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Abstract

This paper considers microeconometric evaluation by matching methods when selection in
to the program under consideration is heterogeneous. Existing studies generally use parametric
estimators of binary response models such as the probit and logit to estimate the propensity
score, which allows for very limited forms of heterogeteity and imposes strong distributional
assumptions on the error term that are often violated with the underlying data. We introduce
an easy to implement matching strategy that incorporates semiparametric propensity scores
that allow for very general forms of heterogeneity in response across observed covariates along
the conditional willingness to participate in the treatment intervention distribution. Data
from the NSW experiment, CPS and PSID are used to evaluate the performance of alternative
matching estimators. We find significant evidence of heterogeneity and that the proposed
algorithm generally exhibits lower bias and accurately captures the experimental treatment
impact. A detailed examination of the average absolute bias errors between our procedure and
matching algorithms based on parametric propensity scores indicate reductions between 6.2%
and 706% of the experimental program impact.

*We are grateful to Mianna Plesca and seminar participants at the 2003 CEA meetings, 2003 IHEA World

Conress, Concordia University, Florida State University, Lehigh University, McGill University, Queens University,

Simon Fraser University, SUNY Albany, UNC-Greensboro, University of South Florida and the Wharton School,

University of Pennsylvania for comments and suggestions which have helped to improve this paper. We are responsible

for all errors.
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1 Introduction

An increasing body of evidence has found that there is significant diversity and heterogeneity

in response to a given policy. Heckman (2001) argues that this has profound consequences for

economic theory and for economic practice. In particular, accounting for heterogeneity may improve

the performance of non-experimental estimators. In this paper, we introduce and evaluate the

performance of an easy to implement propensity score matching estimation strategy that explicitly

accounts for heterogeneity in response across observed covariates along the conditional willingness

to participate in the treatment intervention distribution.

Matching estimators evaluate the effects of a treatment intervention by comparing outcomes

such as wages, employment, fertility or mortality for treated persons to those of similar persons in

a comparison group. The use of the propensity score as a basis for matching treated and untreated

individuals (and thus for evaluating the magnitude of treatment effects) is becoming increasingly

common in clinical medicine, demographic and economic research. The propensity score is defined

as the conditional probability of being treated given the individual’s covariates and requires the

assumption of selection on observables.1

Existing studies use parametric estimators of binary response models, such as the probit and logit

which imposes strong distributional assumptions on the underlying data. In particular, the dangers

of misspecification may be severe if the error terms are not independent and identically distributed

from their known parametric distributions.2 Kordas (2002) outlines the benefits of using Manski’s

(1975, 1985) binary regression quantiles to provide consistent estimates of the conditional proba-

bility at different points of the distribution. This estimator avoids the distributional restrictions

embedded in the parametric approach and has the advantage that it is robust and can accommo-

date heteroskedasticity of unknown form. This property is extremely valuable in our setting as the

estimator can accommodate problems of heterogeneity, self-selection and misclassification.

Todd (1999) presents the only other study that we are aware of that considers matching using
1The assumption of selection on observables requires that conditioning on the observed variables the assignment to

treatment is random. Propensity score matching (Rosenbaum and Rubin (1983)) estimators reduce the dimensionality
of having to match participants and non participants on the set of conditioning variables (X) by matching solely on
the basis estimated propensity scores (P (X)).

2Horowitz (1993) demonstrates that misspecification of the conditional distribution of the residual in parametric

binary response model is likely to be severe under heteroskedasticity and bimodality.
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semiparametrically estimated propensity scores. She considers matching using the index estimated

from both the semiparametric least squares estimator of Ichimura (1993) and the quasi maximum

likelihood estimator of Klein and Spady (1993).3 Her Monte Carlo study demonstrates that the

gains from using the semiparametric least squares procedure relative to parametric alternatives

are greatest when either the systematic component of the model is misspecified or when the error

distribution is highly asymmetric.

Our approach offers several additional benefits for empirical researchers. First, this estimator

does not require the researcher to select higher order or interaction terms to ensure balancing of

the covariates across the treatment and non treatment groups. Recent work in economics (Dehejia

and Wahba, 2002) has proposed the use of balancing tests to determine if additional higher order

or interaction terms should be included in the estimates of the propensity scores but does not

provide guidance on precisely which of these terms should be included. Second, the results from

this estimator can also be used to calculate quantile treatment effects. Researchers can determine

the average treatment effect on the treated at different points along the probability of participation

distribution. Accounting for heterogeneity in the impact of the program across individuals provides

a more complete picture of the effectiveness of the treatment employed.

To demonstrate the performance of our estimation strategy we use experimental data originally

employed in LaLonde (1986). This data has been used in a number of studies that have evaluated the

performance of different non-experimental estimators including propensity score matching. While

early evidence (Dehejia and Wahba (1999)) found that propensity score matching estimators were

able to replicate experimental treatment effects, more recent evidence calls these findings in question

(Smith and Todd (2002)) and indicate that accounting for permanent unobserved heterogeneity does

lower the estimated bias with propensity score matching estimators. If accounting for heterogeneity

is indeed a major source of bias then our estimation strategy will account for it.4

3These methods estimate a conditional mean and overcome the distributional restrictions embedded in the para-
metric approach but allows for only limited forms of heterogeneity.

4Our strategy is unable to account for selection on unobservables that would result in an omitted variable bias
problem.
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2 Econometric Methods

2.1 Framework

Cross-sectional matching estimators compare outcomes for treatment (Y1) and comparison group

(Y0) individuals measured at some time period after the program. We define Di = 1 indicate if

person i received treatment and Di = 0 if not. The goal of any evaluation study is to estimate the

causal effect of the treatment program. One parameter of interest is the effect of the treatment on the

treated (ATTD=1(X)), which can be defined conditional on some characteristicsX as ATTD=1(X) =

E(Y1 − Y0|X,D = 1). The propensity score reduces the dimension of the conditioning problem in

matching by replacing an estimate of E(Y0i|D = 0,Xi) with an estimate of E(Y0i|D = 0, P (Xi));

where P (X) = Pr(Di = 1|X).
. Conditioning on the propensity score yields,

ATTD=1(X) = E{E(Y1i|P (Xi),Di = 1)−E(Y0i|P (Xi), Di = 1)} (1)

where Y1i and Y0i are the potential outcomes in two counterfactual situations. To derive equation

1 given the definition of P (X) requires that matching is to be performed over an area of common

support ( 0 < Pr(D = 1|X) < 1) and a balancing hypothesis. D ⊥ X|P (X). The balancing
hypothesis requires observations with the same propensity score to have the same distribution of

observable and unobservable characteristics independent of treatment status.

