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Abstract

This paper studies optimal monetary policy in a small open economy under flexible prices. The

paper’s key innovation is to analyze this question in the context of environments where only a

fraction of agents participate in asset market transactions (i.e., asset markets are segmented). In

this environment, we first show that there exist state contingent rules (based either on the rate of

money growth or the devaluation rate) that can implement the first-best equilibrium. Such rules,

however, would require the monetary authority to respond to contemporaneous shocks and would

thus be difficult to implement. We then proceed to analyze optimal monetary policy rules within

the class of non-state contingent rules. Our main result is that amongst non-state contingent

rules, policies targeting monetary aggregates (which allow for nominal exchange rate flexibility)

welfare-dominate rules that target the exchange rate. In particular, we find that a fixed exchange

rate is never optimal. Our analysis would thus tend to support monetary policy arrangements that

allow for nominal exchange rate flexibility.
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JEL Classification: F1, F2



1 Introduction

The desirability of alternative monetary policies continues to be one of the most analyzed and hotly

debated issues in macroeconomics. If anything, the issue is even of greater relevance for emerging

markets, which experience far greater macroeconomic volatility than industrial countries. Should

emerging markets fix the exchange rate to a strong currency or should they let it float? Should

they be targeting inflation and follow Taylor-type rules or should they have a monetary target? In

practice, the range of experiences is not only broad but also varies considerably over time. While

in the early 1990s many emerging countries were following some sort of exchange rate peg (the

10-year Argentinean currency board that started in 1991 being the most prominent example), most

of them switched to more flexible arrangements after the 1994 Mexican crisis and the 1997-98

Asian crises. If history is any guide, however, countries dislike large fluctuations in exchange rates

and eventually seek to limit them by interventions or interest rates changes (Calvo and Reinhart

(2002)). Hence, it would not be surprising to see a return to less flexible arrangements in the near

future. The cross-country and time variation of monetary policy and exchange rate arrangements in

emerging countries is thus remarkable and essentially captures the different views of policymakers

and international financial institutions regarding the pros and cons of different regimes.

The conventional wisdom derived from the literature regarding the choice of exchange rate

regimes is based on the Mundell-Fleming model (i.e., a small open economy with sticky prices

and perfect capital mobility). In such a model, it can be shown (see Calvo (1999) for a simple

derivation) that if the policymaker’s objective is to minimize output variability, fixed exchange

rates are optimal if monetary shocks dominate and flexible exchange rates are optimal if real

shocks dominate. As Calvo (1999, p. 4) puts it, this is “a result that every well-trained economist

carries on [his/her] tongue”. The intuition is simple enough: real shocks require an adjustment in

relative prices which, in the presence of sticky prices, can most easily be effected through changes

in the nominal exchange rate; in contrast, monetary shocks require an adjustment in real money

balances that can be most easily carried out through changes in nominal money balances (which
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happens endogenously under fixed exchange rates). In fact, most of the modern literature on the

choice of exchange rate regimes has considered variations of the Mundell-Fleming model in modern

clothes (rechristened nowadays as “new open economy macroeconomics”): for instance, Engel and

Devereux (1998) show how the conventional results are sensitive to whether prices are denominated

in the producer’s or consumer’s currency and Cespedes, Chang, and Velasco (2000) incorporate

liability dollarization and balance sheets effects and conclude that the standard prescription in

favor of flexible exchange rates in response to real shocks is not essentially affected. In a similar

vein, while the literature on monetary policy rules for open economies is more recent, it has been

carried out mostly in the context of sticky-prices model (see, for instance, Clarida, Gali, and Gertler

(2001), Ghironi and Rebucci (2001), and Schmitt-Grohe and Uribe (2000)). In particular, Clarida,

Gali, and Gertler (2001) conclude that Taylor-type rules remain optimal in an open economy though

openness can affect the quantitative magnitude of the responses involved.

The fact that most of the literature on the choice of exchange rate regimes and monetary policy

rules relies on sticky prices models raises a fundamental (though seldom asked) question: are sticky

prices (i.e., frictions in good markets) more relevant in emerging markets than frictions in asset

markets? Given that even for the United States 59 percent of the population (as of 1989) did not

hold interest bearing assets (see Mulligan and Sala-i-Martin (2000)) and that, for all the financial

opening of recent decades, financial markets in developing countries remain far less sophisticated

than in the United States, it seems clear that financial markets frictions are pervasive in developing

countries. In this light, it would seem important to understand the implications of models with

financial markets frictions for the optimal choice of exchange rate regimes and policy rules. A

convenient way of modelling financial market frictions is to assume that, at any point in time, some

agents do not have access to asset markets (due to, say, a fixed cost of entry, lack of information, and

so forth). These so-called asset market segmentation models have been used widely in the closed

macro (see, among others, Alvarez and Atkeson (1997), Alvarez, Lucas, and Webber (2001) and

Chatterjee and Corbae (1992)). In a first paper (Lahiri, Singh, and Vegh (2003)), we have analyzed

the implications of asset market segmentation for the choice of exchange rate regimes under both
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complete and incomplete markets (for agents that have access to asset markets). We conclude that

the policy prescription is exactly the opposite of the one that follows from the Mundell-Fleming

model: when monetary shocks dominate, flexible exchange rates are optimal, whereas when real

shock dominate, fixed rates are optimal.1 The punchline is that the choice of fixed versus flexible

rates should therefore not only depend on the type of shock (monetary versus real) but also on the

type of friction (goods markets versus asset markets).

In this paper, we turn to the more general issue of optimal monetary policy rules (of which a

fixed exchange rate or pure floating rate are, of course, particular cases). For analytical simplicity,

we restrict our attention to the case in which agents that have access to asset markets (called

“traders”) face complete markets. Our first result of interest is that there are state contingent

rules (based either on the rate of money growth or the rate of devaluation) that can implement the

first-best equilibrium. These rules entail reacting to both output and velocity shocks. Interestingly

enough, the optimal reaction to output shocks is procyclical in the sense that either the rate of

money growth or the rate of devaluation should be raised in good times and lowered in bad times.

Intuitively, this reflects the need to insulate non-traders (i.e., those agents with no access to capital

markets) from output fluctuations. In the case of the state-contingent money growth rule, this

insulation is achieved by redistributing resources from non-traders to traders in good times and

viceversa in bad times. More specifically, by, say, increasing the money supply in good times,

traders’ real money balances increase (since they get a disproportionate amount of money while

the price level increases in proportion to the money injection), which they can use to buy goods from

non-traders. In the case of the state-contingent devaluation rate rule, the insulation is achieved by

devaluing in good times. While such a devaluation does not affect traders’ real money balances

(since they can always replenish their nominal money balances at the central bank’s window), it

1Not surprisingly, our results are in the spirit of an older — and less well-known literature — that analyzed the

choice of exchange rate regimes in models with no capital mobility; see, in particular, Fischer (1977) and Lipschitz

(1978). It is worth noting, however, that these early models failed to capture agent heterogeneity and hence missed

the role of redistributive/asymmetric policies, a key channel in our model.
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reduces non-traders’ real money balances thus forcing them not to over-consume in good times. In

sum, the key to achieving the first best is that the monetary authority’s actions hit traders and

non-traders asymmetrically.

