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Abstract 

We follow Walker and Wooders’ (2001) empirical analysis to collect and study a broader data 

set in tennis, including male, female and junior matches. We find that there is mixed evidence in 

support of the minimax hypothesis. Granted, the plays in our data pass all the tests in Walker and 

Wooders (2001). However, we argue that not only the test on equal winning probabilities may lack 

power, but also the current serve choices may depend on past serve choices or the winning record 

of past serve choices. We therefore examine the role that simple rules may play in determining the 

plays. For a significant number of top tennis players, some simple rules outperform the minimax 

hypothesis. By comparing junior players with adult players, we find that the former tend to adopt 

simpler rules. The result of comparison between female and male players is inconclusive. 
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1. Introduction 

The theory of mixed strategy equilibrium does not fare particularly well in 

various experimental settings involving human subjects in the past few decades.1 

For instance, though the experiment by O’Neill (1987) is among the most 

celebrated designs that support the minimax hypothesis, his result was later 

challenged by Brown and Rosenthal (1990) because of strong serial correlation in 

players’ choices. Not until recently does the theory of minimax hypothesis regain 

its foothold. By analyzing field data in professional tennis matches in Grand Slam, 

Walker and Wooders (2001) propose a study that lends empirical support to the 

minimax hypothesis. They argue convincingly that, unlike subjects in labs, 

professional players have adequate experience to play games well and are highly 

motivated to win the games. Therefore, if equilibrium theory can ever predict 

behaviors, choices of the top players in tennis matches are the right place to run 

empirical tests on. Their result indicates that the win rates across strategies are not 

different and this is consistent with the equilibrium prediction. However, they 

fairly note that even top players tend to switch from one strategy to another too 

often, resulting in serial dependence. Palacios-Huerta (2003) goes a step further by 

examining a data set from penalty kicks in professional soccer games where both 

the kicker and the goalie’s choices are observable. He finds stronger evidence in 

favor of the equilibrium prediction than Walker and Wooders (2001). Not only the 

win rates across strategies are not different but also the serial independence of 

choices cannot be rejected. Chiappori, Levitt and Groseclose (2002) further deal 

with the heterogeneity of players and they cannot reject that soccer players are 

behaving optimally in penalty kicks. Comparing these results with those obtained 

in labs, they all demonstrate that players’ experience and familiarity with the 

                                                 
1  For example, Erev and Roth (1998) discuss twelve such experiments and their equilibrium 
predictions.  
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strategic situation may play an important role in determining whether the 

equilibrium theory fares well. 

We follow this line of idea and examine the minimax hypothesis by collecting 

and studying a broader data set in tennis, including male, female and junior 

matches. Since a typical tennis match lasts long (compared to penalty kicks in 

soccer), one may wonder whether players indeed play their equilibrium strategies 

or somehow “learn” throughout the game. We find that the support for the 

minimax hypothesis is mixed. According to Walker and Wooders (2001), if 

players are playing their equilibrium strategies, the winning probability for each of 

their pure strategies must be equal. Moreover, since players should maximize the 

chance of winning at each point, it is as if their strategies are generated as a 

binomial process which is independently and identically distributed (i.i.d. 

henceforth). Our analysis shows that, the null hypothesis of equal winning 

probability across strategies cannot be rejected. Neither can the null hypothesis of 

the serially independent choices be rejected. However, we find that the test on 

equal winning probability may lack power. Moreover, when we test the i.i.d. 

hypothesis in a slightly more general fashion, players’ current serve choices may 

depend on past serve choices or the performance of past serve choices. These 

findings together suggest that there might be some links between current and past 

choices. Recently many studies have documented that learning models can better 

describe and predict experimental results than static Nash equilibrium,2  we 

therefore propose several low-information simple rules 3  and formulate a 

regression framework.4 Comparing the predictions of different rules with those of 
                                                 
2 See, for example, Erev and Roth (1998), Camerer and Ho (1999), and Feltovich (2000). 
3 See Mookherjee and Sopher (1994), Mitropoulos (2001), and Ho, Camerer and Wang (2002). Their 
studies examine some possible learning rules under low information. For instance, Ho, Camerer and 
Wang (2002) study learning in games where only the set of foregone payoffs from unchosen strategies 
are known. 
4 A related and interesting example can be found in the writing of the celebrated linguist Wittgenstein. 
Wittgenstein sometimes took tennis sport as an example when describing the learning process of 
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the equilibrium theory on the basis of Akaike information and Schwarz criteria, 

we find that rules explain the data better than the equilibrium theory for a 

significant number of top tennis players. Moreover, for different players, different 

rules may best describe their behaviors. We further find that interestingly, junior 

players tend to adopt simpler rules than adult players do. Meanwhile, there is no 

conclusive evidence that male and female players adopt rules in a different way. 

The structure of the paper is as follows. In section 2, we follow Walker and 

Wooders (2001) to model each point in a tennis match as a simple 2×2 normal 

form constant-sum game and briefly describe relevant aspects of Walker and 

Wooders’ (2001) analysis. Section 3 describes our data set. In section 4, we first 

perform the tests proposed by Walker and Wooders (2001) on our data set. We 

then discuss the power of the test on equal winning probability and re-evaluate the 

result regarding the i.i.d. hypothesis. We test several rules and demonstrate the 

better performance of them in section 5. Section 6 contains some discussion and 

section 7 concludes. 

 

2. Testing the Minimax Hypothesis 

We follow Walker and Wooders (2001) to model each point in a tennis match 

between the server and the receiver as a simple 2×2 constant-sum normal form 

game. When the server serves, he can choose to serve to the left of the receiver (L) 

or to the right of the receiver (R). Simultaneously, when the server serves, the 

receiver is assumed to guess whether the serve will reach to his left (L) or right (R).  

Each player’s payoffs are the corresponding probabilities that he will ultimately 

win the point, conditional on both players have made their left-or-right choices for 

that point. Let srπ  denote the server’s probability of winning the point, where 

                                                                                                                                            
languages and tried to make an analogy between tennis game and “language game.” (Wittgenstein, 
“Philosophical Investigations,” ss. 68, 71.) 
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{ }R,Ls∈  denotes the server’s choice and { }R,Lr∈  denotes the receiver’s 

choice. Since either the server or the receiver has to win the point, the receiver’s 

probability of winning the point is 1 srπ− . If the Mixed Strategy Condition5 holds, 

the point will have a unique Nash equilibrium in which both players use strictly 

mixed strategies. Following Walker and Wooders (2001), since the server and the 

serving court could matter, there will be four point games in every tennis match, 

depending on which player is serving for that point and whether the point is a 

deuce-court or an ad-court point. Figure 1 summarizes the basics of a point game. 

According to Nash equilibrium, players should play their minimax strategies 

within a point game. This implies the following two testable predictions: 

(1) The winning probability for each of the server’s pure strategy should be the 

same. This prediction results because in a mixed strategy equilibrium, players 

should be indifferent with their left-or-right choices given their opponents are 

playing their equilibrium strategies. Let q denote the receiver’s probability of 

choosing L. From the server’s perspective, equilibrium implies that s
R

s
L PP =  

where 

+⋅≡ LL
s

L qP π ( q−1 ) LRπ⋅ , 

+⋅≡ RL
s

R qP π ( q−1 ) RRπ⋅ . 

Note that s
LP  is the server’s expected probability of winning a point by serving to 

the left of the receiver while s
RP  is that by serving to the right of the receiver. 

(2) The server’s left-or-right choices in a given point game must be serially 

independent because he should play the same Nash equilibrium strategy for every 

                                                 
5 It is reasonable to assume that the server’s probability of winning a point is lower when the receiver 
chooses the same strategy. That is to say, 

RLLL ππ <   and  LRRR ππ < , 

LRLL ππ <   and  RLRR ππ < . 
The above inequalities are called the Mixed Strategy Condition. This reflects the idea that if the 
receiver guesses correctly about the server’s right-or-left choice, he will be better prepared and thus 
more likely to win that point. 
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point in a point game.6 This implies that the serve choices will be random draws 

from a binomial process which is i.i.d. across all serves in a given point game. 

By (1) and (2), we can therefore formulate and test these two fundamental 

hypotheses implied by von Neumann’s minimax Theorem. 

 

3. Data 

Our data set comprises three major groups (male, female and junior) and is 

colleted from videotapes or directly recorded on the spot. We have 10 matches in 

male tennis, 9 in female and 8 in junior. Since each match has 4 point games 

(depending on the server and the serving court), we therefore have 40 point games 

in male tennis, 36 in female and 32 in junior. The data covers the top-level players 

in Grand Slam finals (both male and female) over the past two decades. Therefore, 

it is fair to say that they are all highly motivated. In junior group, the matches 

include final, quarter final and second round in both Grand Slam and tournaments 

because it is hard to get data for junior players.7 According to tennis rules, male 

tennis matches in Grand Slam can last at most five sets. Female and junior 

matches can last at most three sets. 

The first three tables summarize the data. Each row of the tables corresponds 

to a point game. We first index each point game. For each of them, we state the 

following information in order: the match and its year, the server, the serving court, 

the number of times that the server chooses L, the number of times that the server 

chooses R, the total number of serves, the number of times that the server chooses 

L and wins, the number of times that the server chooses R and wins, the fraction of 

times that the server wins if he chooses L, the fraction of times that the server wins 

                                                 
6 See Walker and Wooders (1999). 
7 Few games are missing at the beginning of three junior matches. They are 2000 Wimbledon (Salerni 
vs. Perediynis), 2003 Australian Open (Scherer vs. Cvetkovic) and 2003 Australian Open (Tsonga vs. 
Feeney). However, this does not affect the continuity of our data. 
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if he chooses R, Pearson statistic and its p-value (the latter two will be explained 

in the next section).8 The winner of each match is indicated in boldface. 

 

4. Testing the Equilibrium and a Reappraisal 

4.1 Test of Equal Winning Probability 

We first run the test of equal winning probability. Following Walker and 

Wooders (2001), we conduct both Pearson’s chi-square goodness-of-fit and the 

Kolmogorov-Smirnov (KS henceforth) test. We index each point game by i. For 

each point game i, let i
jp  denote the probability that the server will win the point 

when he uses strategy { }RLj ,∈ . Let i
jn  denote the number of times that the 

server chooses j. Let i
jSN  denote the number of times that the server wins when 

he chooses j. Let i
jFN  denote the number of times that the server loses when he 

chooses j. For each point game i, under the null hypothesis, ii
R

i
L ppp == . The 

maximum likelihood estimate of ip  is i
R

i
L

i
RS

i
LS

nn
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+
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If we substitute its maximum likelihood estimate for ip , the Pearson statistic is 

distributed asymptotically as chi-square with 1 degree of freedom if the null 

hypothesis is true. 

The results in Tables 1 to 3 show that the null hypothesis is not rejected for 

most point games in each group. In other words, under the conventional 5% or 

10% significance levels, the equal winning probability hypothesis in each group 

can hardly be rejected, although the number of rejections in male group (2 for 5% 

                                                 
8 We consider only the “first” serve direction and whether the server ultimately wins that point. 



 7

and 6 for 10%) is slightly higher than that in female (0 for 5% and 1 for 10%) or 

junior groups (1 for 5% and 3 for 10%). We then turn to the joint test to examine 

whether the data in each group is consistent with the equilibrium theory. The 

statistic for the Pearson joint test is the sum of the individual test statistic iQ , i.e. 

