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Abstract

We consider the problem of consistent estimation of nonlinear models with mismeasured

explanatory variables, when marginal information on the true values of these variables is

available. The marginal distribution of the true variables is used to identify the distrib-

ution of the measurement error, and the distribution of the true variables conditional on

the mismeasured and the other explanatory variables. The estimator is shown to be
√
n

consistent and normally distributed. The simulation results are in line with the asymptotic

results. The semi-parametric MLE is applied to a duration model for AFDC welfare spells
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from an administrative source.
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1 Introduction

Many models that are routinely used in empirical research in microeconomics are nonlinear

in the explanatory variables. Examples are nonlinear (in variables) regression models, mod-

els for limited-dependent variables (logit, probit, tobit etc.), and duration models. Often

the parameters of such nonlinear models are estimated using data in which one or more

independent variables are measured with error. Measurement error is a pervasive problem

in economic data (Bound, Brown, Duncan, and Mathiowetz, 2001)). The identification and

estimation of models that are nonlinear in mismeasured variables is a notoriously difficult

problem (see (Carroll, Ruppert, and Stefanski, 1995) for a survey).

There are three approaches to this problem: (i) the parametric approach, (ii) the in-

strumental variable method, and (iii) methods that use additional sample information, such

as a validation sample or replicate measurements. Throughout we assume that we have a

parametric model for the relation between the dependent and independent variables, but

that we want to make minimal assumptions on the measurement errors. Validation studies

show that assumptions that are routinely made in statistical measurement error models are

often violated (see among others (Rodgers, Brown, and Duncan, 1993)).

The parametric approach makes strong and untestable distributional assumptions. In

particular, it is assumed that the distribution of the measurement error is in some parametric

class (Hsiao, 1989, 1991, Wang, 1998, Hsiao and Wang, 2000). With this assumption the

estimation problem is complicated, but fully parametric. In general, the distribution of

the measurement errors is non-parametrically unidentified, so that this approach relies on

identification by distributional assumptions. 4

The second approach is the instrumental variable method. In an errors-in-variables

model, a valid instrument is a variable that (a) can be excluded from the model, (b) is

correlated with the latent true value, and (c) is independent of the measurement error. The

IV method was developed for models that are linear in the mismeasured variables. In gen-

4The shape of the distribution of the measurement error plays an important role in measurement error
models. In linear models the regression coefficients are not identified if the distribution of the measurement
error is normal, but they are if that distribution is not normal. Lewbel (1997) discusses estimation in linear
models using higher order moments, if the distribution of the measurement error is non-normal. His results
only apply to linear models. Lewbel’s method, and others cited later, point at a curious interaction between
model and distributional assumptions.
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eral, IV estimators are biased in nonlinear models. However, Amemiya and Fuller (1988)

and Carroll and Stefanski (1990) obtain a consistent IV estimator in nonlinear models under

the assumption that the measurement error vanishes if the sample size increases. Hausman,

Ichimura, Newey, and Powell (1991) and Hausman, Newey, and Powell (1995) extend IV es-

timation to a polynomial regression model. Newey (2001) considers the nonlinear regression

model, but he notes that there are no general results on the non-parametric identification of

nonlinear models with mismeasured regressors by instrumental variables.

The third approach is to use additional sample information. The additional information

can come in the form of replicate measurements or in the form of a validation sample. The

sample contains replicate measurements if there are at least two mismeasured variables that

correspond to the same latent true value. Li and Vuong (1998) show that if the measurement

errors in the two measurements are stochastically independent (although zero correlation suf-

fices), the distribution of the latent true value is non-parametrically identified. Schennach

(2000) uses the same approach to obtain a general extremum estimator in models that are

nonlinear in the mismeasured variables. Hausman, Newey and Powell (1995) discuss the use

of replicate measurements in polynomial regression models. In practice replicate measure-

ments with independent (or uncorrelated) measurement errors are rare.5 A validation sample

is a subsample of the original sample for which accurate measurements are available. Bound

et al. (1989) discuss the use of validation data in linear models. Hsiao (1989) and Hausman,

Ichimura, Newey, and Powell (1991) discuss the extension to nonlinear models. Pepe and

Fleming (1991) and Carroll and Wand (1991) propose to estimate the joint density of the

latent true value, the mismeasured value, and the other variables non-parametrically, and

to use this estimated density to correct for the measurement error bias in nonlinear models

(see also Lee and Sepanski, 1995). The approach taken in this paper is along these lines.