Since state-contingent rules are, by their very nature, not easy to implement in practice (as they

would require the monetary authority to respond to contemporaneous shocks), we then proceed to

ask the question: what are the optimal policy rules within the class of non-state contingent rules?

Since in our model shocks are independently and identically distributed, non-state contingent rules

take the form of either a constant money growth rate or a constant rate of devaluation. Our main

finding is that, among non-state contingent rules, money-based rules generally welfare-dominate

exchange rate-based rules. In fact, a fixed exchange rate is never optimal in our model, while a

constant money supply rule (i.e., zero money growth) would be optimal if the economy were hit

only by monetary shocks. Intuitively, this reflects a fundamental feature of our model: asset market

segmentation critically affects the key adjustment mechanism that operates under predetermined

exchange rates; namely, the exchange of money for bonds (or viceversa) at the central bank’s

window. Since only a fraction of agents operate in the asset market, this typical mechanism

loses effectiveness in our model. In contrast, the typical adjustment mechanism that operates

under flexible rates (adjustments in the exchange rate/price level) is not affected by asset market

segmentation. We thus conclude that our model would rationalize monetary regimes where the

exchange rate is allowed to (at least partly) respond to various shocks.

The paper proceeds as follows. Section 2 presents the model and the equilibrium conditions

while Section 3 describes the allocations under alternative exchange rate regimes and compares

welfare under the different regimes. Section 4 studies the implications of the different monetary

regimes for macroeconomic volatility. Finally, Section 5 concludes. Algebraically tedious proofs

are consigned to an appendix.
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2 Model

The basic model is an open economy variant of the model outlined in Alvarez, Lucas, and Weber

(2001). Consider a small open economy perfectly integrated with world goods markets. There is

a unit measure of households who consume an internationally-traded good. The world currency

price of the consumption good is fixed at one. The households face a cash-in-advance constraint.

As is standard in these models, households are prohibited from consuming their own endowment.

We assume that a household consists of a seller-shopper pair. While the seller sells the household’s

own endowment, the shopper goes out with money to purchase consumption goods from other

households.

There are two potential sources of uncertainty in the economy. First, each household receives

a random endowment yt of the consumption good in each period. We assume that yt is an in-

dependently and identically distributed random variable with mean ȳ and variance σ2y.
2 Second,

following Alvarez et al, we assume that the shopper can access a proportion vt of the household’s

current period (t) sales receipts, in addition to the cash carried over from the last period (Mt), to

purchase consumption. We assume that vt is an independently and identically distributed random

variable with mean v̄ ∈ [0, 1] and variance σ2v. Only a fraction λ of the population, called traders,

has access to (complete) asset markets, where 0 ≤ λ ≤ 1.3 The rest, 1− λ, called non-traders, can

only hold domestic money as an asset. In the following we shall refer to these v shocks as velocity

shocks.4

2We could allow for different means and variances for the endowments of traders and non-traders without changing

our basic results.
3As will become clear below, the assumption of complete markets for traders greatly simplifies the problem. In

Lahiri, Singh, and Vegh (2003), we also solve the case of incomplete markets for some particular policy rules (i.e.,

constant money supply and constant exchange rate) and show that similar results obtain.
4There are alternative ways in which one can think about these velocity shocks. Following Alvarez, Lucas, and

Weber (2001) one can ‘think of the shopper as visiting the seller’s store at some time during the trading day, emptying

the cash register, and returning to shop some more’. The uncertainty regarding v can be thought of as the uncertainty

regarding the total volume of sales at the time that the shopper accesses the cash register. Alternatively, one can

think of this as representing an environment where the shopper can purchase goods either through cash or credit.
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In each period t, the economy experiences one of the finitely many events xt = {vt, yt} . Denote

by xt = (x0, x1, x2......., xt) the history of events up to and including period t. The probability,

as of period 0, of any particular history xt is π
¡
xt
¢
= π

¡
xt|xt−1

¢
π
¡
xt−1

¢
. The households’

intertemporal utility function is

W0 =
∞X
t=0

X
xt

βtπ
¡
xt
¢
u(c

¡
xt
¢
), (1)

where β is the households’ time discount factor, and c
¡
xt
¢
is consumption in period t.

The timing runs as follows. First, both the endowment and velocity shocks are realized at

the beginning of every period. Second, the household splits. Sellers of both households stay at

home and sell their endowment for local currency. Shoppers of the non-trading households are

excluded from the asset market and, hence, go directly to the goods market with their overnight

cash to buy consumption goods. Shoppers of trading households first carry the cash held overnight

to the asset market where they trade in bonds and receive any money injections for the period.

They then proceed to the goods market with whatever money balances are left after their portfolio

rebalancing. After acquiring goods in exchange for cash, the non-trading-shopper returns straight

home while the trading-shopper can re-enter the asset market to exchange goods for foreign bonds.

After all trades for the day are completed and markets close, the shopper and the seller are reunited

at home.

2.1 Households’ problem

2.1.1 Traders

Traders have access to world capital markets in which they can trade state contingent securities

spanning all states. The traders begin any period with assets in the form of money balances and

state-contingent bonds carried over from the previous period. Armed with these assets the shopper

of the trader household visits the asset market where she rebalances the household’s asset position

and also receives the lump sum asset market transfers from the government. For any period t ≥ 0,

However, the mix of cash and credit transactions is uncertain and fluctuates across periods.
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the accounting identity for the asset market transactions of a trader household is given by

M̂T
¡
xt
¢
=MT

¡
xt−1

¢
+ S

¡
xt
¢
f
¡
xt
¢
− S

¡
xt
¢X
xt+1

q
¡
xt+1 |xt

¢
f
¡
xt+1

¢
+

T
¡
xt
¢

λ
, (2)

where M̂T (xt) denotes the money balances with which the trader leaves the asset market under

history xt (which includes the time t state xt) while MT (xt−1) denotes the money balances with

which the trader entered the asset market.5 S(xt) is the exchange rate (the domestic currency

price of foreign currency). f
¡
xt+1

¢
denotes units of state-contingent securities, in terms of tradable

goods, bought in period t at a per unit price of q
¡
xt+1 |xt

¢
. A trader receives payment of f

¡
xt+1

¢
in period t+1 if and only if the history xt+1 occurs. T are aggregate (nominal) lump-sum transfers

from the government.6 ,7

After asset markets close, the shopper proceeds to the goods market with M̂T in nominal money

balances to purchase consumption goods. The cash-in-advance constraint for traders is thus given

by

S
¡
xt
¢
cT
¡
xt
¢
= M̂T

¡
xt
¢
+ vtS

¡
xt
¢
yt. (3)

Equation (3) shows that for consumption purposes, traders can augment the beginning of period

cash balances by withdrawals from current period sales receipts vt (the velocity shocks). Note that

purchasing power parity implies that S(xt) also denotes the domestic currency price of consumption

goods under history xt. Lastly, period-t sales receipts net of withdrawals become beginning of next

5Note that the money balances with which a trader enters the asset market at time t reflects the history of

realizations till time t− 1. Hence, beginning of period money balances at time t are depend on the history xt−1.
6We assume that these transfers are made in the asset markets, where only the traders are present. Note that

since T denotes aggegate transfers, the corresponding per trader value is T/λ since traders comprise a fraction λ of

the population.
7The assumption of endogenous lump-sum transfers will ensure that any monetary policy may be consistent with

the intertemporal fiscal constraint. This becomes particularly important in this stochastic environment where these

endogenous transfers will have to adjust to ensure intertemporal solvency for any history of shocks. To make our

life easier, these transfers are assumed to go only to traders. If these transfers also went to non-traders, then (12)

would be affected.
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period’s money balances

MT
¡
xt
¢
= S

¡
xt
¢
yt(1− vt). (4)

Combining equations (2) and (3) yields

MT
¡
xt−1

¢
+

T
¡
xt
¢

λ
+ vtS

¡
xt
¢
yt=S

¡
xt
¢
cT
¡
xt
¢
− S

¡
xt
¢
f
¡
xt
¢

(5)

+S
¡
xt
¢X
xt+1

q
¡
xt+1 |xt

¢
f
¡
xt+1

¢
.