∑ =
kN

i
iQ1 , where kN  denotes the number of point games in group k and 

{ }junior,female,malek ∈ . Under the joint null hypothesis, this statistic is 

distributed as chi-square with kN  degrees of freedom. Note that this joint test 

allows the parameters i
Lp  and i

Rp  to vary across different point games within a 

group. The corresponding p-values are 0.067 for male players, 0.716 for female, 

0.551 for junior. Therefore, under the 10% significance level, the hypothesis of 

equal winning probability can be rejected for male players. In general, the 

equal-winning-probability hypothesis fares well for female and junior players.9 

Since Pearson joint test would be problematic in detecting how the data is 

generated,10 we therefore turn to compare the observed distribution with the 

predicted one by the KS test. As Walker and Wooders (2001) suggest, the p-values 

associated with the realized iQ  values should be kN  draws from the uniform 

distribution [ ]1,0U  under the joint null hypothesis for group k. We present a 

visual comparison by drawing the cumulative distribution function (CDF 

henceforth) of the p-values associated with the realized iQ  values for each group 

and that of a uniform distribution in Figure 2. As a result, the KS statistics are 

0.778, 0.578, and 0.641 for male, female and junior players respectively, which 

are all far from the critical value at 5% level.11 Thus, we cannot reject the null 

                                                 
9 One may be concerned by the results for the female and junior players because there are fewer 
observations for these two groups. That is, fewer observations may cause the problem that it is unlikely 
to reject the minimax hypothesis when it is false. One alternative way to resolve this is to merge 
ad-court and deuce-court data into one for a given server. The results are as follows. The p-values of 
Pearson statistic are 0.349 and 0.465 for female and junior players respectively. The KS statistic 
introduced later yields similar results that the equal winning probability hypothesis cannot be rejected. 
10 See p. 121 of Gibbons, J. and Chakraborti, S. (1992). 
11 The critical values of the KS statistic at 5% and 10% level are 1.328 and 1.194, respectively. 
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hypothesis that jointly, players in each group are behaving according to 

equilibrium. 

Curiously, the results of junior players contradict the original conjecture we 

had before running the empirical tests that junior players might not play minimax 

as well as adult players due to limited rationality. Nevertheless, the results of both 

the Pearson joint test and the KS test so far indicate the validity of the equilibrium 

prediction for equal winning probability. These are consistent with Walker and 

Wooders (2001). 

 4.2 Test of Serial Independence 

We next examine the serial independence of players’ serve choices. For each 

point game i, let { }i
nn

iii
i
R

i
L

s,....,s,ss += 21  be the list of direction of serves in the order 

observed, where { }R,Lsi
n ∈  is the direction of the nth serve, i

Ln  ( i
Rn ) is the 

number of serves to the left (right), and i
R

i
L nn +  is the total number of serves. 

The examination of serial independence we conduct is runs test, where a run is the 

maximal string of identical serve directions.12 Denote the number of runs in is  

as ir . Under the null hypothesis of serial independence, the probability of having 
ir  runs in a sequence with i

Ln  serves to the left and i
Rn  serves to the right is 

denoted as f ( ir ; i
Ln , i

Rn ). Let F ( ir ; i
Ln , i

Rn ) be the probability of having ir  or 

fewer runs. The null hypothesis of serial independence in point game i is rejected 

at 5% significance level if either F ( ir ; i
Ln , i

Rn ) 025.0<  or 

−1 F ( ir -1; i
Ln , i

Rn ) 025.0< , where the first inequality corresponds to the case that 

the probability of having ir  or fewer runs is less than 2.5% (too few runs) and 

the second corresponds to the case that the probability of having ir  or more runs 

is less than 2.5% (too many runs). Walker and Wooders (2001) find that there are 

                                                 
12 For instance, if is ={LRLLLLR}, then there are four runs in the list. If we use commas to separate 

runs, we have is ={L,R,LLLL,R}. 
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too many runs in players’ choices and this leads to the conclusion that even the 

best tennis players tend to switch from one direction to another too often. In 

comparison with their finding, our result is quite different. Only fewer point 

games in our data can the null hypothesis be rejected. We report the results in 

Tables 4 to 6. 

For each point game i, in addition to the same basic information as reported in 

Tables 1 to 3, we report the number of runs, the CDF of having ir −1 or fewer 

runs, and the CDF of having ir  or fewer runs. At 5% significance level, there are 

2 rejections for male players because of too many runs, 1 for female because of 

too many runs, and 1 for junior because of too few runs. At 10% significance level, 

there are 4 rejections for male players because of too many runs, 1 for female 

because of too many runs, and 4 for junior (2 for too many runs and 2 for too few 

runs). It is interesting to note that among all the rejections, only junior players 

violate the null hypothesis because of too few runs (they switch directions too 

infrequently). As for the joint test, the KS statistics of the joint null hypothesis that 

the serves are serially independent within a certain group are 0.867 for male, 

0.831 for female and 0.597 for junior. The p-values of these KS statistics are all 

far from the rejection region under the conventional significance level13. Figure 3 

offers a visual comparison of the empirical CDF and the predicted CDF under the 

null hypothesis.14 In brief, we cannot reject the null hypothesis that jointly, 

choices in each group are serially independent. 

4.3 The Power of Tests 

So far we have basically applied the tests in Walker and Wooders (2001) to our 

                                                 
13 For the critical value of the KS statistic, please refer to footnote 11. 
14 Following Walker & Wooders (2001), the joint KS statisitc is constructed by picking a random draw 

id  from the uniform distribution U [ F ( 1−ir ; i
Ln , i

Rn ), F ( ir ; i
Ln , i

Rn )] in each point game i. Under 

the null hypothesis of serial independence in point game i, the statistic id  is distributed as [ ]10,U . 
The average value of KS statistic we report here is obtained by performing ten thousand trials with 
such random draws for each point game. 
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data and generally confirmed the validity of the minimax hypothesis in these tests. 

We now reexamine these test results with a critical eye. We first turn to the issue 

regarding the power of the tests. We concentrate on the Pearson joint test of equal 

winning probability as Walker and Wooders (2001) did. Without loss of generality, 

we take the male data as an example to see whether the test has the power to 

detect deviations from the minimax play by running Monte Carlo simulations. 

Consider first a 2×2 point game model where 53.0=LLπ , 8830.LR =π , 

7920.RL =π , 3270.RR =π  (see Figure 4).15 If players follow their minimax 

strategies, this model predicts that servers will serve to the receivers’ left side with 

probability 0.568. This is to match that in our male tennis data, 56.8% of all serves 

are indeed to the left of the receivers. The probability that the servers will win a 

point (i.e., the game’s value) is 0.643. This again is to match that in our male 

tennis data servers indeed win 64.3% of all points. Let θ  be the proportion that 

receivers choose to play L, then under the null hypothesis one can calculate that 

68.0=θ . The Pearson statistic ∑ =
maleN

i
iQ1  is distributed as chi-square with 40 

degrees of freedom. To depict the power function, we randomly generate ten 

thousand times for 40 point games at any fixed value of θ , evaluate the servers’ 

probability of winning across L and R by the payoff matrix, calculate the 

individual test statistic iQ , and then compute the frequency where the Pearson 

joint test rejects the null hypothesis under 5% significance level (i.e., an estimate 

of the power of the test under θ ). This process is performed for many values of 

θ . 

On the basis of the above payoff matrix, the Pearson joint test has good power 

against alternative hypothesis when the true value of θ  differs from 0.68. This is 

consistent with Walker and Wooders (2001). 

                                                 
15 The payoff matrix satisfies the Mixed Strategy Condition so that there exists a unique mixed strategy 
equilibrium in this example. 
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However, to sort things out, we consider another 2×2 point game with the 

following parameters: 620.LL =π , 6920.LR =π , 6730.RL =π , 5790.RR =π  

(see Figure 5). Based on this payoff matrix, the minimax theory implies that 

servers serve to the left with probability 0.568 and win a point with probability 

0.643. The null hypothesis for receivers’ choosing L is still 0.68. Nevertheless, a 

quick glance at the power function shows that it does poorly in detecting 

deviations from the minimax play. Since the payoff matrix of any point games is 

not observable, we are led to question that non-minimax behaviors may also lead 

to acceptance of equal winning probability of server’s left-or-right choices. 

To make the point clearer, note that as econometricians, we only observe the 

value of the game and the proportion of servers’ serves to the left. The payoff 

matrix is not directly observable. When applying Monte Carlo simulations, given 

the observable value of the game and the proportion of servers’ serves to the left, 

we actually have latitude in choosing two additional parameters (θ , LLπ ) due to 

limited information in the payoff matrix.16 If we focus only on the parameter θ  

but ignore the fact that LLπ  can also vary, the power function thus depicted can 

be misleading. In other words, the surface that relates equal winning probabilities 

to the minimax play could be quite flat around the equilibrium strategy for some 

payoff matrix. In statistical terminology, tests based on equal winning probability 

may lack power when some certain plausible alternative hypothesis is 

considered.17 Similar remarks can be made about tests on female and junior 

groups. 

4.4 Re-evaluation of the I.I.D Hypothesis 

                                                 
16 Let p, V denote the probability of servers’ choosing L and the game’s value respectively. Given these 
observable variables—p and V, we can thus derive LRπ , RLπ  and RRπ  given any pair (θ , LLπ ) as 

follows: 
θ

θππ
−

⋅−
=

1
LL

LR
V , 

p
pV LL

RL −
⋅−

=
1
π

π , 
)1()1(
)(

1 p
pVV LL

RR −⋅−
⋅−⋅

−
−

=
θ

πθ
θ

π . 
17 This lack of power will become severe when the test of equal winning probabilities is performed 
individually on each point game. 



 12

Although our results based on the runs tests are in favor of serial independence 

and thus different from those in Walker and Wooders (2001), yet we argue that the 

question of serial independence should be further addressed. Specifically, the i.i.d. 

hypothesis implies that the current serve choice should not only be independent of 

past serve choices, but also have nothing to do with any other history of past plays, 

including how successful past choices are. In other words, passing the runs test is 

necessary but not sufficient to pass the i.i.d. hypothesis. For this reason, we further 

examine whether past serve choices, the performances of past serve choices and 

other possible variables concerning the history of past plays might play a role in 

determining the current serve choice. 

To address this, we follow Brown and Rosenthal (1990) and propose a probit 

equation (Equation No.1) for each point game. The dependent variable is a 

dichotomous indicator of the server’s choice of direction. Denote this by the 

dummy variable D (short for “direction”). D takes the value of 1 if the server 

chooses R and 0 if the server chooses L. The independent variables we try are the 

following: the first and second lags of the server’s choice of direction; the first and 

second lagged indicators of whether the server wins that point (denoted by W, 

short for “win,” which takes the value of 1 if the server wins the point and 0 if he 

loses); the first and second lags for the product of D and W; and a time trend 

denoted by T which measures the number of serves that has occurred till now.18 

The results are shown in the first panel of Table 7. 

We perform five tests here. In the first test, the null hypothesis is that all the 

explanatory variables are jointly insignificant. It is rejected for four point games at 

5% level (eleven at 10%). Other tests help identify the source of the rejection of 

                                                 
18 We have tried to include additional lags (the third or fourth lags) in the probit equation. We find that 
these additional lags are insignificant in explaining the current serve choices. Therefore, we only report 
the result with two lags. 
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the joint null hypothesis. In the second test we consider whether servers’ past 

choices of direction affect their current choice. The third test tackles whether 

previous winning or losing experience may have an impact on the current choice. 