Chen, Hong and Tamer (2003) note that with validation data the classical assumption that

the measurement error is independent of the latent true value and of the other variables in

the model can be relaxed.
5If the administrative data that we use below are measured with error, we can consider the sample

and administrative reports as replicate measurements. In this case the errors are likely to be generated
by different mechanisms, so that the independence assumption is more reasonable. The extension of our
approach to this situation is left to future work.
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A validation sample is the gold standard for estimation if the independent variables have

measurement errors. In this paper we show that much of the benefits of a validation sample

can be obtained if we have a random sample from the marginal distribution of the mismea-

sured variables, i.e. we need not observe the mismeasured and true value and the other

independent variables for the same units. Information on the marginal distribution of the

true value is available in administrative registers, as employer’s records, tax returns, quality

control samples, medical records, unemployment insurance and social security records, and

financial institution records. Actually, most validation samples are constructed by match-

ing survey data to administrative data. Creating such matched samples is very costly, in

particular in surveys with a national coverage. Moreover, it requires the cooperation of the

owners of the administrative data who may be reluctant to give permission. Not all surveys

collect unique identifiers, as the Social Security Number, that can be used to match the

survey information to that in administrative records. Finally, the matching raises privacy

issues that may be hard to resolve. Our approach only requires a random sample from the

administrative register. Indeed the random sample and the survey need not have any unit

in common.6

In recent years many studies have used administrative data, because they are considered

to be more accurate. For example, employer’s records have been used to study annual earn-

ings and hourly wages (Angrist and Krueger, 1999; Bound, Brown, Duncan, and Rodgers,

1994), union coverage (Barron, Berger, and Black, 1997), and unemployment spells (Math-

iowetz and Duncan, 1988). Tax returns have been used in studies of wage and income (Code,

1992), unemployment benefits (Dibbs, Hale, Loverock, and Michaud, 1995), and asset own-

ership and interest income (Grondin and Michaud, 1994). Cohen and Carlson (1994) study

health care expenditures using medical records, and Johnson and Sanchez (1993) use these

records to study health outcomes. Transcript data have been used to study years of school-

ing (Kane, Rouse and Staiger, 1999). Card et al. (2001) examine Medicaid coverage using

Medicaid data. Bound et al. (2001) give a survey of studies that use administrative data.

6In the 70’s several attempts were made to combine survey and administrative data to create a matched
sample using a method called statistical matching. One of the reasons for creating such matched samples was
that supposedly inaccurate survey information, was combined with more accurate data from administrative
sources.
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A problem with administrative records is that they usually contain only a small number

of variables. We show that under reasonable assumptions that is sufficient to correct for

measurement error in parametric models.

Our application indicates what type of data can be used. We consider a duration model

for the relation between welfare benefits and the length of welfare spells. The survey data

are from the Survey of Income and Program Participation (SIPP). The welfare benefits in

the SIPP are self-reported and are likely to contain reporting errors. The federal government

requires the states to report random samples from their welfare records to check whether the

welfare benefits are calculated correctly. The random samples are publicly available as the

AFDC Quality Control Survey (AFDC QC). For that reason they do not contain identifiers

that could be used to match the AFDC QC to the SIPP, a task that would yield a small

sample anyway because of the lack of overlap of the two samples. Besides the welfare benefits

the AFDC QC contains only a few other variables.

This paper shows that the combination of a sample survey in which some of the inde-

pendent variables are measured with error and a secondary data set that contains a sample

from the marginal distribution of the latent true values of the mismeasured variables iden-

tifies the conditional distribution of the latent true value given the reported value and the

other independent variables. This distribution is used to integrate out the latent true value

from the model. The resulting mixture model (with estimated mixing distribution) can then

be estimated by ML. The resulting semi-parametric MLE is
√
n consistent. We derive its

asymptotic variance that accounts for the fact that the mixing distribution is estimated.