The ease of implementation of these estimators has resulted in a substantial increase in their

application in economics and other fields. Implementation involves two steps. In the first step, the

conditional probability of participating in the treatment intervention is estimated using either a

probit or logit estimator. In the second step, the researcher uses a matching algorithm to construct

the matched outcomes for the treated group. Algorithms differ in the distance metric they use to

determine which individuals are suitable matches to the treated persons so they can be included in

the comparison group of individuals.5 Our approach differs by estimating this probability using the

following semiparametric procedure.
5See Smith and Todd (2002) for a comprehensive overview of alternative cross sectional matching algorithms.
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2.2 Calculating the Propensity Score Semiparametrically

To avoid the distributional and other restrictions embedded in the parametric specification of

Pr(Di = 1|Xi) we use Manski’s (1975, 1985) binary regression quantiles. Our use of binary re-
gression quantiles is motivated from an estimation viewpoint as with heterogenous populations, a

family of quantile estimates can provide a more complete picture of how covariates affect various

conditional quantiles of the latent response variable underlying the observed binary indicator. De-

fine the latent variable D∗i and assume that we may write it’s q-th conditional quantile function as
linear index

QD∗i (q|Xi) = X 0
iα(q), q ∈ (0, 1). (2)

where α(q) is the coefficient vector for the q-th conditional quantile. Using the equivariance property

of quantile functions with respect to monotonic transformations we write the conditional quantile

function of Di = 1{D∗i ≥ 0} as

QDi(q|Xi) ≡ Q1{D∗i≥0}(q|Xi) = 1{QD∗i (q|Xi) ≥ 0} = 1{X 0
iα(q) ≥ 0}. (3)

This estimator is the binary response analogue to the linear quantile regression estimator intro-

duced by Koenker and Bassett (1978) and offers a robust and efficient semiparametric alternative to

commonly used parametric models. From an empirical point of view, their main advantage is their

ability to model very general forms of population heterogeneity by allowing the coefficient vector

(α(q)) to vary across the conditional quantiles of the dependent variable.

Estimates of the scaled coefficients α(q) such that ||α(q) = 1||, are obtained by solving the
quantile regression problem

α(q) = argmina:||a||=1

(
SN(a) = N

−1
NX
i=1

ρq(Di − 1{X 0
ia ≥ 0})

)
, (4)

where ρq(u) = (q − 1{u < 0}) · u, and SN(·) is the score function.
Since SN is a multimodal step function of a, binary quantile regression estimators are solutions

to difficult optimization problems.6 The discontinuities of the objective function also affect the

asymptotic behavior of the estimators that have been shown to converge at the slow N1/3 rate to

a non-gaussian random variable (Kim and Pollard, 1990). To overcome these problems Horowitz
6Optimization is performed using the simulated annealing algorithm. See Goffe et al. (1994) for details.
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(1992) smoothed the median score function and derived a smoothed median estimator that is as-

ymptotically normally distributed 7. Kordas (2002) extended these results to show joint asymptotic

normality of families of smoothed binary quantile estimates and showed how these smoothed esti-

mates may be optimally combined for efficient estimation.

Our main objective is to use quantile estimates to derive semiparametric estimates of the propen-

sity score, or equivalently, semiparametric estimates of the probability that a given individual re-

ceives treatment. To this effect the un-smoothed binary quantile estimates will suffice. Thus we

only consider un-smoothed estimation. With these estimates we can compute the counterfactual

outcome E(Y0i|P (Xi),Di = 1).
Turning to the issue of computing probabilities from quantile estimates, note that the quantile

regression model in (3) implies that if an individual’s q-th conditional quantile X 0
iα(q) is (approx-

imately) equal to zero, his conditional probability of receiving treatment is (approximately) equal

to 1− q, i.e.,
Pr(Di = 1|X 0α(q) = 0) = 1− q. (5)

Given estimates of α(q) over a grid θ = {q1, q2, · · · , qM |q1 < q2 <, · · · < qM} of quantiles, this
equation may be used to derive semiparametric interval probability estimates as follows. Let

q̂i = argminq∈θ{q : X 0
iα(q) ≥ 0} (6)

be the smallest quantile in the grid for which i’s index function is positive. Then an interval estimate

of the conditional probability of Pi,1|Xi ≡ Pr(Di = 1|Xi) is given by

P̂i,1|Xi = [1− q̂i, 1− q̂i−1), (7)
7It easy to see that the score function may be rewritten as SN (a) is the score function and it

SN (a) ∝a N−1
NX
i=1

(yi − (1− τ)) · 1{X 0
ia ≥ 0}

where the notation ∝a means ”proportional in a”. Horowitz (1992) proposed replacing the indicator function by a
smooth function J : R→ [0, 1] (e.g. a distribution function) and defined the smoothed maximum score estimator as

α∗(q) =

(
S∗N (a) ∝a N−1

NX
i=1

(yi − (1− τ)) · J
µ
X 0
ia

hN

¶)

where hN is a smoothing parameter that tends to zero as N becomes large.
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where q̂i−1 denotes the quantile immediately preceding q̂i in θ. In our application, θ = {0.05, 0.10, · · · , 0.95},
so, for example, if i’s quantile indices are negative for quantiles below 0.70 and are positive for quan-

tiles 0.70 and above q̂i = 0.70 and Pi|xi(θ) = [0.30, 0.35).

2.3 Matching using Semiparametric Propensity Scores

Since the estimated choice probabilities are discrete (interval probabilities) the average treatment

effect on the treated (ATTD=1(X)) is calculated using stratification matching. At each probability

interval, we compute the difference in average outcomes of treated and controls, providing an

estimates of a quantile treatment effect (ATTD=1(X)q),

ATTD=1(X)
q =

P
i∈Lq Y1i
N1
q

−
P
j∈Lq Y0j
N0
q

(8)

where N1
q and N

0
q number of treated and untreated individuals at quantile q respectively. The

average treatment effect on the treated is computed using a weighted (by the number of treated)

average of these quantile treatment effects as

ATTD=1(X) =
QX
q=1

ATTD=1(X)
q ∗

P
i∈N1

q
DiP

i∈N1 Di
(9)

where Q is the total number of quantiles estimated and N1 is the total number of treated individuals

that are matched.

Assuming independence of outcomes across units, the variance of ATTD=1(X) is given by

V ar(ATTD=1(X)) =
1

N1

V ar(Y1i) +
QX
q=1

N1
q

N1
∗ N

1
q

N0
q

V ar(Y0j)

 (10)

Bootstrapped standard errors could be calculated as well.8

8Notice that if a quantile contains numerous treated units and few controls it will increase the variance of the
estimated mean effect of treatment on the treated. Quantiles with few treated and many controls work in an opposite
manner but receive little weight in the calculation of the average treatment effect on the treated. In our empirical
application we present bootstrapped standard errors since we are matching on the estimated and not the actual
propensity score.
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3 Returns to the NSW Job Training Program

3.1 Data

To evaluate the performance of our procedure we employ the same data used by LaLonde (1986),

Heckman and Hotz (1989), Dehejia and Wahba (1999,2002), Abadie and Imbens (2002) and Smith

and Todd (2002) in our study to assist in any comparisons. This literature examines whether

econometric (non-experimental) estimators recover impacts on post-intervention earnings that are

similar to those produced from a randomized experiment. The experimental data is drawn from a

labor training program known as the National Supported Work Demonstration program.