The fourth test measures the influence of the interaction terms. Finally the fifth 

test deals with the case whether servers raise the probability of serving to a certain 

direction as time goes by. Considering all the five tests reported in the first panel 

of Table 7, in twenty-one point games the impact of at least one lagged indicator is 

significantly different from zero at 10% significance level, suggesting a violation 

of the i.i.d. hypothesis. At 5% significance level, there are eleven rejections. This 

amounts to 19.4% at 10% significance level and 11.1% at 5%. To this point, it 

casts doubt in the earlier result in which passing the runs test is interpreted as 

passing serial independence. 

Recall that the runs test in section 4.2 measures whether there are too many or 

too few runs in the server’s ordered list of the direction of serves. Loosely 

speaking, the idea behind the runs test corresponds well to that behind the second 

test in Equation No. 1. This is because the second test assesses whether the current 

serve choices depend on the previous serve choices. Conceptually, if the previous 

choice has a negative impact on the current serve direction, then too many runs 

may result and vice versa. On the other hand, if the previous choice has a positive 

effect on the current serve direction, then too few runs may result and vice versa. 

This is generally confirmed here. There are only two rejections at 5% significance 

level and three at 10% in the second test.19 Recall that the runs test also fares 

quite well in section 4.2.20 These together suggest that we may drop the past serve 
                                                 
19 Note how different the picture is. If we examine the i.i.d. hypothesis by looking at the second test 
(which, as argued, is very similar to the runs test) in Equation No. 1, since there are only three 
rejections at 10%, we may be led to accept the null hypothesis. If we instead look at the entire five tests 
in Equation No. 1, the rejections rise up to twenty-one. 
20 Note that in point games (point games 22, 34 for male and 3 for male) where the null hypothesis in 
the second test is rejected at 10%, the null hypothesis in the runs test is either rejected (point game 34 
for male) or at the margin of rejection (point games 22 for male and 3 for female). 
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choices from the regression. This can help increase the degree of freedom and 

may be especially important for the analysis of the junior data because they are 

relatively shorter. We therefore formulate another probit equation (equation No.2) 

by dropping the first and second lags of serve choices. The second panel of Table 

7 summarizes this result. In comparison with equation No.1, the number of 

rejection rises up in each test, especially for junior group. There are twenty-seven 

rejections at 10% significance level and sixteen at 5%. This translates to 25% at 

10% significance level and 14.8% at 5%. 

To summarize, section 4.3 addresses the potential problem that the Pearson 

test may lack power and section 4.4 demonstrates the dependence of the current 

serve direction on the history of past plays. We thus tentatively conclude that there 

might be some alternative hypothesis that can better explain the data than the 

minimax hypothesis. Since results in Table 7 suggest that past plays do affect 

current ones, we therefore turn to a more elaborate analysis in which we propose 

various rules to model this influence. We aim at characterizing the effect of 

various past plays on the current serve choice by different rules. Since various 

learning models in the literature provide good frameworks under which past 

behaviors affect current ones, we next turn to a brief discussion about how to 

apply the concept of learning models to our data (where payoff information is very 

limited). The discussion gives us a guideline to propose the rules that we will later 

consider. Therefore, some of the rules we propose in the following have the flavor 

of learning embedded. Moreover, by proposing several rules and discussing how 

simple or sophisticated they are, after we select the best rule in fitting players’ 

serve choices, we can categorize players’ “level of simplicity.” This will 

ultimately lead us to address whether for different group of players, the best rule 

may differ in a certain interesting way. 
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5. Various Rules in Characterizing Players’ Choices 

5.1 Learning Models and Rules 

Learning models can vary in the way that they focus on different 

psychological effects. To a certain degree, they may generate different results in 

predicting people’s behavior. Despite the variety of learning models, they can be 

classified into two broad branches: reinforcement-based models and belief-based 

models. 21  Reinforcement-based models assume that players’ strategies are 

reinforced by the corresponding payoffs they earn. The higher the payoffs are, the 

more strongly their choices are reinforced later. Therefore, players care about the 

payoffs from different strategies and it is the relative payoffs sufficient in guiding 

them to make choices. They do not explicitly form beliefs about what other people 

will do once the information about their payoffs is realized. Belief-learning 

models, on the other hand, require that players hold beliefs by observing the 

previous plays of other players. Given these beliefs, they then choose best 

responses to maximize their expected payoffs. Despite of the difference between 

them, some authors argue that reinforcement-based and belief-based models might 

be different only on the surface. The nature of the two learning models, however, 

can be quite similar.22  In short, both learning models provide considerable 

insights in explaining players’ behaviors in strategic situations. 

It would seem straightforward to apply either model to our data. However, 

several obstacles stand in the way of such a foolhardy application. When applying 

belief-based models, not only every entry in the payoff matrix of a server has to be 

known in order to calculate his best response, but also the receiver’s choices have 
                                                 
21 Several papers deal with one kind of model only. Cheung and Friedman (1997) estimate a fictitious 
play model on individual-level data while Roth and Erev (1995) posit a reinforcement model in several 
games. The studies of belief or reinforcement learning have their own explanatory power. Some studies 
compare the model of reinforcement with that of fictitious play, including Ho and Weigelt (1996), and 
Battalio, Samuelson and Van Huyck (1997). Overall, comparisons appear to favor reinforcement in 
constant-sum games and belief learning in coordination games (see Camerer and Ho (1999)). 
22 See Camerer and Ho (1999) and Hopkins (2002). 
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to be observed to us as econometricians so that we can estimate how the server 

develops his belief. However, the payoff matrix in a tennis match is not directly 

observable. Moreover, unlike goalies’ choices in penalty kicks, receivers’ guesses 

about servers’ choices can hardly be told at all. Overall, the information available 

to us as econometricians is quite low and partial. If we were to apply 

reinforcement-based models to the data, these problems still exist but may be less 

severe. Note that the spirit of reinforcement-based models is that when a strategy 

does well, it will be adopted more often later. Following this line, we can model 

players’ behaviors (with the essence of reinforcement learning) as follows. 

Whenever the server wins a point, this choice of serve direction will be reinforced. 

This corresponds well to the idea behind reinforcement learning when information 

is partial or low.23 

We now propose several rules following the discussion above. They can be 

divided into two general classes, based on whether the concept of reinforcement 

learning is involved. 

(1) Rules that reinforcement learning is not involved: We consider only one 

rule in this class. That is, servers may simply keep track of past choices of 

direction and these past choices may affect their current choices. For this simple 

rule, we regress the variable D on its own lags. The spirit of this rule resembles 

that underlying the runs test in section 4.2. This is the first rule we consider. 

(2) Rules that reinforcement learning is involved: We consider three rules in 

this class. Servers may be influenced by whether serving to a particular direction 

in the past wins.24 To capture this, we construct two dummy variables. The 
                                                 
23  A similar idea has been used to describe subjects’ behaviors in environments with partial 
information by Ho, Camerer and Wang (2002). 
24 For instance, a server may care about the performance when serving to the receiver’s “weaker” side. 
Recall that in section 4.4, the interaction terms in estimating equations No. 1 and 2 take the value of 1 
if “the serve is to the right and wins.” There are some rejections in the null hypothesis, indicating the 
interaction terms may influence the current serve direction. These rejections also motivate our analysis 
here. 
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variable RW, short for “right and win,” takes the value of 1 if the serve is R and 

the server wins. It takes the value of zero otherwise. Symmetrically, the variable 

LW, short for “left and win,” takes the value of 1 if and only if the serve is L and 

the server wins. The second rule we try is to regress D on lags of RW. This is to 

examine if the server is influenced by whether serving to R wins in the past. 

Symmetrically, the third rule we try is to regress D on lags of LW. Lastly, we 

propose one more rule. If players are even more sophisticated, they may be 

motivated to play R either because they win a point by serving to the right or they 

lose that point by serving to the left.25 We construct another dummy variable 

WD, standing for winning difference, to capture this. WD takes the value of 1 

when a server serves to the right and wins that point, or he serves to the left and 

loses that point. It takes the value of 0 otherwise. In the fourth rule, we regress D 

on lags of WD. 

For any ∈X {D, RW, LW, WD}, let itX  be that variable at the tth serve of 

point game i. Denote itX ( s− ) the sth lag of the variable itX . For instance, 

5iD ( 3− ) is the third lag of D at the fifth serve in point game i. More specifically, 

5iD ( 3− ) 1=  if the direction of serve at the second serve in point game i is to the 

right and 0 otherwise. In each point game i, a stochastic decision formula that 

allows for a catch-all intercept is studied. Let G [ ]⋅  be the probit CDF. Recall that 

for rules 1 to 4 above, we propose to regress D on lags of ∈X {D, RW, LW, 

WD}. Therefore, for each rule, at the tth serve, R will be chosen with probability 

Pr ( imiiit ,...,,D ββα 11= ) G= [ ∑+ =
m
s itisi X1βα ( s− )], 

where X corresponds to the explanatory variable underlying that particular rule, 

tm ≤  reflects that the server is affected by what has happened up to m serves ago, 

                                                 
25 In Mookherjee and Sopher (1994), a strategy is motivated (or vindicated) either when it goes well or 
the other strategy does badly. 
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iα  is a catch-all intercept, and isβ  measures how importantly itX ( s− ) affects 

the current serve direction itD . Note that iα  describes a player’s idiosyncratic 

tendency for serving to the right. 

5.2 Estimation Procedure 

Our estimation strategy is as follows. First, for each rule, we endogenously 

determine how many lags to include in the regressors. Second, we select which 

rule, out of rules 1 to 4, best fit the data. This rule will be dubbed the best rule. 

Finally, we compare the best rule to the equilibrium prediction. That is, we 

demonstrate whether the best rule can explain the data better than the equilibrium 

theory. Since at all steps, some comparison and hence selection has to be made, 

we therefore use Akaike information criterion (AIC henceforth) and Schwarz 

criterion (SC henceforth) as the selection criteria. We first explain these criteria 

and then the estimation procedure step by step. 

Since the log likelihood cannot decrease when more regressors are introduced, 

to correct this, the AIC and SC, based on the negative of the log likelihood, both 

include a penalty term depending on the number of the regressors. The AIC is 

N/kN/LL 22 +−  and the SC is kN/LL +− 2 ( Nlog ) N/  where k is the 

number of estimated parameters, LL is the log likelihood, and N is the number of 

observations. Both criteria are to provide a measure that strikes a balance between 

the measure of goodness-of-fit and the parsimonious specification of the model. 

The SC asks more penalties relative to the AIC. 

For each rule, to endogenously determine how many lags to include in the 

regressors, we search for the optimal number of m that minimizes each criterion 

respectively. We do so by increasing the value of m until the AIC increases 

steadily and repeat the same procedure for the SC. In our data, we find that for 

most players, the optimal number of m is predominantly less than 3, reflecting that 

servers are only affected by recent history. 



 19

To sort out which rule can better predict players’ choices, since we have 

determined the optimal m for each rule, we simply compare the AIC (SC) values 

for rules 1 to 4. The rule that minimizes the AIC (SC) value is the best rule under 

the AIC (SC) respectively. 

Finally, to make a comparison to the equilibrium prediction, we run an 

additional regression where the only regressor is the catch-all intercept ( iα ) for 

each point game i. This amounts to the equilibrium prediction where the 

probability of choosing R is constant, therefore independent of any past history. 