The semi-parametric MLE avoids any assumption on the distribution of the measurement

error and/or the distribution of the latent true value. Although in this paper we maintain

the classical measurement error assumptions the same method can be used for the case that

the measurement error is correlated with the true value and the other covariates. Validation

studies have shown that is is often the case.

In this paper we only consider continuous mismeasured variables. The discrete case

will be considered in a separate paper (see Ridder and Moffitt, 2003) for a discussion). In

the continuous case the non-parametric estimator of the conditional density of the latent

true value given the reported value and the other independent variables is obtained by two
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deconvolutions. The paper contributes to deconvolution theory in two respects. We show

that two assumptions that are commonly made in the literature on nonparametric estimation

by deconvolution, i.e. the assumption that the support of the random variables is bounded

and the assumption that their characteristic functions are never 0, need not hold, and are

indeed incompatible for symmetric distributions. It turns out that the assumption that the

characteristic functions is never 0 is not necessary for deconvolution, and we develop the

theory for the case that the set of (real) zeros of the characteristic function is a countable,

non-dense set. The reason that there is a preference for distributions with a bounded support

is that the derivation of the rate of convergence of the empirical characteristic function is

rather simple in that case. As far as we know there did not exist a results for distributions

with an unbounded support, and we derive such a rate. This corrects a result in Horowitz

and Markatou (1996).

The paper is organized as follows. Section 2 establishes non-parametric identification.

Section 3 gives the estimator and its properties. Section 4 presents Monte Carlo evidence on

the finite sample performance of the estimator. An empirical application is given in section

5. Section 6 contains conclusions. The proofs are in the appendix.

2 Identification using marginal information

2.1 Linear regression with errors-in-variables

Consider the linear regression model

y = β0 + β1x
∗ + β2w + u (1)

with E(u|x∗, w) = 0. We do not observed x∗, but x with

x = x∗ + ε (2)

The usual assumption is that ε ⊥ x∗, w, u. Hence the measurement error ε is independent of

the latent true value, the other independent variables, and the random error of the linear re-
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gression. Measurement error that satisfies these assumptions is called classical measurement

error.

If u is uncorrelated with the independent variables, the regression coefficients can be

expressed as

⎛⎝ β1

β2

⎞⎠ =

⎛⎝ Var(x∗) Cov(x∗, w)

Cov(x∗, w) Var(w)

⎞⎠−1⎛⎝ Cov(x∗, y)

Cov(w, y)

⎞⎠ (3)

and

β0 = E(y)− β1E(x
∗)− β2E(w) (4)

If only (a random sample from the joint distribution of) y, x, w is observed, the regression

coefficients can not be identified without further information. We have

Cov(x, y) = Cov(x∗, y) + β0E(ε− E(ε)) + β1Cov(ε, x
∗) + β2Cov(ε, w) +Cov(ε, u) (5)

and under the classical measurement error assumptions the right-hand side is equal to the

covariance of x∗ and y7. If the measurement error is uncorrelated with w, then Cov(x,w) =

Cov(x∗w). Because the mean and variance of x∗ cannot be identified from the distribution

of x without further assumptions, the regression coefficients are not identified. For instance,

if the expected value of the measurement error is 0, E(x) = E(x∗). But even with this

assumption, the classical measurement error assumptions are not sufficient to identify the

variance of x∗, and hence the regression coefficients, although the classical errors-in-variables

assumptions imply bounds on the regression coefficient (Gini (1921)). 8

The regression parameters are identified if the marginal mean and variance of the la-

tent true value x∗ can be obtained from a secondary data set. This result extends to the

polynomial regression model considered by Hausman, Ichimura, Newey, and Powell (1991).

