
 
 
 
 
 
 

MOVING TO NICE WEATHER 
 
 

Jordan Rappaport 
 

SEPTEMBER 2003; LAST REVISED OCTOBER 2003 
 

RWP 03-07 
 

 
 
 
 
 
 
 

Research Division 
Federal Reserve Bank of Kansas City 

 
 
 

Jordan Rappaport is an economist at the Federal Reserve Bank of Kansas City.  The views 
expressed herein are those of the author and do not necessarily reflect the position of the Federal 
Reserve Bank of Kansas City or the Federal Reserve System. Thank you to Jonathan Willis and 
Steven Durlauf for advice and suggestions. Thank you to Michael Haines for sharing historical 
census data. Thank you to Taisuke Nakata and Aarti Singh for excellent research assistance. A 
number of other individuals have also made large contributions to the construction of the 
underlying data including Nathaniel Baum Snow, Scott Benolkin, Anne Berry, Krista Jacobs, 
Jason Martinek, Peter Northup, Chris Yenkey, and Andrea Zanter. Comments warmly 
appreciated. 
 
 
Rappaport email:  jordan.m.rappaport@kc.frb.org   



Abstract 
 
 U.S. residents, both old and young, have been moving en masse to places with 

nice weather. Well known is the migration towards places with warmer winter weather, 

which is often attributed to the introduction of air conditioning. But people have also 

been moving to places with cooler and less-humid summer weather, which is the opposite 

of what would be expected from the introduction of air conditioning. Empirical evidence 

suggests that the main force driving weather-related moves is an increasing valuation of 

weather’s contribution to quality of life.  Cross-sectional population growth regressions 

are able to achieve a relatively good match with an a priori ranking of the weather's 

contribution to local quality of life. 
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1 Introduction

Over the course of the twentieth century, U.S. residents moved in mass to places with nice

weather. Well known is the migration towards places with warm winter weather, which is

often attributed to the introduction of air conditioning (Oi, 1997). But people have also

been moving to places with cooler, less-humid summer weather, which is the opposite of

what would be expected from the introduction of air conditioning. The latter trend suggests

that a large portion of weather-related moves are due to individuals’ having increased their

valuation of the weather’s contribution to their quality of life, probably due to broad-based

rising real incomes (Glaeser, Kolko, Saiz, 2001). If so, individuals are likely to have increased

their valuation of other local quality-of-life attributes as well.

Valuing weather’s contribution to quality of life has received considerable attention in

the compensating differential literature. The value of a characteristic is calculated as the sum

of the wages an individual is willing to forego plus the house price premium an individual

is willing to pay to live in a metropolitan area with a given weather characteristic (Rosen,

1979; Roback, 1982). Based on public use microsamples from the 1980 decennial census, one

hundred fewer annual heating degree days are estimated to be valued (in 2002 dollars) from

$5 to $40 per household; one hundred less annual cooling degree days are estimated to be

valued from $2 to $218 per household; one extra sunny day per year, from $19 to $33 per

household; one inch less precipitation, from -$58 to $34 (Blomquist, Berger, and Hoen, 1988;

Gyourko and Tracy, 1991; and Stover and Leven, 1992). A limitation of the compensating

differential literature is that the number of geographic observations is relatively small; the

above estimates are based on cross-sections of either 253 urban counties or 130 metropolitan

areas. Moreover, there is a sharp selection bias in that only places where large numbers of

people have chosen to live are included in the sample.

The alternative approach pursued herein is to describe the partial correlations between

population density and detailed measures of weather for the more than 3,000 continental

U.S. counties. Both population density and its growth rate are characterized by robust

inverse partial correlations with various measures of cold winter weather and hot summer



weather. Population density is additionally characterized by a quantitatively small inverse

partial correlation with annual precipitation. Population growth is additionally characterized

by a strong inverse partial correlation with summer humidity. Moreover, sparse regression

specifications using just a few weather elements have extremely high explanatory power in

accounting for the variation in both population density and population growth.

The paper proceeds as follows. Section 2 reviews the theoretical justification for using

population density and its growth rate to measure local economic performance; it then sug-

gests some obvious ways in which weather affects local welfare and how such contributions

may have changed over the twentieth century. Section 3 formally lays out an econometric

specification for estimating local attributes’ contribution to local welfare. Section 4 describes

the data used in the estimation. Section 5 presents results on the univariate and partial cor-

relations between population density and a variety of elements measuring winter weather,

summer weather, and annual precipitation. Section 6 does the same for the growth of pop-

ulation density and then argues that these partial correlations suggest that a large portion

of weather-motivated migration is driven by broad-based technological progress rather than

the specific technological innovation of air conditioning or life-cycle motivated elderly mi-

gration. Section 7 compares weather’s expected contribution to welfare as predicted by the

population density and population growth regressions with an a priori quality-of-life index of

weather; it concludes that cross-sectional population growth regressions successfully capture

changes in contributions to local welfare. A last section briefly concludes.

2 Theory and Predictions

What are the contributions from various local attributes to the welfare of local residents?

Thinking of a “locality” as a geographic area where people both live and work, a first

mechanism by which local attributes impact local welfare is by affecting the productivity

of local firms. With competitive local labor markets, higher firm productivity puts upward

pressure on local wages, in turn allowing residents to increase their consumption of goods

and services. Alternatively, local attributes may themselves be directly valued by residents,
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in which case they affect local “quality of life” (Rosen, 1979; Roback, 1982).

Neither local welfare nor its determinants, local productivity and local quality of life,

are directly observable. But in a system of many localities among which there is high

mobility, the movement of firms seeking higher profits and the movement of individuals

seeking higher utility induces positive correlations between local population density and each

of local productivity and local quality of life, ∂L
∂(productivity) > 0 and

∂L
∂(quality-of-life) > 0 (Haurin,

1980; Glaeser et al., 1992, 1995; Ciccone and Hall, 1996; Rappaport, 1999, 2003; Rappaport

and Sachs, 2003).1 Consistent with the idea that people vote with their feet (Tiebout, 1956),

population density reveals individuals’ preferences over local areas by aggregating the indirect

contribution to welfare via productivity-driven higher wages with the direct contribution to

welfare via high quality of life. Inherent in such aggregation is that population density cannot

distinguish between the two mechanisms.

Weather stands out as an obvious local attribute affecting local productivity and local

quality of life. Consider winter and summer temperature. Extreme cold and heat can kill;

they cause considerable discomfort; they cause machines to fail; they run up energy bills.

Extreme cold freezes pipes. Extreme heat spoils food and slows thoughts and activities.

So controlling for summer temperature, population density should be positively correlated

with winter temperature; controlling for winter temperature, population density should be

negatively correlated with summer temperature (Table 1, Row 1).

If population density measures the contribution of local attributes to local welfare via

productivity and quality of life, its growth rate measures the change in such contributions.

A first reason to believe the contribution from weather to local welfare has changed over the

past century is the invention and spread of air conditioning and other weather-ameliorating

technologies. A second reason is the possibility that rising incomes have increased demand

for local quality-of-life attributes such as nice weather.

The introduction of air conditioning (AC), the mechanical dehumidification and cool-

1The proofs in Rappaport (1999) and Rappaport and Sachs (2003) that ∂L
∂(productivity) > 0 rely on the

exclusion of land from production. With land as a productive input, the derivative can go in the other

direction. But Rappaport (2003) shows this to occur only under extreme circumstances.
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ing of indoor environments, can be dated to about 1899. In that year, Cornell Medical

College installed a custom-designed refrigeration unit to cool the air of one of its dissect-

ing laboratories. A few key patents during the years 1904 to 1907 facilitated the spread

of custom-designed AC units to manufacturers of products requiring constant, low humid-

ity. Such products included gunpowder, macaroni, tobacco, gum, and chocolate. Starting in

1917, premier movie theaters began installing AC as a way to attract patrons during hot and

humid summers. During the 1920s, air conditioning companies increasingly marketed AC

to a wide range of manufacturing companies as a way of raising the productivity of factory

workers, whose efforts might otherwise falter in hot, sweltering conditions.2 (Edwards, 1994;

Cooper, 1998; Ackerman, 2002)

The mass adoption of residential air conditioning did not take place until after World

War II. It was made possible by the invention of the low-pressure refrigerant freon in 1930.

But as late as 1960, residential air conditioning remained relatively scarce. Only 12.5 per-

cent of U.S. households had any sort of AC in 1960; only 1.9 percent had central AC; and

indeed only 4.7 percent of housing units constructed between 1950 and 1960 had central

AC (Supplemental Table 1). Even in sweltering Texas, only 11.6 percent of housing units

constructed between 1950 and 1960 included central AC. By 1980, residential air condition-

ing was relatively common. 56.2 percent of households had some sort of AC in 1980; 27.8

percent had central AC; and 52.7 percent of housing units constructed between 1970 and

1980 had central AC, including 85.0 percent of newly constructed units in Texas.3

The invention and spread of air conditioning was a clear technological shock that made

locations with hot summer weather less unpleasant places to live and more productive places

to work. Individuals’ willingness to pay for the absence of hot summer weather should

have decreased. And firms in places with hot summer weather should have been able to

increase their wages. Both of these results would induce migration toward places with warm

summers. In other words, all else equal (including winter temperature), the expected partial

2Oi (1997) presents evidence that AC indeed raises worker productivity.
3Correspondingly, the first mass production automobile air-conditioner was introduced in 1954. Factory

installed AC rose from 10 percent of new cars sold in the U.S. in 1965 to 81 percent of new cars in 1983 to

92 percent in 1990 (Motor Vehicle Manufacturers Association, 1991; AutomobileIndia.com, 2003).
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correlation of population growth with summer temperature is positive (Table 1, Row 3).

Because summer and winter temperatures are positively correlated, migration towards places

with warm summers implies migration away from places with cold winters. So not controlling

for summer temperature, the expected raw correlation of growth with winter temperature is

positive. The seasonal correlation of weather further implies that air conditioning lowered

the cost of escaping from cold winters. The hot summers associated with doing so were

no longer quite so insufferable. Thus the required compensation for enduring cold winters

should have increased. So even after controlling for summer weather, the introduction of air

conditioning predicts a positive partial correlation of growth with winter temperature.

As the spread of air conditioning was ameliorating living with hot summer weather,

other technological changes were ameliorating living with cold winter weather. Central home

heating gradually replaced room heating during the latter part of the nineteenth century

(Doyle, 2003). Early furnaces were mostly fired by coal, which remained the primary home

heating fuel as late as 1950. Coal required frequent home deliveries, large storage spaces,

and the disposal of large quantities of soot. Furnaces needed to be manually fed throughout

the day and produced high indoor air pollution, including a foul-smelling sulfur odor and the

significant potential for carbon monoxide poisoning (Matthews, 2001). Oil started to replace

coal as a source of home heating during the 1920s and had surpassed it by 1960. Oil was

much more convenient than coal. But it still required frequent home deliveries, and many oil-

fired furnaces continued to produce considerable soot and other indoor air pollution. More

recently, utility-supplied natural gas and electricity have become the primary fuels heating

U.S. homes. From heating just 11 percent of U.S. homes in 1940, they together grew to heat

82 percent of U.S. homes in 2000 (Supplemental Table 2). Natural gas and electricity offer

the convenience of automatic supply and cause much less indoor air pollution than early

oil-fired furnaces.

Technological improvements in heating have made locations with cold winter weather

less unpleasant places to live. Individuals’ willingness to pay for the absence of cold winter

weather should have decreased, thereby inducing some internal migration towards places

with cold winters. All else equal (including summer weather), the resulting expected partial
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correlation of population growth with winter temperature is negative (Table 1, Row 4). The

seasonal correlation of weather then implies a negative expected raw correlation of growth

with summer temperature. Furthermore, improved heating technology lowered the cost of

escaping from hot summers. Thus even after controlling for winter weather, the resulting

partial correlation of growth with summer temperature is expected to be negative.

A completely different force changing the contribution of weather to individuals’ quality

of life has been the sharp increase in income and wealth driven by broad-based technologi-

cal progress. National income accounts suggest that U.S. real per capita income rose more

than sixfold during the twentieth century (Maddison, 1995). If anything, such an increase

understates the actual rise in purchasing power, due to the difficulty of pricing major inno-

vations diffused during the twentieth century, including residential electricity, safe drinking

water, automobile travel, air travel, radio, television, personal computers, the internet, and

continual breakthroughs in medical care (Nordhuas, 1997; Gordon, 2000).

Rising incomes should have raised individuals’ marginal utility from the consumption of

fixed-quantity local quality-of-life goods relative to their marginal utility from the consump-

tion of produced goods. Unless the price premium to living in places with high quality of life

rose proportional to the rise in income, internal migration towards such places should have

taken place. The general equilibrium condition for such a migration is that the elasticity

of substitution between consumption of produced goods and consumption of quality-of-life

goods be less than unitary (Rappaport, 2003). With a less than unitary elasticity of sub-

stitution, the share of potential income that individuals devote to quality of life – through

higher housing prices and lower wages – rises with technological progress.

Two empirical facts suggest that the elasticity of substitution between consumption of

produced goods and consumption of quality of life is indeed likely to be less than one. First

is that the elasticity of substitution between produced goods and leisure appears to be less

than one. Evidence for this is the rising amount of time U.S. residents spend on leisure

activities. Among employed U.S. males aged eighteen to sixty-four, total annual hours spent

at work (including commute time and work breaks) declined by 17 percent between 1965 and

1985. And the retirement rate for men sixty-five years of age or older rose from 35 percent
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in 1900 to 83 percent in 1990, even as life expectancy at age sixty-five has greatly increased

(Costa, 1998). Second is that elasticity of substitution between produced tradable goods

and housing also appears to be less than one. With more rapid technological progress in the

production of tradable goods, a less than unitary elasticity of substitution implies a rising

share of consumption expenditures will be spent on housing (Baumol, 1967). In fact, the

share of U.S. families’ total expenditures devoted to housing rose from 11 percent in 1950 to

18 percent in 1991 (Costa, 1998).

