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Abstract

This paper studies optimal auction for heterogenous objects when
bidders have multidimensional independent types from continuous dis-
tributions. A new convergence result shows that the optimal auction
mechanism can be obtained as a limit of multiproduct nonlinear pric-
ing mechanisms of Rochet and Choné (1998). The reservation price
excludes bidders with positive probabilities. Bunching is robust be-
cause of the con�ict between participation constraints and incentive
compatibility conditions and also from the quantity constraints. Nu-
merical examples are presented.

1 Introduction

This paper studies the optimal auction mechanism when the seller has het-
erogeneous objects and each buyer has a multidimensional type drawn inde-
pendently from a continuous distribution.
In case of a single good and a single dimensional type, Myerson (1981)

presented a systematic study of the optimal auction mechanism. Buyer�s in-
centive constraints are equivalent to an envelope condition and monotonicity
of the expected allocation. Using integration by parts, the seller�s expected
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pro�t is represented in terms of allocation and the marginal revenue. If the
distribution of types satis�es the regularity condition, then the optimal auc-
tion mechanism allocates the object to the bidder with the highest marginal
revenue if the marginal revenue is positive. A second price auction with a re-
serve price implements the optimal auction. If the regularity condition is not
satis�ed, then the seller uses the ironing procedure to restore monotonicity
of the allocation.
But when I try to apply this approach to my auction problem, I encounter

two di¢ culties. First, since types are multidimensional, incentive compati-
bility conditions are more complex. The second order condition is equivalent
to convexity of expected surplus. In contrast to the single dimensional case,
it is very di¢ cult to �nd a regularity condition. Indeed, in the context of
multidimensional nonlinear pricing, Rochet and Choné (1998) showed that
this second order condition is generally binding. The second di¢ culty is that
the seller may have an incentive to bundle the objects. McAfee, McMillan,
and Whinston (1986) showed that, in the context of the monopoly selling,
under a general condition on the distribution of types, the seller bundles the
objects in order to increase the revenue from the buyer with a high type
for one object and a low type for the other objects. As a result, an auc-
tion mechanism which allocates each object to the buyer with the highest
marginal revenue for each object is not likely to be optimal.
In order to explain these two points, let me consider a very simple example

where the seller has two objects. Each buyer has two dimensional types.
Each type is distributed independently according to a uniform distribution
on [0,1]. A buyer�s payo¤ is the sum of values from each object minus the
payment. In this example, since there are no complementarity in the payo¤s
and the distribution of types is independent, running an optimal auction
for each object seems to be a reasonable candidate for the optimal auction
mechanism. An optimal mechanism for each object in this case is the second
price auction with the reserve price of 0.5. If there is only one bidder, the
expected payo¤ is given by 2 � 0:5 � 0:5 = 0:5. Now, consider a following
pure bundling auction where the seller bundles object 1 and object 2, and
sets the reserve price of 0.9 for the bundle. In this case, with one bidder, the
expected payo¤ is 0:9� (1�0:92�0:5) = 0:5355, which is strictly higher than
the combination of the optimal auctions for each objects.
In this paper, I deal with these two problems as follows. I start with

a new convergence result which derives an optimal auction mechanism as a
limit of nonlinear pricing mechanisms by constructing the cost functions of
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the nonlinear pricing problem which converges to that of the optimal auction
problem.
Since this is a key idea of the paper, let me explain the method in the

simplest setting of a seller selling a single object to a single buyer. In the
optimal auction setting, the seller has a zero marginal cost up to one unit,
and faces an in�nite marginal cost for more than one unit. I can represent
this cost structure as a limit of nonlinear pricing cost structures c(q) = qn.
In this nonlinear pricing problem, the objective function isZ

[MR(t1)q(t1)� q(t1)n]f(t1)dt1

where MR(t1) = t1 � (1 � F (t1))=f(t1). Assuming the regularity condition
on the distribution of types, the optimal allocation is to allocate zero unit
if the marginal revenue is negative, and the quantity which satis�es the �rst
order condition MR(t1) =MC(q(t1)) if the marginal revenue is positive. As
I let n!1, I get the optimal auction mechanism where the seller allocates
one unit to the buyer with a nonnegative marginal revenue.
Now suppose there are two buyers. In the optimal auction problem, the

quantity constraints is 0 � q(t1; t2) + q(t2; t1) � 1 for each t1 and t2. Let me
consider nonlinear pricing problems with cost functions (q(t1; t2)+q(t2; t1))n.
The seller�s objective function isZ
(MR(t1)q(t1; t2) +MR(t2)q(t2; t1)� (q(t1; t2) + q(t2;t1))n)f(t1; t2)dt1dt2

Since the cost function is symmetric in q(t1; t2) and q(t2; t1); the marginal
cost is the same whether the seller sells an additional unit to either of buyer
1 or buyer 2. The seller chooses buyer i with the highest marginal revenue
(assuming, for simplicity, it is positive) and supplies the quantity determined
by MR(ti) = MC(q(ti)). At the limit of n!1, the seller sells one unit of
the object to the buyer with the highest marginal revenue.
Then I apply this convergence result to study an optimal auction mech-

anism of multidimensional types and heterogeneous objects. An important
advantage in working from the nonlinear pricing problem is that, since the
objective of the nonlinear pricing problem is smooth and the set of feasible
mechanisms is a closed convex cone, I can apply �rst order conditions to
characterize the optimal mechanism. I �rst construct a multi-product and
multi-dimensional nonlinear pricing problem among multiple buyers corre-
sponding to the optimal auction problem. This nonlinear pricing problem
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can be considered as a multiple buyer version of the nonlinear pricing prob-
lem by Rochet and Choné(1998). Then I apply the �rst result to derive the
optimal auction mechanism as a limit of nonlinear pricing mechanisms.
I �nd three features in the optimal auction mechanism for heterogenous

objects: exclusion, e¢ ciency at the boundary, and bunching.
First, the seller is going to set a nontrivial reserve price. In nonlinear

pricing problems, Armstrong (1996) showed the exclusion region has a strictly
positive measure. An intuition is that, in multidimensional problems, the
measure of buyers excluded is of a higher order (for example, if the buyer
has a two dimensional type distributed on a rectangle [0; 1]2 and the seller
sets a reserve price in the form of t1 + t2 = �, then the measure of the set
of buyers who will be excluded is "2=2) than the �rst order bene�t from
charging higher prices to remaining buyers. I �nd that this property carries
over to an optimal auction mechanism, and, moreover, the reserve price (the
exclusion region) is the same, independent of the number of buyers and of
the di¤erence between nonlinear pricing mechanisms and optimal auction
mechanisms. Intuitively, using an analogy from a single dimensional problem,
a buyer�s marginal revenue only depends on the realization of a type, and
the seller excludes buyers with a negative marginal revenue. There the cost
structure does not play any role in the determination of exclusion. This
�nding generalizes an analogous result in one dimensional single object case.
In nonlinear pricing problems, buyers at the upper boundary of the set