We then compare the AIC (SC) value of the best rule with the AIC (SC) value of 

the equilibrium. 

5.3 Minimax or Simple Rules? 

We report the results in Tables 8 to 10. For each point game, we report the best 

rule under the AIC and that under the SC in the last column. The associated AIC 

and SC values are reported in the second to last column. In the third to last column 

we report the AIC and SC values for the equilibrium. In summary, according to 

the AIC, the best rule fits better than the equilibrium prediction in a significant 

number of point games. In twenty-seven out of forty point games for male players, 

twenty-two out of thirty-six for female players, and twenty-five out of thirty-two 

for junior players, the best rules fit better than the equilibrium prediction. In total, 

in 68.5% of the 108 point games, the best rules perform better than the 

equilibrium prediction. Since the SC penalizes models with more regressors more 

heavily than the AIC and in the regression for testing the equilibrium, the only 

regressor is the constant intercept term iα , it is no wonder that the proportion 

where the best rules outperform the equilibrium will be reduced if we use the SC 

instead. Under the SC, in 36.1% of the point games, the best rules outperform the 

equilibrium prediction. In particular, in seven out of forty for male players, fifteen 

out of thirty-six for female players, and seventeen out of thirty-two for junior 
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players, best rules fit the data better than the equilibrium prediction. We take this 

as strong evidence against the equilibrium. 

Moreover, even if the equilibrium prediction outperforms the best rule in a 

point game, it is still possible that the set of coefficients iβ s’ for the best rule is 

jointly significantly different from zero, i.e. past history does affect the current 

serve direction. To highlight this, we test, for the best rule in each point game, 

whether the set of coefficients iβ s’ is jointly different from zero. Table 11 

summarizes this result under both 5% and 10% significance levels applying either 

information criterion. It suggests that the statistical significance of the past history 

in explaining players’ behavior is the rule rather than an exception. There are 

53.7% of point games where the corresponding iβ s’ are significant at 10% level 

under the AIC, 48.1% under the SC. At 5% level, 37% of point games exhibits this 

significance under the AIC, 30.6% under the SC. This lends additional support to 

the idea that players are indeed affected by the past plays and therefore describing 

their choices by the various simple rules we consider is appropriate. 

5.4 Junior vs. Adult Players 

As a first cut, it is fair to say that players whose choices are best characterized 

by the equilibrium are sophisticated enough so that all the rationality assumptions 

required by the minimax hypothesis are met. Then the four rules we consider can 

be thought of exhibiting different degrees of “sophistication.” To begin with, to 

implement the first rule where reinforcement is not involved, players need to keep 

track of their past serve choices only. On the other hand, to use the three rules 

where reinforcement is involved (rules 2 to 4), they not only need to keep track of 

their past serve choices but also the winning record or even the difference in 

winning records of past choices. This is more demanding. If we interpret the 

degrees of sophistication this way, it brings in an interesting question: Are junior 

players, in any sense, more or less “simple” than adult players? 
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We make an attempt to answer this question as follows. As discussed above, 

we divide all the rules and the equilibrium prediction into three classes, depending 

on the degree of simplicity or sophistication involved. We treat the first rule as the 

“Low” class, presumably because it is simpler. Rules 2 to 4 are categorized as the 

“Medium” class since more sophistication is necessary in accordance with these 

rules. Finally, the equilibrium prediction is assigned to the “High” class. 

Based on Tables 8 to 10, we can assign each point game into either the “Low,” 

“Medium” or “High” class by comparing the AIC or SC values of the best rule 

with those of the equilibrium. If the point game is better characterized by the 

equilibrium than the best rule, then that point game is classified into the “High” 

class. On the other hand, if the point game is better characterized by the best rule 

than the equilibrium, then the point game is assigned to either the “Low” or 

“Medium” class depending on which class the best rule belongs to. For instance, 

for the first point game in male (Borg serving to McEnroe in the ad court in the 

1980 Wimbledon), the best rule, the 3rd rule, outperforms the equilibrium 

prediction under the AIC. Thus this point game is assigned to class “Medium” 

under the AIC since the 3rd rule is categorized into this class. We do this for every 

point game. Combining all the point games in male and female groups into one 

adult group, we make bar charts to compare junior players’ choices with adult 

players’ in Figure 6. Under the AIC, we find the proportion of players using 

“Medium” rules is highest for both junior and adult players. This is not very 

surprising since there are three rules in this class. More importantly, the 

distributions over the classes for adult players first order stochastic dominate those 

for junior players under both AIC and SC. For instance, by the AIC, the proportion 

of junior players classified into “Low” (rule 1) is 0.219, higher than that of adult 

players, which is 0.171. The proportion of junior players classified into “Medium” 

(rules 2 to 4) is 0.562, higher than that of adult players, which is 0.474. A similar 
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result holds under the SC. We then turn to the comparison between the 

distributions of classes of male and female players. Here the evidence is mixed. 

Under the AIC, the distribution of female players first order stochastic dominates 

that for male players. However, under the SC, the reverse holds, i.e. the 

distribution of male players first order stochastic dominates that of female players. 

Note how this is in sharp contrast to the Pearson test of equal winning 

probabilities where the number of rejections arises mostly for male players. 

 

6. Discussion 

6.1 Payoff Change within Point Games? 

Our study is based on the assumption that there is a fixed payoff matrix for 

every point game. In particular, the payoff matrix does not change with time in 

each point game. We now verify this assumption as below.  

The idea is as follows. A priori, we do not know when and whether the payoff 

matrix will change in a point game. Since there are several sets in a point game, 

we naturally focus on testing whether there is any payoff change from set to set 

instead. Recall that for each point, we only observe the server’s choice of direction 

and whether he wins that point. If the payoff does not change, the observed 

choices and outcomes should not change from set to set either. Following 

Chiappori, Levitt and Groseclose (2002),26 we run two separate regressions for 

this purpose. In one, we regress the server’s choice of direction on the constant 

and a collection of dummies characterizing which set the point is in. In the other, 

we regress whether the server wins the point on the constant and the same 

collection of set dummies. The null hypothesis is that the coefficients of the set 

                                                 
26 Chiappori, Levitt and Groseclose (2002) consider whether goalies are homogeneous. They basically 
regress four outcome variables (whether the kick is successful, whether the kicker shoots right, whether 
the kicker shoots in the middle, and whether the goalie jumps right) separately on goalie-fixed effects. 
The null hypothesis is therefore the goalie-fixed effects are jointly insignificant from zero.  
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dummies are jointly zero, reflecting no effect of the sets on servers’ choices and 

the outcomes of each point. At the 0.1 significance level, regarding whether the 

server wins the point, in seven out of 100 point games are the coefficients of the 

set dummies significant. For the server’s choice of direction, there are eleven out 

of 100 point games in which the null hypothesis is rejected.27 Admittedly, one 

may question whether the sets do affect the server’s choice of direction since there 

are eleven rejections whereas by chance, one would expect only ten. We therefore 

turn to conduct a joint likelihood ratio test where the null hypothesis is that the set 

dummies do not affect the server’s choice of direction in the 100 point games. The 

p-value is 0.184, which is not significant at any usual significance level.28 These 

results are thus consistent with the view that there is no statistically significant 

payoff change, at least from set to set. We further note that if we adopt a more 

cautious view to drop the point games where the coefficients of the set dummies 

are significant at 10% level in either regression, among the remaining point games, 

the relation that the distribution of rules characterizing the adult players’ behaviors 

first order stochastic dominates those of the junior players’ still holds.29 

6.2 Learning Minimax? 

Our results so far generally point to the direction that the minimax hypothesis 

should be more carefully considered. While doing so, we adopt the concept of 

reinforcement learning and propose several simple rules to account for the serial 

dependence in the data. A logical question is: even if the minimax hypothesis does 

                                                 
27 The total number of point games where we run these regressions is 100, because two junior matches 
are too short to do so. 
28 The null hypothesis implies that the statistic –2( ∑−∑ ==

N
i i

N
i i lL 11 ) has the asymptotic 2χ (d) 

distribution, where N denotes the total number of point games, iL  is the maximum log likelihood of 
the regression without the set dummies, il  is the maximum log likelihood of the regression with the 
set dummies, and d is the number of the estimated parameters in the regression with the set dummies. 
29 Under the AIC, the proportions of Low, Median and High for adult players are 0.206, 0.413 and 
0.381, while those of junior players are 0.3, 0.4 and 0.3, respectively. Under the SC, the proportions of 
Low, Median and High in adult players are 0.095, 0.191 and 0.714, while those of junior players are 0.2, 
0.4 and 0.4, respectively. 
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not fit the data well, can it describe players’ behaviors better in the later stage of a 

game when they have more experiences? In other words, players may “learn” to 

play minimax. To address this possibility, we take male tennis matches, which 

have longer observations, as an example and repeat some of our earlier analyses. 

As a first and preliminary attempt, we divide the data in each point game into the 

first half and the second half of the game, and perform the Pearson test of equal 

winning probability and the runs test on them separately. If the null hypotheses 

fare better in the second half of the game than in the first half, then it may be 

suggestive of some learning to play minimax. 

We find that the p-values of the Pearson joint statistic are 0.582 for the first 

half and 0.312 for the second half. The p-values of the KS statistic are 0.735 and 

0.709 for the first half and the second half respectively. As for the runs test, the 

p-values of the KS statistic are 0.046 for the first half and 0.35 for the second half. 

Therefore, among the three tests, there does not seem to be strong evidence in 

support of the difference in the first and second part of the game. We do not want 

to make too much out of this preliminary finding as dividing the data into two 

halves is quite arbitrary. 

 

7. Concluding Remarks 

While the theory of mixed strategy equilibrium has not been entirely 

consistent with the flurry of the empirical evidence from experimental settings 

involving human subjects in the past few decades, the empirical finding in Walker 

and Wooders (2001) undoubtedly makes a mark in testing the minimax hypothesis. 

However, our finding, from studying a broader natural data set in tennis, suggests 

that the minimax hypothesis should be further questioned. Not only should one 

examine the robustness of equal winning probability, but also the phenomenon of 

serial dependence needs to be re-addressed.  
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Since we do find evidence regarding impacts of past plays on current choices, 

we therefore turn to model this dependence by discussing how learning models 

can apply to our data and proposing several rules. When estimating various rules 

to account for players’ choices, we find that for a significant number of point 

games, the best rule outperform the equilibrium prediction. More interestingly, we 

demonstrate that junior players tend to adopt simpler rules than adult players do. 