We assume thatMT
0 = M̄ . We assume that actuarially fair securities are available in international

asset markets. By definition, actuarially fair securities imply that

q
¡
xt+1i |xt

¢
q
³
xt+1j |xt

´ = π
¡
xt+1i |xt

¢
π
³
xt+1j |xt

´ , (6)

for any pair of securities i and j belonging to the set x. Further, no-arbitrage implies that the

price of a riskless security that promises to pay one unit next period should equal the price of a

complete set of state-contingent securities (which would lead to the same outcome):

1

1 + r
=
X
xt+1

q
¡
xt+1 |xt

¢
. (7)

Using (6) repeatedly to solve for a particular security relative to all others and substituting into

(7), we obtain:

q
¡
xt+1 |xt

¢
= βπ

¡
xt+1|xt

¢
, (8)

where we have assumed that β = 1/(1 + r). Note further that the availability of these sequential

securities is equivalent to the availability of Arrow-Debreu securities, where all markets open only

on date 0. Hence, by the same logic, it must be true for Arrow-Debreu security prices that

q
¡
xt
¢
= βtπ

¡
xt
¢
. (9)

The traders arrive in this economy at time 0 with initial nominal money balances M̄ and initial

net foreign asset holdings of f0. To ensure market completeness, we allow for asset market trade
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right before period 0 shocks are realized, so that traders can exchange f0 for state-contingent claims

payable after the realization of shocks in period 0. Formally,

f0 =
X
x0

q (x0) f (x0) , (10)

where q (x0) = βπ (x0) .

Maximizing (1) subject to (5) yields

q
¡
xt+1 |xt

¢
= βπ

¡
xt+1|xt

¢ u0 ¡c ¡xt+1¢¢
u0 (c (xt))

. (11)

Equation (11) is the standard Euler equation for the trader which relates the expected marginal rate

of consumption substitution between today and tomorrow to the return on savings discounted to

today. Since β = 1
1+r , it is clear from (8) and (11) that traders choose a flat path for consumption.

2.1.2 Non-traders

As stated earlier, the non-traders in this economy do not have access to asset markets. They are

born with some initial nominal money balances M̄ and then transit between periods by exchanging

cash for goods and vice-versa.8 The non-trader’s cash-in-advance constraint is given by:

S(xt)cNT (xt) =MNT (xt−1) + vtS(x
t)yt, (12)

where MNT (xt−1) is the beginning of period t nominal money balances (which is dependent on the

history xt−1) for non-traders. Their initial period cash-in-advance constraint is

S(x0)cNT (x0) = M̄ + v0S(x
0)y0

Like traders, the non-traders can also augment their beginning of period cash balances by with-

drawals from current period sales receipts vt (the velocity shocks). Money balances at the beginning

of period t+ 1 are given by sales receipts net of withdrawals for period t consumption:

MNT (xt) = S(xt)yt(1− vt), (13)

8Note that we have assumed that the initial holdings of nominal money balances is invariant across the two types

of agents, i.e., MT
0 =MNT

0 = M̄ .
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2.2 Government

The government in this economy holds foreign bonds (reserves) which earn the world rate of interest

r. The government can sell nominal domestic bonds, issue domestic money, and make lump sum

transfers to the traders. Thus, the government’s budget constraint is given by

S(xt)
X
xt+1

q
¡
xt+1 |xt

¢
h
¡
xt+1

¢
− S(xt)h(xt) + T (xt) =M(xt)−M(xt−1), (14)

where h are foreign bonds held by the government, M is the aggregate money supply, and T is

government transfers to the traders. It is crucial to note that changes in money supply impact

only the traders since they are the only agents present in the asset market.

2.3 Equilibrium conditions

Equilibrium in the money market requires that

M(xt) = λMT (xt) + (1− λ)MNT (xt). (15)

The flow constraint for the economy as a whole (i.e., the current account) follows from combining the

constraints for non-traders (equations (12) and (13)), traders (equation (5)), and the government

(equation (14)) and money market equilibrium (equation (15)):

λcT (xt) + (1− λ)cNT (xt) = yt + k(xt)−
X
xt+1

q
¡
xt+1 |xt

¢
k
¡
xt+1

¢
, (16)

where k ≡ h+ λf denotes per-capita foreign bonds for the economy as a whole.

To obtain the quantity theory, combine (3), (13) and (15) to get:

M(xt)

1− vt
= S(xt)yt. (17)

Notice that the stock of money relevant for the quantity theory is end of period t money balances

M(xt). This reflects the fact that, unlike standard CIA models (in which the goods market is open

before the asset market and shoppers cannot withdraw current sales receipts for consumption), in

this model (i) asset markets open before goods market open (which allows traders to use period t
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money injections for consumption purposes in that period); and (ii) both traders and non-traders

can access current sales receipts.

Combining (12) and (13) gives the consumption of non-traders:

cNT (xt) =
S(xt−1)

S(xt)
(1− vt−1)yt−1 + vtyt. (18)

cNT (x0) =
M̄

S(x0)
+ v0y0 (19)

To obtain the level of constant consumption for traders, we use equation (4) to substitute for MT
t

in equation (5). Then, subtracting S(xt)yt from both sides allows us to rewrite (5) as

f(xt)−
X
xt+1

q
¡
xt+1 |xt

¢
f(xt+1) + yt − cT (xt) =

M(xt)−M(xt−1)

S(xt)
−

T
¡
xt
¢

λ
,

where we have used equation (17) to get

M(xt)−M(xt−1) = S(xt)yt − S(xt−1)yt−1 −
¡
vtS(x

t)yt − vt−1S(x
t−1)yt−1

¢
.

Using equation (14) in the equation above gives

X
xt+1

q
¡
xt+1 |xt

¢Ãh
¡
xt+1

¢
λ

+ f
¡
xt+1

¢!
− f

¡
xt
¢
−

h
¡
xt
¢

λ

= yt − cT
¡
xt
¢
+

µ
1− λ

λ

¶Ã
M
¡
xt
¢
−M

¡
xt−1

¢
S (xt)

!
, (20)

where h0 and f0 are given exogenously. Using (9) and iterating forward on equation (20), it can

be checked that under either regime and for any type of shock (i.e., velocity or output shock),

consumption of traders is given by:9

cT
¡
xt
¢
= r

k0
λ
+ ȳ + r

X
xt

βtπ
¡
xt
¢µ1− λ

λ

¶Ã
M
¡
xt
¢
−M

¡
xt−1

¢
S (xt)

!
, t ≥ 0, (21)

where k0 = h0 + λf0. In the following, we shall maintain the assumption that initial net country

assets are zero, i.e., k0 = 0.