of feasible types are not subject to distortion. An intuition is that there are
no higher (in terms of types) buyers to worry about deviation. Since this
property holds for every nonlinear pricing mechanism, it also holds in the
limit case of optimal auction mechanisms.
The third result concerns bunching. Rochet and Choné(1998) found that

bunching is robust in multidimensional nonlinear pricing models. In non-
linear pricing problem, bunching takes place because of the con�ict among
incentive constraints, exclusion, and continuity of allocations. The seller
wishes to set nontrivial reserve prices. On the other hand, the seller wishes
to satisfy the �rst order conditions. It will create a con�ict at the bound-
ary of the exclusion region, and can violate continuity of allocation. As a
result, bunching will take place. In optimal auction problem, bunching is
still robust, but with some di¤erences from that of nonlinear pricing prob-
lems. In auctions, the allocation does not necessarily have to be continuous,
but on the other hand, the allocation is exogenously bounded from above
due to quantity constraints. This will create a new source of bunching. I
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�nd an example of the optimal auction where bunching region merges with
di¤erentiated region.
Finally I numerically compute optimal auction mechanisms for some ex-

amples. The result suggests a complex allocation schedule. At the boundary
of the reserve price, the allocation pattern exhibits bundling. But at the
upper boundary of the exclusion region, e¢ ciency at the boundary implies
that the allocation for an object solely depends on the type for this object.
This complexity suggests that an explicit full characterization of an optimal
auction mechanism may not be analytically easy.
For contributions, �rst, this paper provides a new linkage between op-

timal auction mechanisms and nonlinear pricing mechanisms. Improving a
result in Bulow and Roberts (1989), my result allows an explicit derivation
of an optimal auction mechanism from standard nonlinear pricing mecha-
nisms. Second, this paper intends to make a progress, building on previous
contributions, in a study of multidimensional mechanism design. This paper
provides �rst characterization results of a general optimal auction mecha-
nism for multidimensional types and heterogenous objects without assuming
an exogenous reduction to one dimensional type, some restrictions of possi-
ble mechanisms, nor a discrete distribution of types. In addition, I provide
computational examples of the auction mechanism for heterogeneous objects.
The plan of the paper is as follows. In section 2, I de�ne the optimal

auction problem. Section 3 presents the convergence result. In section 4, I
apply this result to consider an auction for heterogeneous objects. Section 5
presents computational examples. Section 6 concludes.

1.1 Related Literature

First this paper relates to Bulow and Roberts (1989) which examined the
relation between optimal auction problems and a nonlinear pricing problem
with the seller having zero marginal cost up to a capacity constraint. In
this paper, I tighten the connection further between optimal auctions by
deriving the optimal auction mechanism from nonlinear pricing problems
with standard cost functions (e.g. quadratic). This technique is valid for an
arbitrary �nite number of objects, bidders, and when the objective function
is not restricted to revenue maximization (e.g. welfare maximization).
Second this paper builds on the advances made in the study of multidi-
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mensional nonlinear pricing problems1.
Armstrong (1996) considered multiproduct and multidimensional nonlin-

ear pricing problem. Armstrong (1996) proved the key exclusion result in
multidimensional mechanisms and characterized su¢ cient conditions to de-
rive the optimal nonlinear pricing mechanism based on a cost-based tari¤.
Rochet and Choné(1998) provided a general characterization result of

nonlinear pricing mechanisms with a multidimensional type and heteroge-
neous objects. This paper builds on their new methods and extends their
insights to optimal auction mechanisms.
Third, let me explain the relation to the previous contributions to the

study of optimal auction for heterogeneous objects.
Palfrey (1983)�s elegant analysis concerns the seller bundling decision in

Vickrey auctions. Palfrey (1983) showed that the bundling decision can de-
pends on the number of bidders. In contrast, this paper studies a general
characterizations of the optimal auction mechanism without exogenous re-
strictions on the possible mechanisms.
Levin (1997) succeeded in the full characterization of an optimal auction

problem for heterogenous objects when the bidder has one dimensional type
so that the techniques developed in Myerson (1981) can be applied. This
paper considers an optimal auction problem when bidders have multidimen-
sional types.
Jehiel, Moldovanu, and Stachetti (1999) considered an auction design

problem when the seller has a single object and the seller and the buyers have
multidimensional types which represents externalities on the identity of the
winner of the auction. They provided a characterization result for incentive
compatibility for multidimensional types. Furthermore, they showed that a
second price auction with entry fee is optimal among the standard bidding
mechanisms where the bidder is restricted for a one dimensional bid and the
seller always sell the object to a bidder. This paper considers an optimal
mechanism where the seller can use full multidimensional information from
bidders.
Avery and Hendershott (2000) analyzed the optimal auction mechanism

of two objects when there is a buyer who is interested in both objects and
other bidders are interested in one object. Avery and Hendershott (2000)
showed that the optimal auction mechanism involves bundling. This paper
considers a general case where each bidder is interested in both objects and

1Rochet and Stole (2000) provided a survey on the literature.
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the type comes from a continuous distribution. The computational results
suggests a bundling persists in optimal auction mechanisms.
Armstrong (2000) provided a detailed characterization of the optimal

auction mechanism when the bidder�s type is from a binary distribution.
Armstrong (2000) showed that the optimal auction mechanism depends on
the correlation among types, and a bundling auction is optimal with inde-
pendently distributed types, the insight this paper con�rms in a case of a
continuous distribution.

2 The Model

In this section I explain the model of the optimal auction with heterogeneous
objects and multidimensional types.

The Supply Side. The single seller has K di¤erent objects. The seller has
zero value for each object. There are N buyers. Let qki be an allocation of
object k to buyer i. The seller faces quantity constraints: 0 �

PN
i=1 q

k
i � 1

for each k and 0 � qki � 1, for each of i and k. The seller is risk-neutral.
The Demand Side. Buyer i = 1; :::; N has a K�dimensional type ti. The
distribution of types among buyers is iid with a continuous and bounded
density 2f . The support of the distribution of types is 
 = [0; 1]K . Buyer i
has quasilinear preferences: given type ti, an allocation qi = (q1i ;...; q

K
i ), and

a payment pi 2 R+, the payo¤ is given by ti � qi � pi. Each buyer has an
outside option with a payo¤ of 0 and is risk neutral.

