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Abstract

Most of the literature on testing ARCH models focuses on the null hy-
pothesis of no-ARCH effects. In this paper, we consider the general problem
of testing any possible set of coefficient values in ARCH models, which may
be non-stationary, with Gaussian and non-Gaussian errors, as well as with any
number exogenous regressors in the mean equation. Both Engle-type and point-
optimal tests are studied. Special problems considered include the hypothesis
of no-ARCH effects and IARCH structure. We propose exact inference based
on pivotal Monte Carlo tests [as in Dufour and Kiviet (1996, 1998) and Du-
four, Khalaf, Bernard and Genest (2004)] and maximised Monte Carlo tests
[Dufour (2004))], depending on whether nuisance parameters are present. This
will allow the introduction of dynamics in the mean equation as well. We show
that the method suggested provides provably valid tests in both finite and large
samples, in cases where standard asymptotic and bootstrap methods may fail
in the presence of heavy-tailed errors [as shown by Hall and Yao (2003)]. The
performance of the proposed procedures with both Gaussian and non-Gaussian
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errors is analyzed in a simulation experiment. Our results show that the pro-
posed procedures work well from the viewpoints of size and power. The powers
gains provided by the point optimal procedures are in many cases spectacular.
The tests also exhibit good behaviour outside the stationarity region [following
the work of Jensen and Rahbek (2004)]. Finally, the technique is applied to
the US inflation.

1 Introduction

In this paper we focus on developing finite sample inference procedures as well as
optimal tests for ARCH(p) models. Specially, we concentrate on testing any value of
the conditional heteroscedastic coefficients. This also allows us to test for the presence
of ARCH effects and the unit root case (with the IARCH process), and we compare
our results with other available procedures. There are already available several tests
for accounting for ARCH and GARCH effects: see for example Engle (1982), Lee
(1991) and Lee and King (1993). More recently, Dufour, Khalaf, Bernard and Genest
(2004) have proposed to improve the properties of the inference by exploiting the
use of Monte Carlo (MC) techniques. In this paper we propose also the use of MC
techniques, although we go further, and we present new procedures for testing any
value of the conditional heteroscedastic coefficients. Among others, we propose a
point optimal test. We also use the Maximised Monte Carlo (MMC) technique to
deal with nuisance parameters (see Dufour (2004) for more details).

In the case of testing the null of IGARCH(1,1), Lumsdaine (1995) gets results
that Wald tests seem to have the best size, although the standard Lagrange multiplier
statistic is badly oversized. At the same time, versions of the LM that are robust
to possible nonnormality of the data perform only marginally better. In any case,
Lumsdaine reports that in general, from her simulations, the Lagrange multiplier,
likelihood ratio and Wald do not behave very well in small samples. Our framework
also allows us to test for this hypothesis and with the MC technique we will be able
to control for the size.

We also show through simulation that the tests developed in this paper can be
applied both in the framework of gaussian and non-gaussian errors; including errors
following a t-distribution with very low degrees of freedom (where asymptotic theory
breaks down). Hall and Yao (2003) report problems with the conservatism of their
subsampling technique when the tails of the errors are very light and problems with
the anticonservatism for heavy-tails. Due to the fact that our procedure controls the
size and the exactness of the test, this makes our proposal more attractive than the
subsampling technique of Hall and Yao (2003). Our simulations also show that our
optimal procedure has very good power. That implies that the procedures developed
in this paper can be used by practicioners in any type of scenarios: including gaus-
sian and non-gaussian errors without being worried about the existence of moments.
Besides, Hall and Yao (2003) only show results for sample sizes 1000 and 500 and
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even already in those cases their procedure has size problems. We will show the good
perfomance of our procedure even for sample sizes of 50.

Jensen and Rahbek (2004) have shown recently that the QMLE is always asymp-
totically normal provided that the fourth moment of the innovation process is finite
in an ARCH(1) model. However, although this shows what happens asymptotically,
it is still unknown in the literature which is the effect of being in a non-stationarity
region in finite samples. In this paper we also consider a case where we are in a non-
stationary region, and we will provide the behaviour of tests in this framework. Again
in this case, the existence of moments is crucial for the result of Jensen and Rahbek
(2004), while our tests (through the MC) can work both in the non-stationary region
and in those cases where moments do not exist (with very fat tails).

Finally, making use of the Monte Carlo technique, we can afford the introduction
of any number of exogenous variables in a very straightforward way. With asymptotic
approximations, this would change the framework of the test, while the Monte Carlo
technique takes that into account directly. We also make operational our procedures
for testing the null of a sub-group of the ARCH coefficients equal to a value by making
use of the Maximised Monte Carlo (MMC) technique. We go even further, and with
the MMC we can allow for the existence of dynamics in the mean equation.

The inmediate applications of the results in this paper are several. Among them,
first, from our inference procedures we can construct confidence intervals for condi-
tional volatility. Second, we can retrieve from there predictions of volatility through
the confidence intervals and point predictions. Third, from our method we can get
predictions of the underlying variables.

The plan of the paper is as follows. We first present three different tests for any
value of the ARCH coefficients, among which we consider a point optimal test. Later
we carried out a simulation study to find out about the size and power properties
of the proposed test procedures. In Section 3 we show the usefulness of our test
in practice, when we re-visit the analysis of the US implicit price deflator for GNP.
Finally, in Section 4 we conclude.

2 Alternative test statistics for any value of the

ARCH coefficients

We proceed now to propose alternative tests for any value of the ARCH coefficients.
We consider the next model:

yt = xt́β +

q∑

i=1

φiyt−i + εt (1)

εt =
√

htηt, t = 1, ...T, ht = E
(
ε2t/It−1

)
= θ0 + θ1ε

2

t−1 + θ2ε
2

t−2 + ...+ θpε
2

t−p (2)
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where xt = (xt1, xt2, ..., xtk )́ , X ≡ [x1, ..., xT ]́ is a full-column rank T × k matrix,
β = (β

1
, ..., βk )́ is a k × 1 vector of unknown coefficients,

√
h1, ...,

√
hT are (possibly

random) scale parameters, and ηt = (η
1
, ..., ηT )́ is a random vector. The case of a

conditional gaussian distribution is a special case, although we can allow for possibly
any other distribution.