9This is accomplished by multiplying each period’s flow constraint by q xt and summing it over all possible

realizations. Then, summing it over all periods and imposing tranversality conditions gives the intertemporal budget

constraint.
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3 Alternative Monetary Regimes

Having described the model and the equilibrium conditions above, we now turn to allocations

under specific monetary policy regimes. We will look at four regimes: (i) the state contingent

money growth rule which implements the first-best; (ii) the state contingent devaluation rate rule

which also implements the first-best; (iii) the best non-state contingent money growth rule which

maximizes joint welfare of both types of agents; and (iv) the best non-state contingent exchange

rate rule which maximizes the joint welfare of both agents. The reason we are interested in studying

simple, non-state contingent rules is because they are easier to implement and monitor. The end

goal, of course, is to evaluate both the welfare implications under these four regimes as well as the

implied macroeconomic volatility under them. Of particular interest is an evaluation of the welfare

losses that are implied by following simple non-state contingent rules relative to the first-best state

contingent rule.10

Before proceeding we need to tie down the initial period price level, S0. From the quantity

theory equation we know that S0 = M1
(1−v0)y0 . In order to keep initial period allocations symmetric

across regimes we make the neutral assumption that M1 = M̄ . Hence,

S0 =
M̄

(1− v0)y0
. (22)

Noting that S0 = S(x0), it is easy to check from equation (19) that this assumption implies that

cNT
0 = y0. (23)

In order to make progress analytically, we shall now specialize the utility function to the

quadratic form. Thus, we assume from hereon that the periodic utility of the household of ei-

ther type is given by:

u(c) = c− ζc2. (24)

10An extensive literature on the time consistency of monetary policy going back to Aurenheimer (1974) has docu-

mented the advantages of rules over discretion in conducting monetary policy due to commitment problems on the

part of the monetary authority.
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Note that the quadratic utility specification implies that the expected value of periodic utility can

be written as

E
¡
c− ζc2

¢
= E(c)− ζ [E(c)]2 − ζV ar(c). (25)

where V ar(c) denotes the variance of consumption.

We shall conduct the welfare analysis by comparing the expectation of lifetime welfare at time

t = 0 conditional on period 0 realizations (but before the revelation of any information at time 1).

Specifically, the expected welfare under any monetary regime is calculated given the initial period

shocks x0, the initial price level S0 = M̄
(1−v0)y0 as well as the associated initial money injection for

period 1: M(x0) =M1 = M̄ . In terms of preliminaries, it is useful to define the following:

W i,j =E

½X
βt
∙
ci,jt − ζ

³
ci,jt

´2¸¾
, i = T,NT , j = monetary regime, (26)

W j = λWT,j + (1− λ)WNT,j , j = monetary regime. (27)

Equation (26) gives the welfare for each agent under a specific monetary policy regime where the

relevant consumption for each type of agent is given by the consumption functions relevant for that

regime. Equation (27) is the aggregate welfare for the economy under each regime. It is the sum

of the regime specific welfares of the two types of households weighted by their population shares.

3.1 First-best state contingent money growth rule

We have shown above that when traders have access to complete markets, they can fully insure

against all shocks. Hence, the only role for policy is to smooth the consumption of non-traders

who do not have access to asset markets.11 Clearly, the first-best outcome for the non-traders

would be a flat consumption path (recall that all the welfare losses for non-traders in this model

come from consumption volatility).

11The conclusion that the only role for policy is to smooth the consumption of non-traders is crucially dependent

on the assumptions that the endowment process is the same for both types with the same mean, and that initial net

country assets are zero. If this were not the case, then an additional goal for policy would be to shift consumption

across types in order to equalize them.
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Recall from equation (18) that consumption of non-traders is given by

cNT (xt) =
S(xt−1)

S(xt)
(1− vt−1)yt−1 + vtyt. (28)

Using the quantity theory equation S(xt)yt(1− vt) =M(xt) in the above and rearranging gives

cNT (xt) = yt −
µ
M(xt)−M(xt−1)

S(xt)

¶
Substituting out for S(xt) from the quantity theory relationship then yields

cNT (xt) = yt

∙
1−

µ
M(xt)−M(xt−1)

M(xt)

¶
(1− vt)

¸
(29)

As was assumed earlier, the endowment sequence follows an i.i.d. process with mean ȳ and

variance σ2y. It is clear that the first-best outcome for non-traders would be achieved if cNT
t = ȳ

for all t. The key question that we focus on here is whether or not there exists a monetary policy

rule which can implement this allocation.

Let µ(xt) be the growth rate of money given history xt.12 Hence,

M(xt)−M(xt−1) = µ(xt)M(xt−1), t ≥ 1

Substituting this into equation (29) gives

cNT (xt) = yt

∙
1−

µ
µ(xt)

1 + µ(xt)

¶
(1− vt)

¸
To check if monetary policy can implement the first-best, we substitute cNT (xt) = ȳ in the above

to get
ȳ

yt
=

∙
1−

µ
µ(xt)

1 + µ(xt)

¶
(1− vt)

¸
.

This expression can be solved for µ(xt) as a function of yt and vt. Thus,

µ(xt) =
yt − ȳ

ȳ − vtyt
. (30)

A few features of this policy rule are noteworthy. First, as long as the monetary authority

chooses µ after observing the realizations for y and v, this rule is implementable. Second, equation
12Recall that M1 = M̄ implies that µ(x0) = 0 by assumption.
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(30) makes clear that when there are no shocks to output, i.e., yt = ȳ for all t, the optimal policy

is to choose µt = 0 for all t independent of the velocity shock. Hence, under velocity shocks only,

a flexible exchange rate regime with a constant money supply implements the first-best allocation.

A third interesting feature of equation (30) is that the optimal monetary policy is procyclical.

In particular, it is easy to check that

∂µ(x
t)

∂yt
=

ȳ(1− vt)

(ȳ − vtyt)2
> 0. (31)

Note that the latter inequality in (31) follows from the fact that v is strictly bounded above

by one. The intuition for this result is that, ceteris paribus, an increase in output raises non-

traders’ consumption through two channels. First, current sales revenue is higher, which implies

that there is more cash available for consumption. Second, an increase in output appreciates the

currency thereby raising the real value of money balances brought into the period. To counteract

these expansionary effects on non-traders’ consumption, the optimal monetary policy calls for an

expansion in money growth. An expansion in money growth reduces non-traders’ consumption

by redistributing resources from non-traders to traders. More specifically, since only traders are

present in the asset markets, they get a more than proportionate amount of money while the

exchange rate (price level) rises in proportion to the money injection. Hence, traders’ real money

balances increase, which they can use to buy goods from non-traders and exchange for foreign

bonds. In bad times, a money withdrawal from the system leaves traders with lower real money

balances, which leads them to sell those goods to non-traders. In other words, policymakers are

smoothing non-traders’ consumption by engineering a transfer of resources from non-traders to

traders in good times and viceversa in bad times.

Fourth, the optimal policy response to velocity shocks depends on the level of output relative

to its mean level. In particular,

∂µ(x
t)

∂vt
=

yt(yt − ȳ)

(ȳ − vtyt)2
R 0.