The Seller�s Problem. The seller chooses a mechanism to maximize the
expected revenue. By the revelation principle, it is without loss of generality
to restrict attentions to a class of direct revelation mechanisms, which are
maps from the set of reports from buyers to an allocation and a payment.
Let qk : [0; 1]KN ! R+; k = 1;...; K and p : [0; 1]KN ! R+ be the allocation
and the payment function. The seller restrict attentions to symmetric mech-
anisms, that is, for each k, qk(ti; t�i) = qk(tj; t�j) and p(ti; t�i) = p(tj; t�j)
if ti = tj and t�i = t�j. I assume that qk and p are from L1([0; 1]KN) en-
dowed with a usual (norm) topology. The seller�s expected revenue from the

2For simplicity of notations, I use f for the density of the type ti, or a vector of types
t = (t1; :::; tN ) and others while avoiding confusion.
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mechanism (p; q) is

�(p; q) =

Z NX
i=1

p(ti; t�i)f(ti; t�i)dt:

Now consider constraints for a buyer. Let Qk(ti) =
R
qk(ti; t�i)f(t�i)dt�i

and Q(ti) = (Q1(ti);...; QK(ti)) be the expected allocation for a buyer with
type ti;assuming truthful reporting. Let P (ti) =

R
p(ti; t�i)f(t�i)dt�i be the

expected payment, assuming truthful reporting. Let U(ti) = ti �Q(ti)�P (ti)
be the expected surplus from the mechanism. The incentive constraints are
U(ti) � ti � Q(t0i) � P (t0i), 8ti; t0i. Alternatively, U(ti) = supt0i(ti � Q(t

0
i) �

P (t0i));8ti. The individual rationality constraints are U(ti) � 0; 8ti.
I summarize the seller�s maximization problem:

sup
p;q2L1([0;1]NK)

�(p; q) =

Z NX
i=1

p(ti; t�i)f(ti; t�i)dt:

subject to U(ti) � ti�Q(t0i)�P (t0i); 8ti; t0i,U(ti) � 0; 8ti,and 0 �
PN

i=1 q
k(ti; t�i) �

1, 0 � qk(ti; t�i) � 1;for each k = 1;...; K and (ti; t�i).
Finally I recall a characterization of the incentive constraints:

Lemma 1 (Rochet (1987)) Given a surplus function U , there exists an
expected allocation Q and a payment function P which satis�es the incentive
constraints if and only if Q(ti) = rU(ti) for ti almost everywhere and U(ti)
is convex continuous.

This lemma extends a standard constraint simpli�cation theorem for one
dimensional type, since convexity of U(ti) in one dimensional ti is equivalent
to a monotonicity of its subgradient Q(ti).

3 Approaches

In the previous section, I de�ned an optimal auction problem. In this section,
I review two possible previous approaches to the problem. The �rst one is a
direct approach, taken by Myerson (1981) in the study of a single object one
dimensional problem. I explain that complexity of the second order condition
of incentive constraints makes the application of this approach di¢ cult in
my problem. The second approach is an indirect approach, taken by Rochet
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and Choné (1998) in the study of a multiproduct multidimensional problem.
This approach has an advantage in dealing with the second order condition
of incentive compatibility conditions as a constraint in calculus of variation
problem. But in the auction problem, the set of possible mechanisms is
not a closed convex cone because of quantity constraints, which makes an
immediate application of their methodology di¢ cult. Thus I will present a
new approach to obtain an optimal auction mechanism as a limit of nonlinear
pricing mechanisms, which will be detailed in the next section.

3.1 A Direct Approach

A �rst approach to a multidimensional problem would be to extend an inte-
gration by parts approach.
The seller�s expected revenue is, by applying integration along the ray

(Armstrong (1996)),

�(p; q) =

Z
(
NX
i=1

p(ti; t�i))f(ti; t�i)dt

=

Z NX
i=1

(1� g(ti)

f(ti)
)
KX
k=1

tki q
k
i (ti; t�i)f(t)dt

=

Z NX
i=1

KX
k=1

(1� g(ti)

f(ti)
)tki q

k
i (ti; t�i)f(t)dt

with g(ti) =
R1
1
�f(ti�)d�. Thus I can derive a similar expression for the

marginal revenue for heterogeneous object case MRki (ti) = (1�
g(ti)
f(ti)

)tki .
Let me consider whether the solution of this �rst order condition can

be an optimal solution. For example, consider the case of two objects
and two dimensional types, with the distribution being rectangle [0; 1]2:

Then g(t) =
R minf1=t1i ;1=t2i g
1

�d� = 1
2
([min( 1

t1i
; 1
t2i
)]2 � 1). Thus MRki (ti) =

(3
2
� 1
2
[min( 1

t1i
; 1
t2i
)]2)tki .Thus the pointwise maximization implies that the seller

does not sell to the buyer if min( 1
t1i
; 1
t2i
) >

p
3 , max(t1i ; t

2
i ) <

1p
3
=

0.57735. Thus the exclusion region for each object is given by 
0 = f(t1i ; t2i ) :
max(t1i ; t

2
i ) <

1p
3
g. But this allocation is not optimal, as will be seen from

computations. Intuitively, the seller is going to set a mixed reserve price
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discounted for a buyer with a higher type for each object (see Section 6 for
more detail).

An Allocation According to
the First Order Condition for
Two Objects when the

Distribution is from Uniform
[0,1].

Let me explain the di¢ culty in satisfying incentive constraints in mul-
tidimensional problems3. The incentive constraints, expressed in Lemma 1,
can be expressed in terms of cyclical monotonicity of expected allocation:

De�nition (Rockerfeller (1967)). A function Q: 
 ! R is cyclically
monotone if and only if for every n>0, ft0;...; tng;

(t0 � tn) �Q(tn) + :::+ (t2 � t1) �Q(t1) + (t1 � t0) �Q(t0) � 0:

Lemma 2 (Rockerfeller (1967)) In order for the existence of a proper

convex function U such that its subgradient @U contains a function Q, it is
necessary and su¢ cient that Q is cyclically monotone.