Let’s consider first the case where we only deal with exogenous in the mean equa-
tion. We are interested in the problem of testing any possible set of values for the
ARCH coefficients:

H0 : ht = ht = θ0 + θ1ε
2

t−1 + ...+ θpε
2

t−p (3)

We stress the fact that our procedures allow as well to test the null hypothesis
of no-ARCH and the integrated ARCH cases. Our scenario using the MC technique
allows us as well the introduction of exogenous variables in the mean equation, and we
also show later in the simulation study that we can allow for the presence of normal or
non normal errors (including those cases where asymptotic theory even breaks down
(see Hall and Yao (2003)). Due to the fact that we are using residual-based tests (see
e.g. Dufour, Khalaf, Bernard and Genest (2004) for more details), we can justify that
the tests are invariant to the choice of the intercept in the conditional variance and
in the mean equation, and to the parameters of any number of exogenous variables
that are included in the mean equation. We justify this in the following proposition
and corollary:

Proposition 1 (Pivotality of a statistic).
Under (1) and (2), let S (y,X) = (S1 (y,X) , S2 (y,X) , ..., Sm (y,X))́ be any vec-

tor of real-valued statistics such that

S (cy +Xd,X) = S (y,X) ,∀c, d ∈ Rk.

Then, for any positive constant
√
h0 > 0, we can write

S (y,X) = S
(
ε/
√
h0,X

)

and the conditional distribution of S (y,X), given X, is completely determined by
the matrix X and the conditional distribution of ε/

√
h0 = ∆η/

√
h0 given X, where

∆ = diag (
√
ht, t = 1, ..., T ). In particular, under H0 in (3), we have:

S (y,X) = S (η,X)

where η = ε/
√
ht, and the conditional distribution of S (y,X) , given X, is com-

pletely determined by the matrix X and the conditional distribution of η given X.
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Proof. Taking c = 1/
√
h0 and d = −β/√h0, then:

cy +Xd = (Xβ + ε) /
√
h0 −Xβ/

√
h0 = ε/

√
h0.

From (2) then, and under (3), we have that ε = ∆η =
√
htη, and then, taking√

h0 =
√
ht, we get finally ε/

√
h0 = η and S (y,X) = S (η,X) .

It is also necessary to prove that the pivotality characteristic also holds because
in our case our statistics are scale-invariant functions of OLS residuals. We prove this
in the next Corollary:

Corollary 1 (Pivotal property of residual-based statistics).
Under (1) and (2), let S (y,X) = (S1 (y,X) , S2 (y,X) , ..., Sm (y,X))́ be any vec-

tor of real-valued statistics such that

S (y,X) = S (A(X)y,X)

where A(X) is any n × k matrix (n ≥ 1) such that

A(X)X = 0

and S (A(X)y,X) satisfies the scale invariance condition

S (cA(X)y,X) = S (A(X)y,X) , forallc > 0.

Then for any positive constant
√
h0 > 0, we can write

S (y,X) = S
(
A(X)ε/

√
h0,X

)

and the conditional distribution of S (y,X) , given X, is completely determined by
the matrix X jointly with the conditional distribution of A(X)ε/

√
h0 given X.

It is straightforward to show that in all the statistics that we present in this paper
A(X) = IT −X (X́X)−1 X́ (to apply in Corollary 1).

In the case we wanted to test sub-vector coefficients of the ARCH process, we
could still preserve the exactness of the test by dealing with the nuisance parameters
through the MMC technique. The same type of methodology would be used in case
we would need to incorporate dynamics in the mean equation.

2.1 Extension of the Engle test under a null hypothesis dif-

ferent from the one of no-ARCH effects.

A first alternative we consider is what we name to be an extension of “an Engle-type
test”. The original Engle (1982) test was designed as an LM test:
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ht = E
(
ε2t/It−1

)
= θ0 + θ1ε

2

t−1 + θ2ε
2

t−2 + ...+ θpε
2

t−p

where the null hypothesis is H0 : θ1 = θ2 = ... = θp = 0, ht is the conditional
variance, and the test is formulated by TR2 where T is the sample size and R2 is the
determination coefficient of a regression of OLS residuals ε̂2t on a constant and ε̂2t−i

for i = 1, ..., p. The test is distributed as a χ2 with p degrees of freedom.
In this paper we propose the next extension:

Theorem 1 Suppose that yt = xt́β +
∑q

i=1 φiyt−i + εt and ht = E (ε2t/It−1) = θ0 +
θ1ε

2
t−1+θ2ε

2
t−2+...+θpε

2
t−p, then, an extension of the Engle (1982) test to any possible

set of values of the ARCH coefficients H0 : θ1 = θ1, θ2 = θ2, ..., θp = θp, is given by
TR2

∼ χ2p, where ht = θ0+θ1ε2t−1+ ...+θpε2t−p and R2 is the determination coefficient
coming from the regression:

ε2t = 2h
2

t

[
γ0 + γ1ε

2

t−1 + γ2ε
2

t−2 + ...+ γpε
2

t−p

]
+ ht + vt.

In practice, the test would imply to take the residuals ε̂2t , to compute the de-

pendent variable

(
ε̂2t

2(θ0+θ1 ε̂
2

t−1+...+θpε̂
2

t−p)
2 −

1

2(θ0+θ1 ε̂
2

t−1+...+θpε̂
2

t−p)

)
, and to regress this

depend variable on a constant and ε̂2t−i for i = 1, ..., p. The test is distributed as a χ2

with p degrees of freedom.
We present now how we obtain the previous expression. The construction of

(what we denote) an Engle test for the null of any possible set of values for the
ARCH coefficients, implies the following. Let’s suppose an ARCH(p) model:

yt = xt́β +

q∑
i=1

φiyt−i + εt

ht = E
(
ε2t/It−1

)
= θ0 + θ1ε

2

t−1 + θ2ε
2

t−2 + ...+ θpε
2

t−p

The log-likelihood:

L ∝ −
1

2

T∑
t=1

log ht −
1

2

T∑
t=1

ε2t
ht

So the gradient (grad) and the hessian (hes) are:

grad =

[
ε2t
2h2t

−

1

2ht

]
Z
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hes =

[
1

2h2t
−

ε2t
h3t

]
ZZ ′

where Z is the vector Z =
(
1, ε2t−1

, ε2t−2, ..., ε
2

t−p

)
′

.

Under any null hypothesis, we have to get the R2 coming from regressing a column
of ones on the derivatives of the log likelihood function computed at the restricted
estimator.

Following Engle (1982), we can denote f0 to be the first part of the gradient
evaluated at the restricted estimator under the null:

f0 =

[
ε2t
2h2t

−
1

2ht

]
0

So, the Engle test comes from TR2, where R2 comes from regressing f 0 on Z.
In the special case where the null is no-ARCH effects, since (following Engle

(1982)) adding a constant and multiplying by a scalar won’t change the R2 of a
regression, this will be the R2 coming from regressing ε2t on an intercept and p lagged
values of ε2t .