Thus, when output is above the mean level, an increase in v calls for an increase in money

growth while if output is below the mean then the opposite is true. Intuitively, an increase in vt
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has two opposing effects on real balances available for consumption. First, it raises real balances

since it implies that a higher proportion of current sales can be used in the current period. Second,

a higher vt depreciates the currency thereby deceasing the real value of money balances brought

into the period. When output is equal to the mean level, absent a change in policy, these effects

exactly offset each other. On the other hand, when output is above (below) the mean, the current

sales effect is stronger (weaker) than the exchange rate effect. Hence, an increase (decrease) in µ

provides the appropriate correction through the redistribution channel spelled out above.

3.2 First-best state contingent devaluation rate rule

To derive the first-best state contingent devaluation rate rule, substitute cNT
t = ȳ into equation

(28) and replace S(xt−1)
S(xt) by 1

1+ε(xt) to obtain:

ε
¡
xt
¢
=
(1− vt−1) yt−1

ȳ − vtyt
− 1. (32)

Again, several features of this rule are noteworthy. First — and as was the case for the money growth

rule just discussed — as long as the monetary authority can observe contemporaneous realizations of

y and v, this rule is implementable. Second — and unlike the money growth rule just discussed — this

rule also depends on past values of output. Intuitively, the reason is that under a peg, non-traders’

consumption depends on last period’s consumption, as follows from (28). Third, if there are no

shocks to either output or velocity (i.e., if yt = ȳ and vt = v̄ for all t), then the optimal policy is to

keep the exchange rate flat (i.e., ε = 0).

Fourth, this rule is procyclical with respect to output in the sense that, all else equal, a higher re-

alization of today’s output calls for an increase in the rate of devaluation. Intuitively, an increase in

today’s output increases today’s non-traders’ consumption because current sales revenue is higher,

which implies that there is more cash available for consumption. To keep non-traders’consumption

flat over time, the monetary authority needs to offset this effect. The way to do so is to increase

today’s exchange rate (i.e., a nominal devaluation). A nominal devaluation will tend to lower real

money balances of both traders and non-traders. Traders, however, can easily undo this by re-

plenishing their nominal money balances at the central bank’s window (as in the standard model).
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Non-traders, however, have no way of doing this and hence see their consumption reduced by the

fact that they have lower real money balances. In bad times (low realization of output), a revalu-

ation will have the opposite effect. In sum, the monetary authority is able to smooth non-traders’

consumption through real balances effect.

Fifth, a high realization of today’s velocity shock also calls for an increase in the rate of devalu-

ation. Intuitively, a high value of v implies that both traders and non-traders have a higher level of

real cash balances for consumption. Traders, of course, can undo this in the asset markets. Non-

traders, however, cannot do this and would be forced to consume too much today. By devaluing,

the monetary authority decreases the value of non-traders’ real money balances. Conversely, a low

value of v would be counteracted by a nominal revaluation.

3.3 Non-state contingent money growth rule

The first non-state contingent rule that we analyze is a time invariant money growth rule. The main

exercise is to determine the constant money growth rule which maximizes the joint, share-weighted

lifetime welfare of the two types of agents in the economy. Hence, the objective is to choose µ to

maximize

Wµ = λWT, µ + (1− λ)WNT, µ.

In order to compute the optimal constant non-state contingent money growth rule, we first need

to determine the consumption allocations for the two agents under this regime (for an arbitrary

but constant money growth rate). As before we use µ to denote the rate of money growth. Given

a utility specification, µ can be computed by maximizing weighted utilities.

Under the time invariant money growth rule and the quantity theory equation Styt(1 − vt) =

Mt+1, equations (18) and (21) imply that consumption of nontraders and traders are given by

cNT
t = z (1− vt) yt + vtyt, t ≥ 1 (33)

cTt = r
k0
λ
+ ȳ

∙
1 +

µ
1− λ

λ

¶
(1− z) (1− v̄)

¸
(34)

where z ≡ 1
1+µ

³
= Mt

Mt+1

´
. From here on, we abstract from distributional issues relating to the
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distribution of initial wealth across agents, by assuming that initial net country assets are zero,

i.e., k0 = 0. Since λE
£
cT
¤
+ (1− λ)E

£
cNT
t

¤
= ȳ, under our maintained assumption of quadratic

preferences, the optimal z is determined by solving the problem:

min
z

n
λ
¡
E
¡
cT
¢¢2

+ (1− λ)
¡
E
¡
cNT

¢¢2
+ (1− λ)V ar

£
cNT

¤o
. (35)

In order to derive the optimal money growth rate we need to know the expected consumption

levels of the two types as well as the unconditional consumption variance for the nontraders. The

expected consumption is trivial to compute and, from (33), it can be shown that the variance of

non-trader’s consumption is given by:

V ar
£
cNT
t

¤
= z2σ2y + (1− z)2

£
σ2yσ

2
v + ȳ2σ2v + v̄2σ2y

¤
+ 2z (1− z) v̄σ2y. (36)

Substituting in the relevant expressions for cT , E(cNT ), and V ar
£
cNT

¤
into (35) and taking

the first order condition with respect to z yields

z =
σ2vy − v̄σ2y +

(1−v̄)2
λ ȳ2

σ2vy + (1− 2v̄)σ2y +
(1−v̄)2

λ ȳ2
, (37)

where σ2vy ≡ σ2yσ
2
v + ȳ2σ2v + v̄2σ2y. Since µ =

1−z
z , the optimal µ that is implied by (37) is

µ̃ =
(1− v̄)σ2y

σ2vy +
(1−v̄)2ȳ2

λ − v̄σ2y

. (38)

Equation (38) makes clear that the higher the value of λ, the higher will be µ̃. This is due to the

fact that with a higher share of traders, transferring resources from nontraders in order to minimize

their consumption variances does not create large differences in the consumption levels of the two

types.

We should note two special cases. First, when the economy is open to only output shocks, i.e.,
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σ2v = 0, the optimal rate of money growth implied by equation (38) is
13

µ̃|σ2v=0 =
1− v̄

v̄2 + (1−v̄)2ȳ2
λσ2y

− v̄
.

The optimal µ̃ is thus an increasing function of the variance of output shocks, σ2y. Intuitively,

policymakers find it optimal to provide insurance to non-traders by reducing their consumption

variability. The “price" of this insurance (a transfer from non-traders to traders) increases with

the variability of output. (Notice that a positive µ implies a transfer from non-traders to traders.)

Second, when there is no output volatility in the economy so that σ2y = 0, the optimal constant

money growth rate given by (38) is

µ̃ = 0,

which implies that a policy of fixed money supply is optimal. Interestingly, we have seen above

that the state contingent first-best rule calls for µ = 0 when there are no output shocks. Hence,

when there is no output volatility in the economy, the non-state contingent optimal money growth

rule coincides with the state contingent first-best rule. In general, however, a fixed money rule

does not achieve the first best equilibrium.

3.3.1 Welfare loss relative to the first-best

Under our quadratic preference specification, welfare under the state-contingent rule is

W fb = λWT,fb + (1− λ)WNT,fb = ȳ − ζȳ2 (39)

We now compute the welfare loss under the optimal money growth rule relative to the first best.