Numerous weather elements other than winter and summer temperature are also likely

to affect local welfare. The main additional ones included in the empirics below measure rain

and snow. The expected partial correlations of population density with these are unclear.

Rain and snow serve as sources of drinking water. Rain waters gardens and crops and

helps prevent forest fires. Snow serves as a source of outdoor recreation. But rain also

cancels outdoor recreation. And snow snarls traffic. A technological shock that suggests that

places with less precipitation should have grown faster is improved large-scale construction

technology developed during the early-to-mid twentieth century. This allowed the building

of massive projects to move water to places that lacked it. An increasing demand for nice

weather as a source of quality of life should also have caused places with less precipitation

to have grown faster.

3 Econometric Specification

Based on the theory that local population density reflects underlying productivity and

quality-of-life attributes, the assumed data-generating process is that steady-state popu-

lation is a time-varying linear function of time-invariant local attributes (Glaeser et al.,

1992, 1995; Rappaport, 1999; Rappaport and Sachs, 2003).

L∗t = Xβt + υt (1)

The vector L∗t is the natural log of steady-state population density for each of n localities.

The n-by-k matrix X stacks measures of local weather along with correlated geography at-

tributes such as coastal proximity and topography. The exogenous nature of these attributes
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eliminates a reverse-causal interpretation of partial correlations. A unitary column vector is

also included in X to pick up a time-specific intercept. The disturbance term, υt, is assumed

to have expectation zero and to be uncorrelated with X.

Observed highly persistent local growth rates suggest that population adjusts slowly

towards its steady state (Rappaport, 2002). Current population density thus proxies for

unobservable steady-state density.

Lt = Xβt + υt + (Lt − L∗t )| {z }
disturbance term

(2a)

The difference between steady-state and current population density gets subsumed in

the disturbance term. This difference will in general be correlated with X, thereby biasing

estimates of βt. To illustrate, suppose that population density was at its steady state in

the recent or more distant past after which there was a once-and-for-all structural shift from

βt−τ to βt. Omitting disturbance terms, Ls = L∗s = L∗t−τ = Xβt−τ for s ≤ t − τ and

L∗s = L
∗
t = Xβt for t−τ < s ≤ t. Additionally, let the speed at which log population density

closes the gap to its steady state be a deterministic linear function of the log distance to its

steady state, d
dt(Lt − L∗t ) = −λ (Lt − L∗t ) with λ > 0. Solving the convergence differential

equation and substituting gives

Lt =
¡
1− e−λτ

¢
L∗t + e−λτL∗t−τ (2b)

= X
¡¡
1− e−λτ

¢
βt + e−λτβt−τ

¢
+
¡
1− e−λτ

¢
υt + e−λτυt−τ| {z }

disturbance term

The disturbance term has expectation zero and is uncorrelated withX. The assumptions

yielding (2b) thus allow for unbiased estimates of a convex additive combination of βt and

βt−τ . Intuitively, coefficients on the time-invariant attributes describe a combination of

current and past steady-state relationships.4

A benefit of extended transitions is that they allow estimates of the direction of change

4If (4) below is the true data-generating process, coefficients on X from estimating (2a) and (2b) would

still be interpreted as capturing a convex combination of past and present contributions to welfare.
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in structural parameters, even well after such changes have occurred. Differencing (2a) gives

Lt − Lt−T = X
¡
βt − βt−T

¢
+ (υt − υt−T ) +

¡
(Lt − L∗t )−

¡
Lt−T − L∗t−T

¢¢| {z }
disturbance term

(3a)

As with (2a), the latter elements of the disturbance term are likely to be correlated with

X, yielding biased estimates of βt − βt−T . To illustrate, once again assume deterministic

linear convergence and a once-and-for-all shift from βt−τ to βt. Then (2b) can be differenced

to give

Lt − Lt−T =


¡
e−λ(τ−T ) − e−λ(τ)

¢ ¡
X
¡
βt − βt−τ

¢
+ (υt − υt−τ)

¢
: t− τ < t− T < t¡

1− e−λ(τ)
¢ ¡
X
¡
βt − βt−τ

¢
+ (υt − υt−τ)

¢
: t− T < t− τ < t

(3b)

So with strong assumptions, a regression based on (3a) would produce expected co-

efficients equal to a positive scalar times the change in underlying structural parameters,

E (bt − bt−τ ) = α
¡
βt − βt−τ

¢
with 0 < α(λ, τ , T, t) < 1.

A large body of research suggests that local productivity and quality of life exhibit

some increasing returns to scale with respect to population (e.g., Henderson et al, 1995;

Ades and Glaeser, 1999; Costa and Kahn, 2000; Henderson, 2003). If so, steady-state

population density will be subject to path dependence. This suggests an alternative linear

data-generating process,

L∗t = γLt−T + Xδt + υt 0 < γ < 1 (4)

The parameter δt measures the partial effect of xi on L∗i controlling for Lt−T , which itself

is likely to be a function of xi. Thus rather than as a measure of a structural relationship, δt

is better interpreted as capturing the change in effect of xi on steady-state economic density.

To emphasize this change interpretation, it is helpful to subtract lagged population density

from both sides. Doing so, and taking account of the unobservability of steady-state density,

the data-generating process to be estimated becomes

Lt − Lt−T = − (1− γ)Lt−T + Xδt + υt + (Lt − L∗t )| {z }
disturbance term

(5a)
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The difference between steady-state and current population density again gets subsumed

in the disturbance term. With deterministic linear convergence, (5a) can then be rewritten

as

Lt − Lt−T = − (1− γ)
¡
1− e−λT

¢
Lt−T +

¡
1− e−λT

¢
Xδt +

¡
1− e−λT

¢
υt (5b)

The coefficients on X from regressions based on (5b) will thus give unbiased estimates

of the sign of the components of δt.

Note that (3a) and (3b) versus (5a) and (5b) differ only by the latter pair’s inclusion of

lagged population density as a right-hand-side variable.5

Regressions using county observations almost surely violate the classical assumption of

independence. Hence I use a generalization of the Huber-White heteroskedastic-consistent

estimator based on Conley (1999) to report standard errors robust to a spatial structure

among disturbance terms. For observation pairs between which the Euclidean distance is

beyond a certain cutoff. I impose that the covariance between disturbances is zero. Within

this distance, I impose a declining weighting function for estimating the covariance between

disturbances. In essence, this amounts to allowing for a spatially-based random effect. Let-

ting si,j be the estimate of σi,j and ui be a regression residual,

E (υiυj) =

 σi,j : distancei,j ≤ d

0 : distancei,j > d
(6)

si,j = g (distancei,j)uiuj (7)

5If (4) is the true data-generating process, the actual disturbance in (3b) should include the term

− (1− γ)
¡
1− e−λT

¢
Lt−T . But the bias from using (3b) to estimate δt (i.e., from incorrectly excluding

lagged population density on the RHS) need not be large, especially for γ ≈ 1 or λT small. On the other

hand, if (1) is the true data-generating process, the inclusion of initial density on the RHS of (3b) implies the

coefficients on X will measure a positive scalar times βt rather than
¡
βt − βt−T

¢
In practice, the inclusion

of lagged population density causes almost no change relative to (3b) in the estimated coefficients on the

remaining RHS variables. This suggests that (4) is the more likely data-generating process and that the co-

efficients on X should indeed be interpreted as describing the change in an underlying structural relationship

rather than the structural relationship itself.
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g (distancei,j)


= 1 : distancei,j = 0

∈ [0, 1] : 0 < distancei,j ≤ d

= 0 : distancei,j > d

g0 (distancei,j) ≤ 0

(8)

Herein, I assume the weighting in the estimated covariance between residual terms

falls off quadratically as the distance between county centers increases to 200 kilometers,

the cutoff beyond which I impose zero covariance. Thus accounting for spatial correlation

approximately doubles standard errors relative to the assumption of zero covariance with

homoskedastic disturbances.6

4 Data Description

U.S. counties are used as the geographic unit of analysis. Doing so offers several benefits

relative to using alternative U.S. local geographies. First, counties completely partition the

continental United States; excluding geographic areas with low population would introduce

a source of considerable bias. Second, counties’ borders have been relatively constant across

time. Constant borders allow intertemporal comparisons between geographically fixed areas

and can be considered exogenous relative to most data-generating processes.7 Third, coun-

6So g( · ) = 1 −
³
distancei,j

200

´2
. Note that the specification in (7) and (8) reduces to the Huber-White

heteroskedastic-consistent estimator for standard errors when d equals zero; it reduces to a group-based

random effect estimator for standard errors with a non-Euclidean one-zero step specification for g( · ).
7I do make a few adjustments to county geographies. First is to include the District of Columbia as a

county equivalent. Second is to combine “independent cities” with the counties that completely surround

them but from which they are formally separate (especially common in Virginia). Third is to adjust for the

occasional county border change. Most frequently such changes take the form of the splitting of a county into

two or more counties. Wherever possible, I have recombined such “split” counties to allow for intertemporal

comparisons, based primarily on Horan and Hargis (1995) and Thorndale and Dollarhide (1987). I limit

such adjustments to only those regressions for which it is required. So, for instance, no such adjustments

are needed when 2000 population density is the dependent variable; and only a handful are needed when

population growth from 1960 to 2000 is the dependent variable. But more adjustments are needed for the

growth regressions from earlier in the twentieth century. When such adjustments are needed, weather, coast,
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ties’ small size implies that the weather tends to be relatively uniform throughout them.

Fourth, the large number of U.S. counties (3,069 in 2000) and the wide variation in weather

across them allows for a rich description of the partial correlations with population density.

The regression results below focus on two main dependent variables: the level of popula-

tion density in 2000 and the growth rate of population density from 1960 to 2000. Underlying

population and land area for 2000 are from the 2000 decennial census, Summary Files 1 and

3. Underlying population and land area for 1960 are from the 1947-to-1977 consolidated

City and County Data Book data file. Underlying population and land area data for the

remaining decade-by-decade population density growth regressions are from corresponding

decennial census data as disseminated in electronic form by several sources listed in the

bibliography. A few regressions focus on the level and growth rate of employment den-

sity. Underlying employment data are from the U.S. Department of Commerce’s Bureau for

Economic Analysis Regional Economic Information System.

The weather variables are derived from data purchased from www.climatesource.com.

The Climate Source data, in turn, is based on detailed weather observations over the pe-

riod 1961 to 1990 from more than 6,000 meteorological stations managed by the U.S. Na-

tional Oceanographic and Atmospheric Administration. A peer-reviewed “hybrid statistical-

geographical methodology” developed by researchers at the Spatial Climate Analysis Service

at Oregon State University is applied to such data to fit surfaces over a 2 km grid of the

continental United States. The methodology includes considerable attention to accurately

measuring highly-varying weather near coasts and mountains. A county’s weather values are

then constructed as the mean over all 4 km2 grid cells that lie within it.

Results are presented for six winter, seven summer, and seven precipitation elements.

Table 2 shows summary statistics; Supplemental Table 3 shows correlations among the ele-

ments.8

The winter weather variables measure how cold a place gets. “January daily minimum

and topography variables are calculated as a land weighted average of present-day constituent values.
8Supplemental color maps showing the distribution of several of these weather elements across the conti-

nental U.S. are available from www.kc.frb.org/Econres/staff/jmr.htm
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temperature” is the average minimum temperature for days in January; in other words, it

is the mean of the coldest temperature attained on each of the 930 January days from 1961

to 1990. “January daily maximum temperature” is the average maximum temperature for

days in January. “January daily mean temperature” is the mean of January daily minimum

temperature and January daily maximum temperature. “Annual extreme minimum tem-

perature” is the average of the lowest minimum temperature for each of the thirty years.

“Annual low temperature days” is the average number of days per year that the minimum

temperature falls to 32◦F or less. “Annual heating degree days” is the average number of

heating degree days per year; each heating degree day represents a 1◦F increment below 65◦F

in a day’s mean temperature.

The summer weather variables measure how hot a place gets. They are defined analo-

gously to their winter counterparts. “Annual high temperature days” is the average number

of days per year that the maximum temperature rises to 90◦F or more. Each cooling degree

day represents a 1◦F increment above 65◦F in a day’s mean temperature. “July daily heat

index” is a discomfort index combining July daily maximum temperature and July daily

relative humidity (Stull, 2000).

The precipitation variables are mostly self-explanatory. “Annual snow days” is the

average number of days per year on which there is at least 0.1 inches of snow. “Annual

precipitation days” is the average number of days per year on which there is at least 0.01

inches of precipitation. Precipitation days may also proxy for sunshine, measures of which

are often used to describe the weather of metropolitan areas and large municipalities. For

counties, a more direct measure of sunshine is not available since only about 300 weather

stations collect data on sunshine. “July daily relative humidity” is calculated using July

daily mean temperature and July daily mean dew point.

Some of the regressions include a set of seven geographic controls measuring coastal

proximity and topography. Separate dummies indicate whether a county’s center is within

80 kilometers of an ocean or Great Lakes coast or within 40 kilometers of a major river.

Additional variables measure log(1 + ocean shoreline per unit area) and log(1 + Great

Lakes shoreline per unit area) (2 variables). And a topography variable, entered linearly and

13



quadratically, measures the standard deviation of altitude across 1.25 arc minute grid cells

within a county divided by total county land area.

Some of the growth regressions include an additional set of fourteen variables measuring

initial population density and surrounding total population. The inclusion of these variables

is premised on the path dependence of steady-state population density as in (4). Initial

population density is entered as a seven-part spline to allow for a nonlinear relationship

between initial and steady-state population density. Surrounding total population is the

initial total population in seven concentric rings emanating from a county’s center. An

innermost circle measures log(1 + total population of all counties with centers within 50

km from a county’s own center) and, at a minimum, always includes the county’s own

population. A second ring measures log(1 + total population of all counties with centers 50

to 100 km from a county’s own center); additional rings with outer circumference radii of

150 kilometers, 200 kilometers, 300 kilometers, 400 kilometers, and 500 kilometers make for

a total of 7 rings. Together, these concentric population variables capture, for instance, the

“market potential” available to local firms producing goods with nontrivial transportation

costs (Krugman, 1991; Ades and Glaeser, 1999; Fujita, Krugman, Venables, 1999; Hanson,

2001; Black and Henderson, 2002).