In the general case of any other null except the no-ARCH effects one, ht evaluated
at a restricted estimator is going to contain lagged ε2t and the values we are testing.
The test in this case can be interpreted as regressing under the null:[

ε2t
2h2t

−
1

2ht

]
0

= γ
0
+ γ

1
ε2t−1

+ γ
2
ε2t−2 + ...+ γpε

2

t−p + vt (4)

Or:

ε2t = 2h2t
[
γ
0
+ γ

1
ε2t−1 + γ

2
ε2t−2 + ...+ γpε

2

t−p

]
+ ht + vt

So running (4), can be equivalent to run as well a regression of ε2t under the null,
on 2h2t times the usual stuff in the Engle test plus the ht (everything evaluated under
the null). Implicitly, because ht has ε2t−i inside, in order to construct the confidence
sets, this may have some equivalent representation to running ε2t under the null on a
constant, as many lags of εt as the order of the ARCH(p) we are testing, raised to
six, to four and to two (so, terms of the form ε6t−i, ε

4

t−i, ε
2

t−i,∀i = 1, ..., p), and cross
products of as many lags of εt as the order of the ARCH(p) we are testing raised to
four and two (so terms of the form ε4t−iε

2

t−j,∀i �= j), plus cross products of as many
lags of εt as order of the ARCH(p) we are testing raised to two (so terms of the form
ε2t−iε

2

t−j,∀i �= j).
But with the “problem” of multiplying in each case the previous terms by the

values we are testing under the null.

2.2 A Point Optimal Test

To find out the most powerful test for ARCH processes, we develop now a point
optimal test.
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Theorem 2 Suppose that yt = xt́β +
∑q

i=1 φiyt−i + εt and ht = E (ε2t/It−1) = θ0 +
θ1ε

2
t−1 + θ2ε

2
t−2 + ...+ θpε

2
t−p. Then a point optimal test at θ1 = θ11, ..., θp = θ1p for the

null of H0 : θ1 = θ1, θ2 = θ2, ..., θp = θp, under conditional normality is given by:

LR
(
θ1, ..., θp, θ

1

1
, ..., θ1p

)
=

T∑
t=1

ln
(
ht

)
+

T∑
t=1

(
1

ht

− 1

)
ε2t(

1 + θ1ε2t−1 + ...+ θpε2t−p

)

where ht =

(
(1+θ1

1
y2
t−1

+...+θ1py
2
t−p)

(1+θ1y2t−1+...+θpy2t−p)

)
.

In practice, the test implies the following. Take the residuals ε̂2t , and compute the
test statistic:∑T

t=1 ln

(
(1+θ1

1
ε̂2t−1+...+θ1pε̂

2

t−p)
(1+θ1ε̂

2

t−1+...+θpε̂
2

t−p)

)
+
∑T

t=1

(
(1+θ1ε̂

2

t−1+...+θpε̂
2

t−p)
(1+θ1

1
ε̂2t−1+...+θ1pε̂

2

t−p)
− 1

)
ε̂2t

(1+θ1 ε̂
2

t−1+...+θpε̂
2

t−p)
Due to the non-standard distribution of the statistic, in this paper we propose to

retrieve the critical values through the MC technique (see Dufour and Kiviet (1996,
1998), Dufour, Khalaf, Bernard and Genest (2004) for more details).

We will provide now with an example of the ARCH(1) process how the point
optimal test is obtained. Let’s suppose a simple ARCH(1) process:

yt =
(
1 + θ1y

2

t−1

)1/2
vt

Under H0: θ1 = θ1,

vt =
yt(

1 + θ1y2t−1
)1/2 ≡ yt

(
θ1
)

Under H1: θ1 = θ11,

vt =
yt(

1 + θ11y
2
t−1

)1/2
and

yt
(
θ1
)
=

(
1 + θ11y

2
t−1

)1/2(
1 + θ1y2t−1

)1/2vt = ht

(
θ1, θ

1

1

)1/2
vt

where:

ht

(
θ1, θ

1

1

)
=

(
1 + θ11y

2
t−1

)(
1 + θ1y2t−1

) ≡ ht
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Let

yt
(
θ1
)
=
(
y1
(
θ1
)
, ..., yT

(
θ1
))

Then

lT
(
y
(
θ1
)
, θ1

)
= −

T

2
ln 2π −

1

2

T∑
t=1

yt
(
θ1
)2

lT
(
y
(
θ1
)
, θ1

1

)
= −

T

2
ln 2π −

1

2

T∑
t=1

ln
(
ht

)
−

1

2

T∑
t=1

yt
(
θ1
)2

ht

So:

LR
(
θ1, θ

1

1

)
= −2

[
lt
(
v
(
θ1
)
, θ11
)
− lt

(
v
(
θ1
)
, θ1

)]
=

−2
[
−

1

2

∑T

t=1 ln
(
ht

)
−

1

2

∑T

t=1

(
1

ht
− 1

)
yt
(
θ1
)2]

=
∑T

t=1

[
ln
(
ht

)
+
(
1

ht
− 1

)
yt
(
θ1
)2]

=∑T

t=1

[
ln
(
ht

)
+
(
1

ht
− 1

)
y2t

(1+θ1y
2

t−1)

]
=
∑T

t=1

[
ln
(
ht

)
+
(

1

1+θ1
1
y2
t−1

−

1

1+θ1y
2

t−1

)
y2t

]
=

∑T

t=1

[
ln
(
ht

)
+

(θ1−θ1
1)y2t−1y2t

(1+θ1
1
y2
t−1)(1+θ1y

2

t−1)

]
To summarize, it is necessary to consider:

T∑
t=1

ln
(
ht

)
+

T∑
t=1

(
1

ht

− 1

)
y2t(

1 + θ1y2t−1
)

where:

ht =

((
1 + θ11y

2
t−1

)
(
1 + θ1y2t−1

)
)

θ11 =point where the test maximizes power.

θ1 =the null hypothesis.

2.3 An alternative test

Another possible test is constructed by exploiting the use of pivotal properties of

ARCH processes:

Theorem 3 Suppose that yt = xt́β +
∑q

i=1 φiyt−i + εt and ht = E (ε2t/It−1) = θ0 +
θ1ε2t−1 + θ2ε2t−2 + ... + θpε2t−p, then, a possible test for the null of H0 : θ1 = θ1, θ2 =

θ2, ..., θp = θp, is given as an F-type test from:
ε2t

(1+θ1ε
2

t−1
+...+θpε

2

t−p)
− 1 = θ∗1

ε2
t−1

(1+θ1ε
2

t−1
+...+θpε

2

t−p)
+ ...+ θ∗p

ε2t−p

(1+θ1ε
2

t−1
+...+θpε

2

t−p)
+ wt
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This implies:

ε2t −
(
1 + θ1ε

2

t−1 + ...+ θpε
2

t−p

)
= θ∗1ε

2

t−1 + ...+ θ∗pε
2

t−p + wt

where θ∗i =
(
θi − θi

)
,∀i = 1, .., p.