Given these lemma, what conditions for Q will imply cyclical monotonic-
ity ? Let me consider a weaker condition for monotonicity (t2� t1) � (Q(t2)�
Q(t1)). Consider two objects case. The condition implies,

3See Jehiel, Moldovanu and Stacchetti (1999) for a characterization result.
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(t12 � t11; t22 � t21) � (Q1(t12; t22)�Q1(t11; t21); Q2(t12; t22)�Q2(t11; t21))
= (t12 � t11)(Q1(t12; t22)�Q1(t12; t21)) + (t22 � t21)(Q2(t12; t22)�Q2(t11; t21))
= (t12 � t11)(Q1(t12; t22)�Q1(t11; t22)) + (t12 � t11)(Q1(t11; t22)�Q1(t11; t21))

+(t22 � t21)(Q2(t12; t22)�Q2(t11; t22)) + (t22 � t21)(Q2(t11; t22)�Q2(t11; t21))

Even if the distribution satis�es monotonicity in each dimension, i.e., (t12 �
t11)(Q

1(t12; t
2
2) � Q1(t11; t21)) � 0 and (t22 � t21)(Q2(t11; t22) � Q2(t11; t21)) � 0; it is

still necessary to show that

(t12 � t11)(Q1(t11; t22)�Q1(t11; t21)) + (t22 � t21)(Q2(t12; t22)�Q2(t11; t22)) � 0;

which cannot be derived from the standard ordinal conditions.

3.2 A Dual Approach

An alternative will be to apply the calculus of variation analysis by Rochet
and Choné (1998) to the optimal auction problem. By representing the
objective function in terms of the surplus, I get

�(U) =

Z NX
i=1

(ti � rU(ti)� U(ti))f(t)dt:

With multiple buyers, the seller�s choice of expected surplus will yield
the expected allocation as its subgradient. Since the quantity constraints
is expressed in terms of unconditional quantities, I apply Border (1991)�s
implementability conditions. Armstrong (2000) is the �rst to apply Border
(1991)�s result to the analysis of the optimal auction mechanism.

Lemma 3 (Border (1991), Proposition 3.1) Given Qk:
! [0; 1], there
exists qk(ti; t�i) such that Qk(ti) =

R
qk(ti; t�i)f(t�i)dt�i if and only if for

each closed set B� 
,Z
B

Qk(ti)f(ti)dti � Q(B)

where Q(B) � 1� P (
=B)N
N

:

Let me take a moment to understand the condition. Intuitively, the
expected quantity is computed by taking an integral of the unconditional
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allocation. The unconditional allocation satis�es quantity constraints. By
inverting these two conditions, there will be inequalities for Q.
For an example (Border (1991)), consider a case of two buyers N = 2

and binary types T = f1; 2g with equal probabilities P (f1g) = P (f2g) =
1=2. In this case, the allocation is given by fq(1; 1); q(1; 2); q(2; 1); q(2; 2)g.
The expected allocation is Q(1) = (1=2)q(1; 1) + (1=2)q(1; 2) and Q(2) =
(1=2)q(2; 1)+(1=2)q(2; 2_). The quantity constraints are q(1; 1) � 1=2; q(2; 2) �
1=2 and q(1; 2) + q(2; 1) � 1. The set of (Q(1); Q(2)) which satisfy these
conditions are graphed below (see Figure 4). Alternatively, I can draw
the picture from corresponding conditions: Q(1) � 3=4; Q(2) � 3=4, and
(1=2)(Q(1) +Q(2)) � 1=2.

The Set of Possible (Q(1),Q(2))

The optimal auction problem is

max�(U) =

Z NX
i=1

(ti � rU(ti)� U(ti))f(t)dt:

subject to U(ti) convex and continuous and
R
B
rUk(ti)f(ti)dti � Q(B) for

each k and closed set B � [0; 1]K .
Still, it is di¢ cult to directly apply the Rochet and Choné (1998) approach

to my optimal auction problem. It is because the set of feasible mechanisms
does not form a cone because of quantity constraints. As a result, the analysis
would require additional Lagrangian multipliers for the quantity constraints.
Instead, in the next section, I am going to show that the optimal auction
mechanism can be obtained as a limit of nonlinear pricing mechanisms.
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4 The Optimal AuctionMechanism as a Limit
of Multiproduct Nonlinear Pricing Mecha-
nisms

In this section, I will explain that an optimal auction mechanism can be
derived as a limit of nonlinear pricing mechanisms whose cost structures
converge to the cost structure of the optimal auction problem. In this sec-
tion, I �rst present an example with a single object and one dimensional
type to explain the intuition. Then I will explain the construction of the
cost structure in the nonlinear pricing mechanisms. Finally I present the
convergence result.

4.1 An Example with a Single Object and One Dimen-
sional Type

In this subsection, I take a simple example of a single object and one dimen-
sional type and show that an optimal auction mechanism of Myerson (1981)
can be obtained as a limit of nonlinear pricing mechanisms in Mussa and
Rosen (1978). I start with the simplest case of a single buyer, and then later
move to the case of multiple buyers.

4.1.1 The Single Buyer Case

Consider a seller with a single good. The distribution of the value by a buyer
is uniform [0,1].
Let me begin with the optimal auction problem. The seller has a zero

marginal cost up to 1 unit and then faces an in�nitely high marginal cost
beyond one unit. Thus the cost structure is, by denoting q to be the quantity
sold,

cA(q) = 0 if 0 � q � 1
1 otherwise.

The buyer�s incentive constraints is equal to the envelope condition and
monotonicity of the allocation. Using integration by parts, I can compute
the seller�s expected revenue
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Z 1

0

(MR(ti)q(ti)� cA(q(ti)))f(ti)dti

Given the uniform distribution assumption, the marginal revenue is ti �
1�F (ti)
f(ti)

= 2ti � 1. The optimal mechanism is that the seller sells one unit if
the buyer has a positive marginal revenue. That is,

qA(ti) = 1 if ti � 1=2
0 else.

This allocation satis�es the second order condition of incentive constraints.
Next let me study nonlinear pricing problems. Consider a nonlinear pric-

ing problem with a cost function cn(q) = qn; n � 1. The seller�s expected
revenue is Z 1

0

(MR(ti)q(ti)� cn(q(ti)))f(ti)dti

The �rst order condition is, 2ti � 1 = n(qn(ti))n�1.Then

qn(ti) = (
2ti � 1
n

)
1

n�1 if t � 1=2
0 otherwise.