In that case higher order moments of x∗ are needed (see Hu (2002)). It is natural to ask

whether knowledge of the marginal distribution of the latent true variable is sufficient for

7Of course we only need uncorrelatedness for this result.
8If the measurement error is not normally distributed, the regression coefficients can be identified using

higher order moments (Bekker, 1986; Lewbel, 1997).
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the identification of a general nonlinear model with measurement error. The next section

shows that this is indeed the case.

Before we discuss identification under the classical measurement error assumptions we

show that marginal information is also useful in the case of non-classical measurement error.

Consider the measurement error model

x = γ1x
∗ + γ2w + ε (6)

with E(ε|x∗, w) = 0. Then we have the following system of equations

Cov(x,w) = γ1Cov(x
∗, w) + γ2Var(w)

Cov(x,w2) = γ1Cov(x
∗, w2) + γ2E

¡
(w − E(w))3

¢
(7)

Cov(x, y) = γ1Cov(x
∗, y) + γ2Cov(w, y)

If we have marginal information on x∗, w we can solve this system for γ1, γ2,Cov(x
∗, y) and

this suffices to identify the regression coefficients.

2.2 Models nonlinear in mismeasured covariates

A parametric model for the relation between a dependent variable y, a latent true variable

x∗ and other independent variables w can be expressed as a conditional density of y given

x∗, w, f∗(y|x∗, w; θ). The relation between the observed x and the latent x∗ is

x = x∗ + ε (8)

with ε ⊥ x∗, w, y. In the linear regression model the independence of the measurement error

and y given x∗, w, which is implied by this assumption, is equivalent to the independence

of the measurement error and the random error of the regression. If the nonlinear model

is derived from a latent regression model, as in probit and tobit, the assumption implies

that the random error of the latent regression and the measurement error are independent.
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In this paper we consider that case that x∗ (and hence x) is a continuous variable.9 The

independent variables in w can be either discrete or continuous. To keep the notation simple,

the theory will be developed for the case that w is scalar.

Efficient inference for the parameters θ is based on the likelihood function. The individual

contribution to the likelihood function is the conditional density of y given x,w, f(y|x,w; θ).

The relation between this density and that of the parametric model is

f(y|x,w; θ) =
Z

f∗(y|x∗, w; θ)g(x∗|x,w)dx∗ (9)

The conditional density g(x∗|x,w) does not depend on θ, because x∗, w is assumed to be

ancillary for θ, and the measurement error is independent of y given x∗, w.

The key problem with the use of the conditional density (9) in likelihood inference is that

it requires knowledge of the density g(x∗|x,w). This density can be expressed as

g(x∗|x,w) = g(x|x∗, w)g2(x∗, w)
g3(x,w)

(10)

For likelihood inference we must identify the densities g(x|x∗, w) and g2(x
∗, w), while the

density in the denominator does not affect the inference. We could choose a parametric

density for g(x∗|x,w) and estimate its parameters jointly with θ. There are at least two

problems with that approach. First, it is not clear whether the parameters in that density

are identified, and if so, whether the identification is by functional form. Mispecification

of g(x∗|x,w) will bias the MLE of θ. Second, empirical researchers are reluctant to make

distributional assumptions on the independent variables in conditional models. For that

reason we consider non-parametric identification and estimation of the density of x∗ given

x,w.

We have to show that the densities in the numerator are non-parametrically identified.

First, the assumption that the measurement error ε is independent of x∗, w implies that

g(x|x∗, w) = g1(x− x∗) (11)

9If x∗ is discrete the distribution of x∗ given x,w is still identified, but the estimation procedure is different
(and fully parametric).
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with g1 the density of ε. Let φx(t) = E(exp(itx)) be the characteristic function of the

random variable x. From (8) and the assumption that x∗ and ε are independent we have

φx(t) = φx∗(t)φε(t). Hence, if the marginal distribution of x
∗ is known, we can solve for the

characteristic function of the measurement error distribution

φε(t) =
φx(t)

φx∗(t)
(12)

Because of the one-to-one correspondence between characteristic functions and distributions,

this identifies g(x|x∗, w). By the law of total probability the density g2(x
∗, w) is related to

the density g3(x,w) as

g3(x,w) =

Z
g(x, x∗, w)dx∗ =

Z
g1(x− x∗)g2(x

∗, w)dx∗ (13)