Conducted during the 1970s, the National Supported Work Demonstration, looked at the effects

of supported work on individuals with identified employment problems. Eligible applicants were

assigned randomly to an experimental (participant) group, which could enroll in supported work,

or to a control group, which was precluded from enrolling. Through close supervision, peer-group

support, and graduated performance standards, supported work programs prepared participants to

make the transition to unsubsidized employment after 12 to 18 months of program experience.

Since control and treated units were randomly assigned the experimental benchmark estimate

of the treatment effect is simple to calculate. To evaluate the performance of nonexperimental

estimators, treated and control units from the NSW experiment are combined with nonexperimental

comparison units drawn from two national survey datasets; CPS and PSID.9 Following Smith and

Todd (2002), we consider three experimental samples (LaLonde’s full sample, the Dehejia and

Wahba extract, an extract containing only subjects assigned in the first four months of the program)

in addition to the survey data. Summary statistics for each sample employed in the study are

presented in Appendix Table 1. While there are no significant differences between the treated and

control groups for each experimental sample therearesubstantial differences between these samples

and the non experimental samples. The experimental sample contains more minorities particularly

blacks, is younger, poorer educated, less likely to be married than the non experimental samples.

Further, the earnings in all three years are substantially lower and the PSID subjects have the highest

incomes. These substantial differences present challenges for any non experimental estimator.
9See Smith and Todd (2002) for further information on the construction of the CPS and PSID comparison group

samples as well as a detailed discussion on the construction of the Dehejia and Wahba (1999) sub-sample.
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3.2 Results

3.2.1 Propensity Score Estimates

We present matching estimates based on two alternative specifications of the propensity score,

Pr(D = 1|X). As in Smith and Todd (2002) both the experimental treatment and control groups are
included in estimating the propensity score for efficiency reasons. The first specification (henceforth

referred to as specification one) is based on Dehejia and Wahba (1999,2002) includes higher order

and interaction terms to satisfy balancing tests.10 The second specification we consider omits these

higher order and interaction terms from the estimating equation since in theory the inclusion of

higher order and interaction terms should not affect estimates from binary regression quantiles as

they are robust to heteroskedasticity of unknown form.11

While parametric binary response models do not allow for heterogeneity a concern exists to

whether they are misspecified. We conducted simple likelihood ratio tests between the heteroskedas-

tic logit and logit for specification one and two respectively and the null hypothesis of a homoskedas-

tic residual is strongly rejected.12

The importance of heterogeneity in response to covariates is illustrated in figure 1. The figure

demonstrates how the normalized quantile coefficient estimates vary across quantiles when using

the early random assignment sample and PSID samples for specification 1.13 Notice that black
10Balancing tests determine whether a covariate adds information on the selection process conditional on the

propensity score. A slightly different set of higher order and interaction terms are used for the specifications with the
CPS and PSID samples. These specification were also used in Smith and Todd (2002). See table 3 of their paper for
the estimated coefficients and standard errors for a logistic regression. Note that the selection of variables to include
in the estimation of the propensity score is very important since even small changes in the estimated probabilities
can dramatically affect the magnitude of treatment effects in the matching stage and cause a substantial difference
in the amount of bias present in the matching estimator. See Heckman, Ichimura, Smith and Todd (1998) for a
discussion.
11While, Dehejia and Wahba (1999, 2002) did not find evidence that the treatment effect estimated was sensitive to

the inclusion of these terms, they stress the importance of variable selection to ensure that the balancing hypothesis
is satisfied.
12This assumption is rejected below the 5% level for all columns and specification with the exception of column 5

in specification 1 which is rehjected at the 15% level.
13Note that to improve the performance of our estimation algorithm we rescaled the covariates so that the ratio

of each covariates logit coefficient relative to the logit coefficient on the education parameter ranged between 1 and

10. This sample corresponds to column 6 in Smith and Todd (2002). Our estimation algorithm and software used in
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and hispanic individuals receive an increasing weight as we move from low towards higher quantiles,

indicating that individuals higher in the willingness to participate distribution assign less importance

to race (recall the probability interval is 1-q). Similarly and consistent with the summary statistics

the coefficients on marital and dropout status become less important as individuals move higher

in the willingness to participate distribution. The logit estimates seem to capture behavior fairly

accurately at all but the extreme quantiles for many of the covariates.14

3.2.2 Treatment Effects

Table 1 presents estimates of the causal effect of the NSW Work Demonstration on earnings based

on stratification matching with semiparametric propensity scores for specifications 1 and 2 in the

top and bottom panel respectively. The outcome variable throughout the paper is earnings in

calender year 1978. The rows differ solely in the number of bins that are employed and the lowest

probability bin is excluded from the analysis.15 For each specification, we find that the treatment

impact is captured within a 95% bootstrapped confidence interval. The estimates are extremely

accurate for each (even numbered column) experimental treatment sample matched with the PSID

non experimental sample.

The results with twenty bins are practically identical between specification 1 and 2. Further,

the results do not appear to be very sensitive to the number of bins that are used to stratify the

sample match. For certain subsamples the results improve with fewer bins while for other samples

the results are not as positive. Yet, as the number of bins are reduced to five, the estimates in

column 2 and 6 of Table 1 decrease by approximately 67%.

The bottom panel of table 1 demonstrates how the estimated treatment effect changes when the

this study is available at http://acadfs01.whacad.wharton.upenn.edu/lehrers/software.htm.
14A graphical examination of the average propensity score computed by logit for each individual assigned to a

given 5% quantile was also conducted. Disagreements between parametric and semiparametric propensity scores
become larger at higher quantiles as the parametric models under predict the probability of participation. The
general pattern of over and under prediction in these figures provides further evidence of the restrictiveness of the
parametric model which tend to extrapolate the behavior of individuals near the mean to individuals that belong in
the tails of the willingness to participate distribution..
15We present results where this bin is included in the lower half of Table 1. Table 2 presents evidence for why this

bin should be excluded when conducting analysis using the CPS non experimental sample. Stratification matching

estimates based on parametric propensity scores that correspond to Table 1 are presented in Appendix Table 2.
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lowest interval probability bin is included in the analysis. While it is a concern that after discarding

individuals, the matched sample is no longer representative recall the evidence from table 1 that

demonstrated how different these samples were. The addition of this quintile dramatically reduces

the magnitude of the treatment effect for the columns using the CPS sample. Even if one were to

calculate semiparametric propensity score between 1% and 5% as well as 95% to 99% and include

all observations the results move the estimates closer to table1 but remain slightly smaller since a

few treated individuals remain in the bin with the smallest probability.