Overall, we see our work as a primitive attempt in applying rules (or learning 

models) to field data. More elaborate empirical analyses seem imminent to 

improve our understanding of choices under strategic situations. 
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Figure 1 
The Tennis Court and A Typical Point Game 
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Figure 2 
KS Test for Equal Winning Probabilities 
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Figure 3 
KS Runs Tests for Serial Independence 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

KS Sta. = 0.867
Male 

KS Sta. = 0.831
Female

KS Sta. = 0.597
Junior



Figure 4 
The Power Function in Example 1 
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Figure 5 
The Power Function in Example 2 
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Figure 6 
The Distribution of Classes for Junior and Adult Players 
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Figure 7 
The Distribution of Classes for Male and Female Players 
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Table 1
Test of Equal Winning Probabilities in Male Tennis

            Serve Direction            Points Won            Win Rate
Index Match Server Court L R Total L R L R Pearson Sta.    p-Value

1 80 WIMBLEDON Borg Ad 15 74 89 10 51 0.667 0.689 0.029 0.864
2 80 WIMBLEDON Borg Deuce 32 57 89 26 36 0.813 0.632 3.174 0.075 **
3 80 WIMBLEDON McEnroe Ad 45 30 75 29 19 0.644 0.633 0.010 0.922
4 80 WIMBLEDON McEnroe Deuce 47 38 85 31 29 0.660 0.763 1.086 0.297
5 80 U.S. OPEN McEnroe Ad 42 36 78 23 27 0.548 0.750 3.450 0.063 **
6 80 U.S. OPEN McEnroe Deuce 60 28 88 38 16 0.633 0.571 0.309 0.579
7 80 U.S. OPEN Borg Ad 23 53 76 15 33 0.652 0.623 0.060 0.806
8 80 U.S. OPEN Borg Deuce 27 53 80 18 27 0.667 0.509 1.797 0.180
9 85 ROLAND GARROS Wilander Ad 36 12 48 23 8 0.639 0.667 0.030 0.862

10 85 ROLAND GARROS Wilander Deuce 18 36 54 10 18 0.556 0.500 0.148 0.700
11 85 ROLAND GARROS Lendl Ad 39 9 48 20 6 0.513 0.667 0.697 0.404
12 85 ROLAND GARROS Lendl Deuce 30 19 49 13 9 0.433 0.474 0.077 0.782
13 89 WIMBLEDON Becker Ad 32 31 63 29 16 0.906 0.516 11.743 0.001 *
14 89 WIMBLEDON Becker Deuce 41 25 66 29 15 0.707 0.600 0.805 0.370
15 89 WIMBLEDON Lendl Ad 50 35 85 27 23 0.540 0.657 1.166 0.280
16 89 WIMBLEDON Lendl Deuce 60 31 91 39 19 0.650 0.613 0.122 0.727
17 89 U.S. OPEN Becker Ad 48 10 58 31 4 0.646 0.400 2.090 0.148
18 89 U.S. OPEN Becker Deuce 44 27 71 27 15 0.614 0.556 0.234 0.629
19 89 U.S. OPEN Lendl Ad 34 22 56 19 16 0.559 0.727 1.617 0.203
20 89 U.S. OPEN Lendl Deuce 33 26 59 18 21 0.545 0.808 4.463 0.035 *
21 92 AUSTRALIAN OPEN Courier Ad 34 18 52 22 12 0.647 0.667 0.020 0.888
22 92 AUSTRALIAN OPEN Courier Deuce 30 20 50 20 12 0.667 0.600 0.231 0.630
23 92 AUSTRALIAN OPEN Edberg Ad 40 6 46 24 3 0.600 0.500 0.215 0.643
24 92 AUSTRALIAN OPEN Edberg Deuce 26 16 42 17 8 0.654 0.500 0.973 0.324
25 95 ROLAND GARROS Muster Ad 27 8 35 21 4 0.778 0.500 2.333 0.127
26 95 ROLAND GARROS Muster Deuce 30 8 38 23 5 0.767 0.625 0.654 0.419
27 95 ROLAND GARROS Chang Ad 38 2 40 22 0 0.579 0.000 2.573 0.109
28 95 ROLAND GARROS Chang Deuce 21 24 45 16 12 0.762 0.500 3.268 0.071 **
29 95 U.S. OPEN Sampras Ad 19 38 57 11 29 0.579 0.763 2.054 0.152
30 95 U.S. OPEN Sampras Deuce 30 28 58 20 24 0.667 0.857 2.870 0.090 **
31 95 U.S. OPEN Agassi Ad 41 13 54 31 11 0.756 0.846 0.463 0.496
32 95 U.S. OPEN Agassi Deuce 35 25 60 21 14 0.600 0.560 0.096 0.757
33 00 AUSTRALIAN OPEN Agassi Ad 30 25 55 19 12 0.633 0.480 1.304 0.254
34 00 AUSTRALIAN OPEN Agassi Deuce 32 28 60 23 21 0.719 0.750 0.075 0.785
35 00 AUSTRALIAN OPEN Kafelnikov Ad 28 24 52 15 14 0.536 0.583 0.119 0.730
36 00 AUSTRALIAN OPEN Kafelnikov Deuce 31 27 58 21 15 0.677 0.556 0.910 0.340
37 01 WIMBLEDON Ivanisevic Ad 48 26 74 30 21 0.625 0.808 2.628 0.105
38 01 WIMBLEDON Ivanisevic Deuce 60 23 83 41 17 0.683 0.739 0.246 0.620
39 01 WIMBLEDON Rafter Ad 27 32 59 20 24 0.741 0.750 0.007 0.935
40 01 WIMBLEDON Rafter Deuce 31 33 64 22 23 0.710 0.697 0.012 0.911

Joint Test 1414 1076 2490 914 689 0.646 0.640 54.157 0.067

* denotes rejection of equal winning probability at 5% level.
** denotes rejection of equal winning probability at 10% level.



Table 2
Test of Equal Winning Probabilities in Female Tennis

            Serve Direction            Points Won             Win Rate
Index Match Server Court L R Total L R L R Pearson Sta.    p-Value

1 85 AUSTRALIAN OPEN Navratilova Ad 21 20 41 17 13 0.810 0.650 1.328 0.249
2 85 AUSTRALIAN OPEN Navratilova Deuce 22 14 36 12 4 0.545 0.286 2.338 0.126
3 85 AUSTRALIAN OPEN Evert Ad 18 16 34 9 8 0.500 0.500 0.000 1.000
4 85 AUSTRALIAN OPEN Evert Deuce 5 32 37 2 17 0.400 0.531 0.298 0.585
5 87 WIMBLEDON Navratilova Ad 21 7 28 17 6 0.810 0.857 0.081 0.776
6 87 WIMBLEDON Navratilova Deuce 29 6 35 17 3 0.586 0.500 0.151 0.698
7 87 WIMBLEDON Graf Ad 13 16 29 7 11 0.538 0.688 0.677 0.411
8 87 WIMBLEDON Graf Deuce 11 20 31 8 13 0.727 0.650 0.194 0.660
9 87 U.S. OPEN Navratilova Ad 25 12 37 14 9 0.560 0.750 1.244 0.265

10 87 U.S. OPEN Navratilova Deuce 24 10 34 16 9 0.667 0.900 1.975 0.160
11 87 U.S. OPEN Graf Ad 13 11 24 8 6 0.615 0.545 0.120 0.729
12 87 U.S. OPEN Graf Deuce 12 14 26 6 10 0.500 0.714 1.254 0.263
13 92 ROLAND GARROS Seles Ad 34 15 49 23 6 0.676 0.400 3.293 0.070 **
14 92 ROLAND GARROS Seles Deuce 29 22 51 16 13 0.552 0.591 0.078 0.780
15 92 ROLAND GARROS Graf Ad 33 27 60 14 16 0.424 0.593 1.684 0.194
16 92 ROLAND GARROS Graf Deuce 36 27 63 17 17 0.472 0.630 1.539 0.215
17 92 U.S. OPEN Seles Ad 13 13 26 7 6 0.538 0.462 0.154 0.695
18 92 U.S. OPEN Seles Deuce 18 9 27 13 7 0.722 0.778 0.096 0.756
19 92 U.S. OPEN Sanchez Ad 9 25 34 2 10 0.222 0.400 0.916 0.339
20 92 U.S. OPEN Sanchez Deuce 21 12 33 12 8 0.571 0.667 0.290 0.590
21 97 WIMBLEDON Hingis Ad 26 14 40 14 8 0.538 0.571 0.040 0.842
22 97 WIMBLEDON Hingis Deuce 15 29 44 8 16 0.533 0.552 0.013 0.908
23 97 WIMBLEDON Novotna Ad 14 20 34 8 12 0.571 0.600 0.028 0.868
24 97 WIMBLEDON Novotna Deuce 29 14 43 13 10 0.448 0.714 2.686 0.101
25 99 ROLAND GARROS Graf Ad 22 21 43 13 10 0.591 0.476 0.568 0.451
26 99 ROLAND GARROS Graf Deuce 23 20 43 14 12 0.609 0.600 0.003 0.954
27 99 ROLAND GARROS Hingis Ad 36 9 45 14 6 0.389 0.667 2.250 0.134
28 99 ROLAND GARROS Hingis Deuce 32 18 50 17 10 0.531 0.556 0.027 0.869
29 00 U.S. OPEN V. Williams Ad 11 21 32 5 14 0.455 0.667 1.347 0.246
30 00 U.S. OPEN V. Williams Deuce 17 20 37 10 13 0.588 0.650 0.149 0.699
31 00 U.S. OPEN Davenport Ad 14 14 28 8 11 0.571 0.786 1.474 0.225
32 00 U.S. OPEN Davenport Deuce 10 21 31 4 12 0.400 0.571 0.797 0.372
33 02 AUSTRALIAN OPEN Capriati Ad 13 29 42 6 16 0.462 0.552 0.293 0.588
34 02 AUSTRALIAN OPEN Capriati Deuce 20 22 42 11 13 0.550 0.591 0.072 0.789
35 02 AUSTRALIAN OPEN Hingis Ad 33 16 49 17 6 0.515 0.375 0.850 0.357
36 02 AUSTRALIAN OPEN Hingis Deuce 26 23 49 16 9 0.615 0.391 2.452 0.117

Joint Test 748 639 1387 415 370 0.555 0.579 30.758 0.716

* denotes rejection of equal winning probability at 5% level.
** denotes rejection of equal winning probability at 10% level.



Table 3
Test of Equal Winning Probabilities in Junior Tennis

            Serve Direction             Points Won             Win Rate
Index Match Server Court L R Total L R L R Pearson Sta.  p-Value

1 96 AVVENIRE TOURNAMENT Middleton Ad 17 10 27 11 5 0.647 0.500 0.564 0.453
2 96 AVVENIRE TOURNAMENT Middleton Deuce 22 11 33 17 7 0.773 0.636 0.688 0.407
3 96 AVVENIRE TOURNAMENT Kalvaria Ad 21 8 29 12 4 0.571 0.500 0.120 0.730
4 96 AVVENIRE TOURNAMENT Kalvaria Deuce 11 15 26 8 7 0.727 0.467 1.766 0.184
5 00 WIMBLEDON Salerni Ad 8 8 16 3 4 0.375 0.500 0.254 0.614
6 00 WIMBLEDON Salerni Deuce 8 9 17 3 7 0.375 0.778 2.837 0.092 **
7 00 WIMBLEDON Perediynis Ad 6 8 14 2 4 0.333 0.500 0.389 0.533
8 00 WIMBLEDON Perediynis Deuce 10 6 16 3 1 0.300 0.167 0.356 0.551
9 02 AVVENIRE TOURNAMENT Gonzalez Ad 13 11 24 5 7 0.385 0.636 1.510 0.219