5 Level Results

This section describes partial correlations between population density in 2000 and a few

combinations of the winter, summer, and precipitation variables. More specifically, Tables 3,

4, and 5 report results from regressing log(1 + Population Density) on a constant, the listed

weather elements, and the square of the listed elements minus their sample mean. Adding

one to the dependent variable implicitly down-weights extremely sparsely settled counties,

where idiosyncratic factors presumably account for a larger portion of variation. Removing

sample means in the construction of quadratic independent variables allows coefficients on the

corresponding linear independent variables to measure partial correlations at these sample

means. Map 1 shows the exponentiated dependent variable normalized by U.S. population
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density.

Table 3 reports partial correlations between population density and each of the weather

elements individually. There are four main results. First, population is concentrated in

counties with moderate winters. The negative, statistically significant quadratic coefficients

imply that a maximum density is associated with an intermediate level of each of the six

winter variables. The linear coefficients imply that density is positively correlated with

warmer winters at the means of each of the variables. For instance, density is positively

correlated with January daily mean temperature at its 31◦F sample mean. The positive

correlation falls off as temperature increases until density is “maximized” at 46◦F. Above

this, density is increasingly negatively correlated with January daily mean temperature.

Second, population is concentrated in counties with moderate summers. Negative, sta-

tistically significant quadratic coefficients apply to five of the seven summer variables and a

sixth negative quadratic coefficient statistically differs from zero at the 0.10 level. The linear

summer coefficients imply that maximum density is associated with summer temperatures

slightly above the sample mean for some of the variables and slightly below it for others.

Third, population is concentrated in counties with relatively high rain and humidity but

low snow. Negative, statistically significant quadratic coefficients apply to both annual pre-

cipitation and annual precipitation days. The implied annual precipitation and precipitation

days associated with maximum density are 58 inches and 145 days, which are respectively 1.4

and 2.1 standard deviations above their sample means. A positive, statistically significant

quadratic coefficient applies to July humidity; along with the corresponding linear coefficient,

it implies that minimum density is associated with 34 percent relative humidity. Since this is

near the very lowest of observed humidity values, in general density is positively correlated

with higher humidity. Density is negatively correlated with annual snowfall as well as with

5-inch and 10-inch snow days.

Fourth, some weather elements account for much more of the variation in population

density than others. Annual precipitation, annual precipitation days, and July relative

humidity account for by far the highest variation, with each having R2 ≥ 0.21. Among the
winter elements, cold temperature days accounts for the largest variation, with R2 = 0.134.
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Among the summer elements, annual extreme maximum temperature accounts for the largest

variation, with R2 = 0.112.

Table 4 reports results from regressions of population density on paired winter and

summer variables. Controlling for summer weather, population density is unambiguously

positively correlated with warmer winters. This positive correlation holds across the entire

range of observed values of all the winter variables except extreme minimum temperature.

Unsurprisingly, the magnitude of the positive correlation at the variables’ sample means

is larger than the corresponding magnitude when not controlling for summer weather. The

negative quadratic coefficients imply that the positive correlation weakens as winters become

warmer.

Even after controlling for winter weather, population density continues to be concen-

trated in counties with moderate summers. At the variables’ sample means, density is

negatively correlated with warmer summer weather. The magnitude of this negative corre-

lation is larger compared to the corresponding magnitude when not controlling for winter

weather. The quadratic coefficients for all summer variables except hot temperature days

and cooling degree days imply that the summer temperatures associated with maximum

density lie approximately one standard deviation below sample means. For hot temperature

days and cooling degree days, the negative correlation with warmer weather holds across the

entire range of observed values.

Among the various paired winter and summer variables, the combination of cold temper-

ature days and hot temperature days accounts for by far the largest variation in population

density, with R2 = 0.419.

Finally, Table 5 reports results from regressions of population density and employment

density on the cold and hot temperature days combination along with annual precipitation.

Columns 2 and 4 also include the set of 7 coast and topography controls enumerated in

the data description section. Columns 3 and 6 additionally include dummies for the nine

Census geographic divisions. These multiple-weather-element level regressions admit very

similar coefficients, regardless of whether population density or employment density is the

dependent variable and regardless of whether the coast and topography and the census

16



division controls are included. Similar results are also obtained from including dummies for

each of the forty-eight continental U.S. states (not shown).

As above, density continues to show strong, statistically significant negative partial

correlations with the annual number of cold and hot temperature days. Both negative

correlations hold across the entire range of observed values. For the Column 2 regression,

increasing the number of cold temperature days by one standard deviation (52 days) from

its mean (113 days) is associated with a 73 percent decrease in expected population density.

Increasing the number of hot temperature days one standard deviation (32 days) from its

mean (42 days) is associated with a 62 percent decrease in expected population density.

Controlling for cold and hot temperature days, population density is concentrated in

counties with moderate annual precipitation. Maximum population and employment density

are associated with annual precipitation in the range of 30 to 37 inches per year. For the

Column 2 regression, increasing annual precipitation by one standard deviation (14 inches)

from its sample mean (38 inches) is associated with a 22 percent fall in population density.

The three weather elements in Table 5 account for an extremely high share of the

variation of density across counties. For population density, R2 = 0.464; for employment

density, R2 = 0.385. For comparison, regressing county population and employment density

on a constant and 48 state dummies respectively gives R2 = 0.408 and R2 = 0.343.

Map 2 shows counties’ expected population density attributable to weather. The map

is constructed based on an expanded version of the regression shown in Table 5, Column 2.9

Expected density captures the combined past and present contributions to local productivity

and quality of life from the weather along with the combined past and present contributions

to these from any local characteristics correlated with the weather but excluded from the

underlying regression. Regions with weather suggesting the highest expected population

9The expanded regression, shown in Supplemental Table 4, continues to control for coastal proximity

and topography but increases the number of weather elements from three to nine. Doing so increases the

accounted share of variation from R2 = 0.500 to R2 = 0.551. Expected population density is constructed by

applying the coefficients on the weather elements to counties’ actual weather characteristics. The resulting

vector product is then transformed to show (1 + fitted county population density)/(1 + U.S. population

density).
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density include the Atlantic coast from Connecticut south to North Carolina; northwest New

York state from Rochester west to Buffalo; northern Ohio, northern Indiana, and southern

Michigan; and a few scattered Gulf coast and Pacific coast counties.

6 Growth Results

Technological innovation and rising incomes suggest that the productivity and quality-of-life

contributions from weather are likely to have changed considerably over the course of the

twentieth century. Growth regressions of the form (3a) and (5a) can identify the direction

of such changes. Regressing the 1960-to-2000 growth of population density on the various

weather elements shows growth to be strongly positively correlated with warm winters and

strongly negatively correlated with hot and humid summers. Comparing actual partial

correlations against those predicted by the introduction and spread of air conditioning and

improved heating technologies suggests that a large portion of the migration towards mild

weather is motivated by quality-of-life considerations.

Table 6 reports results from regressing [(log(1 + 2000 Population Density) − log(1 +

1960 Population Density))×100/40] on a constant, each of the listed weather variables, and
the square of each of the listed weather variables minus its sample mean. Map 3 shows the

dependent variable. As discussed in the specification section, the interpretation of coefficients

is that they measure the sign of changes in structural relationships. Because of the slow

adjustment of population to its steady state, this change is inferred to have occurred at

some time prior to 2000 (but either before or after 1960).

The univariate correlations establish that warm winters are the most important weather

characteristic driving counties’ growth. This is unsurprising given the widely recognized shift

of U.S. population to “sun belt” locations such as California, Arizona, and Florida. The linear

coefficients show that growth is positively correlated with warmer winters at the means of

each of the six winter variables. The positive quadratic coefficients imply weather values

associated with minimum growth rates. However, except for cold temperature days and

heating degree days, the implied “worst” weather values are very close to minimum observed
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weather values. So the positive quadratic coefficients are best interpreted as implying that the

positive correlation between growth and winter temperature becomes stronger the warmer

the winter. In other words, there is a larger increase in growth associated with January

temperature rising from 55◦F to 65◦F than from its rising from 45◦F to 55◦F. The winter

variables have much higher explanatory power than either the summer weather variables or

the rain, snow, and humidity variables. Among the winter variables, January daily minimum

temperature accounts for the largest share of variation in growth rates, with R2 = 0.125.

The univariate correlations between growth and summer weather are much weaker. Ex-

cept for extreme maximum temperature, the linear coefficients show that growth is positively

correlated with hotter summers at variable sample means. The positive quadratic coefficients

imply that growth is negatively correlated with warmer summers at temperatures somewhat

below variable sample means. Except for annual cooling degree days, explanatory power is

quite low, with R2 ≤ 0.021.

The negative partial correlation between growth and hot summers becomes evident

from growth regressions that include both winter and summer elements. Table 7 shows

results from regressing growth on paired winter and summer variables. For each of the

seven pairs, the coefficient on the linear winter variable is positive and the coefficient on the

linear summer variable is negative. So at mean levels of the variables, growth is positively

correlated with warmer winters and negatively correlated with hotter summers. For the

most part, the quadratic coefficients on both the winter and summer variables imply best or

worst weather outside or nearly outside the range of observed values. The positive quadratic

winter coefficients imply that the positive correlation between growth and warmer winter

weather becomes stronger the warmer the winter. And the negative quadratic summer

coefficients imply that the negative correlation between growth and hotter summer weather

becomes more negative the hotter the summer. The combination accounting for the highest

percentage of the variation in growth rates is January minimum temperature paired with

July heat index, with R2 = 0.216. The finding of a negative partial correlation between

growth and summer temperature contrasts with Glaeser and Shapiro (2003), who find these

to be positively correlated both for U.S. metropolitan areas and for large U.S. municipalities.
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Table 8 reports results from regressing population growth on a relatively sparse spec-

ification of five weather elements. The Column 2 regression additionally includes variables

measuring coastal and river proximity and topography. The Column 3 regression also controls

for initial density using a five-part spline and for total population in each of five concentric

rings emanating from a county’s center. The Column 4 regression adds fixed effects for the

Census Bureau’s nine geographic divisions. The Column 5 regression substitutes state fixed

effects for the Census division fixed effects. The specific five elements – January maxi-

mum temperature, July heat index, July relative humidity, annual precipitation, and annual

precipitation days – were chosen to minimize the sum of squared residuals for a growth

regression that controls for coastal proximity, topography, initial density, and concentric to-

tal population while sparsely representing the three categories of weather variables. Unless

otherwise noted, qualitative results are extremely robust to alternative choices of the specific

weather elements.

The multiple element regressions affirm that 1960-to-2000 population growth is strongly

positively correlated with warm winter weather and strongly negatively correlated with hot

and humid summer weather. All five regressions admit statistically significant, quantita-

tively large positive coefficients on both linear and quadratic January maximum temperature.

Similarly, all five regressions admit statistically significant, quantitatively large negative co-

efficients on both linear July heat index and linear July relative humidity. In addition, a

negative coefficient on quadratic July heat index is statistically significant in the Column 1

and 2 regressions; and a negative coefficient on quadratic July relative humidity is statisti-

cally significant in the Column 3, 4, and 5 regressions. Using the Column 3 regression as a

benchmark, a one standard deviation increase in January daily maximum temperature from

its mean is associated with faster annual growth of 0.86 percentage points.10 A one standard

deviation increase in July daily heat index from its mean, holding July daily relative hu-

10The Column 3 regression is used as a benchmark given the overwhelming empirical evidence that initial

population density and surrounding total population are strongly correlated with growth. Excluding either

the five initial density variables or the five surrounding total population variables from the Column 3 regres-

sion causes R2 to drop by more than six percentage points, so that an F-test easily rejects that the variables

are not statistically significant.
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midity constant (i.e., the increase in heat index comes solely from an increase in July daily

maximum temperature), is associated with slower annual growth of 0.44 percentage points.

A one standard deviation increase in July relative humidity from its mean, allowing for the

implied increase in July daily heat index, is associated with slower annual growth of 0.75

percentage points.

The Table 8 regressions also show statistically significant but quantitatively small par-

tial correlations of growth with precipitation. Growth is positively correlated with annual

rainfall and positively correlated with annual rainy days when there are few rainy days but

negatively correlated with annual rainy days when there are many rainy days. Four of the

five regressions admit a statistically significant positive coefficient on linear annual precip-

itation, though this is fragile to the exclusion of July relative humidity. The statistically

significant, negative quadratic coefficients on annual precipitation in the Column 1 and 2

regressions imply that growth is maximized at annual precipitation approximately two stan-

dard deviations above the sample mean. Based on the benchmark Column 3 regression,

increasing annual precipitation from its mean (38.2") by one standard deviation (14.1") is

associated with faster annual growth of 0.21 percentage points. All five regressions admit a

statistically insignificant positive coefficient on linear precipitation days and a statistically

significant negative coefficient on quadratic precipitation days. Together, these imply growth

is maximized at approximately one half a standard deviation above the precipitation days

sample mean (94 days). For the Column 3 regression, increasing precipitation days from its

“best” level (101 days) by one standard deviation (25 days) is associated with slower growth

of 0.10 percentage points.

Weather, coastal proximity, initial population density, and surrounding total population

together account for a relatively large share of the variation in county growth rates. With

just the five weather elements, R2 equals 0.239. Additionally controlling for coastal and river

proximity and topography, R2 equals 0.263. Additionally controlling for initial population

density and surrounding total population, R2 equals 0.385. For comparison, regressing county

population density growth on a constant and 48 state dummies gives an R2 of 0.274.