In table 2 we present Hotelling T 2 tests for differences in means (i.e. balancing tests) for each

covariate used to estimate the semiparametric propensity scores within each quintile probability

interval. Each entry lists the number of covariates which failed the test at the 5% level.16 Notice

that there are significant failures at the lowest probability interval capturing the dissimilarities

between the experimental and CPS non experimental samples. These differences help explain the

large swing in the estimated treatment effect between the top and bottom panel of table 1.17

If the covariates are balanced, interpretation of the quantile treatment effects are clear. In figure

2, we graph quantile treatment effects for the sample that corresponds to specification 2 and column

6 of table 1. Notice that the largest gains in the training program are received by those who had

the highest and lowest probability of participation. Further, analysis indicates that the training

program’s success was due in part to those individuals characteristic of the experimental sample

as well as those individuals who were observationally similar to the PSID sample that suffered low

earnings in 1975. The training program had a negative impact for those subjects in the middle

quantiles who tend to be either blacks or hispanics that had low earnings in 1974 but high earnings

in 1975. This indicates that the supported work program had the largest benefits for individuals

who had a permanent history of employment problems if the control group was drawn from the

PSID.
16The results do not change significantly if we report the 10% or 20% level. Note that the result do improve

significantly in all but the lowest probability interval if we report significance 1% level.
17Note that the majority of these individuals are not included in the parametric matching procedures due to

trimming conditions. For example, Dehejia and Wahba (1999) trim the sample by deleting all observations in the
control group whose estimated propensity score is less than the minimum estimated propensity score of the treatment
group. Similarly, they delete all treatment observations whose estimated propensity score is above the maximum
estimated propensity score of the control group. Appendix Table 2 presents stratification matching estimates with

parametric propensity scores using the Dehejia and Wahba (1999) sampling criteria.
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3.2.3 Bias Estimates

Evaluation bias estimates are obtained by applying our matching algorithm to the randomized

out control group and nonexperimental group. As neither group has received the intervention the

difference in earnings between matched individuals from each experimental control group and non

experimental sample should be zero. Table 3 presents direct estimates of the bias using stratification

matching with semiparametric propensity scores. Notice that with the exception of column 4 of

speciication one, the bias is of the order of a few hundred dollars and is less than 15% of the

experimental treatment impact in columns 2, 3, 5 and 6 respectively. The inclusion of individuals

in the lowest probability quantile has little effect on the bias unlike the treatment effects. This

occurs since the majority of individuals from the experimental sample who are assigned to this

probability interval were randomly assigned treatment.

The evaluation bias increases by approximately $200 in column 1- 3 when the higher order and

interaction terms are omitted from the estimating equation. Column 6 continues to exhibit low

bias whereas column 5’s bias is also reduced in absolute value. Once again and surprisingly we

find a high degree of bias in the Dehejia and Wahba samples. This is striking and contrasts the

findings of Smith and Todd (2002) who found that matching algorithms using parametric propensity

scores provided low bias only for this subsample. In Appendix table 3 we present interval matching

estimates for the bias using propensity scores estimated by a logit for each specification where the

lowest probability bin is excluded and included respectively. The bias is significantly lower for this

subsample (both columns 3 and 4, Dehejia and Wahba) as compared to the estimates presented in

tables 3.

To uncover an explanation as to why the evaluation bias calculated using semiparametric propen-

sity scores exceeded the estimate obtained using parametric propensity scores in column 4 of table 4

we conducted a more detailed examination of how the estimated bias differs across quantiles. Figure

3 presents a graph of the quantile bias effects at each interval for both parametric and semipara-

metric propensity scores for specification 1. Notice that in almost all quantiles the semiparametric

procedure exhibits lower bias.18 The results in table 3 (and Appendix Table 3) present a number of

treated individuals weighted average of these quintile biases and suggest that the lower bias for the

Dehejia and Wahba subsample is based in part on having the larger biases across quantiles cancel

out.
18The pattern is similar for specification 2.
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To provide additional guidance for empirical researchers on the performance of propensity score

matching algorithms we compare the average absolute bias error of our matching algorithm with a

variety of different matching algorithms based on parametric propensity scores; described in Smith

and Todd (2002).19 For each matched outcome we first calculate the absolute bias error

Bias error = |Y1i − Ê(Y0i|P (Xi),Di = 0)|

where Ê(Y0i|P (Xi), Di = 0) is calculated by the algorithm under investigation. The average absolute
bias error is calculate by dividing the sum of these bias errors by the number of individuals in the

treatment group who were successfully matched. We report the average absolute bias error and

its standard error in table 4. For interval matching estimators this estimate is simply a weighted

average of the absolute value of each quantile bias effect. For the parametric propensity score we

match on the estimated propensity score for most of these estimator with the exception of kernel

and local linear matching estimators where we match on the odds ratio due to the nature of the

sample.20

Notice that with one exception, the smallest average absolute bias error is attained using strati-

fication matching with propensity scores calculated by binary regression quantiles. In general, bias

error estimates obtained by stratification matching procedures are smaller than the nonparametric

and distance metric algorithms. In general when using parametric propensity scores algorithms

that use a larger distance produce smooth results; whereas narrow intervals produce larger bias

errors on average. In part, this occurs since fewer individuals have matches as the distance shrinks.

The results from specification 1 find that Kernel and local linear matching estimator exhibit sig-

nificantly less bias error than nearest neighbor or caliper matching algorithms. Overall, it appears

that using 20 bins produces estimates with the smallest mean squared error. The results suggest
19We also compared our procedure to the Abadie and Imbens (2002) matching procedure which determines matched

outcomes based on a weighting of distance between covariates and not the propensity score. Due to space constraints
we do not report the results but we considered both homoskedastic and heteroskeedastic weighting matrices with one
and four individuals matched and the results indicated larger absolute bias error than local linear matching with a
bandwidth of 0.01.
20Since the data are choice based with unknown sampling weights consistent estimates for the probability of

program participation are generally not obtained. Heckman and Todd (1995) demonstrate that matching methods
can be applied with the odds ratio to gain consistent estimates when the sample is choice based. Note failure to
account for choice based samples should not affect nearest neighbor or stratification point estimates.
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that adding the lowest probability quantile to the stratification matching algorithm increases bias

up to an average of $500 and $670 per treated participant for specification 1 and 2 respectively.