The cost functions of nonlinear pricing problem converge to that of the
optimal auction problem. That is, cn(q)! cA(q) pointwise except for q = 1.
That is, as I increase n, the cost of providing q < 1 unit will converge to
0 and will diverge if q > 1, and this is exactly the cost structure of the
optimal auction problem (see Figure). Since the only di¤erence between the
optimal auction problem and the nonlinear pricing problem is the costs, the
nonlinear pricing mechanisms will converge to an optimal auction mechanism
as n!1 (see Figure).

4.1.2 Multiple Buyers

With multiple buyers, the seller�s quantity constraints are 0 �
PN

i=1 q(ti; t�i) �
1. I begin by extending the nonlinear pricing model to allow multiple buyers
with a cost function (

PN
i=1 q(ti; t�i))

n. The objective function is
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Figure 1: Convergence of Costs

Figure 2: Convergence of Mechanisms
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Z
(
NX
i=1

MR(ti)q(ti; t�i)� (
NX
i=1

q(ti; t�i))
n)f(t)dt

The marginal cost is identical for every buyer. The seller only wants to sell

to the buyer with the highest marginal revenue. The optimal allocation is

q(ti; t�i) = q such that MR(ti) =MC(q) if ti > tj for all j 6= i and MR(ti) � 0
= 0 else.

At the optimal the seller sells the object only to the buyer with the highest
marginal revenue.
By sending n!1, the optimal allocation4 is

q(ti; t�i) = 1 if ti > tj for all j 6= i and MR(ti) � 0
= 0 else.

Of course, it is exactly the allocation derived in Myerson (1981).

4.2 Statement of the Formal Result

In the previous subsection, I explained an example to show the idea of ob-
taining the optimal auction mechanism as a limit of nonlinear pricing mech-
anisms. In this subsection, I make the idea precise by �rst constructing
nonlinear pricing mechanism correspondings to that optimal auction prob-
lem and then showing that its limit is indeed an optimal auction mechanism.
This procedure decomposes an analysis of the optimal auction mechanism
into two steps: (1) the analysis of the corresponding nonlinear pricing mech-
anisms and (2) taking the limit of the nonlinear pricing mechanism to derive
the optimal auction mechanism.

4For simplicity, I do not consider a case of a tie in this example, but it is straightforward
to handle.
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Figure 3: Convergence to Myerson (1981) Auctions

4.2.1 Reformulation of the Cost Structure

Let me begin with the construction of a measure on a space of closed sets of
[0,1]K . Let F be the family of closed subsets in [0,1]K . De�ne a Hausdor¤
metric for two sets F1 and F2 by d(F1; F2) = supx jdF1(x) � dF2(x)j with
dF1(x) = infy2F1 jjx� yjj and dF2(x) = infy2F2 jjx� yjj. Then F is a compact
metric space with this Hansdor¤metric. Let F be the Borel �-algebra of F.
Then (F;F) is universally measurable. De�ne a �nite dimensional measure
�1 by setting, for a �nite B in F, �1(B) =

P
x2B �

LEB(x). By a Kolmogorov
extension theorem (Dudley (1989), theorem 12.1.2), there exists a measure
� which extends �1 to F .
Next I construct a cost function. First, for each object k and for each

closed set B,

cA;k;B(rU) = 0

(if
Z
B

rUk(ti)f(ti)dti � Q(B))

= 10NK else.

For each closed set B in 
, the cost function takes a value of 0 if it satis�es
the quantity constraints, and a very high value otherwise. Let me take a pre-
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vious example of binary distributions. The cost functional is cA;1;f(1)g(Q) = 0
if Q(1) � 3=4; cA1;1;f2g(Q) = 0 if Q(2) � 3=4; and cA1;1;f1;2g(Q) = 0 if
Q(1) +Q(2) � 1.
Then I integrate over the set of possible closed sets:

cA;k(rU(ti)) =
Z
F

cA;k;B(rU)d�(B):

Finally sum up for all the objects:

cA(rU(ti)) =
X
k

cA;k(rU(ti))

Although this cost structure looks quite complicated, in the argu-
ment, I work from a discretized type space where the number of closed sets
is �nite, so it is going to be manageable.
The optimal auction problem is

max�(U : cA) =

Z NX
i=1

(ti � rU(ti)� U(ti)� cA(rU(ti)))f(t)dt:

subject to U(ti) convex and continuous.

4.2.2 Nonlinear Pricing Problems

I construct a cost function following the idea in section 2. Let me construct
a cost function

cm;k;B(rU) = (

Z
B

rUk(ti)f(ti)dti=Q(B))m

if(
Z
B

rUk(ti)f(ti)dti=Q(B) )m � 10NK)

= 10NKelse

Then following the same steps,

cm;k(rU) =
Z
F

cm;k;B(rU(ti))d�(B)
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and
cm(rU(ti)) =

X
k

cm;k(rU(ti)):

Note rU is bounded pointwise, cm is di¤erentiable and convex in rU .
cm;k;B(rU) ! cA;k;B(rU) except for B that

R
B
rUk(ti)f(ti)dti = Q(B).

It is an analogous situation at Section 2 where the nonlinear pricing cost
structures are convergent to that of the optimal auction except for (ti; t�i)
for the case

PN
i=1 qi(ti; t�i) = 1.

The nonlinear pricing problems are

max
U2L1

�(U ; cm) =
NX
i=1

Z
(ti � rU(ti)� U(ti)� cm(rU(ti))f(ti)dt

subject to U(ti) is convex continuous.

4.2.3 Convergence of Nonlinear Pricing Mechanisms to an Opti-
mal Auction Mechanism

I formulate the idea of convergence in the next proposition.

Proposition 1. For each m, there exist a solution to a nonlinear problem
Um with a cost function cm. There exists a limit UA for a sequence of
nonlinear pricing mechanisms Um, and it is an optimal auction mechanism.