Comparing hypothesized to actual correlations, the results strongly reject that observed
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weather-related moves are motivated solely by the introduction of air conditioning. In par-

ticular, the partial correlation of growth with summer temperature is negative rather than

positive (Table 1). Similarly, the results reject that weather-related moves are motivated by

improved heating technologies. A particular, the partial correlation of growth with winter

temperature is positive rather than negative. In contrast, both of these actual partial cor-

relations are exactly what would be expected if weather-related moves reflected individuals’

increasing demand for nice weather as a quality-of-life amenity.

The timing of the population shift towards nice weather locations reinforces that it has

been driven by more than air conditioning. Table 9 reports decade-by-decade regressions

analogous to those of Table 8 Column 3. These show statistically significant positive partial

correlations of growth with warmer winters and statistically significant negative partial cor-

relations of growth with hotter summers for every decade starting with the 1920s. As the

mass adoption of air conditioning did not start until after World War II, air conditioning

would seem an unlikely explanation for these trends. The same regressions show statisti-

cally significant negative partial correlations of growth with July humidity for every decade

starting with the 1950s, exactly when the spread of air conditioning was making humid sum-

mers less unpleasant. Consistent with an increasing income-driven movement towards higher

quality of life, the positive partial correlation between growth and warmer winters was much

smaller during the Great Depression 1930s than during either the 1920s or the 1940s and

1950s. The share of the variation of growth accounted for by the weather was also much less

during the 1930s than during the 1920s or the 1940s and 1950s.11

An obvious question is to what extent does the move towards high quality-of-life weather

reflect an increasingly mobile and financially secure elderly population. Empirical evidence

suggests very little. Table 10 shows results from regressions identical to those in Table 8

except that the growth of population density is calculated using just working-age individuals

(aged 21 to 64) for the Column 1 to 3 regressions and using just seniors (aged 65 and

above) for the Column 4 to 6 regressions. The working age population growth regressions

admit coefficients nearly identical in magnitude and statistical significance to the analogous

11Identical results are obtained if dummies for the nine Census Bureau geographic divisions or the forty-

eight continental U.S. states are included.
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total population growth regressions. Similarly, regressions using employment growth as

the dependent variable admit coefficients with nearly the same magnitude and statistical

significance as population growth regressions (Supplemental Table 5).

Another possibility is that elderly migration served as a catalyst for younger migration

and employment growth. But the magnitudes of the partial correlations between growth and

nice weather are actually slightly larger for the working-age population than for the elderly.

Moreover, the movement towards nice weather dates back to the 1920s, when presumably

the elderly were much less mobile. On the other hand, the weather elements do account for

a substantially higher percentage of the variation in seniors’ population growth than they

do for working-age population growth.

Map 4 shows counties’ expected 1960-to-2000 population density growth attributable to

weather. The map is constructed based on an expanded version of the benchmark regres-

sion shown in Table 8 Column 3.12 Expected growth captures the change in the weather’s

contribution to productivity and quality of life along with the change in the contribution to

these from any characteristics correlated with the weather but excluded from the underlying

regression. Regions with weather suggesting the highest expected population growth include

the Florida peninsula; the desert areas of western Arizona, southern California, and southern

Nevada; the Sierra Nevada and Cascade ranges from central California north through south-

ern Oregon; and some scattered counties in the mountain west states of Colorado, Wyoming,

Montana, and Idaho.

12The expanded regression, shown in Supplemental Table 6, continues to control for coastal proximity and

topography, initial population density, and concentric total population. It increases the number of weather

elements from 5 to 11. Doing so increases explanatory power from R2 = 0.385 to R2 = 0.429. For each of

the 11 elements, either the coefficient on the linear variable or the coefficient on the quadratic variable (or

both) statistically differs from zero at the 0.05 level. Expected population growth is calculated by applying

the coefficients on the weather elements to counties’ actual weather characteristics.
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7 What Do We Learn from Growth Regressions?

A strong criticism of cross-country per capita income growth regressions is that they measure

good luck rather than good fundamentals (Easterly et al., 1993). In particular, countries’ per

capita income growth shows very little persistence across decades, in contrast to the highly

persistent right-hand-side variables commonly included in such regressions. Such a criticism

does not apply to the present cross-county growth regressions since county population growth

rates are highly persistent across time (Rappaport 2002). Moreover, a ranking of localities

based on their fitted growth attributable to weather is highly correlated with an a priori

quality-of-life ranking of these localities’ weather. This high correlation also bolsters the

conclusion that quality of life is becoming a much more important consideration affecting

locational decisions.

The a priori ranking is based on an index of weather’s contribution to quality of life

for 354 U.S. and Canadian metropolitan areas published in the Places Rated Almanac (Sav-

ageau and D’Agostino, 2000).13 The fitted growth ranking is constructed by applying the

coefficients on the weather variables from the regression underlying Map 4 (i.e., the regres-

sion using county observations reported in Supplemental Table 6) to the actual weather

characteristics for 304 U.S. urbanized areas that I am able to match to the Places Rated

metropolitan areas.14

13The Places Rated ranking is constructed by averaging index scores from four subsets of weather attributes:

winter mildness, summer mildness, “hazardousness”, and “seasonal affect”. Winter mildness is constructed

as a mean index of cold temperature days, mean daily temperature for the coldest month, and a measure

of winter windchill. Summer mildness is constructed as the mean of hot temperature days, mean daily

temperature for the hottest month, and annual relative humidity. Hazardousness is constructed as the

weighted mean of annual snowfall, the frequency of thunderstorms, and the frequency of strong winds with

respective relative weights of 9:3:1. Seasonal affect is constructed as the weighted mean of annual cloudy

days (more than 80 perecent cloud cover), annual days with precipitation greater than 0.1 inch, annual fog

days (visibility less than one-half mile), and latitude (to indicate potential sunlight) with respective relative

weights 4:4:2:1. The underlying weather data is measured by a single weather station which is assumed to

be representative for a metropolitan area.
14Urbanized areas are densely settled territory containing 50,000 or more people and tend to be consid-

erably smaller than metropolitan statistical areas. As with the county weather data, the urbanized area
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Fitted level rankings are similarly constructed using the coefficients from the regression

underlying Map 2 (i.e., the regression using county observations reported in Supplemental

Table 4). Supplemental Table 7 shows the Places Rated ranking, the fitted growth ranking,

and the fitted level ranking for one hundred of the 304 matched cities along with a few key

weather elements used to construct the fitted rankings.

Comparing rankings amounts to comparing preference orderings of different weather

bundles. The fitted growth ranking and the Places Rated ranking are highly correlated. The

Spearman correlation coefficient between the two is 0.74. This high correlation is extremely

robust to alternative growth regression specifications. In sharp contrast, the fitted level

ranking is approximately orthogonal to the Places Rated ranking. The Spearman correlation

coefficient between the two is -0.11, though it does not statistically differ from zero at the

0.05 level. This approximate orthogonality is extremely robust to alternative level regression

specifications.

Since present contributions to welfare are the sum of past contributions to welfare plus

changes in contributions to welfare, it is intuitive that a convex additive combination of fitted

population density and fitted population growth should do a better job matching steady-state

population density attributable to weather than either of these alone. Combining the fitted

level and growth values based on the regressions underlying Maps 2 and 4, the Spearman

correlation with the Places Rated ranking rises from 0.74 with 100 percent of the weight put

on the growth regression to 0.78 with 86 percent of the weight put on the growth regression.

Combining the fitted level and growth values based on the more sparse regressions shown

in Table 5 Column 2 and Table 8 Column 3, the Spearman correlation coefficient rises from

0.76 with 100 percent of the weight put on the growth regression to 0.80 with 84 percent of

the weight put on the growth regression.

There are several reasons for thinking that fitted growth’s correlation with the Places

Rated quality-of-life index overstates fitted growth’s correlation with welfare. The most ob-

vious is that weather’s contribution to welfare includes not just its contribution to quality of

life but also its contribution to productivity. Second, many of the high-fitted-growth coun-

weather data is based on a geographic average of values for 4 km2 grid cells.
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ties shown in Map 4 suffer from severe water shortages and experience frequent forest fires,

reflecting low annual precipitation. Third, the Places Rated ranking arguably underweights

the discomfort associated with hot, humid weather. For instance, seventeen of its top thirty

ranked cities (among the 304 matched observations) have an average July daily heat index

of 104◦ or higher; eight have an average July daily heat index of 110◦ or higher. These

same reasons also suggest that fitted population density’s correlation with the Places Rated

ranking may understate its correlation with welfare.

Such caveats notwithstanding, fitted growth’s high correlation with an a priori quality-

of-life ranking is nevertheless surprising. After all, the fitted growth ranking should measure

the change in an underlying steady-state relationship rather than the level of a current

steady-state relationship. But the high correlation does make sense for a current steady-

state relationship that is orthogonal to current density, exactly as suggested by the near-

zero correlation of the fitted level ranking with the a priori quality-of-life ranking. In this

special case, the change in the underlying steady-state relationship will itself be highly

correlated with the current level of that steady-state relationship.15 But more generally,

growth regressions may poorly describe steady-state relationships.

On the other hand, the high correlation between the fitted growth ranking and the a

priori quality-of-life ranking does suggest that weather’s quality-of-life contribution to welfare

rather than its productivity contribution to welfare has been the main source of the partial

correlations between population growth and the various weather elements. This bolsters

the conclusion that quality of life is becoming an increasingly important determinant of

locational decisions. Furthermore, the low correlation of the fitted level ranking and the

a priori quality-of-life ranking suggests that a large distance remains between the current

geographic distribution of population and a steady-state distribution that reflects weather’s

current contribution to quality of life. So weather’s contribution to quality of life is likely to

continue to shape growth well into the future.

15For instance, consider a deterministic framework in which L∗t−τ = Xβt−τ and L∗t = Xβt. If the

n-by-1 past and present steady-state population density vectors are orthogonal but of equal magnitude,

(Xβt−τ )0(Xβt) = 0 and
¯̄
Xβt−τ

¯̄
= |Xβt|, the resulting 45◦ angle between

¡
L∗t − L∗t−τ

¢
and L∗t implies a

correlation between the two of ρ = 0.71.
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8 Conclusions

Local population growth in the United States has been highly correlated with warmer winter

weather and cooler, less humid summer weather. While the introduction and spread of air

conditioning may have been a prerequisite for the former trend, the latter trend suggests that

air conditioning has not been the main driving force. Nor can elderly migration account for

this growth pattern. Instead, the empirical results suggest that the movement towards nice

weather has been driven by people’s increasing their valuation of the weather’s contribution

to their quality of life.

An increasing valuation of quality of life is consistent with the broad-based rise in U.S.

per capita income over the twentieth century. Hence it seems likely that U.S. residents have

also increased their valuation of other local attributes that increase quality of life. Some local

attributes that possibly do so include scenic amenities, recreational amenities, low pollution,

and high quality schools.

Fitted results from population growth regressions do an excellent job matching an a

priori ranking of the weather’s contribution to quality of life. This reinforces the conclu-

sion that variations in local quality of life underlie a large portion of variations in local

growth. More generally, population growth regressions are expected to describe changes in

the contributions to welfare from local attributes.
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raw partial raw partial

(1) Expected Pop Density + -

(2) Actual Pop Density + + - -

(3) Air-Conditioning + + + +

(4) Improved Heating - - - -

(5) Increased Valuation
of Quality of Life + -

(6) Actual Growth + + + -

Expected Growth due to:

Table 1: Expected and Actual Correlations

Correlation with
Winter Temperature

Correlation with
Summer Temperature



Variable        Obs        Mean        Std. Dev.        Min        Max

Land Area/Population/Employment:
2000 Land Area (sq.km) 3,069 2,497 3,390 59 51,936
2000 Population 3,069 91,099 296,317 67 9,519,338
2000 Population Density (per sq.km) 3,069 86.0 642.8 0.0 25,845.7
log(1+2000 Population Density) 3,069 2.93 1.43 0.04 10.16
1960-to-2000 Change in log(1+Pop Density)* 3,063 0.72 1.14 -2.33 8.10
1960-to-2000 Change in log(1+WrkAge Density)* 3,063 0.99 1.14 -1.81 7.99
1960-to-2000 Change in log(1+Seniors Density)* 3,063 1.01 0.97 -1.68 6.75
2000 Employment 3,069 53,519 188,142 123 5,492,154
2000 Employment Density (per sq.km) 3,069 59.8 883.1 0.05 47,271
log(1+2000 Employment Density) 3,063 2.34 1.39 0.05 10.76
Winter Weather
January Daily Mean Temperature (°F) 3,069 30.8 11.8 0.2 65.9
January Daily Minimum Temperature (°F) 3,069 20.2 11.4 -10.8 55.4
January Daily MaximumTemperature (°F) 3,069 41.4 12.4 10.8 76.5
Annual Extreme Minimum Temperature (°F) 3,069 -4.0 14.5 -37.6 34.9
Annual Cold Temperature Days 3,069 112.7 51.9 0 270.7
Annual Heating Degree Days 3,069 5,147 2,262 232 12,025
Summer Weather
July Daily Mean Temperature (°F) 3,069 75.2 5.6 52.2 92.3
July Daily Minimum Temperature (°F) 3,069 63.1 6.6 36.9 78.4
July Daily Maximum Temperature (°F) 3,069 87.4 5.1 66.8 106.1
Annual Extreme Maximum Temperature (°F) 3,069 97.7 4.3 75.8 115.4
Annual Hot Temperature Days 3,069 42.4 31.6 0 169.5
Annual Cooling Degree Days 3,069 1,188 763 1 3,917
July Daily Heat Index 3,069 98.3 11.1 75.6 131.3
Rain, Snow, & Humidity
Annual Precipitation 3,069 38.2 14.1 3.5 118.2
Annual Precipitation Days 3,069 94.1 24.6 13.3 198.0
Annual Snowfall (inches) 3,069 26.9 34.1 0 334.9
Annual Snow Days 3,069 12.7 13.7 0 90.0
Annual Days with Snow ≥ 5" 3,069 0.5 1.7 0 20.9
Annual Days with Snow ≥ 10" 3,069 0.1 0.6 0 10.4
July Daily Relative Humidity 3,069 65.7 9.6 23.8 82.0

Coast/River/Topography Control Variables
Ocean Coast Dummy 389 1 0 1 1
Great Lakes Dummy 170 1 0 1 1
Major River Dummy 1,153 1 0 1 1
log(1+Ocean Shoreline/sq.km) 235 0.07 0.07 0.00 0.50
log(1+Great Lakes Shoreline/sq.km) 84 0.04 0.03 0.00 0.17
Topography (Linear) 3,069 0.09 0.14 0 3.11

Table 2: Summary Statistics

*Change in log density shown on annual percentage basis (i.e., divided by number of years and then multiplied by 
100). Summary statistics are for all continental U.S. counties. Weather variables are averages based on 1961-to-
1990 data purchased from www.climatesource.com. For dummy variables and shoreline measures, summary 
statistics are shown only for observations with values that do not equal zero.