In practice, the test implies the following. Take the residuals ε̂2t , and regress
ε̂2t

(1+θ1ε̂
2

t−1+...+θpε̂
2

t−p)
on

ε̂2t−i

(1+θ1 ε̂
2

t−1+...+θpε̂
2

t−p)
for i = 1, ..., p. The critical values can be

obtain from the asymptotic theory from an F-distribution or through the MC tech-
nique.

The previous test can be explained in detail now. Let us consider the expression:

vt
(
θ1
)
=

εt(
θ0 + θ1ε2t−1 + ...+ θpε2t−p

)1/2
where, for the case of the ARCH(1):

yt = εt

ht = E
(
ε2t/It−1

)
= θ0 + θ1ε

2

t−1

E
(
v2t
(
θ1
))

=
E (yt/It−1)(
1 + θ1y2t−1

) = (
θ0 + θ1y

2
t−1

)(
1 + θ1y2t−1

)
So:

E

(
v2t
(
θ1
)
−

1(
1 + θ1y2t−1

)/It−1
)
=

θ1y
2
t−1(

1 + θ1y2t−1
)

E
(
v2t
(
θ1
)
− 1

)
=
(
θ1 − θ1

) y2t−1(
1 + θ1y2t−1

)
So finally in this case we will regress:

y2t(
1 + θ1y2t−1

) − 1 = θ∗1
y2t−1(

1 + θ1y2t−1
) + wt

In the general case of an ARCH(p) model:
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E
(
v2t

(
θ1, ..., θp

)
− 1

)
=

(
θ1 − θ1

) y2t−1(
1 + θ1y2t−1 + ...+ θpy2t−p

) + ...

+
(
θp − θp

) y2t−p(
1 + θ1y2t−1 + ...+ θpy2t−p

)

So the testing would imply to regress:

y2t

(1+θ1y
2

t−1
+...+θpy

2

t−p)
− 1 = θ∗1

y2
t−1

(1+θ1y
2

t−1
+...+θpy

2

t−p)
+ ...+ θ∗p

y2t−p

(1+θ1y
2

t−1
+...+θpy

2

t−p)
+ wt

Finally, it is important to stress that we can apply these tests not only in the
presence of pivotality when we test for the null of the full ARCH coefficients vector
(using the MC technique) equal to a value; but also, using the Maximised Monte
Carlo (MMC) technique, we can handle those cases where we loose the pivotal prop-
erty when we test only for a sub-vector of those ARCH coefficients equal to a value
(see Dufour (2004) for more details)). The MMC also allows for the presence of
autoregressions in the mean equation.

3 Comparison by simulation of the proposed test

procedures

We proceed now to compare our different procedures in the context of an ARCH(2)
process under normal, t(5) and t(3) errors. This model was already analysed in Hall
and Yao (2003) and it was chosen for comparative purposes. The model is then given
by:

yt = εt, where E (ε2t/It−1) = θ1 + θ2ε
2
t−1 + θ3ε

2
t−2. Assuming θ1 = 0.81.

We consider seven different types of null hypothesis. The results are given in
the Appendix. We will present the results both using asymptotic theory and the
MC technique (see Dufour and Kiviet (1996, 1998), Dufour, Khalaf, Bernard and
Genest (2004) for more details). While in Hall and Yao (2003) they only reported
results for sample sizes 500 and 1000, we will report results for sample sizes 500,
200 and 50, to show the good finite sample properties of our procedures. We also
consider a much more variety of null and alternative hypothesis than those given
in Hall and Yao (2003). In this last paper, they report that with their proposed
subsampling technique, light tails in the distribution of the errors tend to produce
relatively conservative confidence intervals. On the other hand, for extreme heavy-
tailed-errors (t-3) the anticonservatism becames a problem. Our procedure through
the MC technique allows to control for the size, and besides, we will provide clear
results about the power properties.
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The results for the Monte Carlo technique are based on 40000 replications, and
N=99. The results for asymptotics where carried out with 40000 replications. The
results for the simulated annealing (for the Maximised Monte Carlo technique) have
been based on 1000 replications and N=99.

We cover 7 different types of nulls in the simulation results. All tests are very
conservative in relation to the size distorsion.We proceed now to comment in detail
results in each of the null hypothesis:

1) the first one, is the case of the IARCH(2) process. Here specially, the advantages
of the point optimal test are huge. The point optimal test evaluated in the middle
of the parameter space seems the best alternative (following Elliot, Rothenberg, and
Stock (1996)). We also check that the procedure does not loose important power
when the residuals are not gaussian. In this case, for alternatives with low values
of the coefficients, to set the point optimal test to the middle value seems not to
have good power properties. In this case, it would be necessary either to maximise
power against a weighted average of possible alternatives (Andrews and Ploberger
(1994)); or to use a small fraction of the sample (at the beginning) to estimate a
plausible value for the alternative, and the rest to perform the test (taking as given
the observations used to estimate the alternative). Given the Markovian structure of
ARCH processes this will preserve the exactness of the test. Test 2 also has a good
performance.

2) the second one is where θ2=0.98 and θ3=0.01; namely, it is similar to an
ARCH(1) process (because θ3 is very small), and there, any point optimal test seems
to be doing it ok, what means that to set the point to optimize the test equal to
(0.49, 0.49) seems to be a good suggestion (in an ARCH(1), then for nulls of the type
near the unit root it would be a good idea to set the point optimal test to maximize
in 0.49). Test 2 also provides a good performance.

3) The third case is when the null is quite close to that recommendation of setting
the point to the middle of the parameter space. Here the recommendation to the
researcher is to follow again the route of maximing power through a weighted average
of possible alternatives (Andrews and Ploberger (1994)) or to use a small fraction
of the sample to estimate a plausible value for the alternative. Test 2 has a bad
performance power in this case.

4) The fourth null covers the case of very low values of θ2 and θ3, and there the
best point to optimize the test is again the recommendation of Elliot, Rothenberg,
and Stock (1996): (0.49, 0.49) for the ARCH(2) (and for the ARCH(1), it would be
in 0.49).

5) The fifth case covers the case of testing for ARCH effects. Here, the Engle test
has a much better performance than for the null of any other value. Even so, our
point optimal test has superior properties to the Engle (1982) test, specially for low
value alternatives and low degrees of freedom as well. Our point optimal test also has
very good power when the distribution of the innovation process has very fat tails.