Define the welfare loss under money growth rate µ̃, relative to the first-best as14

4W µ̃ =W fb −W µ̃

13Let k0 = 0. Then, a sufficient condition to ensure that µ > 0 is v̄ < 1

1+λ
σ2y

ȳ2

. Even for λ = 1, and a relatively

high value of σy
y
= 0.1 the above holds if v̄ < 0.99. (Note that a value of 0.99 implies a velocity of 1

1−v̄ = 100, much

higher than empirically observed values.)
14Superscript µ̃ denotes variable values under optimal money growth rule.
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Observe that the welfare maximizing µ̃ that is obtained from (35) also minimizes 4W µ̃. In

the appendix we show that by substituting in the relevant expressions for E
¡
cT
¢
, E

¡
cNT

¢
and

V ar
£
cNT

¤
into the welfare loss expression gives

4W µ̃ =
ζ (1− λ)

1− β

⎛⎜⎝ 1 + λ
(1−v̄)2σ

2
v

³
1 +

σ2y
ȳ2

´
1 + λ

(1−v̄)2σ
2
v

³
1 +

σ2y
ȳ2

´
+ λ

σ2y
ȳ2

⎞⎟⎠σ2y (40)

If only one shock is present at a time, then (40) simplifies to

4W µ̃ =

⎧⎪⎪⎨⎪⎪⎩
0; only velocity shocks (σ2y = 0)

ζ(1−λ)
1−β

σ2y

1+λ
σ2y

ȳ2

; only output shocks (σ2v = 0)
(41)

Equation (41) shows that when there is no output volatility so that σ2y = 0, the welfare loss from

following the optimal money growth rule is zero. This reflects the fact that under no output shocks

the optimal state contingent rule and the optimal non-state contingent money growth rule coincide.

They both call for a fixed money rule.

Equation (41) also shows that when there is no volatility in the velocity process, i.e., σ2v = 0, so

that the economy is exposed to only output volatility, the welfare losses from following a non-state

contingent money growth rule are increasing in the volatility of output and decreasing in the share

of traders λ. Both these comparative static effects are intuitive. The higher is σ2y the greater is

the loss from not being able to vary the growth rate of money to better accommodate the state of

the economy. On the other hand, the greater is the share of traders in the economy (a higher λ),

the closer the economy is to full insurance since the traders can completely insure against all risk.

Hence, the smaller are the welfare losses relative to the first-best under the fixed money growth

rule.

A special case of the constant money growth rule is the fixed money supply rule, i.e., µ = 0.

Hence, money supply is set to M̄ for all t. In this case the welfare loss relative to the first-best is:

4W M̄ =
ζ (1− λ)

1− β
σ2y

Thus,
4W M̄

4W µ̃
= 1 + λ

σ2y
ȳ2
≥ 1.
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This expression shows that only in the special case of no output volatility (σ2y = 0), do we have

4W M̄ = 4W µ̃ = 0. In general, a fixed money policy generates welfare losses which are at least

as great as those under an optimally chosen constant money growth rule.

3.4 Optimal rate of devaluation

We now turn to our second non-state contingent rule which is a fixed rate of devaluation. This rule

is of interest for two reasons. First, a number of developing countries use the exchange rate as a

nominal anchor and thereby prefer some sort of exchange rate rule. Second, an exchange rate rule

corresponds closely to an inflation targeting policy in this one good world of our model. Needless

to say inflation targeting is a policy which is both widely used and discussed in policy circles.

Define z ≡ 1
1+ε

³
= St−1

St

´
. As before the optimal z or, equivalently, the rate of devaluation ε

is determined by solving (35). Under a constant devaluation rate, equations (18), (23) and (21)

imply that consumption of nontraders and traders are given by

cNT
t = z (1− vt−1) yt−1 + vtyt, t ≥ 1,

cTt = ȳ

∙
1 +

µ
1− λ

λ

¶
(1− z) (1− v̄)

¸
.

Hence,

V ar
£
cNT
t

¤
= z2σ2y +

¡
1 + z2

¢
σ2vy − 2z2v̄σ2y. (42)

Given that λE
¡
cT
¢
+ (1− λ)E

¡
cNT

¢
= ȳ, it is still the case that the optimal z (and hence,

the optimal rate of devaluation ε) can be derived from the solution to

argmin
z

n
λ
¡
E
¡
cT
¢¢2

+ (1− λ)
¡
E
¡
cNT

¢¢2
+ (1− λ)V ar

£
cNT
t

¤o
.

The implied optimal rate of devaluation ε̂ is given by

1− ẑ

ẑ
= ε̃ = λ

"
σ2v

(1− v̄)2

Ã
1 +

σ2y
ȳ2

!
+

σ2y
ȳ2

#
(43)

Hence, the optimal rate of devaluation is increasing in the variance of both shocks.
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There are two special cases which are worth emphasizing. First, when the economy faces no

output uncertainty so that the only uncertainty is regarding the velocity realization, i.e., σ2y = 0,

the optimal rate of devaluation implied by equation (43) is

ε̃ =
λσ2v

(1− v̄)2
.

Second, when the only uncertainty is about the output realization, i.e., σ2v = 0, the optimal deval-

uation rate is

ε̃ =
λσ2y
ȳ2

.

It is worth pointing out that equation (43) clearly shows that, in general, it is never optimal to set

ε = 0, i.e., fixed exchange rates are never optimal. Only in the uninteresting case of no shocks at

all in the economy (σ2v = σ2y = 0) is it optimal to peg the exchange rate.
15

3.4.1 Welfare loss relative to the first-best

We next turn to the welfare loss relative to the first best that is implied by following the devaluation

rule. The welfare loss expression is 4W ε̃ = W fb −W ε̃. Substituting the relevant expressions

for trader and nontraders consumption, the nontraders variance, and the optimal devaluation rate

policy (43) into 4W ε̃ gives

4W ε̃ =
ζ (1− λ)

1− β

⎛⎜⎜⎜⎝
v̄2
³
1 + σ2v

v̄2

³
1 + ȳ2

σ2y

´´
+

(1− v̄)2
1+

σ2v
(1−v̄)2

1+ ȳ2

σ2y

1+ λ

(1−v̄)2
σ2v 1+

σ2y

ȳ2
+λ

σ2y

ȳ2

⎞⎟⎟⎟⎠σ2y (44)

If only one shock is present at a time, then (44) simplifies to

4W ε̃ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ(1−λ)
1−β ȳ2

Ã
1 + 1

1+λ
σ2v

(1−v̄)2

!
σ2v; only velocity shocks (σ

2
y = 0)

ζ(1−λ)
1−β v̄2

Ã
1 +

( 1−v̄v̄ )
2

1+λ
σ2y

ȳ2

!
σ2y; only output shocks (σ

2
v = 0)

(45)

15 It would appear from these expressions that a fixed exchange rate is optimal when there are no traders in the

economy, i.e., when λ = 0. However, this conclusion is not valid since the model is discontinuous at λ = 0. In

particular, when there are no traders at all, there is no way for the monetary authority to introduce money into the

economy since all money injections, by assumption, are in the asset market. Hence, maintaining a fixed exchange

rate by appropriate changes in money supply is not feasible.
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A special case of the fixed devaluation rate policy is the policy of a fixed exchange rate, i.e.,

ε = 0. In this case the welfare loss relative to the first-best is given by

4W S̄ =
ζ (1− λ)

1− β

µ
(1− v̄)2 + v̄2 + 2σ2v

µ
1 +

ȳ2

σ2y

¶¶
σ2y (46)

If only one shock is present at a time, then (46) simplifies to

4W S̄ =

⎧⎪⎨⎪⎩
ζ(1−λ)
1−β 2σ2vȳ

2; only velocity shocks (σ2y = 0)

ζ(1−λ)
1−β

³
(1− v̄)2 + v̄2

´
σ2y; only output shocks (σ

2
v = 0)

(47)

3.5 Welfare comparison

It is clear that µ = 0 will always be dominated by an optimal µ since the optimal µ is not constrained

to be non-zero. Similarly the fixed exchange rate, i.e., ε = 0 will be always be dominated by ε̃. The

question regarding which of these two non-state contingent rules is better from a welfare standpoint

still remains to be answered. To address this question it is useful to derive an expression for 4W ε̃

4W µ̃ .