If φxw(s, t) = E(exp(isx+ itw)) is the characteristic function of the joint distribution of x,w,

then the integral equation (13) is equivalent to φxw(s, t) = φε(s)φx∗w(s, t), so that

φx∗,w(s, t) =
φx,w(s, t)

φε(s)
=

φx,w(s, t)φx∗(s)

φx(s)
(14)

If the data consist of a primary sample from the joint distribution of y, x, w and a secondary

sample from the marginal distribution of x∗, then the right-hand side of (14) contains only

characteristic functions of distributions that can be observed in either sample.

The conditional density of y given x,w in (9) is a mixture with a mixing distribution

that can be identified from the joint distribution of x,w and the marginal distribution of

x∗. We still must establish that θ can be identified from this mixture. The parametric

model for the relation between y and x∗, w, specifies the conditional density of y given x∗, w,

f∗(y|x∗, w; θ). The parameters in this model are identified, if for all θ 6= θ0 with θ0 the

population value of the parameter vector, there is a set A(θ) with positive measure,10 such

that for (y, x∗, w) ∈ A(θ), f∗(y|x∗, w; θ) 6= f∗(y|x∗, w; θ0). If the parameters are identified,

then the expected (with respect to the population distribution of y, x∗, w) log likelihood has

10The measure is the product measure of the counting measure for the discrete variables in y,w and the
Lebesgue measure for the continuous variables in y, x∗, w.
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a unique and well-separated maximum in θ0 (Van der Vaart (1998), Lemma 5.35).

Identification of θ in f∗(y|x∗, w; θ) implies identification of θ in f(y|x,w; θ). To see this

assume that θ is observationally equivalent to θ0. Then for all y, w, x

f(y|x,w; θ)− f(y|x,w; θ0) (15)

=

Z
(f∗(y|x∗, w; θ)− f∗(y|x∗, w; θ0))g(x∗|x,w)dx∗ ≡ 0

After substitution of (10) and (11) and a change of variable in the integration, this is equiv-

alent to Z
(f∗(y|x− ε, w; θ)− f∗(y|x− ε, w; θ0))g2(x− ε, w)g1(ε)dε ≡ 0 (16)

Without loss of generality we assume that the support x and x∗ is <.11 Now for fixed y,w,

(16) is of the form E(h(x− ε)) ≡ 0 for all x ∈ <, and this implies that h ≡ 0, so that for all

y, x∗, w, f∗(y|x∗, w; θ) ≡ f∗(y|x∗, w; θ0) and this cannot hold if θ is identified in the original

model. Because if θ and θ0 are observationally equivalent in the original model, they are also

observationally equivalent in the distribution of y given x,w, we have that θ is identified in

the conditional density of y given x∗, w if and only if θ is identified in the conditional density

of y given x,w.

The fact that the density of x∗ given x,w is non-parametrically identified makes it possible

to study e.g. non-parametric regression of y on x∗, w using data from the joint distribution

of y,w and the marginal distribution of x∗. This is beyond the scope of the present paper

that considers only parametric models. However, it must be stressed that the conditional

density of y given x∗, w is non-parametrically identified, so that we do not rely on functional

form or distributional assumptions in the identification of θ.

11If x∗ is bounded and ε is independent of x∗, then the support of x is larger than that of x∗. The argument
remains valid.
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3 Estimation of errors-in-variables models with mar-

ginal information

3.1 Non-parametric Fourier inversion estimators

The first step in the estimation is to obtain a non-parametric estimator of g(x∗|x,w) =

g1(x − x∗)g2(x
∗, w). The density g1 of the measurement error ε has characteristic function

(cf) φε(t) =
φx(t)
φx∗(t)

. The operation by which the cf of one of the random variables in a

convolution is obtained from the cf of the sum and the cf of the other component is called

deconvolution. By Fourier inversion we have

g1(x− x∗) =
1

2π

Z ∞

−∞
e−it(x−x

∗) φx(t)