6) The sixth null relates to the case where we would be interested in testing for
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subsets of the whole set of ARCH coefficients. we see how the MMC technique also
makes our tests operational in case we want to test for a null hypothesis different from
the one of the whole coefficient ARCH vector equal to a value. The MMC technique
was carried out using the simulated annealing algorithm. The results show that even
for sample sizes of 50, the point optimal test although it decreases the power for
alternative hypothesis quite close to the null, still has good power, after optimising
the p-value out of all possible values for the nuisance parameters.

7) In the seventh case, we consider a non-stationary case where we show the
behaviour of our point optimal case against the asymptotic alternatives (in the context
of Jensen and Rahbek (2004)). They have proved that in the setting of a non-
stationary region, the QMLE is still asymptotically normal. However, there are still
no results in the literature that show what happens in small samples. We provide
results in this context both when the fourth moment of the innovation process exists
and when it does not exist. We show that the behaviour of our point optimal test
in this setting has very good power regardless if the errors have very fat tails or not
(at the same time of controlling for the size). The extension of the Engle test and
teh other test we propose have very low power in some of the alternatives. This
possibility of very good behaviour of point optimal tests outside the stationarity
region was already showed in Dufour and King (1991).

So, from the simulation results, we advice the practitioners always to use as a
rule of thumb the value equal to the middle of the parameter space (e.g. 0.49 for
an ARCH(1) process); and when it is possible, it is always better to maximise power
against a weighted alternative as in Andrews and Ploberger (1994), or to split the
sample size, and to use a small fraction of the sample (at the beginning) to estimate
a plausible value for the alternative. We also show the behaviour of the point optimal
test under non-normal-t(3) errors, and the findings indicate good power in these cases
(allowing also for control of the size and then, improving on Hall and Yao (2003)).

4 Application of an ARCH model for US Inflation

In this section we re-visit the analysis of the Implicit price deflator for GNP done
by Engle and Kraft (1983) and also reported by Bollerslev (1986). The series is also
analysed in Greene (2000, page 809). The data corresponds to quaterly observations
on the implicit price deflator for GNP from 1948.II to 1983.IV. We have obtained the
data from the U.S. Department of Commerce: Bureau of Economic Analysis.

For this data, Engle and Kraft (1983) selected an AR(4)-ARCH(8) model such as:

π̂t = 0.138 + 0.423πt−1 + 0.222πt−2 + 0.377πt−3 − 0.175πt−4

(0.059) (0.081) (0.108) (0.078) (0.104)
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̂ht = 0.058 + 0.808
8∑

i=1

(
9 − i

36

)
ε
2

t−i
(5)

(0.033) (0.265)

where:

πt = 100 ln
Pt

Pt−1

Asymptotic standard errors are given in brackets. Acording to the previous study,
the values in that model decline linearly from 0.179 to 0.022. The normalised residuals
from this model show no evidence of autocorrelation, nor do their squares.

We first carried out the analysis of the series for the same time period 1948.II to
1983.IV using an AR(4) model in the mean equation and using asymptotic Newey-
West HAC (1987) standard errors. The results were:

π̂t = 0.182 + 0.595πt−1 + 0.147πt−2 + 0.144πt−3 − 0.075πt−4

(0.090) (0.106) (0.110) (0.131) (0.110)

The same that happens in the study of Engle and Kraft (1983), when we test
for ARCH effects at lags 1, 4 and 8, we reject the null hypothesis both using the
asymptotic LM test of Engle (1982) and when we apply our point optimal test (in
all the cases giving very small p-values of 0.000). To use our point optimal test in
this framework, we have applied the MMC technique where we have kept the AR
coefficients in the mean equation as nuisance parameters, in order to obtain provably
valid results. We have used the point to optimise equal to the middle of the parameter
space. Then we proceed as the previous study to fit an unrestricted ARCH(8) model
where we have used asymptotic Bollerslev-Wooldridge (1992) robust standard errors,
and we obtain:

π̂t = 0.136 + 0.544πt−1 + 0.171πt−2 + 0.158πt−3 − 0.011πt−4

(0.040) (0.084) (0.094) (0.076) (0.081)
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̂ht = 0.064 + 0.166ε2
t−1

+ 0.109ε2
t−2
− 0.021ε2

t−3
+ 0.120ε2

t−4
+ 0.033ε2

t−5

(0.015) (0.206) (0.109) (0.095) (0.111) (0.104)

+0.189ε2
t−6

+ 0.051ε2
t−7
− 0.050ε2

t−8

(0.114) (0.123) (0.048)

As Greene (2000) says, the linear restriction of the linear lag model given in (5)
on the unrestricted ARCH(8) model appears not to be statistically significant. We
indeed tested for the existence of the linear restriction in (5) to see if it holds in our
model, and both using an asymptotic test and our point optimal test we reject the
linear restriction with a p-value of 0.000 in both cases. However, one interesting puzzle
is why although with the Engle-test and with our point optimal test we reject the
null of no-ARCH effects of order 8, when we fit the previous model we obtain that all
the coefficients in the ARCH(8) are not individually statistically significant according
to the asymptotic results. We proceed then to apply our point optimal test using
the MMC technique to test if the ARCH coefficients in the previous model where
individually statistically significant, and we found in the 8 cases a p-value around
0.000 rejecting the null hypothesis that each of the coefficients are individually equal
to zero. In this case, it is proved that asymptotic results give pretty bad inference
for the individual statistically significance for this example.

5 Conclusions

In this paper we are interested in finding the best procedure for practitioners to test
for any value of ARCH coefficients. We have developed three tests, including a point
optimal test, and we have provided evidence of its good performance both in the case
of normal errors, very fat tails (to compare with Hall and Yao (2003)), and/or in a
non-stationary region (to cover as well the framework of Jensen and Rahbek (2004)).
We have shown mainly that our point optimal test can have a good performance
in all these cases. We have also shown that our tests can be made operational not
only in the case where pivotality is guaranteed, but also when we test for the null
of a sub-vector of the whole coefficient vector in the ARCH structure or when an
AR process is introduced in the mean equation without loosing the exactness of the
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test. We have also reported the usefulness of our test in the case of an ARCH model
applied to the US inflation.