This proposition will be proved in the appendix. The argument is as
follows. In order for the clarity of the argument, I �rst work in terms of P
and Q, and then use the envelope theorem to restore U .
First I show existence of the solution for a nonlinear pricing problem with

a cost cm. I �rst consider existence in a discretized problem by discretizing
the type space. With a discretization of the type space, the set of closed
subsets is �nite, so the cost function is easier to handle. Since the objective
function is continuous and the set of mechanisms which satisfy incentive
and individual rational constraints is compact, there exists a solution to the
discretized problem. Since the marginal cost diverges in the problem, the
mechanism is bounded. By applying a version of Helly�s selection theorem
on multidimensional functions, there exists a subsequence limit of solutions
as the grid size goes to 0. Since the objective function is continuous, the
subsequence limit is a solution of the original nonlinear pricing problems.
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The next step is to show that the sequence of nonlinear pricing mecha-
nisms converges by showing that these sequences are Cauchy. Intuitively, for
a large M , the seller does not sell more than Q(B) for each B, and for this
region, the di¤erence between cost function cr and cs will be very small for
every r; s � M from the property of the power function. If the mechanisms
do not converge, then there will be a contradiction.
I then show that the limit is an optimal auction mechanism. The only

di¢ culty lies in the fact that the nonlinear pricing cost structures do not
converge at B with

R
B
rUk(ti)f(ti)dti = Q(B). That is, in the auction cost

structure, it is �ne to satisfy the quantity constraint with equality, but in
the nonlinear pricing cost structure, it takes a cost of 1. In order to work
around this problem, I �rst consider a modi�ed auction cost structure with
cost 1 for binding constraints. Then, since the nonlinear cost structures
converge pointwise to that modi�ed cost structure, the limit of the sequence
of nonlinear pricing mechanisms is a solution of the auction problem with
the modi�ed cost structure. Then, if it is not a solution of the original
optimal auction problem, then, starting from this deviation, I can construct a
mechanism by reducing the supply by removing the binding constraints while
satisfying the incentive constraints by adjusting the payments. It will give
a valid deviation for the auction problem with the modi�ed cost structure.
This gives me the contradiction with the assumption that the limit is the
solution of the auction problem with the modi�ed cost structure. Thus, the
limit is a solution to the original auction problem.
Finally, by applying the envelope theorem, I can go back to the surplus

U from the allocation Q.

5 Characterization of the Optimal Auction
Mechanism

In the previous section, I showed that an optimal auction mechanism can be
derived as a limit of nonlinear pricing mechanisms. In this section, based on
this result, I consider the properties of the optimal auction mechanism.
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5.1 Characterization of the Nonlinear Pricing Mecha-
nisms

Now in order to understand the properties of the optimal auction mechanism,
let me begin with the analysis of the nonlinear pricing mechanisms. Let me
look an objective function in a little bit more detail:

max
U2L1

�(U ; cm) =

Z X
i=N

(ti � rU(ti)� U(ti)� cm(rU))f(t)dt

= N

Z
(ti � rU(ti)� U(ti)� cm(rU(ti)))f(ti)dti

since the buyers are identical ex ante. The seller�s revenue is the sum of
revenue from each buyers. In this way, the problem closely resembles to a
multiple buyer version buyer of Rochet and Choné(1998).
I �rst recall the de�nition of Gateaux derivatives, which is a generalization

of derivatives in a �nite dimensional optimization problem:

De�nition (Luenberger (1969)). A Gateaux di¤erential of � at U with
increment h is

Lm(U ;h) = ��0(U�)h = lim
�!0

1

�
[�(U + �h)� �(U)]

if the limit exists.

In economic terms, a Gateaux di¤erential is a marginal loss, which mea-
sures the change in the seller�s expected pro�t when the seller provides some
additional surplus h(ti) to the buyer with type ti.
By applying multivariate analogue of integration by parts formula, let me

calculate

Lm(U ;h) = N [

Z
@


(�ti +rcm(rU(ti))) � h(ti)f(ti)dti

+

Z



div[(ti �rcm(rU(ti)))f(ti)]h(ti)dti +
Z



h(ti)f(ti)dti]

This gives rise to the expression of the marginal loss:
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Lm(U ;h) =

Z



�(ti)h(ti)dti +

Z
@


�(ti)h(ti)d�(ti):

with

�m(ti) = Nff(ti) + div[(ti �rcm(rU(ti)))f(ti)]g
�m(ti) = N(ti � cm(rU(ti))) � �!n (ti)

Intuitively, � and � measures a pointwise marginal loss. These expressions
are closely related to those of Rochet and Choné(1998). The intuition is
that in this nonlinear pricing problem, the revenue from each buyer is addi-
tively separable and the cost function is the same, so the objective function
decomposes into the sum of revenues from one buyer problems.
Since the marginal loss L is a linear continuous operator, there exists a

measure

Lm(U ;h) =

Z
h(ti)d�

m(ti)

This observation leads to a following characterization of the solution of
nonlinear pricing problem:

Lemma 2. At the nonlinear pricing mechanism, the solution Um is C 1,
and partitions the type set 
 into three regions of 
m0 ;


m
B , and 


m
1 with the

following properties:

� In the nonparticipation region 
m0 , Um(ti) = 0. and �m(
m0 ) = 1.

� In the nonbunching region 
m1 ; �m(ti) = �m(ti) = 0 and Um is strictly
convex.

� In the bunching region 
mB , 
mB is divided into a bunch with the same
allocation q, and satis�es �
(q)+ = T�


(q)
� .

Let me review the intuition of Rochet and Choné(1998). An intuition
that nonparticipation region has a positive measure is that, as in Armstrong
(1994), a marginal loss from exclusion is of a higher order (order of k) than the
revenue gain from charging buyers a higher price. Bunching is robust among
the con�ict between the exclusion, the �rst order condition, and continuity.

22



On one hand, the seller wishes to exclude the buyers, and on the other hand,
the seller wishes to price discriminate as much as possible by the �rst order
condition. If there is no bunching, there will be a jump at the boundary of
the exclusion region and the nonbunching region. To reconcile these three
factors, the seller uses bunching.
Then what will be the di¤erence between the nonlinear pricing problems

of Rochet and Choné and my multiple buyer problem ? The only di¤erence
lies in the fact that the cost function cm, actually depends on the number of
buyers through Q(B). Recall the formula Q(B) � 1�P (
=B)N

N
. This bound

decreases as the number of buyers, N , increases. It is natural, as the number
of buyers increases, there will be more competition, so that each buyer�s
expected allocation should decrease.
I note that the reserve price (or the exclusion set) is the same regardless

of the number of buyers: the intuition is that, at the exclusion region the
expected allocation is zero, so the cost is zero. So the cost structure will not
matter.

Proposition 3. 
m0 is independent of N and m (up to a set of measure 0).

Proof. By setting h(ti) = 1, I get Lm(U ; 1) =
R


�m(ti)dti+

R
@

�m(ti)d�(ti) =

1. Since �m(ti) = �
m(ti) = 0 at each point of ti of 
m1 and each bunch 
(q)

in expectation,
R

m0
�m(ti)dti +

R
@
m0

�m(ti)d�(ti) = 1. Note that at 
m0 ,

Q (ti) = rU(ti) = 0. Thus, for any l,
R

m0
�l(ti)dti +

R
@
m0

�l(ti)d�(ti) = 1.