φx∗(t)
dt (17)

The joint characteristic function of x∗, w is φx∗w(s, t) =
φxw(s,t)φx∗(s)

φx(s)
. Again Fourier

inversion gives the joint density of x∗, w as

g2(x
∗, w) =

1

(2π)2

Z ∞

−∞

Z ∞

−∞
e−isx

∗−ivwφxw(s, t)φx∗(s)

φx(s)
dtds (18)

The Fourier inversion formulas become non-parametric estimators, if we replace the cf

by empirical characteristic functions (ecf). If we have a random sample xi, i = 1, . . . , n from

the distribution of x, then the ecf is defined as

φ̂x(t) =
1

n

nX
i=1

eitxi (19)

However, the estimators that we obtain if we substitute the ecf of x and x∗ in (17) and the

ecf of x,w, x∗ and x in (18) are not well-defined. In particular, sampling variation makes

that the integrals do not converge. Moreover, to prove consistency of the estimators we

need results on the uniform convergence of the empirical cf (as a function of t). Uniform

convergence for −∞ < t < ∞ cannot be established.12 For these reasons we introduce

12Horowitz and Markatou (1994),Lemma 1, p. 164, invoke a result on the uniform rate of convergence of
the ecf that is not correct (Fuerverger and Mureika (1977), p. 89). Lemma 1 below gives the correct rate.
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integration limits in the definition of the non-parametric density estimators13

ĝ1(x− x∗) =
1

2π

Z Tn

−Tn
e−it(x−x

∗) φ̂x(t)

φ̂x∗(t)
dt (20)

ĝ2(x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw φ̂xw(s, t)φ̂x∗(s)

φ̂x(s)
dtds (21)

Sn, Tn diverge at an appropriate rate to be defined below.14 Although we integrate a complex-

valued function the integrals are real. However, because we truncate the range of integration,

the estimated densities need not be positive. Figure 1 illustrates this for our application.

Figure 1: Estimate of density of the measurement error with smoothing parameter T = .7

The non-parametric estimators in (20) and (21) cannot be used for all types of distribu-

tions. A relatively weak restriction is that the cf of ε and that of x∗, w must be absolutely

integrable, i.e.
R∞
−∞ |φε(t)|dt <∞ and

R∞
−∞
R∞
−∞ |φx∗w(s, t)|dtds <∞. A sufficient condition

is that e.g.
R∞
−∞ |g1(ε)00|dε < ∞ with g001 the second derivative of the pdf of ε , which a

smoothness condition (and an analogous condition on the joint density of x,w).

The second restriction is more important. Deconvolution is the division of a cf by an-

other cf. Because division by 0 should be avoided, it is usually assumed that the cf in the

denominator is nonzero for all −∞ < t <∞. For instance the cf of the normal distribution

with mean 0 (which is a real valued function) is greater than 0 for all t. This choice for the

13We could also multiply the integrand by a weight function that down weights the tails for finite n.
14The Tn in the integral that defines ĝ2 need not be equal to the Tn that appears in the definition of ĝ1.

This economy in notation will not lead to confusion
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cf in the denominator is the leading case in the signal processing literature where a signal

is corrupted by mean 0 normal noise. In economic applications such an assumption is not

reasonable, i.e. the distribution of x∗ could well be nonnormal. In particular, this variable

could be bounded. Lukacs (1970), Theorem 7.2.3, p. 202, shows that a distribution with

bounded support has a cf that has (countably) infinitely many zeros, if we consider the cf as

a function of a complex argument. If the distribution is symmetric (around some value, not

necessarily 0) then the zeros will be on the real line. In Figure 2 we give the cf of a truncated

(at -.5 and .5) Laplace distribution. The cf of the uniform distribution behaves in the same

Figure 2: Characteristic function of symmetrically truncated (at -3 and 3) Laplace distrib-
ution

way. Note that the zeros are ’isolated’. The zeros of asymmetric bounded distributions are

usually not on the real line.15 However, for the truncated Laplace distribution we found that

the cf will be close to 0 if the truncation is not too asymmetric. For this reason we consider

the case that the cf of the distribution in the denominator has countably many ’isolated’

zeros.