10 02 AVVENIRE TOURNAMENT Gonzalez Deuce 9 13 22 6 4 0.667 0.308 2.764 0.096
11 02 AVVENIRE TOURNAMENT Sanchez Ad 15 6 21 7 3 0.467 0.500 0.019 0.890
12 02 AVVENIRE TOURNAMENT Sanchez Deuce 13 9 22 4 2 0.308 0.222 0.196 0.658
13 03 AUSTRALIAN OPEN (Qrt) Baqhdatis Ad 9 7 16 9 4 1.000 0.571 4.747 0.029 *
14 03 AUSTRALIAN OPEN (Qrt) Baqhdatis Deuce 10 12 22 9 9 0.900 0.750 0.825 0.364
15 03 AUSTRALIAN OPEN (Qrt) Evans Ad 12 8 20 5 5 0.417 0.625 0.833 0.361
16 03 AUSTRALIAN OPEN (Qrt) Evans Deuce 18 6 24 12 2 0.667 0.333 2.057 0.151
17 03 AUSTRALIAN OPEN (2nd) Bauer Ad 19 12 31 11 6 0.579 0.500 0.185 0.667
18 03 AUSTRALIAN OPEN (2nd) Bauer Deuce 6 27 33 5 17 0.833 0.630 0.917 0.338
19 03 AUSTRALIAN OPEN (2nd) Kerber Ad 28 12 40 13 3 0.464 0.250 1.607 0.205
20 03 AUSTRALIAN OPEN (2nd) Kerber Deuce 21 20 41 12 11 0.571 0.550 0.019 0.890
21 03 AUSTRALIAN OPEN (2nd) Dellacqua Ad 18 7 25 15 5 0.833 0.714 0.446 0.504
22 03 AUSTRALIAN OPEN (2nd) Dellacqua Deuce 21 6 27 15 3 0.714 0.500 0.964 0.326
23 03 AUSTRALIAN OPEN (2nd) Kim Ad 6 28 34 4 17 0.667 0.607 0.074 0.785
24 03 AUSTRALIAN OPEN (2nd) Kim Deuce 13 21 34 8 10 0.615 0.476 0.624 0.429
25 03 AUSTRALIAN OPEN (2nd) Scherer Ad 11 7 18 7 5 0.636 0.714 0.117 0.732
26 03 AUSTRALIAN OPEN (2nd) Scherer Deuce 11 9 20 6 6 0.545 0.667 0.303 0.582
27 03 AUSTRALIAN OPEN (2nd) Cvetkovic Ad 6 6 12 4 3 0.667 0.500 0.343 0.558
28 03 AUSTRALIAN OPEN (2nd) Cvetkovic Deuce 6 7 13 5 4 0.833 0.571 1.040 0.308
29 03 AUSTRALIAN OPEN (2nd) Tsonga Ad 11 5 16 10 4 0.909 0.800 0.374 0.541
30 03 AUSTRALIAN OPEN (2nd) Tsonga Deuce 8 10 18 6 7 0.750 0.700 0.055 0.814
31 03 AUSTRALIAN OPEN (2nd) Feeney Ad 14 6 20 7 3 0.500 0.500 0.000 1.000
32 03 AUSTRALIAN OPEN (2nd) Feeney Deuce 12 8 20 4 6 0.333 0.750 3.333 0.068 **

Joint Test 413 338 751 248 185 0.600 0.547 30.327 0.551

* denotes rejection of equal winning probability at 5% level.
** denotes rejection of equal winning probability at 10% level.



Runs Test in Male Tennis

           Serve Direction Runs
Index Match Server Court L R Total F(    -1 ) F(    )

1 80 WIMBLEDON Borg Ad 14 70 84 27 0.766 0.927
2 80 WIMBLEDON Borg Deuce 31 51 82 40 0.495 0.584
3 80 WIMBLEDON McEnroe Ad 42 29 71 42 0.939 0.963
4 80 WIMBLEDON McEnroe Deuce 44 34 78 47 0.951 0.971 **
5 80 U.S. OPEN McEnroe Ad 40 35 75 38 0.422 0.516
6 80 U.S. OPEN McEnroe Deuce 57 28 85 32 0.043 0.067
7 80 U.S. OPEN Borg Ad 22 51 73 32 0.475 0.570
8 80 U.S. OPEN Borg Deuce 26 46 72 31 0.168 0.243
9 85 ROLAND GARROS Wilander Ad 36 12 48 18 0.285 0.396
10 85 ROLAND GARROS Wilander Deuce 18 36 54 26 0.563 0.669
11 85 ROLAND GARROS Lendl Ad 39 9 48 19 0.903 1.000
12 85 ROLAND GARROS Lendl Deuce 30 19 49 27 0.748 0.839
13 89 WIMBLEDON Becker Ad 32 31 63 32 0.400 0.502
14 89 WIMBLEDON Becker Deuce 41 25 66 28 0.116 0.173
15 89 WIMBLEDON Lendl Ad 50 35 85 45 0.698 0.773
16 89 WIMBLEDON Lendl Deuce 60 31 91 44 0.650 0.725
17 89 U.S. OPEN Becker Ad 48 10 58 15 0.076 0.184
18 89 U.S. OPEN Becker Deuce 44 27 71 37 0.693 0.781
19 89 U.S. OPEN Lendl Ad 34 22 56 29 0.585 0.693
20 89 U.S. OPEN Lendl Deuce 33 26 59 28 0.245 0.337
21 92 AUSTRALIAN OPEN Courier Ad 34 18 52 32 0.988 0.994 *
22 92 AUSTRALIAN OPEN Courier Deuce 30 20 50 29 0.850 0.912
23 92 AUSTRALIAN OPEN Edberg Ad 40 6 46 11 0.213 0.529
24 92 AUSTRALIAN OPEN Edberg Deuce 26 16 42 22 0.135 0.253
25 95 ROLAND GARROS Muster Ad 27 8 35 15 0.672 0.878
26 95 ROLAND GARROS Muster Deuce 30 8 38 14 0.479 0.615
27 95 ROLAND GARROS Chang Ad 38 2 40 5 0.146 1.000
28 95 ROLAND GARROS Chang Deuce 21 24 45 29 0.940 0.968
29 95 U.S. OPEN Sampras Ad 19 38 57 27 0.510 0.639
30 95 U.S. OPEN Sampras Deuce 30 28 58 28 0.256 0.350
31 95 U.S. OPEN Agassi Ad 41 13 54 27 0.989 1.000 *
32 95 U.S. OPEN Agassi Deuce 35 25 60 26 0.106 0.163
33 00 AUSTRALIAN OPEN Agassi Ad 30 25 55 22 0.031 0.056
34 00 AUSTRALIAN OPEN Agassi Deuce 32 28 60 38 0.959 0.978 **
35 00 AUSTRALIAN OPEN Kafelnikov Ad 28 24 52 24 0.172 0.255
36 00 AUSTRALIAN OPEN Kafelnikov Deuce 31 27 58 30 0.461 0.568
37 01 WIMBLEDON Ivanisevic Ad 48 26 74 33 0.279 0.377
38 01 WIMBLEDON Ivanisevic Deuce 60 23 83 28 0.035 0.057
39 01 WIMBLEDON Rafter Ad 27 32 59 33 0.721 0.802
40 01 WIMBLEDON Rafter Deuce 31 32 63 29 0.156 0.223

* denotes rejection of serial independence at 5% level.
** denotes rejection of serial independence at 10% level.

Table 4
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Runs Test in Female Tennis

            Serve Direction Runs
Index Match Server Court L R Total F(    -1 ) F(    )

1 85 AUSTRALIAN OPEN Navratilova Ad 17 19 36 21 0.702 0.806
2 85 AUSTRALIAN OPEN Navratilova Deuce 19 14 33 20 0.805 0.890
3 85 AUSTRALIAN OPEN Evert Ad 14 15 29 22 0.946 0.975
4 85 AUSTRALIAN OPEN Evert Deuce 4 30 34 9 0.466 0.610
5 87 WIMBLEDON Navratilova Ad 21 7 28 11 0.281 0.502
6 87 WIMBLEDON Navratilova Deuce 29 6 35 11 0.331 0.647
7 87 WIMBLEDON Graf Ad 13 16 29 17 0.671 0.793
8 87 WIMBLEDON Graf Deuce 11 20 31 19 0.905 0.963
9 87 U.S. OPEN Navratilova Ad 25 12 37 15 0.148 0.259
10 87 U.S. OPEN Navratilova Deuce 24 10 34 13 0.133 0.252
11 87 U.S. OPEN Graf Ad 13 11 24 12 0.273 0.433
12 87 U.S. OPEN Graf Deuce 12 14 26 14 0.430 0.594
13 92 ROLAND GARROS Seles Ad 34 15 49 25 0.810 0.903
14 92 ROLAND GARROS Seles Deuce 29 22 51 22 0.096 0.155
15 92 ROLAND GARROS Graf Ad 33 27 60 29 0.282 0.376
16 92 ROLAND GARROS Graf Deuce 36 27 63 30 0.270 0.362
17 92 U.S. OPEN Seles Ad 13 13 26 18 0.919 0.966
18 92 U.S. OPEN Seles Deuce 18 9 27 17 0.939 0.984
19 92 U.S. OPEN Sanchez Ad 9 25 34 17 0.828 0.947
20 92 U.S. OPEN Sanchez Deuce 21 12 33 14 0.145 0.246
21 97 WIMBLEDON Hingis Ad 26 14 40 21 0.668 0.794
22 97 WIMBLEDON Hingis Deuce 15 29 44 21 0.454 0.598
23 97 WIMBLEDON Novotna Ad 11 18 29 19 0.939 0.978
24 97 WIMBLEDON Novotna Deuce 28 13 41 19 0.449 0.609
25 99 ROLAND GARROS Graf Ad 22 21 43 30 0.985 0.994 *
26 99 ROLAND GARROS Graf Deuce 23 20 43 26 0.831 0.899
27 99 ROLAND GARROS Hingis Ad 36 9 45 16 0.515 0.636
28 99 ROLAND GARROS Hingis Deuce 32 18 50 22 0.217 0.312
29 00 U.S. OPEN V. Williams Ad 11 21 32 16 0.510 0.654
30 00 U.S. OPEN V. Williams Deuce 17 20 37 16 0.096 0.168
31 00 U.S. OPEN Davenport Ad 14 14 28 14 0.280 0.427
32 00 U.S. OPEN Davenport Deuce 10 21 31 14 0.331 0.478
33 02 AUSTRALIAN OPEN Capriati Ad 11 25 36 14 0.138 0.232
34 02 AUSTRALIAN OPEN Capriati Deuce 14 20 34 18 0.503 0.642
35 02 AUSTRALIAN OPEN Hingis Ad 31 16 47 21 0.293 0.422
36 02 AUSTRALIAN OPEN Hingis Deuce 26 23 49 21 0.078 0.128

* denotes rejection of serial independence at 5% level.
** denotes rejection of serial independence at 10% level.