The increased average size of the bias error from parametric procedures ranges from slightly more

than $55.00 to approximately $5200 for specification 1. As a percentage of the estimated treatment

impact this range is equivalent 6.2% to 586.9%. For specification 2, stratification matching us-

ing parametric propensity scores does exhibit smaller bias error for column 3.21 Of the remaining

columns, the size of the average bias error ranges from $91 to $6250 or 10.3% to 706% of the ex-

perimental treatment impact per matched treated individual. While the semiparametric procedure

yielded the smallest average absolute bias error in 11 of the 12 columns in Table 4, the number is

still large relative to the experimental impact. This casts doubt as to whether all observables were

included in the estimation of the propensity score and is a potential cause for concern for empirical

researchers interested in using these methods.22

Stratification matching with parametric and semiparametric propensity scores yield similar aver-

age absolute bias error but wildly different treatment effects (Table 1 versus Appendix Table 2). In

general if one excludes the lowest probability bin (0.0-0.05%) the procedures rarely placed individ-

uals within the same interval. This is demonstrated by examining the scarcity of individuals lying

on the prime diagonal of table 5 and the large number of individuals residing in the off diagonal

elements. This table presents information on the horizontal rows of which bin the semiparametric

procedure assigns and the columns provide the bins that the parametric procedure assigns. Notice

that ignoring the lowest probability quantile, approximately 30% of all the observations fall in the

same probability bin for the two methods. For all 12 subsamples the similarities range between

22%-43%.

4 Conclusions

In situations with nonexperimental data matching methods provide a means to estimate program

impacts when the variables determining assignment to treatment are observed and the support

of treatment and comparison groups overlap. In this paper, we demonstrate that potential gains
21Since this column exhibits a significant number of quantiles with failures in the balancing tests (presented in

table 5) further investigation is required to see whether these intervals present significantly larger estimated biases.
22Further note that the average bias error for one nearest neighbor matching is extremely large which suggests

that there are substantial differences even in the case where matched individuals should.be most alike.
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can be achieved with stratification matching using propensity scores estimated by binary regression

quantiles, a semiparametric estimation technique that does not make any distributional assumptions

on unobservables and allows for general forms of heterogeneity in response to observed covariates.

Since binary regression quantiles are robust to general forms of heteroskedasticity, the researcher

only has to specify which covariates affect program participation in the estimating equation.

To examine the performance of stratification matching using semiparametric propensity scores

calculated via binary regression quantiles we employ data used in several influential studies eval-

uating the performance of nonexperimental estimators. We find that our technique accurately

captures the experimental treatment impact and generally exhibits lower bias than strategies em-

ploying parametric propensity scores. A detailed examination of the average absolute bias errors

between our procedure and matching algorithms based on parametric propensity scores indicate

reductions between 6.2% and 706% of the experimental program impact. These differences are due

in part to misspecifaction and as a result fewer than 50% of the same individuals are assigned to

the same probability bin with semiparametric and parametric propensity scores.

While previous work using semiparametric estimators did not find large gains relative to para-

metric procedures they only allowed for very restrictive forms of heterogeneity relative to binary

regression quantiles. In conclusion, since the use of the propensity score as a basis for estimating

treatment effects is becoming increasingly common in research in a variety of disciplines researchers

should test for possible misspecification and if present, should consider the methods described in

this paper to improve inference.
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Figure 1: Normalized Binary Regression Quantile and Logit Coefficient Estimates
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Table 1: Treatment Effects Estimates with Semiparametric Propensity Scores using Stratification Matching  
 SPECIFICATION ONE  SPECIFICATION TWO 

 Column 
1 

Column 
2  

Column 
3 

Column 
4 

Column 
5 

Column 
6 

Column 
1 

Column 
2  

Column 
3 

Column 
4 

Column 
5 

Column 
6 

Experiment 
Impact 

886.32 886.32 1794.34 1794.34 2748.49 2748.49 886.32 886.32 1794.34 1794.34 2748.49 2748.49 

20 Bins   85.44  
(618.77) 

665.55  
(900.59) 

1925.19  
(678.11) 

1390.79  
(675.37) 

2779.06   
(1047.0) 

2697.48  
(1624.8) 

96.62 
(587.43) 

652.04   
(874.25) 

2039.67   
(831.12) 

1406.82   
(705.95) 

2556.02 
(1196.2) 

2418.79   
(1619.5) 

10 Bins   114.13   
(508.81) 

773.91   
(886.37) 

1391.97   
(935.18) 

1206.23   
(684.84) 

2051.61  
(1242.6) 

2922.78  
(1329.7) 

-201.02  
(584.42) 

-179.87   
(1234.5) 

2145.43  
(866.29) 

1441.15  
(674.73) 

2750.53 
(1202.6) 

2989.07   
(1326.6) 

5 Bins  221.76  
(667.10) 

126.80   
(945.53) 

2400.79 
(961.73) 

1258.74   
(669.76) 

2635.53 
(1903.0) 

963.14 
(1933.2) 

-34.71 
(593.42) 

-568.94  
(1102.3) 

2205.51  
(873.32) 

1436.19   
(668.59) 

2640.13 
(1226.4) 

2852.39 
(1143.1) 

Including Lowest Probability Bin 
20 Bins   -627.70   

(574.16) 
476.12  

(841.31) 
223.27   

(833.20) 
1108.07   
(681.35) 

592.24   
(1127.3) 

1834.56   
(1635.9) 

-881.44 
(535.94) 

389.32  
(874.25) 

684.29 
(736.18) 

1014.49 
(710.99) 

1070.34 
(1057.5) 

1664.49 
(1509.2) 

10 Bins   -850.68 
(649.83) 

516.66 
(837.60) 

253.79 
(804.42) 

720.96   
(669.84) 

-116.96 
(1092.5) 

1769.43 
(1337.1) 

-1267.4 
(550.35) 

-561.83 
(1284.1) 

470.36 
(779.58) 

825.42 
(702.81) 

621.01 
(1068.0) 

1816.20 
(1291.6) 

5 Bins   -1157.1 
(622.46) 

-838.17  
(854.67) 

73.13 
(891.22) 

488.72   
(735.58) 

-668.71 
(1075.1) 

-391.72 
(1903.0) 

-1447.6 
(510.77) 

-1455.2 
(1036.5) 

-206.31 
(820.30) 

577.36 
(700.04) 

156.02 
(1042.2) 

1274.53 
(1153.3) 

Note: Bootstrapped standard errors in parentheses. 1000 Bootstrap replications. 
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Table 2: Balancing Test Results  
 SPECIFICATION ONE  SPECIFICATION TWO 
Quantile  Column 