Note that 4W ε̃

4W µ̃ < 1 implies that a fixed devaluation rate rule will dominate a fixed money growth

rule. The opposite holds when 4W ε̃

4W µ̃ > 1. Using equations (40) and (44) it can be shown that

4W ε̃

4W µ̃
≶ 1 iff⎛⎜⎜⎜⎝

v̄2
³
1 + σ2v

v̄2

³
1 + ȳ2

σ2y

´´
+

(1− v̄)2
1+

σ2v
(1−v̄)2

1+ ȳ2

σ2y

1+λ
σ2v

(1−v̄)2
1+

σ2y

ȳ2
+
σ2y

ȳ2

⎞⎟⎟⎟⎠≶ 1 + λ
(1−v̄)2σ

2
v

³
1 +

σ2y
ȳ2

´
1 + λ

(1−v̄)2σ
2
v

³
1 +

σ2y
ȳ2

´
+ λ

σ2y
ȳ2

(48)

While both sides of equation (48) are increasing (decreasing) in velocity (output) shocks, the LHS

increases faster than the RHS when σ2v rises. Hence, µ̃ will dominate ε̃ when velocity shocks

are relatively dominant. On the other hand, the LHS decreases faster than the RHS when σ2y

increases. Hence, the desirability of a optimal ε policy will increase with higher output variance.

In the limiting case, when only output shocks are present,

4W ε̃

4W µ̃
≶ 1 if and only if v̄2 +

(1− v̄)2

1 + λ
σ2y
ȳ2

≶ 1

1 + λ
σ2y
ȳ2
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Figure 1: Welfare comparison

Hence, an ε̃ policy would welfare dominate an µ̃ policy if and only if

v̄ ∈

⎛⎝0, 1

1 + λ
2

σ2y
ȳ2

⎞⎠ . (49)

Figure 1 shows precisely this trade-off through a simulation of the model. It depicts the ratio

of the welfare loss (relative to the first best) under optimal µ to the welfare loss under optimal

ε. Hence, a value lower than one means that optimal µ delivers higher welfare than optimal ε.

The parameters assumed for the simulation are: ȳ = 1, v̄ = 0.2, λ = 0.5, β = 0.97, ζ = 0.15.16

For a given σv,
4W µ̃

4W ε̃ rises with σy. Hence, the relative attraction of the fixed devaluation rate

16We should note that the attempt here is not replicate a specific economy but rather, to determine the qualitative

nature of the relationship between the volatility of shocks and the optimal monetary policy regime. We defer till

later a discussion about the implications of the model for specific economies.
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policy rises with the volatility of output. The figure also shows that for a given σy,
4W µ̃

4W ε̃ falls

(the schedule shifts down) as σv rises. Hence, the money growth rule becomes more attractive

as the relative volatility of velocity increases. To summarize, the model predicts that exchange

rate targeting rules begin to welfare dominate money growth rules when output shocks become

relatively more important while the opposite is true when velocity shocks are relatively dominant.

Since Figure 1 indicates that the welfare comparison depends on both output and velocity

volatility, it is useful to focus on some actual numbers for illustration purposes. The following table

shows output and velocity volatilities (in percentages) for Argentina, Brazil, and, as a benchmark,

the United States.17 We see that, even in highly volatile countries such as Argentina and Brazil,

output volatility is less than 5 percent. It is thus clear from Figure 1 that, given the figures

presented in the table, all three countries would be better off with a money growth rule (that

allows for exchange rate flexibility) than with a devaluation rule.

Country
Output

Volatility

Velocity

Volatility

United States 2.05 2.8

Argentina 4.2 11.3

Brazil 3.95 20.6

Note: Figures are expressed as percentages

4 Macroeconomic Volatility

Another issue of interest is the volatility of different macroeconomic variables that is implied by

these alternative monetary regimes. This is of interest both from a policy perspective as well

as from the perspective of providing us with some testable implications of the structure. There

are three key endogenous macroeconomic variables in the model: consumption, money and the

17The data for velocity are taken from the IFS. The velocities and their variances have been computed by using

nominal GDP and M1. For Argentina and Brazil the data are from 1993Q1- 2003Q2 and for the United States

1970Q1-2003Q2. The figures for output volatility were taken from Talvi and Vegh (2000).
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exchange rate (or equivalently, the price level). We look at each of these in turn.

4.1 Consumption variances

It can be verified from equations (36) and (42) that the variances of consumption for nontraders

under both µ̃ as well as ε̃ are increasing in the variances of output and velocity shocks. However,

while consumption variability under ε̃ grows without bounds, under µ̃ it stays within bounds. On

the other hand, the ratio of the consumption variance under ε̃ to that under µ̃ decreases with the

variance of output. The consumption variance for nontraders under ε̃ is lower than under µ̃ if and

only if

v̄ ∈

⎛⎜⎝0, 1

1 + λ
σ2y
ȳ2
+ λ2

2

³
σ2y
ȳ2

´2
⎞⎟⎠ . (50)

Although this condition resembles equation (49) which was the relevant condition for comparing

welfares, the range under (50) is narrower than in (49). As a result, even though the consumption

variance may be higher under ε̃ in the range v̄ ∈

⎛⎝ 1

1+λ
σ2y

ȳ2
+λ2

2

σ2y

ȳ2

2 ,
1

1+λ
2

σ2y

ȳ2

⎞⎠, ε̃ is still preferred to
µ̃. This is because µ̃ induces a smaller variance at the cost of a larger transfer of consumption to

the traders.

4.2 Exchange rate volatilities

A second variable of interest is the volatility of the exchange rate. To get a sense of the implications

of different monetary regimes for this volatility, we compare the unconditional variances for the

rate of currency depreciation under (1) state-contingent money growth rule, and (2) a fixed money

growth rule.