In summary, a general rule to advice to practitioners (supported by the simula-
tion results) is to use our point optimal test setting the point to optimise equal to
the middle value of the parameter space (following the recommendation of Elliot,
Rothenberg, and Stock, (1996)). This would be a good rule of thumb, although the
best recommendation, if possible, is to maximise power against a weighted average
of alternatives (Andrews and Ploberger (1994)) or to split the sample using a small
fraction at the beginning to estimate a plausible value for the alternative. Our simula-
tions show that our point optimal test has good properties in finite samples regardless
if the errors are gaussian or not (including if the errors have very fat-tails) and/or if
the process is in the stationarity region or not.
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6 Appendix

Null 1: H0 : θ2 = 0.81; θ3 = 0.19

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.002 0.050 0.001 0.048 0.051 0.018 0 .047 0.020 0.050

T=200 0.002 0.050 0.001 0.047 0.047 0.017 0 .050 0.021 0.049

T=50 0.002 0.047 0.001 0.050 0.048 0.014 0 .050 0.018 0.051

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T=500 0.004 0.780 0.001 0.565 0.700 0.963 1 .000 0.438 0.845

T=200 0.003 0.560 0.001 0.420 0.555 0.690 1 .000 0.192 0.460

T=50 0.006 0.145 0.001 0.130 0.095 0.101 0 .315 0.050 0.145

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T=500 0.001 0.395 0.001 0.145 0.115 0.824 1 .000 0.554 1.000

T=200 0.003 0.280 0.001 0.140 0.075 0.410 1 .000 0.298 0.955

T=50 0.003 0.095 0.002 0.065 0.055 0.095 0 .245 0.093 0.255

Power: simulating under HA : θ2 = 0.01; θ3 = 0.98

T=500 0.011 1.000 0.001 0.370 0.220 1.000 1 .000 0.997 1.000

T=200 0.003 1.000 0.001 0.095 0.210 0.999 1 .000 0.967 1.000

T=50 0.009 0.170 0.001 0.085 0.095 0.582 1 .000 0.485 1.000

T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T= 500 0.050 0 .048 0.051 0.050 0.051 0.050 0 .051

T= 200 0.049 0 .050 0.049 0.049 0.049 0.054 0 .049

T= 50 0.050 0 .047 0.050 0.050 0.049 0.050 0 .048

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T= 500 0.330 1 .000 1.000 0.060 1.000 1.000 1 .000

T= 200 0.230 1 .000 1.000 0.050 0.755 1.000 1 .000

T= 50 0.095 0 .500 0.580 0.040 0.090 1.000 1 .000

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T= 500 0.795 0 .535 1.000 0.325 1.000 0.600 1 .000

T= 200 0.625 0 .335 1.000 0.210 1.000 0.270 0 .495

T= 50 0.175 0 .190 0.320 0.140 0.485 0.110 0 .150

Power: simulating under HA : θ2 = 0.01; θ3 = 0.98

T= 500 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 1.000 1 .000 1.000 1.000 1.000 0.485 0 .705

AS: Asymptotic. MC: Monte Carlo. PO(θ1
2
,θ1

3
): Point optimal. T2: Test in Theorem 3.
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Null 2: H0 : θ2 = 0.98; θ3 = 0.01

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.003 0.054 0.001 0.047 0.049 0.023 0 .049 0.022 0.049

T=200 0.001 0.054 0.001 0.049 0.055 0.026 0 .052 0.024 0.053

T=50 0.001 0.053 0.001 0.054 0.055 0.025 0 .055 0.027 0.050

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T=500 0.456 1.000 0.089 1.000 1.000 0.999 1 .000 0.885 1.000

T=200 0.171 1.000 0.021 1.000 1.000 0.909 1 .000 0.625 1.000

T=50 0.012 0.395 0.003 0.465 0.410 0.261 0 .560 0.232 0.540

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T=500 0.029 0.255 0.001 0.110 0.085 0.999 1 .000 0.988 1.000

T=200 0.008 0.195 0.001 0.145 0.050 0.905 1 .000 0.861 1.000

T=50 0.002 0.110 0.001 0.100 0.070 0.395 1 .000 0.431 1.000

Power: simulating under HA : θ2 = 0.01; θ3 = 0.98

T=500 0.003 0.135 0.001 0.135 0.150 1.000 1 .000 0.999 1.000

T=200 0.005 0.125 0.001 0.085 0.095 0.995 1 .000 0.977 1.000

T=50 0.002 0.130 0.001 0.110 0.145 0.662 1 .000 0.613 1.000

T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T= 500 0.051 0 .055 0.049 0.051 0.050 0.051 0 .051

T= 200 0.051 0 .047 0.050 0.049 0.049 0.048 0 .049

T= 50 0.049 0 .051 0.050 0.051 0.048 0.051 0 .052

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T= 500 1.000 1 .000 1.000 0.860 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 0.440 1.000 1.000 1 .000

T= 50 0.545 0 .765 1.000 0.250 0.785 1.000 1 .000

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T= 500 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 0.980 0 .930 1.000 1.000 1.000 1.000 1 .000

Power: simulating under HA : θ2 = 0.01; θ3 = 0.98

T= 500 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

18



Null 3: H0 : θ2 = 0.5; θ3 = 0.4

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.078 0.050 0.001 0.051 0.052 0.016 0 .044 0.019 0.047

T=200 0.035 0.047 0.001 0.055 0.050 0.016 0 .051 0.017 0.053

T=50 0.013 0.048 0.002 0.052 0.051 0.012 0 .049 0.012 0.047

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T=500 0.607 1.000 0.137 1.000 1.000 0.784 1 .000 0.015 0.045

T=200 0.365 0.895 0.049 1.000 1.000 0.351 1 .000 0.010 0.035

T=50 0.070 0.310 0.001 0.780 0.305 0.032 0 .135 0.008 0.040

Power: simulating under HA : θ2 = 0.16; θ3 = 0.4

T=500 0.393 0.480 0.023 0.600 0.570 0.762 1 .000 0.214 0.400

T=200 0.177 0.410 0.012 0.545 0.450 0.293 1 .000 0.101 0.320

T=50 0.041 0.165 0.007 0.145 0.175 0.040 0 .135 0.028 0.105

Power: simulating under HA : θ2 = 0.16; θ3 = 0.64

T=500 0.094 0.040 0.001 0.110 0.085 0.981 1 .000 0.804 1.000

T=200 0.041 0.085 0.001 0.105 0.115 0.656 1 .000 0.654 1.000

T=50 0.019 0.045 0.001 0.080 0.095 0.118 0 .400 0.093 0.435

Power: simulating under HA : θ2 = 0.5; θ3 = 0.16

T=500 0.237 0.215 0.004 0.240 0.210 0.364 0 .515 0.071 0.255

T=200 0.037 0.135 0.003 0.225 0.185 0.094 0 .305 0.040 0.150

T=50 0.024 0.209 0.004 0.095 0.100 0.015 0 .060 0.011 0.040

Power: simulating under HA : θ2 = 0.9; θ3 = 0.09

T=500 0.005 0.015 0.001 0.015 0.025 0.995 1 .000 0.824 1.000

T=200 0.004 0.010 0.001 0.005 0.035 0.711 1 .000 0.449 1.000

T=50 0.005 0.020 0.001 0.025 0.060 0.092 0 .315 0.061 0.220

Power: simulating under HA : θ2 = 0.09; θ3 = 0.9

T=500 0.007 0.020 0.001 0.010 0.015 1.000 1 .000 0.984 1.000

T=200 0.007 0.005 0.001 0.010 0.030 0.964 1 .000 0.843 1.000

T=50 0.008 0.040 0.002 0.030 0.060 0.324 1 .000 0.241 0.860
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T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
Size: simulating under the null

AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

T= 500 0.048 0 .051 0.050 0.051 0.051 0.050 0 .049

T= 200 0.048 0 .051 0.048 0.050 0.051 0.051 0 .048

T= 50 0.053 0 .046 0.051 0.047 0.051 0.048 0 .052

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T= 500 0.015 1 .000 1.000 0.015 0.010 1.000 1 .000

T= 200 0.010 1 .000 1.000 0.010 0.006 1.000 1 .000

T= 50 0.020 0 .165 0.070 0.010 0.005 1.000 0 .770

Power: simulating under HA : θ2 = 0.16; θ3 = 0.4

T= 500 0.255 1 .000 1.000 0.030 0.025 1.000 1 .000

T= 200 0.210 1 .000 1.000 0.035 0.015 0.710 1 .000

T= 50 0.095 0 .250 0.275 0.030 0.015 0.375 0 .310

Power: simulating under HA : θ2 = 0.16; θ3 = 0.64

T= 500 1.000 1 .000 1.000 0.175 1.000 0.250 0 .315

T= 200 1.000 1 .000 1.000 0.150 1.000 0.160 0 .175

T= 50 0.260 0 .370 0.815 0.120 0.380 0.100 0 .085

Power: simulating under HA : θ2 = 0.5; θ3 = 0.16

T= 500 0.160 0 .380 0.070 0.015 0.010 1.000 1 .000

T= 200 0.095 0 .145 0.030 0.015 0.005 0.690 0 .555

T= 50 0.040 0 .035 0.015 0.020 0.001 0.185 0 .130

Power: simulating under HA : θ2 = 0.9; θ3 = 0.09

T= 500 1.000 0 .010 0.005 0.025 0.015 0.010 0 .025

T= 200 0.970 0 .010 0.002 0.025 0.011 0.015 0 .022

T= 50 0.150 0 .010 0.001 0.025 0.010 0.030 0 .020

Power: simulating under HA : θ2 = 0.09; θ3 = 0.9

T= 500 1.000 1 .000 1.000 0.960 1.000 0.010 0 .040

T= 200 1.000 1 .000 1.000 0.585 1.000 0.015 0 .036

T= 50 0.790 0 .860 1.000 0.290 1.000 0.040 0 .035
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Null 4: H0 : θ2 = 0.16; θ3 = 0.25

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.077 0.049 0.016 0.051 0.045 0.017 0 .049 0.022 0.047

T=200 0.002 0.048 0.001 0.049 0.056 0.018 0 .047 0.028 0.051

T=50 0.003 0.046 0.001 0.053 0.045 0.014 0 .041 0.019 0.052

Power: simulating under HA : θ2 = 0.5; θ3 = 0.16

T=500 0.019 0.020 0.001 0.005 0.005 0.919 1 .000 0.685 1.000

T=200 0.001 0.005 0.001 0.005 0.020 0.526 1 .000 0.399 1.000

T=50 0.001 0.020 0.001 0.025 0.015 0.109 0 .380 0.102 0.355

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T=500 0.003 0.020 0.001 0.001 0.001 0.863 1 .000 0.602 1.000

T=200 0.001 0.015 0.001 0.001 0.001 0.466 1 .000 0.313 0.910

T=50 0.001 0.030 0.001 0.001 0.001 0.090 0 .220 0.076 0.195

Power: simulating under HA : θ2 = 0.9; θ3 = 0.09

T=500 0.001 0.001 0.001 0.001 0.001 1.000 1 .000 0.985 1.000

T=200 0.001 0.001 0.001 0.001 0.001 0.970 1 .000 0.846 1.000

T=50 0.001 0.005 0.001 0.020 0.010 0.361 1 .000 0.261 0.690

Power: simulating under HA : θ2 = 0.09; θ3 = 0.9

T=500 0.005 0.015 0.001 0.001 0.001 0.999 1 .000 0.965 1.000

T=200 0.001 0.001 0.001 0.005 0.001 0.912 1 .000 0.729 1.000

T=50 0.001 0.005 0.001 0.020 0.010 0.254 0 .995 0.172 0.400
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T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T= 500 0.045 0 .051 0.051 0.051 0.051 0.051 0 .049

T= 200 0.051 0 .046 0.050 0.051 0.050 0.048 0 .049

T= 50 0.045 0 .051 0.050 0.048 0.049 0.053 0 .051

Power: simulating under HA : θ2 = 0.5; θ3 = 0.16

T= 500 0.975 0 .035 0.030 0.375 1.000 0.010 0 .060

T= 200 0.630 0 .035 0.025 0.320 1.000 0.015 0 .055

T= 50 0.180 0 .045 0.005 0.250 0.950 0.025 0 .050

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T= 500 0.495 0 .045 0.525 1.000 1.000 0.003 0 .015

T= 200 0.345 0 .065 0.480 0.915 1.000 0.001 0 .011

T= 50 0.185 0 .080 0.335 0.425 1.000 0.004 0 .010

Power: simulating under HA : θ2 = 0.9; θ3 = 0.09

T= 500 1.000 0 .030 0.350 1.000 1.000 0.010 0 .035

T= 200 1.000 0 .045 0.325 1.000 1.000 0.005 0 .030

T= 50 0.465 0 .070 0.320 0.870 1.000 0.005 0 .025

Power: simulating under HA : θ2 = 0.09; θ3 = 0.9

T= 500 1.000 1 .000 1.000 1.000 1.000 0.002 0 .010

T= 200 1.000 1 .000 1.000 1.000 1.000 0.001 0 .005

T= 50 0.370 0 .645 1.000 0.460 1.000 0.001 0 .002
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Null 5: H0 : θ2 = 0; θ3 = 0

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.045 0.052 0.045 0.048 0.047 0.023 0 .049 0.016 0.046