1 
Column 
2  

Column 
3 

Column 
4 

Column 
5 

Column 
6 

Column 
1 

Column 
2  

Column 
3 

Column 
4 

Column 
5 

Column 
6 

0↔0.05 11 2 14 4 12 4 7 3 10 3 10 3 
0.05↔0.10 0 0 0 0 1 0 0 0 3 0 0 0 
0.10↔0.15 0 0 0 0 0 0 0 0 0 1 0 0 
0.15↔0.20 0 0 1 0 0 2 0 0 3 0 0 0 
0.20↔0.25 0 0 0 0 0 0 0 2 0 0 0 0 
0.25↔0.30 0 2 0 0 0 0 0 0 0 0 0 0 
0.30↔0.35 0 2 0 0 0 0 2 0 2 0 0 0 
0.35↔0.40 3 1 0 0 0 0 0 0 0 0 1 0 
0.40↔0.45 0 0 0 0 0 1 0 0 0 0 3 0 
0.45↔0.50 0 0 1 0 0 0 0 0 2 0 0 0 
0.50↔0.55 1 0 0 1 0 0 0 0 0 0 0 0 
0.55↔0.60 0 0 0 0 0 0 1 0 6 0 0 0 
0.60↔0.65 0 0 0 0 0 0 0 0 0 0 0 0 
0.65↔0.70 0 0 0 0 0 0 4 0 0 0 2 0 
0.70↔0.75 0 1 0 0 0 0 2 1 1 0 2 0 
0.75↔0.80 0 2 0 0 0 0 0 0 0 0 0 0 
0.80↔0.85 0 0 0 0 0 1 0 0 0 0 0 0 
0.85↔0.90 0 0 0 0 0 0 1 0 1 0 0 0 
0.90↔0.95 0 0 0 0 0 0 0 0 0 0 0 0 
0.95↔1.00 0 0 0 0 0 0 0 0 0 0 0 0 
Note: Number of unbalanced covariates at the 5% level reported. 
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Table 3: Evaluation Bias Estimates with Semiparametric Propensity Scores using Stratification Matching  
 SPECIFICATION ONE  SPECIFICATION TWO 

 Column 
1 

Column 
2  

Column 
3 

Column 
4 

Column 
5 

Column 
6 

Column 
1 

Column 
2  

Column 
3 

Column 
4 

Column 
5 

Column 
6 

Experiment 
Impact 

886.32 886.32 1794.34 1794.34 2748.49 2748.49 886.32 886.32 1794.34 1794.34 2748.49 2748.49 

20 Bins   -336.54  
(480.81) 

-139.93 
(810.83) 

161.28    
(741.64) 

1673.97   
(746.29) 

-589.35 
(461.54) 

515.52  
(641.74) 

436.09 
(640.18) 

1916.99   
(704.56) 

-639.12  
(680.63) 

153.73 
(972.87) 

2556.02 
(1196.2) 

2418.79   
(1619.5) 

10 Bins   -335.03  
(594.49) 

241.27   
(853.37) 

384.81   
(771.63) 

1465.84  
(812.25) 

-908.48   
(447.11) 

-903.74   
(23.12) 

642.51  
(640.09) 

1648.89 
(755.05) 

-536.74  
(716.03) 

674.81   
(995.20) 

2750.53 
(1202.6) 

2989.07   
(1326.6) 

5 Bins  -405.13  
(556.55) 

-735.40  
(861.99) 

1138.15   
(781.37) 

1666.38   
(649.94) 

-983.01  
(413.25) 

-1195.69  
(1124.9) 

732.39   
(652.39) 

1586.93  
(590.43) 

39.20 
(805.45) 

555.40   
(777.46) 

2640.13 
(1226.4) 

2852.39 
(1143.1) 

Including Lowest Probability Bin 
20 Bins   -319.93  

(482.99) 
-26.65 

(872.13) 
271.95    

(701.25) 
1486.15   
(767.14) 

340.51   
(817.92) 

-214.48   
(1000.8) 

-1387.62   
(458.99) 

292.88  
(666.71) 

-17.52   
(589.98) 

1630.89  
(716.22) 

-1442.96  
(641.02) 

-614.39   
(1008.24) 

10 Bins   -1215.47  
(560.22) 

-91.68   
(833.26) 

-573.74   
(624.82) 

863.00  
(831.63) 

-1371.57   
(713.60) 

376.71    
(911.09) 

-1648.51  
(430.82) 

-1150.33   
(1153.4) 

-418.66   
(635.01) 

896.64 
(719.66) 

-1727.59  
(690.56) 

-506.14  
(981.67) 

5 Bins   -1568.71  
(556.55) 

-1359.71  
(845.89) 

-650.74   
(678.53) 

744.53   
(698.07) 

-1843.34   
(669.55) 

-829.00    
(976.36) 

-2003.59   
(423.29) 

-1988.88   
(1101.5) 

-948.47 
(621.08) 

729.50   
(636.01) 

-2077.87   
(725.08) 

-914.14    
(866.48) 

Note: Bootstrapped standard errors in parentheses. 1000 Bootstrap replications. 
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 Table 4: Average Absolute Bias Error 
SPECIFICATION ONE  SPECIFICATION TWO Matching Algoritm 

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

Nearest Neighbor 1 
W/O Common Support 

6531.57 
(5746.5) 

6515.78 
(8011.1) 

5043.09 
(5375.8) 

5231.05 
(5190.2) 

5956.38   
(6444.2) 

5834.49   
(6005.6) 

6495.40   
(5719.1) 

6065.43 
(6199.8) 

6073.86 
(5848.0) 

5027.43 
(6518.4) 

6200.70   
(6322.6) 

5657.73   
(5847.6) 

Nearest Neighbor 10 
W/O Common Support 

6540.42 
(5840.8) 

6515.78 
(8011.1) 

5141.34 
(5426.0) 

5231.05 
(5190.2) 

6100.74   
(6488.0) 

5834.49   
(6005.6) 

6466.16  
(5740.2) 

6065.43 
(6199.8) 

5953.66 
(5963.3) 

5027.43 
(6518.4) 

6298.87  
(6309.0) 

5657.73   
(5847.6) 

Nearest Neighbor 1 W. 
Common Support 

6544.23 
(5779.5) 

6515.78 
(8011.1) 

4996.16 
(5450.1) 

5231.05 
(5190.2) 

5983.31    
(6502.3) 

5834.49   
(6005.6) 

6561.55  
(5785.3) 

6065.43 
(6199.8) 

5867.80 
(5834.5) 

5027.43 
(6518.4) 

6500.32    
(6476.5) 

5657.73   
(5847.6) 

Nearest Neighbor 10 
W. Common Support 

6597.81 
(5820.5) 

6515.78 
(8011.1) 

5109.14 
(5587.4) 

5231.05 
(5190.2) 

6077.74   
(6564.0) 

5834.49   
(6005.6) 

6551.98   
(5769.2) 

6065.43 
(6199.8) 

5989.54 
(5978.8) 

5027.43 
(6518.4) 

6077.74   
(6564.0) 

5657.73   
(5847.6) 

Kernel (Bandwidth 
0.04) 

5155.23 
(3738.3) 

5146.12 
(4086.8) 

4536.32 
(3878.1) 

4746.40 
(4204.6) 

5329.49   
(4378.1) 

5051.71 
(4588.3) 

5711.01   
(4405.8) 

7105.71 
(5955.1) 

4819.80 
(4509.0) 

6596.85 
(5487.0) 