Table 5
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Runs Test in Junior Tennis

            Serve Direction Runs
Index Match Server Court L R Total F(    -1 ) F(    )

1 96 AVVENIRE TOURNAMENT Middleton Ad 17 10 27 12 0.189 0.320
2 96 AVVENIRE TOURNAMENT Middleton Deuce 22 11 33 18 0.771 0.866
3 96 AVVENIRE TOURNAMENT Kalvaria Ad 21 8 29 10 0.077 0.156
4 96 AVVENIRE TOURNAMENT Kalvaria Deuce 11 15 26 9 0.016 0.042 **
5 00 WIMBLEDON Salerni Ad 8 8 16 10 0.595 0.786
6 00 WIMBLEDON Salerni Deuce 8 9 17 10 0.500 0.702
7 00 WIMBLEDON Perediynis Ad 6 8 14 5 0.028 0.086
8 00 WIMBLEDON Perediynis Deuce 10 6 16 9 0.497 0.706
9 02 AVVENIRE TOURNAMENT Gonzalez Ad 13 11 24 12 0.273 0.433

10 02 AVVENIRE TOURNAMENT Gonzalez Deuce 9 13 22 11 0.305 0.472
11 02 AVVENIRE TOURNAMENT Sanchez Ad 15 6 21 11 0.668 0.871
12 02 AVVENIRE TOURNAMENT Sanchez Deuce 13 9 22 11 0.305 0.472
13 03 AUSTRALIAN OPEN (Qrt) Baqhdatis Ad 9 7 16 7 0.108 0.231
14 03 AUSTRALIAN OPEN (Qrt) Baqhdatis Deuce 10 12 22 12 0.425 0.605
15 03 AUSTRALIAN OPEN (Qrt) Evans Ad 12 8 20 14 0.920 0.971
16 03 AUSTRALIAN OPEN (Qrt) Evans Deuce 18 6 24 10 0.392 0.569
17 03 AUSTRALIAN OPEN (2nd) Bauer Ad 19 12 31 15 0.319 0.466
18 03 AUSTRALIAN OPEN (2nd) Bauer Deuce 6 27 33 12 0.673 0.792
19 03 AUSTRALIAN OPEN (2nd) Kerber Ad 28 12 40 20 0.747 0.840
20 03 AUSTRALIAN OPEN (2nd) Kerber Deuce 21 20 41 19 0.173 0.264
21 03 AUSTRALIAN OPEN (2nd) Dellacqua Ad 18 7 25 13 0.741 0.908
22 03 AUSTRALIAN OPEN (2nd) Dellacqua Deuce 21 6 27 8 0.062 0.139
23 03 AUSTRALIAN OPEN (2nd) Kim Ad 6 28 34 10 0.216 0.347
24 03 AUSTRALIAN OPEN (2nd) Kim Deuce 13 21 34 16 0.282 0.415
25 03 AUSTRALIAN OPEN (2nd) Scherer Ad 11 7 18 9 0.296 0.484
26 03 AUSTRALIAN OPEN (2nd) Scherer Deuce 11 9 20 15 0.955 0.985 **
27 03 AUSTRALIAN OPEN (2nd) Cvetkovic Ad 6 6 12 7 0.392 0.608
28 03 AUSTRALIAN OPEN (2nd) Cvetkovic Deuce 6 7 13 9 0.733 0.879
29 03 AUSTRALIAN OPEN (2nd) Tsonga Ad 11 5 16 9 0.626 0.846
30 03 AUSTRALIAN OPEN (2nd) Tsonga Deuce 8 10 18 4 0.000 0.003 *
31 03 AUSTRALIAN OPEN (2nd) Feeney Ad 14 6 20 13 0.956 1.000 **
32 03 AUSTRALIAN OPEN (2nd) Feeney Deuce 12 8 20 11 0.480 0.663

* denotes rejection of serial independence at 5% level.
** denotes rejection of serial independence at 10% level.

Table 6
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Table 7 
Results of Significance Tests from Probit Equations for the Serve Choices 

 
 

Estimating Equation No. 1 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]TdWlagDlagcWlagDlagcWlagbWlagbDlagaDlagaaGD 02121210 2222 +++++++=

Null Hypothesis 
 Point Games Where the Null Hypothesis Is Rejected 

at the 0.05, 0.1 Levels 
   0.05 Level 0.1 Level 
1. 0,,,,,, 0212121 =dccbbaa  Male 

Female 
Junior 

6, 17, 31 
13 
 

6, 15, 17, 21, 22, 31, 34 
,3, 13, 16, 20 
 

 

2. 0, 21 =aa  Male 
Female 
Junior 

22, 34 
 
 

22, 34 
3 
 

 

3. 0, 21 =bb  Male 
Female 
Junior 

6, 15, 30 
 
 

6, 15, 30 
34 
 

 

4. 0, 21 =cc  Male 
Female 
Junior 

6 
 

6, 22 
24, 34 
 

 

5. 00 =d  Male 
Female 
Junior 

17, 20, 31 
13, 16 
3 

7, 10, 17, 20, 31 
3, 13, 16, 20, 30, 36 
3, 24 

 

 
 
 
 

Estimating Equation No. 2 

( ) ( ) ( ) ( ) ( ) ( )[ ]TdWlagDlagcWlagDlagcWlagbWlagbaGD 021210 222 +++++=  

Null Hypothesis 
 Point Games Where the Null Hypothesis Is Rejected 

at the 0.05, 0.1 Levels 
   0.05 Level 0.1 Level 
1. 002121 =d,c,c,b,b   Male 

Female 
Junior 

6, 13, 15, 17, 21, 31 
8, 13, 16, 18, 20 
8, 15 

6, 13, 15, 17, 21, 30, 31 
8, 12, 13, 16, 18, 20 
8, 14, 15, 26 

 

3. 0, 21 =bb  Male 
Female 
Junior 

6, 15, 30 
 
 

6, 12, 15, 30, 31 
17, 33 
 

 

4. 0, 21 =cc  Male 
Female 
Junior 

6, 28 
 
 

6, 28, 30, 33 
8, 18, 24 
14 

 

5. 00 =d  Male 
Female 
Junior 

17, 31 
8, 13, 16 
3 

7, 11, 17, 31 
8, 13, 16, 20 
3, 26, 32 

 

   



Equilibrium
Index Match Server Court Criterion Value Value Rule

1 80 WIMBLEDON Borg Ad AIC 0.9296 0.9070 3
SC 0.9576 0.9696 3

2 80 WIMBLEDON Borg Deuce AIC 1.3288 1.3417 2
SC 1.3568 1.4087 1

3 80 WIMBLEDON McEnroe Ad AIC 1.3727 1.3243 3
SC 1.4036 1.3865 3

4 80 WIMBLEDON McEnroe Deuce AIC 1.3986 1.3810 2
SC 1.4273 1.4389 2

5 80 U.S. OPEN McEnroe Ad AIC 1.4060 1.4164 1
SC 1.4362 1.4898 1

6 80 U.S. OPEN McEnroe Deuce AIC 1.2737 1.0636 3
SC 1.3019 1.1493 3

7 80 U.S. OPEN Borg Ad AIC 1.2525 1.2457 4
SC 1.2831 1.3075 4

8 80 U.S. OPEN Borg Deuce AIC 1.3037 1.3033 3
SC 1.3335 1.3633 3

9 85 ROLAND GARROS Wilander Ad AIC 1.1308 1.0062 3
SC 1.1701 1.1684 3

10 85 ROLAND GARROS Wilander Deuce AIC 1.3101 1.3137 3
SC 1.3469 1.3881 3

11 85 ROLAND GARROS Lendl Ad AIC 1.0068 0.9703 1
SC 1.0458 1.0490 1

12 85 ROLAND GARROS Lendl Deuce AIC 1.3763 1.3633 3
SC 1.4149 1.4727 3

13 89 WIMBLEDON Becker Ad AIC 1.4178 1.3751 2
SC 1.4518 1.4789 2

14 89 WIMBLEDON Becker Deuce AIC 1.3572 1.3546 2
SC 1.3904 1.4215 2

15 89 WIMBLEDON Lendl Ad AIC 1.3785 1.3320 3
SC 1.4073 1.4168 3

16 89 WIMBLEDON Lendl Deuce AIC 1.3049 1.3114 2
SC 1.3325 1.3669 2

17 89 U.S. OPEN Becker Ad AIC 0.9539 0.8459 1
SC 0.9894 0.9919 1

18 89 U.S. OPEN Becker Deuce AIC 1.3566 1.3481 2
SC 1.3884 1.4123 2

19 89 U.S. OPEN Lendl Ad AIC 1.3757 1.4054 2
SC 1.4119 1.4784 2

20 89 U.S. OPEN Lendl Deuce AIC 1.4061 1.4302 4
SC 1.4413 1.5099 2

21 92 AUSTRALIAN OPEN Courier Ad AIC 1.3285 1.1431 2
SC 1.3661 1.2336 2

22 92 AUSTRALIAN OPEN Courier Deuce AIC 1.3860 1.3115 1
SC 1.4243 1.4284 1

23 92 AUSTRALIAN OPEN Edberg Ad AIC 0.8179 0.8008 3
SC 0.8577 0.8937 3

24 92 AUSTRALIAN OPEN Edberg Deuce AIC 1.3767 1.4161 4
SC 1.4180 1.4997 4

Table 8
Model Selection under AIC, SC Criteria in Male Tennis

Best Rule



25 95 ROLAND GARROS Muster Ad AIC 1.1322 1.1102 2
SC 1.1767 1.2255 4

26 95 ROLAND GARROS Muster Deuce AIC 1.0819 1.0237 1
SC 1.1250 1.2191 3

27 95 ROLAND GARROS Chang Ad AIC 0.4470 0.4752 3
SC 0.4893 0.5869 1

28 95 ROLAND GARROS Chang Deuce AIC 1.4263 1.3653 1
SC 1.4664 1.4793 1

29 95 U.S. OPEN Sampras Ad AIC 1.3081 1.2941 2
SC 1.3440 1.3664 2

30 95 U.S. OPEN Sampras Deuce AIC 1.4196 1.3282 3
SC 1.4551 1.4367 3

31 95 U.S. OPEN Agassi Ad AIC 1.1409 0.9551 3
SC 1.1777 1.1016 1

32 95 U.S. OPEN Agassi Deuce AIC 1.3917 1.4144 1
SC 1.4266 1.4848 1

33 00 AUSTRALIAN OPEN Agassi Ad AIC 1.4144 1.3273 1
SC 1.4509 1.4314 2

34 00 AUSTRALIAN OPEN Agassi Deuce AIC 1.4152 1.3442 2
SC 1.4501 1.4535 1

35 00 AUSTRALIAN OPEN Kafelnikov Ad AIC 1.4188 1.4292 3
SC 1.4564 1.5050 3

36 00 AUSTRALIAN OPEN Kafelnikov Deuce AIC 1.4160 1.4357 2
SC 1.4515 1.5074 2

37 01 WIMBLEDON Ivanisevic Ad AIC 1.3236 1.3510 3
SC 1.3547 1.4138 3

38 01 WIMBLEDON Ivanisevic Deuce AIC 1.2045 1.1831 1
SC 1.2336 1.2418 1

39 01 WIMBLEDON Rafter Ad AIC 1.4130 1.4312 1
SC 1.4482 1.5022 1

40 01 WIMBLEDON Rafter Deuce AIC 1.4166 1.3139 2
SC 1.4503 1.4884 2

   Notes:  In each point game, the model (equilibrium or the best rule) that fits better is underlined for each criterion.
               The last column indicates the best rule. Recall that rules 1-4 correspond to D, RW, LW, and WD respectively.