T=200 0.043 0.051 0.041 0.053 0.050 0.023 0 .048 0.028 0.048

T=50 0.039 0.050 0.033 0.048 0.050 0.019 0 .047 0.025 0.050

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T=500 0.957 1.000 0.984 1.000 1.000 0.923 1 .000 0.873 1.000

T=200 0.654 1.000 0.815 1.000 1.000 0.620 1 .000 0.650 1.000

T=50 0.191 0.375 0.288 0.665 0.960 0.170 0 .575 0.241 0.700

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T=500 1.000 1.000 0.995 1.000 1.000 0.999 1 .000 0.900 1.000

T=200 0.991 1.000 0.976 1.000 1.000 0.961 1 .000 0.834 1.000

T=50 0.528 1.000 0.594 1.000 1.000 0.541 1 .000 0.488 1.000

Power: simulating under HA : θ2 = 0.5; θ3 = 0.16

T=500 1.000 1.000 0.995 1.000 1.000 0.998 1 .000 0.980 1.000

T=200 0.698 1.000 0.962 1.000 1.000 0.926 1 .000 0.886 1.000

T=50 0.433 1.000 0.512 1.000 1.000 0.387 1 .000 0.420 1.000

Power: simulating under HA : θ2 = 0.09; θ3 = 0.9

T=500 0.999 1.000 0.976 1.000 1.000 0.999 1 .000 0.976 1.000

T=200 0.984 1.000 0.949 1.000 1.000 0.509 1 .000 0.888 1.000

T=50 0.568 1.000 0.543 1.000 1.000 0.468 1 .000 0.443 1.000

Power: simulating under HA : θ2 = 0.9; θ3 = 0.09

T=500 1.000 1.000 0.990 1.000 1.000 0.998 1 .000 0.981 1.000

T=200 0.990 1.000 0.961 1.000 1.000 0.957 1 .000 0.906 1.000

T=50 0.558 1.000 0.580 1.000 1.000 0.490 1 .000 0.481 1.000

23



T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T= 500 0.051 0 .051 0.050 0.051 0.051 0.052 0 .049

T= 200 0.046 0 .051 0.053 0.053 0.050 0.050 0 .048

T= 50 0.055 0 .046 0.048 0.051 0.049 0.051 0 .051

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T= 500 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 0.790 1 .000 1.000 1.000 1.000 1.000 1 .000

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T= 500 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

Power: simulating under HA : θ2 = 0.5; θ3 = 0.16

T= 500 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

Power: simulating under HA : θ2 = 0.09; θ3 = 0.9

T= 500 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

Power: simulating under HA : θ2 = 0.9; θ3 = 0.09

T= 500 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

Null 6: H0 : θ2 = 0

Point optimal test set to (0.49,0.49) using MMC with t(3) and normal.

Size Power θ2 = 0.9 Power θ2 = 0.5 Power θ2 = 0.16

MMC-t(3) MMC-nor MMC-t(3) MMC-nor MMC-t(3) MMC-nor MMC-t(3) MMC-nor

T= 50 0.059 0 .060 0.910 0.940 0.820 0.840 0.340 0 .400
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Null 7: H0 : θ2 = 0.81; θ3 = 0.49

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.003 0.049 0.002 0.051 0.051 0.020 0 .050 0.017 0.052

T=200 0.002 0.049 0.001 0.052 0.052 0.016 0 .049 0.015 0.053

T=50 0.002 0.051 0.001 0.051 0.048 0.014 0 .052 0.013 0.049

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T=500 0.007 1.000 0.002 1.000 1.000 0.956 1 .000 0.505 0.950

T=200 0.007 0.720 0.002 0.695 1.000 0.723 1 .000 0.137 0.535

T=50 0.009 0.180 0.002 0.185 0.225 0.111 0 .390 0.018 0.065

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T=500 0.003 0.505 0.001 0.180 0.655 0.363 0 .565 0.018 0.070

T=200 0.001 0.385 0.001 0.150 0.400 0.108 0 .355 0.016 0.050

T=50 0.005 0.120 0.001 0.080 0.115 0.022 0 .110 0.012 0.040

Power: simulating under HA : θ2 = 0.01; θ3 = 0.98

T=500 0.002 0.600 0.001 0.430 0.975 1.000 1 .000 0.989 1.000

T=200 0.001 0.360 0.001 0.360 0.695 0.992 1 .000 0.910 1.000

T=50 0.004 0.090 0.001 0.100 0.125 0.417 1 .000 0.311 1.000

Power: simulating under HA : θ2 = 0.49; θ3 = 0.81

T=500 0.001 0.080 0.002 0.045 0.040 0.927 1 .000 0.724 1.000

T=200 0.001 0.090 0.001 0.075 0.050 0.513 1 .000 0.348 1.000

T=50 0.001 0.060 0.001 0.040 0.085 0.099 0 .455 0.077 0.265

Power: simulating under HA : θ2 = 0.16; θ3 = 1

T=500 0.003 0.160 0.002 0.175 0.275 1.000 1 .000 0.984 1.000

T=200 0.003 0.125 0.001 0.185 0.240 0.970 1 .000 0.832 1.000

T=50 0.003 0.085 0.001 0.095 0.100 0.323 1 .000 0.231 0.840
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T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T= 500 0.050 0 .052 0.049 0.051 0.053 0.049 0 .047

T= 200 0.051 0 .053 0.052 0.049 0.052 0.049 0 .052

T= 50 0.049 0 .048 0.051 0.048 0.050 0.052 0 .049

Power: simulating under HA : θ2 = 0.16; θ3 = 0.16

T= 500 0.050 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 0.075 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 0.035 1 .000 1.000 1.000 1.000 1.000 1 .000

Power: simulating under HA : θ2 = 0.5; θ3 = 0.4

T= 500 0.055 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 0.075 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 0.040 0 .280 0.220 0.370 0.285 0.390 0 .355

Power: simulating under HA : θ2 = 0.01; θ3 = 0.98

T= 500 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 200 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000

T= 50 0.920 1 .000 1.000 1.000 1.000 0.556 0 .390

Power: simulating under HA : θ2 = 0.49; θ3 = 0.81

T= 500 1.000 0 .290 0.860 0.540 0.500 0.055 0 .050

T= 200 0.725 0 .165 0.315 0.255 0.515 0.055 0 .065

T= 50 0.300 0 .135 0.220 0.115 0.190 0.055 0 .060

Power: simulating under HA : θ2 = 0.16; θ3 = 1

T= 500 1.000 1 .000 1.000 1.000 1.000 0.825 0 .800

T= 200 1.000 1 .000 1.000 1.000 1.000 0.425 0 .415

T= 50 0.625 0 .905 1.000 0.705 1.000 0.175 0 .155
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