This implies that 
m0 = 

l
0.

5.2 Bunching

In the previous subsection, I considered the nonlinear pricing problem. By
applying the convergence result, I can characterize an optimal auction mech-
anism.

Proposition 4. At an optimal auction mechanism, the solution UApartitions
the type set 
 into three regions of 
A0 ;


A
B, and 


A
1 with the following prop-

erties:

� In the nonparticipation region 
A0 , UA(ti) = 0, and 
A0 = 
m0 .

� In the nonbunching region 
A1 ; �A(ti) = �A(ti) = 0 and UA is strictly
convex.
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� In the bunching region 
AB, 
AB is divided into a bunch with the same
allocation q, and satis�es �
(q)+ = T�


(q)
� .

The �rst result is that the seller sets nontrivial reserve prices to exclude
some buyers. Moreover, the set of exclusion is convex. Otherwise, the allo-
cation would be non-monotonic, which violates the incentive compatibility.
Let S be the convex hull of S.

Proposition 5. 
A0 = 

A
0 up to a set of measure zero.

Proof. Suppose not. Then 9B � 
A0n
A0 with �(B) > 0. By Borel
regularity, 9ti 2 B and � > 0 with Ball�(ti) 2 B. There, QA(ti) > 0
8ti 2 Ball�(ti). This implies there exists a coordinate whose partial increase
in that coordinate causes the strict decrease in QA. On the other hand, by
convexity of UA, 8ti; t0i 2 
A, (t0i � ti)(QA;k(t0i)�QA;k(ti)) � 0.
The second result is about bunching. As I explained in the previous

section, bunching is robust in multidimensional nonlinear pricing problem.
But in the optimal auction mechanism, these allocation is not continuous.
But on the other hand, due to quantity constraints, the variety of quantities
that can be o¤ered is also limited. So bunching still persists. In an example
of section 6, all bunch takes place at q = 1.
Finally, I consider e¢ ciency at the boundary condition. It is because, for

every m, at the upper boundary of the type space, �m(ti) = �m (ti) = 0.
Thus, by taking the limit, I have �A(ti) = �

A(ti) = 0.

6 Examples

In the previous section I explained the theoretical structure of the optimal
mechanism. In this section I consider some examples for a single buyer case
and multiple buyer cases.

6.1 The Single Buyer Case

Consider the case of two objects. Let the support of the distribution be

 = [1; 2]2 with f(ti) = 1. Let cm(q) = (q1)m + (q2)m. Then �m =
div[(t1i �m(q1)m�1; t2i �m(q2)m�1)]+1 = 3�m(m� 1)(q1)m�2(q1)0�m(m�
1)(q2)m�2(q2)0and �m(ti) = (t1i � m(q1)m�1; t2i � m(q2)m�1). The exclusion
region is of the form f(t1i ; t2i ) : t1i + t2i � t�gwhere t� is the reserve price. At
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0; �
m(ti) = 3; �

m(ti) = 1. The exclusion takes place at t1i +t
2
i � (4+

p
10)=3

for every m. So the allocation in the optimal auction is

qA(t1i ; t
2
i ) = (0; 0) if t1i + t

2
i �

4 +
p
10

3
(1; 1) otherwise

Alternatively, the reserve price is obtained by directly maximizing the pro�t
from the buyer with the sale t�(1� (t�� 2)2=2). The following computations
are done using CPLEX.

Pure Bundling Auctions

Now, for an example of mixed bundling, consider the case of K = 2, and

 = [0; 1]2. If the seller chooses pure bundling, the reserve price is

p
6=3
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with pro�t 0.5443. If the seller chooses mixed bundling, the reserve price
is 0.6667 for a single unit, and 0.8619 for the package. The seller�s pro�t is
0.5492. Thus the optimal auction is of mixed bundling.

Mixed Bundling Auctions

6.2 Multiple Buyers

I present some computational results. First I consider the computational
result for two buyers case for the distribution uniform [1,2]2. The reserve
prices are identical to the case of a single buyer. The allocation schedule
shows a pattern of pure bundling at the boundary of the reserve prices, and
then a pattern of independent allocation at the boundary. This suggests the
allocation schedule of the optimal auction mechanism can be complex.
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Pure Bundling Auctions

Next I report the result for the distribution uniform [0,1]2. The reserve
price is identical to the case of a single buyer, and has the pattern of mixed
bundling. The pattern of bundling exhibits downward distortion.
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Mixed Bundling Auctions

6.3 Complements and substitutes

Even if a payo¤ has positive or negative complementarity, if preferences are
linear in types, sweeping characterization goes through. Consider a simplest
case with two goods and bidder�s preference to be t �q+aq1q2:As a!1 , the
seller allocates both objects to the bidder with the highest marginal revenue
for the bundle. That is, the optimal auction is a pure bundling auction. If
a < 0 and as the number of bidders goes to in�nity , then it is optimal to
allocate the object to the bidder with the highest marginal value for each
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object.

Optimal Auction for Substitues

Optimal Auction for Complements

7 Conclusion

In this paper I presented a new convergence result between nonlinear pricing
mechanisms and optimal auction mechanisms. For example, this convergence
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result gives a clean connection between the optimal auction problem of Myer-
son (1981) and the nonlinear pricing mechanisms in Mussa and Rosen (1978).
By applying this result, I obtain �rst characterization results of the optimal
auction mechanisms for heterogeneous objects and multidimensional types.
Numerical results show complexities of the optimal auction mechanisms. Fu-
ture research questions will include the design of tractable mechanisms which
will approximate these optimal mechanisms.
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8 Appendix

8.1 Proof of Proposition 1.

Let me �rst show the existence of the solution for each m. Let me begin by
considering a discretized type space. Let the grid size be 1

L
. The discretized
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type space is given by a collection of grid points
L = f(0;...; 0); (0;...; 1L);...; (1;...; 1)g.
De�ne

fL(ti) =

Z maxft1i+
1
2L
;1g

minft1i�
1
2L
;0g

:::

Z maxftKi +
1
2L
;1g

minftKi �
1
2L
;0g

f(ti)dti

From this distribution, I can compute an expected mechanism byQk(ti) =P
qk(ti; t�i)fL(t�i),P (ti) =

P
p(t;i; t�i)fL(t�i);and U(ti) = tiQk(ti)� P (t;i).

