

1

2

Z
Θ+

dF (θ0) + (1 +
1

2
γ)

Z
Θ−
dF (θ0) +

Z
Θ−�Θ

dF (θ0)

=
1

2

Z
Θ+

dF (θ0) +
Z
Θ−
dF (θ0) +

1

2

R
Θ+
dFR

Θ−
dF

Z
Θ−
dF (θ0) +

Z
Θ−�Θ

dF (θ0)

=

Z
Θ+

dF (θ0) +
Z
Θ−
dF (θ0) +

Z
Θ−�Θ

dF (θ0) =
Z
dF (θ0) = 1.

So H is indeed a well-deÞned distribution.

Now, we will show that, if q(θ̄, θ) is not constant for a positive measure
set of θ, then the existence of (1− ²)F + ²H in ∆B implies that F /∈ ∆ (θ) ,
which leads to a contradiction. First note that,Z

Θ+

q(θ̄, θ0)dF (θ0) > K(θ̄)
Z
Θ+

dF,

since for all θ0 ∈ Θ+, q(θ̄, θ0) > K(θ̄).Similarly,Z
Θ−
q(θ̄, θ0)dF (θ0) < K(θ̄)

Z
Θ−
dF,

since for all θ0 ∈ Θ−, q(θ̄, θ0) < K(θ̄). Putting these two inequalities together
we obtain,R

Θ−
q(θ̄, θ0)dF (θ0)R
Θ−
dF

<

R
Θ+
q(θ̄, θ0)dF (θ0)R
Θ+
dF

(13)

⇔
R
Θ+
dFR

Θ−
dF

Z
Θ−
q(θ̄, θ0)dF (θ0) <

Z
Θ+

q(θ̄, θ0)dF (θ0)

⇔ γ

Z
Θ−
q(θ̄, θ0)dF (θ0) <

Z
Θ+

q(θ̄, θ0)dF (θ0)

Now we show that,Z
q(θ̄, θ0) [(1− ²)dF (θ0) + ²dH(θ0)] <

Z
q(θ̄, θ0)dF (θ0)
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which holds if and only ifZ
q(θ̄, θ0)dH(θ0) <

Z
q(θ̄, θ0)dF (θ0).

But,Z
q(θ̄, θ0)dH(θ0) =

1

2

Z
Θ+

q(θ̄, θ0)dF (θ0)+(1+
1

2
γ)

Z
Θ−
q(θ̄, θ0)dF (θ0)+

Z
Θ−�Θ

q(θ̄, θ0)dF (θ0)

And,Z
q(θ̄, θ0)dF (θ0) =

Z
Θ+

q(θ̄, θ0)dF (θ0)+
Z
Θ−
q(θ̄, θ0)dF (θ0)+

Z
Θ−�Θ

q(θ̄, θ0)dF (θ0).

So this implies that Z
q(θ̄, θ0)dH(θ0) <

Z
q(θ̄, θ0)dF (θ0)

if and only if

γ

Z
Θ−
q(θ̄, θ0)dF (θ0) <

Z
Θ+

q(θ̄, θ0)dF (θ0),

which holds by (13).

Proof of Lemma 4
Proof. We need to show that there exists M > 0 such that¯̄̄

u (θ)− u
³
�θ
´¯̄̄
≤M

¯̄̄
θ − �θ

¯̄̄
.

We know that,³
θ − �θ

´
Xmin

³
�θ
´
≤ u (θ)− u

³
�θ
´
≤
³
θ − �θ

´
Xmax

³
�θ
´
.

So if θ > �θ, using the fact that u is increasing we can conclude that,

u (θ)− u
³
�θ
´
≤
³
θ − �θ

´
Xmax

³
�θ
´
≤
¯̄̄
θ − �θ

¯̄̄
.

Similarly if θ < �θ, then

−
³
u (θ)− u

³
�θ
´´
≤ −

³
θ − �θ

´
Xmin

³
�θ
´
≤
¯̄̄
θ − �θ

¯̄̄
.
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Together these imply that Lipschitz condition holds with M = 1.

Proof of Proposition 9
Proof. DeÞne T (θ) as buyer θ�s expected transfer under F , that is,

T (θ) =

Z
t(θ, θ0)dF (θ0) (14)

Now let

�t(θ, θ0) = T (θ)− T (θ0) +
Z
T (i)dF (i) (15)

We show that the mechanism (x, �t) makes the seller strictly better off,
leaves the buyers� payoffs unchanged, and is incentive compatible.

Claim 1: (x, �t) makes the seller strictly better off
TThe seller�s payoff for the mechanism (x, t0) is:

min
G∈∆S

ZZ £
�t(θ, θ0) + �t(θ0, θ)

¤
dG(θ)dG(θ0)

= min
G∈∆S

ZZ
[T (θ)− T (θ0) +

Z
T (i)dF (i) + T (θ0)− T (θ) +

Z
T (j)dF (j)]dG(θ)dG(θ0)

= min
G∈∆S

ZZ ·
2

Z
T (i)dF (i)

¸
dG(θ)dG(θ0)

= 2

Z
T (i)dF (i)

= 2

ZZ
t(θ, θ0)dF (θ)dF (θ0)

However, F /∈ ∆minS implies:

min
G∈∆S

ZZ
[t(θ, θ0) + t(θ0, θ)] dG(θ)dG(θ0) < 2

ZZ
t(θ, θ0)dF (θ)dF (θ0)

Hence the seller is made strictly better off by this change.

Claim 2: (x, �t) leaves the buyers� payoffs unchanged under truth-
telling
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By construction:

Z
�t(θ, θ0)dF (θ0) =

Z ·
T (θ)− T (θ0) +

Z
T (i)dF (i)

¸
dF (θ0)

= T (θ)−
Z
T (θ0)dF (θ0) +

Z
T (i)dF (i)

= T (θ)

Since T (θ) =
R
t(θ, θ0)dF (θ0), we are Þnished.

Claim 3: (x, t0) is incentive compatible
The payoff for type θ to pretend to be �θ remains unchanged. Namely, θ�s

deviation payoff under (x, t) is:

Z h
θx(�θ, θ0)− t(�θ, θ0)

i
dF (θ0)

=

Z
θx(�θ, θ0)dF (θ0)−

Z
t(�θ, θ0)dF (θ0)

=

Z
θx(�θ, θ0)dF (θ0)− T (�θ)

=

Z
θx(�θ, θ0)dF (θ0)−

Z
�t(�θ, θ0)dF (θ0)

as per the above proof. Hence the payoff to deviation is unchanged for all
types θ ∈ Θ, so, since (x, t) was incentive compatible, (x, �t) must be as well.

Since the mechanism (x, t0) makes the seller strictly better off, leaves
buyers� payoffs unchanged, and remains incentive compatible, the mechanism
(x, t) must not have been optimal. This completes the proof.
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