5415.97   
(4940.4) 

6055.22 
(5164.6) 

Kernel (Bandwidth 
0.01) 

4987.96 
(3839.0) 

5216.04 
(4335.5) 

4307.99 
(3962.5) 

4788.36 
(4339.8) 

5034.23   
(4671.2) 

5300.18 
(4720.5) 

5664.64   
(4572.7) 

6553.06 
(8027.5) 

4841.42 
(4720.5) 

6012.27 
(5287.2) 

5484.68  
(5198.4) 

6209.80 
(5337.7) 

Local Linear 
(Bandwidth 0.04) 

4675.54 
(3345.0) 

4845.76 
(3749.6) 

4134.49 
(3524.6) 

4298.21 
(3636.9) 

4670.90   
(3857.7) 

4871.93 
(4038.7) 

4754.06   
(3459.7) 

5051.76 
(3891.8) 

4254.59 
(3546.9) 

4427.15 
(3908.4) 

4831.42   
(3790.4) 

4900.41 
(4223.0) 

Local Linear 
(Bandwidth 0.01) 

4705.60 
(3379.1) 

4995.25 
(4105.4) 

4145.24 
(3498.1) 

4353.05 
(3895.5) 

4743.96    
(3883.0) 

4813.54 
(4356.2) 

4680.02 
(3464.6) 

5059.29 
(4100.5) 

4150.35 
(3613.5) 

4460.52 
(3917.0) 

4743.96    
(3883.0) 

5046.30 
(4247.1) 

Caliper (0.01) 6505.52 
(5758.3) 

6600.18 
(8138.6) 

4978.08 
(5365.1) 

4945.54 
(5098.1) 

5928.61   
(6492.5) 

5529.58   
(5879.6) 

6791.76 
(5844.4) 

6340.82 
(6428.5) 

6128.93 
(5760.1) 

5168.24 
(6612.4) 

6357.82   
(6499.1) 

5769.70   
(6022.4) 

Caliper (0.001) 6860.53 
(5981.8) 

6175.00 
(6132.1) 

4942.18  
(5057.3) 

4434.86 
(4838.2) 

6841.91   
(6621.5) 

5976.01   
(6788.6) 

6619.27 
(5791.0) 

7073.58 
(7189.0) 

6448.08  
(6387.0) 

5683.33 
(8489.1) 

6380.06   
(6218.1) 

5092.21   
(5162.5) 

Caliper (0.0001) 6079.16 
(5766.4) 

6166.09 
(6749.7) 

5268.85 
(5375.1) 

4349.57 
(5403.5) 

5904.92   
(6546.1) 

6359.16   
(8353.7) 

6812.13 
(6073.7) 

8286.05 
(10196.) 

5788.78 
(5185.5) 

8622.76 
(14083.) 

7946.84   
(6395.2) 

4429.00  
(5506.3) 

Stratification 20 Bins 
Logit 

2131.75 
(1879.6) 

2272.02 
(1884.1) 

1798.77 
(1825.0) 

3206.00 
(2961.3) 

2953.57 
(2382.5) 

3519.43 
(3140.3) 

2360.50 
(1879.6) 

2356.05 
(2890.4) 

1798.77 
(1825.0) 

3206.00 
(2961.3) 

2953.57 
(2382.5) 

3519.43 
(3140.3) 

Stratification 20 Bins 
BRQ 

2054.54   
(2192.5) 

2210.44 
(2312.4) 

1741.31 
(1833.8) 

2864.02 
(1997.1) 

2929.14 
(2032.3) 

2234.41 
(2063.6) 

2451.74 
(2633.4) 

2585.78 
(1968.3) 

2372.92 
(1611.9) 

2596.23 
(2174.3) 

2511.21 
(2099.7) 

3133.87 
(3444.3) 

Stratification 10 Bins 
BRQ 

1768.95 
(2364.5) 

2113.56 
(2833.4) 

2654.56 
(2412.1) 

2445.20 
(2844.3) 

2716.92 
(2137.9) 

2713.09 
(2757.8) 

2262.78 
(2626.1) 

1356.82 
(2577.7) 

2834.35 
(2043.8) 

2414.72 
(2954.8) 

2675.21 
(2954.8) 

3536.80 
(3624.5) 

Stratification 20 Bins 
BRQ No Zeros 

1669.03   
(1116.5) 

2064.17 
(2100.5) 

1352.69 
(2306.5) 

2726.98 
(1549.5) 

2412.47 
(1468.4) 

2612.59 
(1917.5) 

1770.34 
(1878.5) 

2028.09 
(1557.5) 

1981.78 
(1210.4) 

2376.78 
(1281.4) 

1874.07 
(1437.1) 

2480.27 
(1578.6) 

Stratification 20 Bins 
Logit No Zeros 

1971.97 
(1218.8) 

2119.36 
(2352.0) 

1421.64 
(1164.9) 

2991.63 
(2430.7) 

2458.90 
(2052.7) 

3137.16 
(2219.0) 

1971.97 
(1218.8) 

2119.36 
(2352.0) 

1421.64 
(1164.9) 

2991.63 
(2430.7) 

2458.90 
(2052.7) 

3137.16 
(2219.0) 

Note: Standard deviation in parentheses 
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Table 5: Number of Individuals Assigned to a Bin by Parametric and Semiparametric Estimates Using 
PSID and Early Random Assignment Experimental Sample via Specification 2  
  
Logit Bins -> 
BRQ Bins ↓ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total 

[0-0.05%) 2178 58 17 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2266 
[.05-0.1%) 42 42 23 21 19 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 153 
[0.1-0.15%) 0 1 2 2 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 10 
[0.15-0.2%) 0 0 0 5 6 4 3 1 1 0 0 0 0 0 0 0 0 0 0 0 20 
[0.2-0.25%) 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 5 
[0.25-0.3%) 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
[0.3-0.35%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[0.35-0.4%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
[0.4-0.45%) 0 1 2 0 2 1 4 0 4 5 2 2 6 0 0 0 0 0 0 0 27 
[0.45-0.5%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[0.5-0.55%) 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 
[0.55-0.6%) 0 0 1 2 1 1 5 2 1 2 4 5 7 4 7 2 1 1 0 0 45 
[0.6-0.65%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[0.65-0.7%) 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 2 0 1 0 0 6 
[0.7-0.75%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[0.75-0.8%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[0.8-0.85%) 0 0 0 0 0 0 0 0 2 3 3 5 10 7 10 2 5 10 3 1 61 
[0.85-0.9%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[0.9-0.95%) 0 0 0 0 0 0 0 0 0 0 0 1 2 5 5 3 2 5 12 32 62 
[0.95-1.0%) 0 0 0 0 0 0 1 0 2 0 1 0 0 1 1 7 20 8 14 24 79 
Total 2221 103 45 36 42 12 13 6 12 10 11 18 20 14 23 16 28 24 29 57 2740 
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Appendix Table 1: Summary Statistics 
Sample LaLonde 