(1) (2) (3) (4) (5) (6) (7)

Winter
Weather

January
Daily
Mean
Temp

January
Daily

Minimum
Temp

January
Daily

Maximum
Temp

Annual
Extreme
Minimum

Temp

Annual
Cold
Temp
Days

Annual
Heating
Degree
Days

Linear 0.0241 0.0332 0.0153 0.0278 -0.0085 -0.0001
(0.0042) (0.0042) (0.0042) (0.0034) (0.0009) (0.0000)

Quadratic -0.0008 -0.0008 -0.0007 -0.0009 -9.4E-5 -4.9E-8
(0.0003) (0.0003) (0.0003) (0.0002) (1.8E-5) (9.2E-9)

R2 0.047 0.081 0.024 0.097 0.134 0.091

46˚F 40˚F 52˚F 12˚F 68 3,874
(7˚F) (8˚F) (6˚F) (5˚F) (10) (394)

Summer
Weather

July
Daily
Mean
Temp

July
Daily

Minimum
Temp

July
Daily

Maximum
Temp

Annual
Extreme

Maximum
Temp

Annual
Hot

Temp
Days

Annual
Cooling
Degree
Days

July
Daily
Heat
Index

Linear 0.0007 0.0286 -0.0385 -0.0836 -0.0070 0.0002 0.0046
(0.0098) (0.0087) (0.0107) (0.0116) (0.0021) (0.0001) (0.0046)

Quadratic -0.0063 -0.0037 -0.0067 -0.0116 3.2E-5 -1.3E-7 -0.0016
(0.0012) (0.0008) (0.0014) (0.0015) (3.8E-5) (7.0E-8) (0.0004)

R2 0.047 0.0756 0.040 0.112 0.019 0.010 0.021

75˚F 67˚F 85˚F 94˚F 100˚F
(1˚F) (2˚F) (1˚F) (0˚F) (1˚F)

Rain,
Snow, &
Humidity

Annual
Precip

Annual
Precip
Days

Annual
Snowfall

Annual
Snow
Days

Annual
Days with

Snow
>= 5"

Annual
Days with

Snow
>= 10"

July
Daily

Relative
Humidity

Linear 0.0460 0.0259 -0.0061 -0.0096 -0.1296 -0.6744 0.0869
(0.0032) (0.0020) (0.0023) (0.0060) (0.0450) (0.1240) (0.0073)

Quadratic -0.0012 -0.0003 -9.8E-6 -0.0001 0.0012 0.0656 0.0014
(0.0001) (0.0000) (1.5E-5) (0.0002) (0.0034) (0.0224) (0.0004)

R2 0.252 0.210 0.028 0.014 0.020 0.032 0.224

58˝ 145    5(Min)    34%(Min)
(2˝) (8) (1) (7%)

Table 3: 2000 Population Density Level
and Single Weather Elements

Table shows results from regressing log(1+2000 Population Density) on a constant, the weather variable, and the 
weather variable minus its sample mean squared. Number of observations is 3,069 for all regressions. Standard errors 
in parentheses are robust to spatial correlation using the Conley spatial estimator discussed in the text with a weighting 
that declines quadratically to zero for counties with centers 200 km apart. Bold type signifies coefficients statistically 
different from zero at the 0.05 level; italic type signifies coefficients statistically different from zero at the 0.10 level.  
"Implies Maximum Density" is implied value at which population density is maximized; it is included only if quadratic 
coefficient statistically differs from zero at 0.05 level. "(Min)" superscript signifies density is minimized at implied value. 
Standard error in parentheses is constructed using the "delta" method. Bold type for implied values signifies that point 
estimate plus or minus two standard deviations is within observed sample values.

Maximum
Density
Implied at

Maximum
Density
Implied at

Maximum
Density
Implied at



(1) (2) (3) (4) (5) (6) (7)

Winter
Weather
Variable

→
January

Daily
Mean
Temp

January
Daily

Minimum
Temp

January
Daily

Maximum
Temp

Annual
Extreme
Minimum

Temp

Annual
Cold
Temp
Days

Annual
Heating
Degree
Days

January
Daily

Minimum
Temp

Summer
Weather
Variable

→
July
Daily
Mean
Temp

July
Daily

Maximum
Temp

July
Daily

Maximum
Temp

Annual
Extreme

Maximum
Temp

Annual
Hot

Temp
Days

Annual
Cooling
Degree
Days

July
Daily
Heat
Index

Winter Linear 0.0553 0.0702 0.0547 0.0379 -0.0260 -0.0005 0.0802
(0.0059) (0.0049) (0.0052) (0.0031) (0.0014) (0.0001) (0.0063)

Winter Quadratic -0.0001 -0.0005 -0.0004 -0.0007 -3.9E-5 -2.7E-8 0.0004
(0.0003) (0.0002) (0.0002) (0.0002) (1.4E-5) (1.2E-8) (0.0002)

Summer Linear -0.0958 -0.1393 -0.1374 -0.1244 -0.0417 -0.0014 -0.0541
(0.0145) (0.0136) (0.0153) (0.0101) (0.0030) (0.0002) (0.0066)

Summer Quadratic -0.0111 -0.0103 -0.0104 -0.0102 0.0002 2.9E-7 -0.0033
(0.0013) (0.0013) (0.0014) (0.0013) (0.0000) (8.2E-8) (0.0003)

R2 0.136 0.240 0.147 0.251 0.419 0.157 0.194

Table 4: 2000 Population Density Level
and Dual Weather Elements

Table shows results from regressing log(1+2000 Population Density) on a constant, the two weather variables, and the 
two weather variables minus their sample means squared. Number of observations is 3,069 for all regressions. Standard 
errors in parentheses are robust to spatial correlation using the Conley spatial estimator discussed in the text with a 
weighting  that declines quadratically to zero for counties with centers 200 km apart. Bold type signifies coefficients 
statistically different from zero at the 0.05 level; italic type signifies coefficients statistically different from zero at the 0.10 
level.



(1) (2) (3) (4) (5) (6)

Coast/River/Topography Controls No Yes Yes No Yes Yes
Census Division Dummies No No Yes No No Yes

linear -0.0288 -0.0228 -0.0302 -0.0268 -0.0203 -0.0282
(0.0018) (0.0021) (0.0019) (0.0018) (0.0021) (0.0020)

quadratic -1.9E-5 -4.7E-5 -2.4E-5 -1.3E-5 -4.4E-5 -1.8E-5
(1.3E-5) (1.6E-5) (1.3E-5) (1.3E-5) (1.6E-5) (1.3E-5)

linear -0.0444 -0.0345 -0.0347 -0.0426 -0.0323 -0.0334
(0.0028) (0.0027) (0.0029) (0.0028) (0.0027) (0.0030)

quadratic 1.5E-4 1.2E-4 4.1E-5 1.3E-4 1.1E-4 2.4E-5
(3.3E-5) (3.2E-5) (2.9E-5) (3.2E-5) (3.0E-5) (2.8E-5)

linear -0.0077 -0.0032 -0.0105 -0.0131 -0.0081 -0.0155
(0.0038) (0.0038) (0.0036) (0.0037) (0.0038) (0.0036)

quadratic -0.0009 -0.0010 -0.0007 -0.0008 -0.0009 -0.0006
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Observations 3,069 3,069 3,069 3,069 3,069 3,069
Number of Indep. Variables 6 13 21 6 13 21
R2 0.464 0.500 0.539 0.385 0.424 0.463

Control Variables R2 - 0.189 0.388 - 0.179 0.333

Hot
Temp
Days

Cold
Temp
Days

Annual
Precip

Table shows results from regressing listed dependent variable on the enumerated weather variables, control variables, and a 
constant. Quadratic weather variables have had their respective sample means subtracted.  Standard errors in parentheses are 
robust to spatial correlation using the Conley spatial estimator discussed in the text with a weighting that declines quadratically 
to zero for counties with centers 200 km apart. Bold type signifies coefficients statistically different from zero at the 0.05 level; 
italic type signifies coefficients statistically different from zero at the 0.10 level.

   Dependent Vairable →
Independent Variables ↓

log(1+2000 Population Density) log(1+2000 Employment Density)

Table 5: 2000 Population and Employment Density
with Multiple Weather Elements



(1) (2) (3) (4) (5) (6) (7)

Winter
Weather

January
Daily
Mean
Temp

January
Daily

Minimum
Temp

January
Daily

Maximum
Temp

Annual
Extreme
Minimum

Temp

Annual
Cold
Temp
Days

Annual
Heating
Degree
Days

Linear 0.0309 0.0342 0.0271 0.0265 -0.0057 -0.0001
(0.0038) (0.0040) (0.0036) (0.0031) (0.0009) (0.0000)

Quadratic 0.0006 0.0006 0.0005 0.0004 6.5E-5 2.5E-8
(0.0003) (0.0003) (0.0003) (0.0002) (1.5E-5) (8.2E-9)

R2 0.111 0.125 0.095 0.122 0.099 0.074

3˚F -6˚F -36˚F 157 7,776
(13˚F) (11˚F) (14˚F) (12) (827)

Summer
Weather

July
Daily
Mean
Temp

July
Daily

Minimum
Temp

July
Daily

Maximum
Temp

Annual
Extreme

Maximum
Temp

Annual
Hot

Temp
Days

Annual
Cooling
Degree
Days

July
Daily
Heat
Index

Linear 0.0198 0.0278 0.0065 -0.0333 0.0008 0.0001 0.0049
(0.0090) (0.0082) (0.0090) (0.0102) (0.0015) (0.0001) (0.0039)

Quadratic 0.0037 0.0036 0.0026 -0.0008 9.4E-5 3.1E-7 0.0010
(0.0009) (0.0007) (0.0011) (0.0014) (3.6E-5) (7.1E-8) (0.0003)

R2 0.021 0.036 0.008 0.015 0.016 0.063 0.015

73˚F 59˚F 86˚F 38 1,091 96˚F
(1˚F) (1˚F) (2˚F) (9) (112) (2˚F)

Rain,
Snow, &
Humidity

Annual
Precip

Annual
Precip
Days

Annual
Snowfall

Annual
Snow
Days

Annual
Days with

Snow
>= 5"

Annual
Days with

Snow
>= 10"

July
Daily

Relative
Humidity

Linear 0.0172 0.0059 -0.0066 -0.0235 0.0954 0.3033 0.0343
(0.0030) (0.0018) (0.0020) (0.0046) (0.0357) (0.0915) (0.0077)

Quadratic 0.0000 -2.9E-5 0.0001 0.0008 -0.0039 -0.0349 0.0020
(0.0001) (4.0E-5) (0.0000) (0.0001) (0.0026) (0.0126) (0.0004)

R2 0.046 0.016 0.022 0.046 0.009 0.008 0.047

80˝ 28    4(Max)    57%(Max)
(9˝) (2) (1) (1%)

Table shows results from regressing ([log(1+2000 Pop Density)-log(1+1960 Pop Density)]×100/40) on a constant, 
the weather variable, and the weather variable minus its sample mean squared. Number of observations is 3,063 
for all regressions. Standard errors in parentheses are robust to spatial correlation using the Conley spatial 
estimator discussed in the text with a weighting  that declines quadratically to zero for counties with centers 200 
km apart. Bold type signifies coefficients statistically different from zero at the 0.05 level; italic type signifies 
coefficients statistically different from zero at the 0.10 level. "Implies Minimum Growth" is implied value at which 
population density growth is minimized; it is included only if quadratic coefficient statistically differs from zero at 
0.05 level. "(Max)" superscript signifies growth is maximized at implied value. Standard error in parentheses is 
constructed using the "delta" method. Bold type for implied values signifies that point estimate plus or minus two 
standard deviations is within observed weather values.

Table 6: Population Growth, 1960–2000,
and Single Weather Elements

Implies
Minimum
Growth

Implies
Minimum
Growth

Implies
Minimum
Growth



(1) (2) (3) (4) (5) (6) (7)

Winter
Weather
Variable

→
January

Daily
Mean
Temp

January
Daily

Minimum
Temp

January
Daily

Maximum
Temp

Annual
Extreme
Minimum

Temp

Annual
Cold
Temp
Days

Annual
Heating
Degree
Days

January
Daily

Minimum
Temp

Summer
Weather
Variable

→
July
Daily
Mean
Temp

July
Daily

Maximum
Temp

July
Daily

Maximum
Temp

Annual
Extreme

Maximum
Temp

Annual
Hot

Temp
Days

Annual
Cooling
Degree
Days

July
Daily
Heat
Index

Winter Linear 0.0606 0.0525 0.0545 0.0339 -0.0120 -0.0005 0.0689
(0.0052) (0.0044) (0.0048) (0.0029) (0.0012) (0.0001) (0.0051)

Winter Quadratic 0.0008 0.0006 0.0005 0.0005 8.7E-5 3.5E-8 0.0012
(0.0002) (0.0002) (0.0002) (0.0002) (1.5E-5) (1.0E-8) (0.0002)

Summer Linear -0.0913 -0.0700 -0.0962 -0.0731 -0.0147 -0.0013 -0.0463
(0.0124) (0.0098) (0.0123) (0.0086) (0.0018) (0.0001) (0.0049)

Summer Quadratic -0.0025 -0.0009 -0.0019 -5.0E-6 4.4E-5 3.9E-7 -0.0009
(0.0011) (0.0011) (0.0012) (1.2E-3) (3.1E-5) (7.7E-8) (0.0003)

R2 0.188 0.185 0.179 0.189 0.157 0.181 0.216

Table shows results from regressing ([log(1+2000 Pop Density)-log(1+1960 Pop Density)]×100/40) on a constant, the 
two weather variables, and the two weather variables minus their sample means squared. Number of observations is 
3,063 for all regressions. Standard errors in parentheses are robust to spatial correlation using the Conley spatial 
estimator discussed in the text with a weighting  that declines quadratically to zero for counties with centers 200 km 
apart. Bold type signifies coefficients statistically different from zero at the 0.05 level; italic type signifies coefficients 
statistically different from zero at the 0.10 level.