Equilibrium
Index Match Server Court Criterion Value Value Rule

1 85 AUSTRALIAN OPEN Navratilova Ad AIC 1.4345 1.4460 1
SC 1.4763 1.5305 1

2 85 AUSTRALIAN OPEN Navratilova Deuce AIC 1.3921 1.3957 1
SC 1.4360 1.5215 4

3 85 AUSTRALIAN OPEN Evert Ad AIC 1.4417 1.3813 1
SC 1.4865 1.4831 1

4 85 AUSTRALIAN OPEN Evert Deuce AIC 0.8461 0.8604 3
SC 0.8897 0.9937 3

5 87 WIMBLEDON Navratilova Ad AIC 1.1961 0.9952 1
SC 1.2437 1.1403 1

6 87 WIMBLEDON Navratilova Deuce AIC 0.9734 1.0136 2
SC 1.0179 1.1034 2

7 87 WIMBLEDON Graf Ad AIC 1.4445 1.4800 3
SC 1.4917 1.5752 3

8 87 WIMBLEDON Graf Deuce AIC 1.3653 1.3123 2
SC 1.4116 1.4057 2

9 87 U.S. OPEN Navratilova Ad AIC 1.3142 1.3421 3
SC 1.3578 1.4301 3

10 87 U.S. OPEN Navratilova Deuce AIC 1.2704 1.1471 2
SC 1.3153 1.2988 2

11 87 U.S. OPEN Graf Ad AIC 1.4627 1.5280 2
SC 1.5118 1.6404 4

12 87 U.S. OPEN Graf Deuce AIC 1.4573 1.2805 2
SC 1.5057 1.4278 2

13 92 ROLAND GARROS Seles Ad AIC 1.2727 1.2239 2
SC 1.3114 1.3019 2

14 92 ROLAND GARROS Seles Deuce AIC 1.4066 1.4081 2
SC 1.4445 1.4846 2

15 92 ROLAND GARROS Graf Ad AIC 1.4096 1.4341 3
SC 1.4445 1.5045 3

16 92 ROLAND GARROS Graf Deuce AIC 1.3976 1.3863 2
SC 1.4316 1.4747 2

17 92 U.S. OPEN Seles Ad AIC 1.4632 1.4130 1
SC 1.5116 1.5105 1

18 92 U.S. OPEN Seles Deuce AIC 1.3471 1.1083 2
SC 1.3951 1.2546 2

19 92 U.S. OPEN Sanchez Ad AIC 1.2147 1.0239 4
SC 1.2596 1.1146 4

20 92 U.S. OPEN Sanchez Deuce AIC 1.3716 0.9599 3
SC 1.4169 1.1956 3

21 97 WIMBLEDON Hingis Ad AIC 1.3449 1.3425 4
SC 1.3871 1.4278 4

22 97 WIMBLEDON Hingis Deuce AIC 1.3287 1.3288 3
SC 1.3693 1.4107 3

23 97 WIMBLEDON Novotna Ad AIC 1.4138 1.3458 1
SC 1.4587 1.4365 1

24 97 WIMBLEDON Novotna Deuce AIC 1.3085 1.3020 4
SC 1.3495 1.4177 1

Best Rule

Model Selection under AIC, SC Criteria in Female Tennis
Table 9



25 99 ROLAND GARROS Graf Ad AIC 1.4323 1.3300 1
SC 1.4732 1.4128 1

26 99 ROLAND GARROS Graf Deuce AIC 1.4279 1.4229 4
SC 1.4689 1.5056 4

27 99 ROLAND GARROS Hingis Ad AIC 1.0452 0.9438 1
SC 1.0854 1.0610 2

28 99 ROLAND GARROS Hingis Deuce AIC 1.3468 1.3402 3
SC 1.3851 1.4402 3

29 00 U.S. OPEN V. Williams Ad AIC 1.3495 1.3232 3
SC 1.3953 1.4157 3

30 00 U.S. OPEN V. Williams Deuce AIC 1.4338 1.4329 4
SC 1.4773 1.5354 3

31 00 U.S. OPEN Davenport Ad AIC 1.4577 1.4945 2
SC 1.5053 1.5905 2

32 00 U.S. OPEN Davenport Deuce AIC 1.3221 1.0400 2
SC 1.3684 1.2022 2

33 02 AUSTRALIAN OPEN Capriati Ad AIC 1.2851 1.2016 3
SC 1.3264 1.2852 3

34 02 AUSTRALIAN OPEN Capriati Deuce AIC 1.4316 1.4522 4
SC 1.4730 1.5505 3

35 02 AUSTRALIAN OPEN Hingis Ad AIC 1.3042 1.3072 3
SC 1.3428 1.3879 3

36 02 AUSTRALIAN OPEN Hingis Deuce AIC 1.4234 1.4281 3
SC 1.4620 1.5147 1

   Notes:  In each point game, the model (equilibrium or the best rule) that fits better is underlined for each criterion.
               The last column indicates the best rule. Recall that rules 1-4 correspond to D, RW, LW, and WD respectively.



Equilibrium
Index Match Server Court Criterion Value Value Rule

1 96 AVVENIRE TOURNAMENT Middleton Ad AIC 1.3924 1.2036 2
SC 1.4404 1.4110 2

2 96 AVVENIRE TOURNAMENT Middleton Deuce AIC 1.3336 1.3232 1
SC 1.3790 1.4148 1

3 96 AVVENIRE TOURNAMENT Kalvaria Ad AIC 1.2470 1.2182 2
SC 1.2941 1.3133 2

4 96 AVVENIRE TOURNAMENT Kalvaria Deuce AIC 1.4395 1.2626 2
SC 1.4878 1.4601 2

5 00 WIMBLEDON Salerni Ad AIC 1.5113 1.4730 2
SC 1.5596 1.6468 2

6 00 WIMBLEDON Salerni Deuce AIC 1.5005 1.5462 3
SC 1.5495 1.6878 3

7 00 WIMBLEDON Perediynis Ad AIC 1.5087 1.4342 3
SC 1.5543 1.5789 3

8 00 WIMBLEDON Perediynis Deuce AIC 1.4481 1.4269 3
SC 1.4964 1.6007 3

9 02 AVVENIRE TOURNAMENT Gonzalez Ad AIC 1.4627 1.3416 4
SC 1.5118 1.5020 4

10 02 AVVENIRE TOURNAMENT Gonzalez Deuce AIC 1.4440 1.5057 2
SC 1.4936 1.6052 2

11 02 AVVENIRE TOURNAMENT Sanchez Ad AIC 1.2918 1.2928 1
SC 1.3415 1.4420 1

12 02 AVVENIRE TOURNAMENT Sanchez Deuce AIC 1.4440 1.4116 2
SC 1.4936 1.5216 2

13 03 AUSTRALIAN OPEN (Qrt) Baqhdatis Ad AIC 1.4956 1.2469 2
SC 1.5439 1.3839 2

14 03 AUSTRALIAN OPEN (Qrt) Baqhdatis Deuce AIC 1.4689 1.2209 1
SC 1.5185 1.3703 1

15 03 AUSTRALIAN OPEN (Qrt) Evans Ad AIC 1.3949 1.0581 1
SC 1.4447 1.2064 1

16 03 AUSTRALIAN OPEN (Qrt) Evans Deuce AIC 1.2080 1.0518 4
SC 1.2571 1.1505 4

17 03 AUSTRALIAN OPEN (2nd) Bauer Ad AIC 1.4247 1.2691 2
SC 1.4709 1.4594 2

18 03 AUSTRALIAN OPEN (2nd) Bauer Deuce AIC 1.0089 0.9336 3
SC 1.0542 1.0252 3

19 03 AUSTRALIAN OPEN (2nd) Kerber Ad AIC 1.2717 1.2389 2
SC 1.3140 1.3242 2

20 03 AUSTRALIAN OPEN (2nd) Kerber Deuce AIC 1.4297 1.4423 4
SC 1.4715 1.5267 4

21 03 AUSTRALIAN OPEN (2nd) Dellacqua Ad AIC 1.2659 1.0476 1
SC 1.3147 1.2403 2

22 03 AUSTRALIAN OPEN (2nd) Dellacqua Deuce AIC 1.2186 0.9932 1
SC 1.2666 1.1395 1

23 03 AUSTRALIAN OPEN (2nd) Kim Ad AIC 0.9908 0.7874 2
SC 1.0357 1.0209 2

24 03 AUSTRALIAN OPEN (2nd) Kim Deuce AIC 1.4138 1.4560 4
SC 1.4587 1.5467 4

Best Rule

Model Selection under AIC, SC Criteria in Junior Tennis
Table 10



25 03 AUSTRALIAN OPEN (2nd) Scherer Ad AIC 1.4476 1.2381 4
SC 1.4971 1.3851 4

26 03 AUSTRALIAN OPEN (2nd) Scherer Deuce AIC 1.4763 1.2868 1
SC 1.5261 1.3862 1

27 03 AUSTRALIAN OPEN (2nd) Cvetkovic Ad AIC 1.5530 1.5340 4
SC 1.5934 1.6064 4

28 03 AUSTRALIAN OPEN (2nd) Cvetkovic Deuce AIC 1.5342 1.4580 2
SC 1.5777 1.5388 2

29 03 AUSTRALIAN OPEN (2nd) Tsonga Ad AIC 1.3672 1.4515 3
SC 1.4155 1.5459 3

30 03 AUSTRALIAN OPEN (2nd) Tsonga Deuce AIC 1.4850 1.0917 3
SC 1.5345 1.2598 1

31 03 AUSTRALIAN OPEN (2nd) Feeney Ad AIC 1.3217 1.1311 1
SC 1.3715 1.2544 1

32 03 AUSTRALIAN OPEN (2nd) Feeney Deuce AIC 1.4460 1.5511 3
SC 1.4958 1.6595 2

   Notes:  In each point game, the model (equilibrium or the best rule) that fits better is underlined for each criterion.
               The last column indicates the best rule. Recall that rules 1-4 correspond to D, RW, LW, and WD respectively.



Table 11 
Significance Tests in Best Rules 

 
 

Panel  A 

 
 
 

Panel  B 

 
 
 
Notes: Recall that there are 40 point games in male tennis, 36 point games in female tennis and 32 point 

games in junior tennis. The total number of point games is 108. 

 

 
Point Games Where the Coefficients Are Jointly Significant in the Best Rules 

(Under Akaike Info. Criterion) 

   Total Number 

0.05 Level Male 1, 3, 6, 9, 13, 15, 21, 22, 23, 25, 26, 28, 30, 31, 33, 34, 40 17 
 Female 3, 8, 12, 13, 18, 19, 20, 23, 25, 27, 32, 33 12 
 Junior 4, 9, 13, 14, 15, 17, 23, 25, 26, 30, 31 11 

40 

     
0.1 Level Male 1, 3, 4, 6, 7, 9, 11, 12, 13, 15, 17, 18, 21, 22, 23,25, 26, 28, 29 30, 31, 33, 34, 40 24 
 Female 3, 5, 8, 12, 13, 14, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 30, 32, 33 16 
 Junior 1, 4, 7, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 28, 30, 31 18 

58 

     

 
Point Games Where the Coefficients Are Jointly Significant in the Best Rules 

(Under Schwarz Criterion) 

   Total Number 

0.05 Level Male 1, 3, 6, 9, 13, 15, 21, 22, 25, 30, 33, 34, 40 13 
 Female 8, 12, 13, 16, 18, 19, 20, 23, 26, 27, 32, 33 9 
 Junior 3, 4, 9, 13, 14, 15, 17, 23, 25, 26, 30, 31 11 

33 

     
0.1 Level Male 1, 3, 4, 6, 9, 11, 13, 15, 17, 18, 21, 22, 23, 25, 28, 29, 30, 33, 34, 40 20 
 Female 3, 5, 8, 12, 13, 17, 18, 19, 20, 23, 24, 27, 32, 33 14 
 Junior 1, 4, 7, 8, 9, 11, 13, 14, 15, 16, 17, 21, 23, 25, 26, 28, 30, 31 18 

52 
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