Treated 
LaLonde 
Controls 

DW Treated DW 
Controls 

Early 
Assignment 
Treated 

Early 
Assignment 
Control 

CPS PSID 

Sample Size 297 425 185 260 108 142 15992 2490 
Age 24.626   

(6.686) 
24.447   
(6.590) 

25.816   
(7.155) 

25.054   
(7.058) 

25.370    
(6.251) 

26.014   
(7.108) 

33.225   
(11.045) 

34.851   
(10.441) 

Years of 
Education 

10.380   
1.818) 

10.188   
(1.619) 

10.346    
(2.011) 

10.088   
(1.614) 

10.491   
(1.643) 

10.275   
(1.572) 

12.028   
(2.871) 

12.117   
(3.082) 

Hispanic 0.094 0.113 0.059 0.108 0.074 0.113 0.072 0.032 
Black 0.801 0.80 0.843 0.827 0.824 0.817 0.074 0.251 
Married 0.168 0.158 0.189 0.154 0.204 0.190 0.712 0.866 
Dropout 0.731 0.814 0.708 0.835 0.713 0.803 0.296 0.305 
Zero Earnings 
in 1974 

 
0.441 

 
.461 

 
0.708 

 
0.75 

 
0.50 

 
0.542 

 
0.120 

 
0.086 

Zero Earnings 
in 1975 

 
0.374 

 
0.419 

 
0.60 

 
0.685 

 
0.324 

 
0.472 

 
0.109 

 
0.100 

Real Earnings 
in 1974 

3571.00   
(5773.13) 

3672.49   
(6521.53) 

2095.57    
(4886.62) 

2107.03   
(5687.91) 

3589.64   
(5970.74) 

3857.94   
(7254.27) 

14016.8   
(9569.80) 

19428.8   
(13406.9) 

Real Earnings 
in 1975 

3066.10   
(4874.89) 

3026.68    
(5201.25) 

1532.06   
(3219.25) 

1266.91   
(3102.98) 

2596.03    
(3871.68) 

2276.96   
(3919.28) 

13650.8   
(9270.40) 

19063.3   
(13596.9) 

Real Earnings 
in 1978 

5976.35   
(6923.80) 

5090.05   
(5718.09) 

6349.14   
(7867.40) 

4554.80   
(5483.84) 

7357.41   
(9027.18) 

4608.92    
(6031.96) 

14846.66   
(9647.39) 

21553.9 
(15555.4) 

Note: Standard Deviation in Parentheses 
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Appendix Table 2: Treatment Effect Estimates with Parametric Propensity Scores using Stratification Matching    
 SPECIFICATION ONE  SPECIFICATION TWO 

 Column 1 Column 2  Column 3 Column 4 Column 5 Column 6 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 
Experiment 
Impact 

886.32 886.32 1794.34 1794.34 2748.49 2748.49 886.32 886.32 1794.34 1794.34 2748.49 2748.49 

20 Bins 
Excluding 0-
0.05 

-277.54 
(603.86) 

-401.81 
(788.77) 

1327.11 
(860.30) 

1631.55 
(1157.9) 

1386.91 
(1108.3) 

2242.87 
(1265.9) 

 -373.80 
(556.89) 

18.44 
(706.37) 

1361.09 
(794.66) 

1940.58 
(911.70) 

2437.87 
(1063.0) 

1380.82  
(1303.5) 

20 Bins no 
exclusion 

-1067.65 
(596.06) 

-611.86 
(759.50) 

14.76 
(816.72) 

1151.39 
(1094.7) 

211.18 
(959.90) 

1441.67 
(1351.0) 

 -1312.4 
(544.38) 

-301.82 
(707.88) 

171.88 
(776.22) 

1354.01 
(947.75) 

591.07 
(1060.0) 

465.81 
(1237.7) 

20 Bins 
DW 
exclusion 

-819.79 
(582.53) 

-632.00 
(800.09) 

1096.57 
(800.63) 

1394.41 
(1060.4) 

1255.21 
(1032.5) 

1297.61 
(1125.5) 

-803.78  
(489.33) 

-268.06 
(688.45) 

902.33 
(731.83) 

1513.39 
(920.17) 

1634.18 
(938.87) 

694.29 
(1245.2) 

Note: Bootstrapped standard errors in parentheses. 1000 Bootstrap replications. DW exclusion drops all individuals in the treatment group with 
estimated propensity scores above the maximum propensity score in the control group and drops all control individuals whose estimated 
propensity score is less than the minimum propensity score of the treatment group. 
 
Appendix Table 3: Evaluation Bias Estimates with Parametric Propensity Scores using Stratification Matching  

 SPECIFICATION ONE  SPECIFICATION TWO 
 Column 1 Column 2  Column 3 Column 4 Column 5 Column 6 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 
Experiment 
Impact 

886.32 886.32 1794.34 1794.34 2748.49 2748.49 886.32 886.32 1794.34 1794.34 2748.49 2748.49 

20 Bins   -1318.41  
(530.93) 

-1011.45   
(696.50) 

62.14  
(673.98) 

726.59    
(779.96) 

-1216.63   
(769.63) 

-302.93  
(911.30) 

-1303.93 
(427.43) 

-685.21 
(594.36) 

-399.41 
(547.29) 

679.02 
(760.47) 

-1275.2 
(634.42) 

-1862.5 
(1108.8) 

10 Bins   -1148.28 
(539.09) 

-1070.33  
(783.31) 

-124.51 
(675.83) 

84.97    
(926.07) 

-1135.18   
(849.69) 

-825.08 
(952.01) 

-1248.07 
(437.63) 

-985.08 
(634.63) 

-229.11 
(566.49) 

248.66 
(1056.9) 

-1129.4 
(641.74) 

-1156.1 
(876.66) 

Including Lowest Probability Bin 
20 Bins   -1749.99 

(517.42) 
-1269.00 
(695.99) 

-411.11 
(644.94) 

455.02 
(770.67) 

-1851.27 
(737.83) 

-765.03 
(947.28) 

 -1890.1 
(399.59) 

-1091.06 
(600.09) 

-912.84 
(528.85) 

270.58 
(805.11) 

-1939.3 
(630.75) 

-2286.0  
(1097.8) 

10 Bins   -2004.45 
(491.63) 

-1593.87 
(741.56) 

-977.55 
(643.09) 

-505.34 
(911.10) 

-2282.38 
(762.06) 

-1471.57 
(863.60) 

 -2051.4 
(398.61) 

-1421.89 
(650.42) 

-1275.7 
(511.59) 

-375.59 
(1057.2) 

-2526.2 
(627.09) 

-2186.9 
(934.91) 

Note: Bootstrapped standard errors in parentheses. 1000 Bootstrap replications. 