Table 7: Population Growth, 1960–2000,
and Dual Weather Elements



(1) (2) (3) (4) (5)

Coast/River/Topography Controls No Yes Yes Yes Yes
Initial Density Spline No No Yes Yes Yes
Concentric Total Population No No Yes Yes Yes
Census Division Dummies No No No Yes No
State Dummies No No No No Yes

linear 0.0653 0.0531 0.0504 0.0469 0.0405
(0.0065) (0.0069) (0.0063) (0.0075) (0.0096)

quadratic 0.0014 0.0013 0.0015 0.0018 0.0013
(0.0003) (0.0002) (0.0003) (0.0003) (0.0003)

linear -0.0536 -0.0385 -0.0357 -0.0287 -0.0252
(0.0073) (0.0085) (0.0081) (0.0088) (0.0093)

quadratic -0.0009 -0.0010 -0.0003 -0.0004 -0.0004
(0.0004) (0.0003) (0.0003) (0.0003) (0.0004)

linear -0.0340 -0.0406 -0.0573 -0.0616 -0.0438
(0.0097) (0.0097) (0.0107) (0.0116) (0.0122)

quadratic -0.0002 -0.0002 -0.0007 -0.0010 -0.0008
(0.0004) (0.0004) (0.0003) (0.0003) (0.0004)

linear 0.0189 0.0209 0.0149 0.0183 0.0120
(0.0072) (0.0072) (0.0067) (0.0073) (0.0065)

quadratic -3.5E-4 -3.6E-4 -2.0E-5 -4.7E-5 3.7E-5
(1.5E-4) (1.5E-4) (1.2E-4) (1.2E-4) (1.2E-4)

linear 0.0061 0.0049 0.0028 0.0023 0.0063
(0.0038) (0.0039) (0.0039) (0.0044) (0.0042)

quadratic -1.7E-4 -1.7E-4 -2.1E-4 -1.7E-4 -1.9E-4
(5.5E-5) (5.2E-5) (4.3E-5) (4.1E-5) (4.5E-5)

Observations 3,063 3,063 3,063 3,063 3,063
Number of Indep. Variables 10 17 31 39 79
R2 0.239 0.263 0.385 0.396 0.456

Control Variables R2 - 0.120 0.271 0.324 0.432

Annual
Precip
Days

∆log(1+Population Density)

Table 8: Population Growth, 1960–2000,
and Multiple Weather Elements

Table shows results from regressing ([log(1+2000 Pop Density)-log(1+1960 Pop Density)]×100/40) on the 
enumerated weather variables, control variables, and a constant. Quadratic weather variables have had their 
respective sample mean subtracted.  Standard errors in parentheses are robust to spatial correlation using 
the Conley spatial estimator discussed in the text with a weighting  that declines quadratically to zero for 
counties with centers 200 km apart. Bold type signifies coefficients statistically different from zero at the 0.05 
level; italic type signifies coefficients statistically different from zero at the 0.10 level.

   Dependent Vairable →
Independent Variables ↓

January
Daily Max

Temp

Annual
Precip

July
Daily Heat

Index

July
Relative
Humidity



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1900–
1910

1910–
1920

1920–
1930

1930–
1940

1940–
1950

1950–
1960

1960–
1970

1970–
1980

1980–
1990

1990–
2000

Coast/River/Topog Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Initial Density Spline Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Concentric Total Population Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

linear -0.0094 0.0043 0.0529 0.0385 0.0600 0.0610 0.0298 0.0731 0.0491 0.0436
(0.0147) (0.0100) (0.0131) (0.0066) (0.0080) (0.0088) (0.0068) (0.0083) (0.0069) (0.0067)

quadratic -0.0009 0.0003 0.0012 0.0009 0.0013 0.0032 0.0018 0.0014 0.0019 0.0006
(0.0006) (0.0005) (0.0005) (0.0003) (0.0003) (0.0004) (0.0003) (0.0004) (0.0003) (0.0002)

linear 0.0740 0.0199 -0.0297 -0.0473 -0.0493 -0.0480 -0.0348 -0.0451 -0.0374 -0.0272
(0.0180) (0.0122) (0.0137) (0.0083) (0.0109) (0.0105) (0.0082) (0.0111) (0.0096) (0.0091)

quadratic -0.0007 -0.0011 -0.0010 -0.0004 -0.0021 -0.0023 -0.0005 0.0001 -0.0003 0.0003
(0.0007) (0.0005) (0.0006) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0004) (0.0003)

linear 0.0465 0.0406 0.0155 0.0213 -0.0208 -0.0807 -0.0705 -0.0702 -0.0617 -0.0329
(0.0243) (0.0177) (0.0200) (0.0109) (0.0124) (0.0140) (0.0122) (0.0142) (0.0117) (0.0109)

quadratic -0.0004 0.0003 -0.0013 0.0008 -0.0002 -0.0015 -0.0012 -0.0007 -0.0009 -0.0002
(0.0006) (0.0005) (0.0006) (0.0003) (0.0004) (0.0005) (0.0004) (0.0004) (0.0003) (0.0003)

linear -0.0310 -0.0214 -0.0114 0.0133 -0.0360 -0.0260 0.0294 0.0069 0.0162 0.0007
(0.0132) (0.0116) (0.0095) (0.0069) (0.0100) (0.0099) (0.0080) (0.0092) (0.0073) (0.0078)

quadratic -0.0003 0.0000 0.0000 -0.0001 0.0008 0.0009 -0.0002 0.0000 0.0000 0.0004
(0.0003) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0001) (0.0001)

linear 0.0201 0.0073 -0.0122 -0.0019 0.0087 0.0109 -0.0039 0.0108 -0.0053 0.0024
(0.0074) (0.0063) (0.0057) (0.0037) (0.0044) (0.0055) (0.0045) (0.0059) (0.0044) (0.0042)

quadratic 0.0004 0.0001 0.0003 -0.0001 0.0000 -0.0003 -0.0001 -0.0003 -0.0001 -0.0003
(0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000)

Observations 2,696 2,845 3,014 3,060 3,062 3,064 3,063 3,067 3,067 3,069
Number of Indep. Variables 31 31 31 31 31 31 31 31 31 31
R2 0.311 0.149 0.257 0.195 0.414 0.460 0.350 0.329 0.402 0.331

Control Variables R2 0.249 0.127 0.169 0.114 0.341 0.382 0.305 0.209 0.281 0.235

Table 9: Population Growth and the Weather by Decade

∆log(1+Pop Density for Years)→
Independent Variables ↓

July
Daily Heat

Index

January
Daily Max

Temp

Table shows results from regressing ∆log(1+Population Density)×100/10 for given years on enumerated weather variables, control variables, and a constant. Quadratic 
weather variables have had their respective sample mean subtracted.  Standard errors in parentheses are robust to spatial correlation using the Conley spatial estimator 
discussed in the text with a weighting  that declines quadratically to zero for counties with centers 200 km apart. Bold type signifies coefficients statistically different from zero 
at the 0.05 level; italic type signifies coefficients statistically different from zero at the 0.10 level.

July
Relative
Humidity

Annual
Precip

Annual
Precip
Days



(1) (2) (3) (4) (5) (6)

Coast/River/Topog Controls No Yes Yes No Yes Yes
Initial Density Spline No No Yes No No Yes
Concentric Total Population No No Yes No No Yes

linear 0.0647 0.0531 0.0507 0.0642 0.0496 0.0432
(0.0064) (0.0068) (0.0061) (0.0047) (0.0052) (0.0044)

quadratic 0.0013 0.0012 0.0013 0.0014 0.0013 0.0014
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

linear -0.0512 -0.0369 -0.0349 -0.0461 -0.0277 -0.0227
(0.0072) (0.0084) (0.0080) (0.0054) (0.0064) (0.0060)

quadratic -0.0009 -0.0010 -0.0003 -0.0018 -0.0019 -0.0011
(0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

linear -0.0209 -0.0262 -0.0428 0.0050 -0.0050 -0.0206
(0.0095) (0.0096) (0.0105) (0.0074) (0.0071) (0.0067)

quadratic -0.0001 -0.0001 -5.6E-4 7.8E-6 3.5E-5 -3.6E-4
(0.0004) (0.0004) (3.0E-4) (2.8E-4) (2.5E-4) (1.9E-4)

linear 0.0163 0.0183 0.0113 0.0011 0.0033 0.0015
(0.0071) (0.0072) (0.0064) (0.0052) (0.0048) (0.0043)

quadratic -3.2E-4 -3.3E-4 1.2E-5 -1.2E-4 -1.4E-4 1.6E-4
(1.4E-4) (1.4E-4) (1.2E-4) (9.7E-5) (9.0E-5) (8.1E-5)

linear 0.0074 0.0059 0.0035 0.0090 0.0087 0.0047
(0.0037) (0.0038) (0.0037) (0.0029) (0.0028) (0.0029)

quadratic -1.8E-4 -1.8E-4 -2.2E-4 -1.1E-4 -1.0E-4 -1.3E-4
(5.5E-5) (5.3E-5) (4.2E-5) (3.9E-5) (3.5E-5) (2.5E-5)

Observations 3,063 3,063 3,063 3,063 3,063 3,063
Number of Indep. Variables 10 17 31 10 17 31
R2 0.250 0.273 0.419 0.328 0.372 0.582

Control Variables R2 - 0.125 0.314 - 0.195 0.475

Table 10: Working Age and Seniors
Population Growth, 1960–2000

Table shows results from regressing ([log(1+2000 Age-Specific Pop Density)-log(1+1960 Age-Specific Pop 
Density)]×100/40) on the enumerated weather variables, control variables, and a constant. For Columns 1 to 3, the 
dependent variable is measured for persons 21 to 64 years old. For Columns 4 to 6, the dependent variable is measured for 
persons 65 and older. Quadratic weather variables have had their respective sample mean subtracted.  Standard errors in 
parentheses are robust to spatial correlation using the Conley spatial estimator discussed in the text with a weighting  that 
declines quadratically to zero for counties with centers 200 km apart. Bold type signifies coefficients statistically different 
from zero at the 0.05 level; italic type signifies coefficients statistically different from zero at the 0.10 level.

∆log(1+ Working Age Pop Density) ∆log(1+ Seniors Pop Density)