4.2.1 State-contingent rule

Recall that the optimal state contingent money growth rule is given by µt =
yt−ȳ
ȳ−vtyt . Substituting

this rule into the quantity theory relationship and rearranging the result gives

St =
Mt

ȳ − vtyt

26



Since εt =
St−St−1
St−1

, one can use the exchange rate equation derived above to get

1 + εt =
St
St−1

=
(1− vt−1) yt−1

ȳ − vtyt

Taking a second order expansion of this expression around v̄ and ȳ and then taking expectations

yields

E {εt} u
σ2vy

ȳ2 (1− v̄)2
(51)

Similarly, a second order approximation for the variance gives

V ar {εt} u
1

ȳ2 (1− v̄)2

⎛⎝σ2vy +
¡
σ2vy + (1− 2v̄)σ2y

¢⎛⎝ σ2vy

ȳ2 (1− v̄)2
+

Ã
1 +

σ2vy

ȳ2 (1− v̄)2

!2⎞⎠⎞⎠ (52)

4.2.2 Fixed money growth rule

Under a fixed money growth rate µ, the quantity theory relationship implies that the exchange rate

is

St =
(1 + µ)Mt

(1− vt) yt

Hence, the rate of depreciation is given by

1 + εt =
St
St−1

= (1 + µ)
(1− vt−1) yt−1
(1− vt) yt

Taking a second order approximation of this equation around v̄ and ȳ and then taking expectations

yields

E {εt} u µ+ (1 + µ)

Ã
σ2vy + (1− 2v̄)σ2y

ȳ2 (1− v̄)2

!
Correspondingly, a second order approximation for the variance gives

V ar {εt} u (1 + µ)2
¡
σ2vy + (1− 2v̄)σ2y

¢
ȳ2 (1− v̄)2

⎛⎜⎝1 + ¡σ2vy + (1− 2v̄)σ2y¢
⎛⎜⎝ 1

ȳ2(1−v̄)2

+
³
1 +

σ2vy+(1−2v̄)σ2y
ȳ2(1−v̄)2

´2
⎞⎟⎠
⎞⎟⎠
(53)

4.2.3 Comparison

Under an optimal fixed money growth rate, µ̃ > 0. Hence, from (52) and (53), a sufficient condition

for the variance of the depreciation rate under the optimal fixed money growth rule to be larger
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than that under state-contingent rule is v̄ < 0.5. If this condition holds, then

V art−1 {εt}µ̃ > V art−1 {εt}sc > V art−1 {εt}ε̃ = 0

4.3 Monetary volatility under various rules

A third variable of interest is the volatility of money. Obviously, the cases to look for are: (1)

state-contingent rules and (2) fixed exchange rate regime i.e., ε ≥ 0. As before, we compare the

volatilities of the implied money growth rates.

4.3.1 State-contingent rule

Since the optimal state contingent rule is µt =
yt−ȳ
ȳ−vtyt , to a second order approximation we have

E {µt} =
v̄

(1− v̄)2
σ2y
ȳ2

.

Likewise, a second order approximation for the variance yields

V ar {µt} =
1

(1− v̄)2
σ2y
ȳ2

. (54)

4.3.2 Optimal devaluation rule

Under a fixed rate of devaluation, ε, the implied money growth rate is

1 + µt = (1 + ε)
(1− vt) yt

(1− vt−1) yt−1
.

Then, taking a second order approximation gives

E {µt} = ε+ (1 + ε)

Ã
σ2vy + (1− 2v̄)σ2y

ȳ2 (1− v̄)2

!
,

while a second order approximation for the variance yields

V ar {µt} u (1 + ε)2
¡
σ2vy + (1− 2v̄)σ2y

¢
ȳ2 (1− v̄)2

⎛⎜⎝ 1 +
¡
σ2vy + (1− 2v̄)σ2y

¢
∗µ

1
ȳ2(1−v̄)2 +

³
1 +

σ2vy+(1−2v̄)σ2y
ȳ2(1−v̄)2

´2¶
⎞⎟⎠ . (55)
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4.3.3 Comparison

From (54) and (55), it is clear that when only velocity shocks are present (σ2y = 0), the state-

contingent rule is µ = 0 for all times, and hence monetary volatility under an optimal devaluation

rule is the higher. However, when only output shocks are present

V ar {µt}sc≷ V ar {µt}ε̃ iffÃ
1 + λ

σ2y
ȳ2

!Ã
1 +

σ2y
ȳ2

!Ã
1 + σ2y (1− v̄)2

Ã
1 +

σ2y
ȳ2

!!
(1− v̄)2≶ 1

Clearly, for v̄ = 0, V ar {µt}sc < V ar {µt}ε̃ . On the other hand, when v̄ = 1, V ar {µt}sc >

V ar {µt}ε̃. Since the LHS is decreasing in v̄, there exists v̂, such that for all v̄ > v̂, the volatility

under state-contingent rule is higher than under optimal devaluation rule. Note that the smaller

are σ2y,
σ2y
ȳ2
, or λ, the smaller will be v̂.

5 Conclusion

This paper has examined optimal monetary policy in the context of a small open economy under

asset market segmentation. We have also assumed that traders have access to complete markets.

In this context, we have shown that there exist state contingent rules based on either the rate

of money growth and the rate of devaluation that can replicate the first best equilibrium. These

state contingent rules allow the monetary authority to stabilize non-traders’ consumption. While

these state contingent rules constitute the natural analytical benchmark, they would be difficult

to implement in practice since they require responding to contemporaneous shocks. We therefore

examine non-state contingent rules based on either the money supply or the exchange rate and

conclude that money supply rules — which allow for exchange rate flexibility — generally dominate

exchange rate rules in welfare terms. This would support arrangements that allow for some exchange

rate flexibility rather than arrangements based on exchange rate pegs.

An obvious extension of our model would be to investigate the case in which traders face

incomplete asset markets. While this will undoubtedly complicate the solution of the model,

we believe that our basic results should go through. In addition, we have ignored the issue of
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endogeneity of market segmentation. In particular, one would expect that agents endogenously

choose to be traders or non-traders with the choice depending on the cost of participating in asset

markets as well as the prevailing exchange rate and/or monetary regime. However, we see no

reason to believe that this would change our key results. As should be clear from the intuition

provided in the paper, what matters for our results is that, at every point in time, some agents

have access to assets market while others do not. What particular agents have access to asset

markets and whether this group changes over time should not alter the essential arguments. A

formal check of this conjecture is left for future work.
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6 Appendix

6.1 Welfare loss relative to the first-best under µ̃

The expected consumption and variances of traders and nontraders are obtained from (33), (34),

and (36) as

cT =

µ
1 +

µ
1− λ

λ

¶
(1− v̄)

µ

1 + µ

¶
ȳ;

E
£
cNT
t

¤
=
1 + µv̄

1 + µ
ȳ;

V ar
£
cNT
t

¤
=

µ
1

1 + µ

¶2 ¡
σ2y (1 + 2v̄µ) + µ2σ2vy

¢
. (56)

Using (56) and (39), we obtain the welfare loss, under µ̃ as

4W µ̃=W fb −W µ̃

=
ζ

1− β
(1− λ)

µ
1

1 + µ̃

¶2
ȳ2

Ã
(1− v̄)2

λ
µ̃2 +

σ2y
ȳ2
(1 + 2v̄µ̃) + µ̃2

σ2vy
ȳ2

!

Using (38) in the above expression, and after some algebra we obtain

4W µ̃ =
ζ

1− β
(1− λ)

1 + λ
(1−v̄)2σ

2
v

³
1 +

σ2y
ȳ2

´
1 + λ

(1−v̄)2σ
2
v

³
1 +

σ2y
ȳ2

´
+ λ

σ2y
ȳ2

σ2y

which is equation (40) in the main text.
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