Then I write the cost function similarly:

cm;k;B;l(Q) = (
X
ti2B

Qk(ti)f(ti)=Q(B))
m

if(
X
ti2B

Qk(ti)f(ti)=Q(B))
m � 10NK)

= 10NKelse

with cm;k;l(Q) =
P

B c
m;k;B;l(U)f(B) and cm;l(Q) =

P
k c

m;l;k(Q). Then the
seller�s problem is

max
p;q

X
l

(
NX
i=1

P (ti)� cm;l(Q))fL(t):

subject to U(ti) � ti � Q(t0i) � P (t0i); 8ti; t0i and U(ti) � 0; 8ti, where, cm is
the cost function of the original mechanism design problem.
Since the objective function is continuous and the set of constraints is

compact in a �nite dimensional Euclidean space, there exists a solution to
this problem, denoted by P l;m and Ql;m.
I now construct a candidate mechanism. I �rst extend P l;m and Ql;m to

a function over [0; 1]K . De�ne Q
0l;m(ti) = Ql;m(t0i) with t

0
i such that for a

coordinate k, jti � t0ij � 1
2L
with t0i in 
L. Similarly construct P

0l;m. There
exists such t0i by construction of the discretization of the type space.
I note P 0l;m and Q0l;m are bounded (pointwise). By construction, there

is an upper bound on the type. This implies that the marginal willingness
to pay of buyers for an additional unit is bounded. On the other hand, by
construction, the marginal cost will diverge to in�nity. Thus the amount of
units the seller wishes to sell to the buyer is bounded. Since the buyers have
individual rationality constraints, the payment the buyer is willing to make is
bounded. By taking expectations, noting that the density is bounded, P 0l;m

and Q0l;m bounded.
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Since these functions are bounded, these functions are of bounded vari-
ation. Since the domain of these function is k dimensional, by a multidi-
mensional version of Helly Selection Principle by Leonov (1998), theorem 4,
there exists a subsequence limit Pm and Qm which converges pointwise. For
notational simplicity, take m be the convergent subsequence.
I now want to check that Pm and Qm satisfy the incentive and individ-

ual rationality constraints. First, since each of P l;m and Ql;m satisfy these
constraints, and P 0l;m and Q0l;m are obtained by spreading P l;m and Ql;m in
the rectangle of the length 1=2L, so they still satisfy these constraints in the
original nonlinear pricing problem. By taking the limit of these constraints,
Pm and Qm also satisfy these constraints.
Then, since the cost function cm is continuous, by applying the dominated

convergence theorem, the limit Pm and Qm is a solution of the nonlinear
pricing problem with the original type space.
Now I show that, Pm and Qm are Cauchy. Suppose not. Then, there ex-

ists � such that for everyM for any r, s �M ,
R
jP r(ti;t�i)�P s(ti; t�i)jf(t)dt >

" and
R
jQk;r(ti)�Qk;s(ti)jf(ti)dti > ". For reasonably largeM ,

R
jcr(Qr(ti))�

cs(Qs(ti))jf(ti)dti < " since in the region where the constraints are not bind-
ing, the pointwise di¤erence between cr and cs can be uniformly bounded
above, and this bound can be made arbitrary small number by taking large
M . As M becomes larger, it is getting costly to violate constraints, so for
su¢ ciently large m I can restrict attention to the area where the constraints
are not violated. It will lead to contradiction about the optimality of either
at r or s. Since L1 is complete, Pm and Qm converge. Let P � and Q� be the
limit.
I need to check that P � and Q� are a solution of the optimal auction

problem. As an intermediate step, let me de�ne an intermediate cost function
cA1 as follows:

cA1;k;B(Q) = 0 if
Z
B

Qk(ti)f(ti)dti < Q(B)

= 1 if
Z
B

Qk(ti)f(ti)dti = Q(B)

= 10NK else

and cA1;k(U(ti)) =
R
F
cA1;k;B(U)d�(B) and cA1;k(Q) =

PK
k=1 c

A1;k;B(Q). The
only di¤erence between cA and cA1 is at B with

R
B
Qk(ti)f(ti)dti = Q(B). It

is immediate to note that cm converges to cA1 for every B.

33



Now let me study that P � and Q� are the solution of the problem with a
cost function cA1. From the optimally of Pm and Qm, for each P and Q which
satis�es the incentive constraints and the individually rational constraints,

Z
(
NX
i=1

Pm(ti)� cm(Qm))f(t)dti �
Z
(
NX
i=1

P (ti)� cm(Q))f(t)dt:

By taking a limit,

Z
(
NX
i=1

P �(ti)� cA1(Q�))f(ti)dti �
Z
(
NX
i=1

P (ti)� cA1(Q))f(ti)dti:

Finally I move from cA1 to cA. Take an arbitrary P and Q which satis�es
the incentive constraints and individually rational constraints. Let me claimZ

(

NX
i=1

P �(ti)� cA1(Q�))f(t)dt �
Z
(

NX
i=1

P (ti)� cA(Q))f(t)dt:

Suppose not. That is, there exists P 0 and Q0 such that

Z
(
NX
i=1

P 0(ti)� cA(Q0))f(t)dt >
Z
(
NX
i=1

P �(ti)� cA1(Q�))f(t)dt

Then consider a following mechanism P
00
andQ

00
: for allB such that

R
B
rUk(ti)f(ti)dti =

Q(B), reduce the allocation by a very small number to make the constraint
nonbinding and at the same time P 0(ti) will be reduced to satisfy incen-
tive and individual rationality constraints. With the cost function cA1,R
(
PN

i=1 P
00(ti)�cA1(Q00))f(ti)dti is arbitrary close to

R
(
PN

i=1 P
0(ti)�cA(Q0))f(ti)dti.

It is a contradiction to the assumption that P � and Q� are optimal under a
cost function cA1.
Thus we have the desired inequality:Z

(

NX
i=1

P �(ti)� cA(Q�))f(t)dt �
Z
(

NX
i=1

P �(ti)� cA1(Q�))f(t)dt

�
Z
(
NX
i=1

P (ti)� cA(Q))f(t)dt
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where the �rst inequality comes from the fact that cA(Q) � cA1(Q) for all Q.
By the incentive compatibility constraints, Q(ti) is a subgradient of U(ti).

The buyer�s payo¤ function is di¤erentiable in (P;Q) and satis�es single
crossing condition. By the envelope theorem (Milgrom and Segal (2002,
theorem 2 and footnote 10, also see Krishna and Maenner (2001)), Un(ti) =
Un(0) +

R
Qmd� and UA(ti) = UA(0) +

R
QAi d� where � is a smooth path

joining 0 and ti. Since Qm(ti)! Qm(ti) in L1, Un(ti)! UA(ti).
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