Annual
Precip
Days

   Dependent Vairable →
Independent Variables ↓

January
Daily Max

Temp

Annual
Precip

July
Daily Heat

Index

July
Relative
Humidity



1960 1970 1980 1960 1970 1980 1960 1970 1980

UNITED STATES 12.5 37.1 56.2 1.9 11.0 27.8 4.7 27.7 52.7

Alabama 17.0 50.2 72.4 2.7 15.6 38.0 7.2 35.2 62.9
Alaska 0.8 1.1 0.9 0.0 0.6 0.6 0.0 0.7 0.6
Arizona 27.3 54.8 72.0 15.6 42.2 64.0 25.0 58.1 74.7
Arkansas 17.1 49.9 73.2 2.6 15.9 40.0 7.7 35.5 65.0
California 10.0 25.4 40.1 2.5 8.8 22.4 4.6 17.4 44.4
Colorado 6.3 17.5 31.6 1.9 6.0 15.6 3.0 13.1 24.7
Connecticut 6.6 26.7 47.6 0.7 2.4 7.5 1.8 6.3 19.7
Delaware 16.3 49.1 66.1 1.1 13.5 30.9 2.1 29.6 55.8
Dist. of Columbia 19.8 50.8 68.6 5.6 19.6 33.6 29.0 60.9 79.6
Florida 17.5 61.6 84.4 2.5 23.1 55.7 4.3 43.1 81.9
Georgia 14.3 45.2 67.2 1.6 16.4 40.8 3.8 34.5 66.5
Hawaii 2.3 11.8 16.7 0.0 0.5 4.3 0.0 1.2 9.9
Idaho 7.6 18.2 33.4 2.0 6.8 17.4 2.9 13.5 27.8
Illinois 13.6 45.7 67.8 1.7 11.4 32.2 4.4 26.4 60.8
Indiana 9.8 33.6 60.2 1.5 10.5 31.0 2.5 25.8 56.6
Iowa 12.3 38.1 67.6 1.2 11.2 33.5 3.7 32.2 61.5
Kansas 29.9 61.5 80.8 4.9 18.7 46.9 13.8 48.8 81.2
Kentucky 8.5 32.8 63.3 0.8 8.3 29.7 1.9 21.1 50.1
Louisiana 24.0 61.7 83.7 3.7 21.2 47.0 9.3 49.8 78.1
Maine 2.8 2.6 11.6 0.7 0.4 0.9 2.4 0.4 1.8
Maryland 15.7 54.1 71.4 2.1 25.5 43.5 4.9 63.4 76.4
Massachusetts 5.3 19.7 37.9 0.5 1.6 5.1 1.8 6.1 15.4
Michigan 4.9 20.4 35.6 0.8 4.6 14.4 1.5 11.7 29.1
Minnesota 6.6 31.1 50.2 0.9 5.5 19.4 2.7 11.4 31.6
Mississippi 14.6 50.6 71.7 1.5 14.9 34.8 3.7 35.7 56.8
Missouri 17.6 50.2 72.5 2.7 19.4 42.9 7.7 45.2 69.2
Montana 4.2 10.3 20.8 2.0 3.3 8.6 4.0 7.9 15.6
Nebraska 22.8 56.4 79.2 3.7 21.7 48.9 11.7 55.1 81.1
Nevada 15.3 59.1 70.6 10.8 45.6 56.2 17.6 59.5 64.6
New Hampshire 3.0 10.8 24.7 0.5 1.3 2.4 0.0 2.9 5.0
New Jersey 17.1 48.5 66.2 0.8 7.5 19.5 2.0 21.3 48.0
New Mexico 7.9 35.3 61.9 3.2 20.0 44.0 4.8 31.1 58.4
New York 10.8 32.0 42.5 0.5 3.3 7.3 1.6 12.3 19.2
North Carolina 8.8 34.9 61.6 1.2 9.5 31.6 3.2 19.7 52.9
North Dakota 2.3 12.2 41.3 0.6 2.6 13.7 1.6 4.8 23.3
Ohio 7.1 25.5 48.2 1.0 6.9 22.2 2.2 18.5 46.8
Oklahoma 29.7 63.2 83.5 3.8 20.7 46.5 10.5 53.4 77.5
Oregon 6.0 10.2 19.7 2.1 2.9 8.4 2.6 5.6 14.3
Pennsylvania 10.0 29.7 42.7 0.9 4.5 12.2 2.8 16.7 31.2
Rhode Island 4.0 15.2 33.0 0.0 1.0 3.5 0.0 2.9 9.7
South Carolina 10.8 43.5 69.5 1.5 12.7 36.6 4.6 26.0 58.1
South Dakota 5.6 29.3 61.1 1.5 7.7 25.9 4.2 18.4 40.3
Tennessee 19.8 54.1 75.5 2.1 11.9 33.6 5.0 28.1 58.9
Texas 30.6 66.9 84.7 5.4 29.0 55.9 11.6 63.5 85.0
Utah 8.0 26.9 50.3 1.9 11.4 31.5 2.6 22.4 45.2
Vermont 1.9 4.9 9.9 0.0 0.8 0.7 0.0 1.1 1.1
Virginia 12.3 48.5 66.4 1.4 19.3 39.1 3.1 44.0 64.3
Washington 4.2 7.2 15.1 2.2 2.9 7.0 4.3 4.1 11.9
West Virginia 5.7 19.1 40.0 0.9 4.1 14.5 2.9 12.7 24.9
Wisconsin 6.0 22.0 38.7 1.0 3.9 12.5 1.6 8.6 20.7
Wyoming 5.3 11.2 20.5 0.9 3.4 7.3 2.8 8.5 11.3

Supplemental Table 1: The Spread of Air Conditioning

"Any Air Conditioning" includes both window units and central. "New Housing Units" are housing units constructed in 
previous 10 years. Data derived from Ruggles and Sobek et. al. (1997)  

Percent of Households
with Any Air Conditioning

Percent of Households
with Central Air Conditioning

Percent of New Housing Units 
with Central Air Conditioning



1940 1950 1960 1970 1980 1990 2000

UNITED STATES 11.3 27.3 44.9 62.9 71.5 76.8 81.6

Alabama 3.2 21.5 53.7 68.7 73.6 77.4 84.0
Alaska NA NA 0.3 30.8 50.1 54.6 56.1
Arizona 20.7 58.7 82.0 91.0 91.0 90.9 91.8
Arkansas 14.7 33.6 55.4 69.4 73.5 75.5 81.2
California 67.1 82.9 90.2 94.6 94.0 92.4 92.3
Colorado 7.5 47.6 76.2 88.3 91.2 89.9 91.0
Connecticut 1.1 6.6 13.0 25.8 32.3 41.4 43.6
Delaware 0.8 6.0 14.1 34.5 39.4 52.3 62.4
Dist. of Columbia 10.8 27.9 36.3 58.1 67.6 84.0 89.6
Florida 3.1 11.9 20.3 47.7 71.8 86.3 93.2
Georgia 4.2 21.7 51.5 69.8 75.6 80.5 87.2
Hawaii NA NA 1.3 3.4 8.6 41.2 51.0
Idaho 0.1 1.9 13.8 42.0 65.8 68.0 79.9
Illinois 2.2 12.5 36.2 73.5 89.1 91.5 93.0
Indiana 0.9 7.6 27.0 62.9 77.3 82.4 86.3
Iowa 2.5 12.8 41.9 64.7 73.1 76.1 80.1
Kansas 27.6 60.8 77.1 85.3 87.7 87.7 88.7
Kentucky 5.9 22.4 47.2 66.3 73.9 75.6 83.2
Louisiana 29.2 57.8 79.8 87.8 91.2 91.3 93.7
Maine 0.2 1.7 2.2 3.7 12.1 13.5 7.9
Maryland 2.5 12.3 31.9 51.7 59.8 72.8 79.1
Massachusetts 1.2 7.7 15.7 32.1 42.4 51.5 56.3
Michigan 3.8 19.1 46.2 72.6 80.8 82.3 84.9
Minnesota 3.1 15.6 39.4 56.5 66.3 73.4 79.7
Mississippi 9.4 28.0 50.6 63.4 69.0 71.4 77.0
Missouri 4.7 24.7 51.7 70.7 76.7 78.5 82.0
Montana 25.6 43.8 62.3 73.4 75.5 72.1 75.1
Nebraska 7.0 29.8 60.3 75.1 81.5 83.8 86.6
Nevada 0.7 19.7 48.0 73.6 84.1 87.0 92.1
New Hampshire 0.4 1.9 6.4 15.3 25.2 27.6 26.0
New Jersey 1.4 9.5 24.9 44.5 52.1 67.5 77.2
New Mexico 20.9 51.8 70.1 80.6 82.5 79.2 79.3
New York 3.0 19.4 23.0 39.6 44.4 54.2 60.5
North Carolina 0.1 1.6 5.8 25.7 45.3 60.6 73.0
North Dakota 2.7 7.6 17.6 35.1 57.8 65.9 71.9
Ohio 7.4 34.4 67.7 79.9 84.0 85.0 87.1
Oklahoma 45.1 68.6 77.6 84.0 85.8 84.9 86.6
Oregon 2.4 9.2 24.6 53.4 66.3 69.3 83.1
Pennsylvania 4.4 20.4 37.2 52.2 59.2 64.3 67.8
Rhode Island 1.2 6.9 16.4 30.1 39.2 48.6 53.9
South Carolina 0.2 3.0 10.4 36.0 56.9 71.5 84.6
South Dakota 5.3 12.5 28.7 43.4 56.4 60.8 68.1
Tennessee 3.3 17.5 47.8 73.0 77.6 80.5 88.2
Texas 43.1 65.6 79.4 87.0 89.3 90.6 92.6
Utah 9.4 35.0 69.8 84.6 91.1 91.4 94.6
Vermont 0.1 0.6 0.7 10.9 16.1 17.1 16.9
Virginia 0.4 5.1 18.7 39.3 55.3 69.0 77.7
Washington 0.8 4.9 19.4 53.8 74.6 77.5 85.8
West Virginia 29.9 48.4 62.4 73.4 77.7 76.0 79.9
Wisconsin 0.5 4.5 22.5 51.2 63.3 70.3 77.8
Wyoming 26.0 52.2 69.0 79.5 84.7 79.4 82.1

Percent of Households Heated by
Utility-Supplied Natural Gas or Electricity

1940 to 1990 data based on U.S. Census Bureau (1999). 2000 data based on 2000 Decennial Census, 
Summary File 3.

Supplemental Table 2: The Spread of Modern Heating



Winter
Weather Jan Mean

Temp
Jan Min 
Temp

Jan Max 
Temp

Extreme
Min Temp

Cold Temp
Days

Heating
Deg Days

Jan Mean
Temp 1
Jan

Min Temp 0.989 1
Jan

Max Temp 0.991 0.960 1
Extreme

Min Temp 0.975 0.983 0.949 1
Cold Temp

Days -0.924 -0.936 -0.895 -0.936 1
Heating

Deg Days -0.957 -0.944 -0.950 -0.935 0.967 1

Summer
Weather July Mean

Temp
July Min 

Temp
July Max 

Temp
Extreme

Max Temp
Hot Temp

Days
Cooling

Deg Days
July Heat

Index
July Rel
Humidity

July Mean
Temp 1

July Min
Temp 0.970 1

July Max
Temp 0.949 0.843 1

Extreme
Max Temp 0.758 0.619 0.870 1
Hot Temp

Days 0.843 0.743 0.896 0.750 1
Cooling

Deg Days 0.904 0.880 0.853 0.605 0.927 1
July Heat

Index 0.956 0.917 0.920 0.705 0.898 0.947 1
July Rel
Humidity 0.270 0.467 -0.008 -0.218 -0.051 0.252 0.293 1

Supplemental Table 3: Correlation among Weather Variables  (1 of 2)



Rain & 
Snow Annual

Precip
Precip
Days

Annual
Snowfall

Snow
Days

5" Snow
Days

10" Snow
Days

July Rel
Humidity

Annual
Precip 1
Precip
Days 0.651 1

Annual
Snowfall -0.270 0.302 1

Snow
Days -0.334 0.368 0.930 1

5" Snow
Days -0.051 0.245 0.875 0.670 1

10" Snow
Days -0.045 0.106 0.716 0.477 0.859 1

July Rel
Humidity 0.759 0.593 -0.332 -0.259 -0.272 -0.306 1

Mixed Jan Max 
Temp

Cold Temp
Days

July Heat
Index

Hot Temp
Days

Annual
Precip

Precip
Days

Annual
Snowfall

July Rel
Humidity

Jan Max
Temp 1

Cold Temp
Days -0.895 1

July Heat
Index 0.781 -0.824 1

Hot Temp
Days 0.816 -0.754 0.898 1

Annual
Precip 0.410 -0.572 0.321 0.071 1
Precip
Days -0.204 0.060 -0.368 -0.555 0.651 1

Annual
Snowfall -0.586 0.727 -0.749 -0.598 -0.270 0.302 1
July Rel
Humidity 0.156 -0.415 0.293 -0.051 0.759 0.593 -0.332 1

Supplemental Table 3: Correlation among Weather Variables  (2 of 2)



Coast/River/Topography Controls

Winter Variables: Linear Quadratic

Extreme Minimum Temperature 0.0742 0.0005
(0.0115) (0.0003)

January Daily Maximum Temperature -0.0793 0.0006
(0.0265) (0.0005)

Annual Heating Degree Days -0.0005 -4.0E-8
(0.0003) (2.1E-8)

Summer Variables: Linear Quadratic

Annual Hot Temperature Days -0.0582 0.0003
(0.0069) (0.0001)

Annual Cooling Degree Days 0.0018 -5.2E-7
(0.0005) (1.6E-7)

July Daily Relative Humidity -0.0375 -0.0011
(0.0109) (0.0003)

Rain and Snow Variables: Linear Quadratic

Annual Precipitation Days -0.0006 -0.0002
(0.0035) (0.0000)

Annual Snowfall -0.0142 4.8E-5
(0.0055) (2.2E-5)

Annual Snow Days 0.0915 -0.0009
(0.0153) (0.0002)

Observations
Number of Indep. Variables
R2

Control Variables R2

Table shows results from regressing listed dependent variable on the enumerated weather variables, 
control variables, and a constant. Quadratic weather variables have had their respective sample 
mean subtracted.  Standard errors in parentheses are robust to spatial correlation using the Conley 
spatial estimator discussed in the text with a weighting  that declines quadratically to zero for counties
with centers 200 km apart. Bold type signifies coefficients statistically different from zero at the 0.05 
level; italic type signifies coefficients statistically different from zero at the 0.10 level.

   Dependent Vairable →
Independent Variables ↓

log(1+2000 Population 
Density)

Yes

3,069

Supplemental Table 4: Regression for
Fitted 2000 Population Density

0.189

25
0.551



(1) (2) (3) (4) (5) (6)

Coast/River/Topography Controls No Yes Yes No Yes Yes
Initial Pop or Emp Density Spline No No Yes No No Yes
Concentric Total Pop or Emp No No Yes No No Yes

linear 0.0703 0.0629 0.0555 0.0580 0.0414 0.0394
(0.0065) (0.0071) (0.0066) (0.0076) (0.0079) (0.0069)

quadratic 0.0012 0.0012 0.0014 0.0014 0.0014 0.0013
(0.0002) (0.0002) (0.0003) (0.0003) (0.0003) (0.0003)

linear -0.0554 -0.0449 -0.0359 -0.0613 -0.0372 -0.0364
(0.0088) (0.0099) (0.0090) (0.0080) (0.0095) (0.0089)

quadratic -0.0001 -0.0002 -0.0001 -0.0008 -0.0010 -0.0001
(0.0004) (0.0003) (0.0003) (0.0004) (0.0004) (0.0003)

linear -0.0449 -0.0486 -0.0527 -0.0194 -0.0297 -0.0410
(0.0095) (0.0099) (0.0109) (0.0107) (0.0108) (0.0114)

quadratic -0.0001 0.0000 -0.0005 -0.0004 -0.0003 -0.0009
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004) (0.0003)

linear 0.0071 0.0074 0.0100 0.0236 0.0242 0.0148
(0.0069) (0.0071) (0.0067) (0.0082) (0.0084) (0.0072)

quadratic 0.0001 0.0001 0.0001 -0.0005 -0.0005 -0.0001
(0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0001)

linear 0.0042 0.0040 0.0031 0.0018 0.0024 -0.0008
(0.0045) (0.0046) (0.0042) (0.0041) (0.0043) (0.0040)

quadratic -2.4E-4 -2.4E-4 -2.3E-4 -1.4E-4 -1.4E-4 -1.8E-4
(4.6E-5) (4.6E-5) (4.1E-5) (6.2E-5) (5.8E-5) (4.4E-5)

Observations 3,067 3,067 3,067 3,067 3,067 3,067
Number of Indep. Variables 10 17 31 10 17 31
R2 0.286 0.293 0.392 0.157 0.183 0.354

Control Variables R2 - 0.073 0.262 - 0.103 0.304

Supplemental Table 5: Population and Employment
Growth, 1970–2000, and Multiple Weather Elements

Table shows results from regressing ([log(1+2000 Density)-log(1+1970 Density)]×100/30) on the enumerated weather 
variables, control variables, and a constant. Initial density spline and concentric total control variables measure either 
population or employment corresponding to the dependent variable.  Quadratic weather variables have had their respective 
sample mean subtracted.  Standard errors in parentheses are robust to spatial correlation using the Conley spatial estimator 
discussed in the text with a weighting  that declines quadratically to zero for counties with centers 200 km apart. Bold type 
signifies coefficients statistically different from zero at the 0.05 level; italic type signifies coefficients statistically different from 
zero at the 0.10 level.

   Dependent Vairable →
Independent Variables ↓

July
Daily Heat

Index

  log(1+Pop Density 2000)–
log(1+Pop Density 1970)

  log(1+Emp Density 2000)–
log(1+Emp Density 1970)

January
Daily Max

Temp

July
Relative
Humidity

Annual
Precip

Annual
Precip
Days



Coast/River/Topography Controls
Initial Density Spline
Concentric Total Population

Winter Variables: Linear Quadratic

January Daily  Minimum Temperature 0.0817 0.0022
(0.0224) (0.0007)

January Daily Maximum Temperature 0.1298 0.0009
(0.0185) (0.0007)

Annual Heating Degree Days 0.0011 -4.0E-8
(0.0002) (2.4E-8)

Summer Variables:

Extreme Maximum Temperature -0.0706 -0.0081
(0.0263) (0.0020)

July Daily Maximum Temperature 0.3077 0.0118
(0.0738) (0.0023)

July Daily Heat Index -0.0360 -0.0014
(0.0296) (0.0006)

Annual Hot Temperature Days -0.0288 1.0E-4
(0.0077) (5.4E-5)

July Daily Relative Humidity -0.0351 -0.0008
(0.0150) (0.0003)

Rain and Snow Variables:

Annual Precipitation 0.0172 0.0000
(0.0068) (0.0001)

Annual Precipitation Days -0.0040 -0.0002
(0.0037) (0.0001)

Annual Snow Days -0.0091 0.0004
(0.0093) (0.0002)

Observations
Number of Indep. Variables
R2

Control Variables R2

Table shows results from regressing ([log(1+2000 Pop Density)-log(1+1960 Pop Density)]×100/40) on the 
enumerated weather variables, control variables, and a constant. Quadratic weather variables have had 
their respective sample mean subtracted.  Standard errors in parentheses are robust to spatial correlation 
using the Conley spatial estimator discussed in the text with a weighting  that declines quadratically to zero 
for counties with centers 200 km apart. Bold type signifies coefficients statistically different from zero at the 
0.05 level; italic type signifies coefficients statistically different from zero at the 0.10 level.

   Dependent Vairable →
Independent Variables ↓ ∆log(1+Pop Density)

Yes

3,063

Yes
Yes

Supplemental Table 6: Regression for
Fitted 1960–2000 Population Growth

0.271

43
0.429



Urbanized Area

Places
Rated
Rank

Fitted
Level
Rank

Fitted 
Growth 
Rank

Jan
Max

Temp

Cold
Temp
Days

July
Heat
Index

July
Rel

Humid

Hot
Temp
Days

Santa Barbara, CA 1 36 21 64° 3 79° 63% 9 17” 28 0”
San Diego, CA 2 20 17 67° 7 84° 67% 24 12” 36 0”
Los Angeles, CA 3 50 22 67° 8 92° 63% 41 15” 30 0”
Riverside-San Bernardino, CA 4 94 8 66° 17 104° 48% 90 14” 33 0”
San Francisco-Oakland, CA 5 53 34 56° 14 82° 68% 20 23” 56 0”
Bakersfield, CA 6 91 10 57° 18 104° 34% 108 6” 29 0”
San Jose, CA 7 64 33 58° 18 90° 70% 25 19” 49 0”
Phoenix, AZ 8 96 2 66° 18 114° 31% 165 9” 33 0”
Sacramento, CA 9 88 27 53° 22 105° 51% 80 20” 53 0”
Fresno, CA 10 92 7 54° 27 107° 39% 106 11” 38 0”
Miami-Hialeah, FL 11 7 1 76° 0 107° 76% 58 58” 121 0”
Tampa-St. Ptrsburg-Clrwater, FL 12 45 4 70° 3 110° 76% 92 49” 96 0”
Medford, OR 13 95 19 46° 93 95° 56% 49 20” 92 5”
Reno, NV 14 99 9 44° 183 90° 39% 41 11” 47 35”
Las Vegas, NV 15 100 3 58° 55 107° 20% 138 4” 23 0”
Orlando, FL 16 68 6 71° 4 115° 77% 105 50” 101 0”
Tucson, AZ 17 93 5 66° 31 114° 43% 147 13” 48 0”
Jacksonville, FL 18 34 16 65° 16 114° 78% 68 51” 103 0”
Boise City, ID 19 72 40 37° 128 91° 36% 47 11” 73 20”
Gainesville, FL 20 80 20 67° 18 113° 76% 99 52” 108 0”
Corpus Christi, TX 21 73 32 64° 5 116° 76% 101 31” 66 0”
Tallahassee, FL 22 87 41 62° 34 114° 79% 85 63” 108 0”
El Paso, TX-NM 23 98 25 58° 76 105° 44% 109 9” 41 2”
Greensboro, NC 24 39 51 47° 86 101° 74% 32 44” 105 10”
Houston, TX 25 52 23 61° 17 115° 71% 92 48” 86 0”
Albuquerque, NM 26 97 18 48° 132 97° 41% 63 9” 53 10”
Seattle, WA 27 61 28 45° 48 78° 66% 3 40” 148 6”
Columbus, GA-AL 28 65 46 56° 46 113° 74% 73 51” 98 0”
New Orleans, LA 29 44 26 62° 15 114° 78% 76 60” 100 0”
Baton Rouge, LA 30 63 37 60° 27 113° 76% 83 61” 104 0”
Charlotte, NC 31 37 42 50° 72 104° 72% 41 45” 102 4”
Augusta, GA-SC 32 83 47 55° 59 112° 73% 70 47” 96 0”
Austin, TX 33 77 29 59° 27 117° 64% 108 33” 71 0”
Raleigh, NC 34 43 53 50° 74 104° 75% 39 44” 104 5”
New York-N. New Jersey, NY-NJ 35 16 52 37° 110 91° 69% 14 47” 106 26”
Atlanta, GA 36 29 35 50° 70 101° 73% 35 54” 103 1”
Baltimore, MD 37 25 54 41° 98 98° 69% 30 44” 104 17”
Norfolk-VA Beach-Nwprt News, VA 38 13 44 48° 62 99° 73% 29 46” 103 8”
Columbia, SC 39 70 49 55° 53 112° 73% 70 48” 102 0”
Spokane, WA 40 22 39 34° 133 85° 42% 22 18” 98 34”
Mobile, AL 41 47 30 60° 23 111° 76% 73 64” 105 0”
Portland-Vancouver, OR-WA 42 66 38 46° 48 82° 62% 13 43” 145 4”
Birmingham, AL 43 57 43 52° 63 108° 73% 57 57” 100 0”
San Antonio, TX 44 86 24 62° 27 117° 64% 114 31” 67 0”
Richmond, VA 45 46 59 46° 94 102° 73% 38 43” 100 16”
Salt Lake City, UT 46 67 15 37° 130 92° 35% 45 15” 73 49”
Boulder, CO 47 60 11 44° 146 91° 49% 27 17” 78 71”
Boston, MA 48 35 61 35° 135 88° 72% 10 46” 113 50”
Colorado Springs, CO 49 85 13 42° 171 86° 49% 19 16” 74 48”
Knoxville, TN 50 21 57 46° 80 100° 75% 25 50” 117 9”

Weather variables based on data from www.climatesource.com

Annual
Precip

Precip
Days

Annual
Snow

Supplemental Table 7: Ranking Cities' Weather (1 of 2)



Urbanized Area

Places
Rated
Rank

Fitted
Level
Rank

Fitted 
Growth 
Rank

Jan
Max

Temp

Cold
Temp
Days

July
Heat
Index

July
Rel

Humid

Hot
Temp
Days

Philadelphia, PA-NJ 51 23 55 38° 108 95° 69% 23 45” 103 22”
Washington, DC-MD-VA 52 41 63 42° 101 99° 73% 31 41” 101 18”
Providence-Pawtucket, RI-MA 53 31 58 36° 130 87° 72% 8 47” 111 36”
Shreveport, LA 54 76 48 55° 45 115° 70% 86 48” 88 0”
Charleston, WV 55 18 93 42° 109 96° 74% 23 43” 132 24”
Denver, CO 56 78 14 44° 153 90° 50% 29 16” 70 60”
Jackson, MS 57 89 64 56° 52 116° 76% 83 56” 97 0”
Little Rock-North Little Rock, AR 58 62 82 49° 62 113° 72% 69 51” 93 5”
Pittsburgh, PA 59 6 88 35° 123 89° 69% 10 38” 134 29”
Dallas-Fort Worth, TX 60 79 36 54° 45 114° 60% 97 36” 70 0”
Louisville, KY-IN 61 17 70 41° 93 99° 70% 32 45” 109 14”
Portland, ME 62 59 78 31° 155 84° 74% 6 45” 117 70”
Columbus, OH 63 9 76 35° 122 92° 67% 15 39” 116 23”
Nashville, TN 64 55 66 45° 87 104° 71% 47 49” 110 8”
Hartford-Middletown, CT 65 28 50 35° 135 89° 69% 12 46” 107 36”
Memphis, TN-AR-MS 66 49 45 47° 63 109° 69% 63 52” 95 3”
Cheyenne, WY 67 38 12 38° 175 85° 50% 11 15” 83 51”
Cincinnati, OH-KY 68 19 77 37° 117 95° 70% 23 42” 115 19”
Tulsa, OK 69 75 60 46° 86 111° 62% 71 39” 74 7”
Oklahoma City, OK 70 71 56 48° 80 111° 60% 76 34” 72 7”
Rochester, NY 71 10 89 31° 134 85° 70% 8 32” 140 86”
Detroit, MI 72 2 81 30° 134 88° 67% 12 32” 113 35”
Toledo, OH-MI 73 12 100 31° 125 93° 72% 23 33” 110 32”
Billings, MT 74 69 31 34° 160 90° 44% 35 15” 78 56”
St. Louis, MO-IL 75 40 83 38° 109 103° 69% 42 39” 93 18”
Bangor, ME 76 81 69 27° 164 82° 72% 5 41” 118 80”
Kansas City, MO-KS 77 32 67 38° 107 101° 63% 41 39” 82 17”
Wichita, KS 78 74 84 40° 110 107° 59% 64 31” 73 15”
Indianapolis, IN 79 14 86 34° 126 94° 72% 19 40” 110 23”
Akron, OH 80 1 99 32° 120 87° 71% 7 38” 134 41”
Dayton, OH 81 5 80 35° 116 93° 66% 21 39” 115 24”
Buffalo-Niagara Falls, NY 82 3 85 31° 134 84° 67% 3 38” 147 86”
Syracuse, NY 83 27 94 30° 141 86° 70% 7 40” 153 100”
Cleveland, OH 84 4 97 32° 129 87° 70% 7 38” 136 51”
Chicago, IL-Northwestern Indiana 85 15 92 30° 132 90° 66% 18 36” 108 34”
Milwaukee, WI 86 26 96 26° 146 87° 70% 12 32” 105 41”
Lincoln, NE 87 56 95 33° 137 101° 65% 43 29” 76 23”
Fort Wayne, IN 88 11 79 31° 135 91° 68% 14 36” 109 33”
Bismarck, ND 89 90 75 20° 187 89° 61% 22 16” 81 32”
Omaha, NE-IA 90 42 98 31° 140 97° 67% 32 30” 84 25”
Fargo-Moorhead, ND-MN 91 58 65 16° 180 89° 66% 15 20” 87 38”
Burlington, VT 92 24 90 26° 155 85° 69% 6 33” 135 69”
Albany-Schenectady-Troy, NY 93 30 71 31° 145 90° 71% 10 37” 118 58”
Des Moines, IA 94 33 91 28° 137 94° 68% 23 33” 94 23”
Grand Rapids, MI 95 8 74 29° 148 87° 69% 9 36” 127 68”
Sioux Falls, SD 96 51 87 25° 167 94° 65% 26 24” 89 37”
Madison, WI 97 54 72 25° 162 89° 68% 11 31” 100 33”
Minneapolis-St. Paul, MN 98 48 68 22° 164 90° 66% 14 30” 96 44”
Manchester, NH 99 82 62 32° 162 87° 72% 9 40” 115 59”
Duluth, MN-WI 100 84 73 19° 177 80° 72% 3 29” 109 58”

Weather variables based on data from www.climatesource.com

Annual
Precip

Precip
Days

Annual
Snow

Supplemental Table 7: Ranking Cities' Weather (2 of 2)



(1+2000 county pop. density)/(1+2000 U.S. pop. density)
Map 1:  Relative Population Density
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Map 2:  Expected Population Density from Weather
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Map 3:  Population Growth, 1960–2000
Annual growth rate of (1+population density)
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Map 4:  Expected Population Growth from Weather, 1960–2000
Fitted annual growth rate of (1+pop. density) controlling for coast, topography, initial density and concentric pop.