Li and Vuong (1998) and Li (2002) assume that the cf is never 0 and that the distribution

has bounded support, thereby excluding symmetric distributions with bounded support.

They need this assumption to obtain a uniform almost sure bound on the ecf. As we shall

see the assumption is also essential for their use of the Von Mises calculus to prove (uniform)

consistency of their non-parametric density estimators.
15For the truncated Laplace distribution this can be easily shown if the lower truncation is 0. We could

not find nor prove the result that asymmetric distributions with bounded support have no zeros on the real
line.
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Because φx(t) = φx∗(t)φε(t) we have that φx(t) = 0 if φx∗(t) = 0. Hence in the ratio we

divide 0 by 0 for countably many values of t. Without loss of generality we can define 0
0
= 0.

The result will not affect the Fourier inversion formula, because it involves countably many

values of the integrand and we can change φε(t) for countable many t without changing the

integral.

The division by 0 does affect the asymptotic analysis of the estimator. To keep things

simple we consider the inversion estimator for the case that the distribution of x∗ is known

ĝ1(ε) =
1

2π

Z Tn

−Tn

φ̂x(t)

φx∗(t)
dt =

1

2π

Z ∞

−∞

Z Tn

−Tn

eit(x−ε)

φx∗(t)
dtdFn(x) (22)

with Fn the empirical cdf of x. The final expression involves a change in the order of

integration. Hence we have expressed the estimator as a sample average. This is essentially

an application of the Von Mises calculus (see e.g. Serfling (1980)), a technique that is

employed by Li and Vuong (1998) and other authors. However

Z Tn

−Tn

¯̄̄̄
eit(x−ε)

φx∗(t)

¯̄̄̄
dt =

Z Tn

−Tn

¯̄̄̄
1

φx∗(t)

¯̄̄̄
dt (23)

and the integral on the right-hand side diverges for a cf with zeros if Tn is large enough, e.g.

if x∗ has a symmetric distribution with bounded support. Hence the estimator is a weighted

sample average with weights that have a diverging sum.

The solution that we propose for the division by 0 is simple. Instead of dividing by φx∗(t)

we divide by φx∗(t, ηn) with

φx∗(t, ηn) = φx∗(t)I

µ
|φx∗(t)| >

1

2
ηn

¶
+
1

2
ηnI

µ
|φx∗(t)| ≤

1

2
ηn

¶
(24)

with ηn a sequence that converges to 0 at a rate to be specified below. Note that |φx∗(t, ηn)| =
1
2
ηn 6= 0 if |φx∗(t)| ≤ 1

2
ηn.

The function φx∗(t, ηn) is not continuous in t and hence is not a cf. We have

sup
−∞<t<∞

|φx∗(t)− φx∗(t, ηn)| ≤ sup
{t||φx∗ (t)|≤ 1

2
ηn}
|φx∗(t)− φx∗(t, ηn)| ≤ ηn (25)
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and for all t

|φx∗(t, ηn)| ≥ max
½
|φx∗(t)| ,

1

2
ηn

¾
(26)

Consider the estimator

ĝ1(ε) = Re
1

2π

Z Tn

−Tn

φ̂x(t)

φx∗(t, ηn)
e−itεdt (27)

Note that we must take the real part of the function on the right-hand side, because the

integrand is not necessarily real. Hence

ĝ1(ε)− g1(ε) = Re
1

2π

Z Tn

−Tn

Ã
φ̂x(t)

φx∗(t, ηn)
− φx(t)

φx∗(t)

!
e−itεdt− (28)

− 1
2π

Z
|t|>Tn

φε(t)e
−itεdt

For the first term on the right-hand side¯̄̄̄
¯ 12π

Z Tn

−Tn
e−itε

Ã
φ̂x(t)

φx∗(t, ηn)
− φx(t)

φx∗(t)

!
dt

¯̄̄̄
¯ ≤ 1

2π

Z Tn

−Tn

¯̄̄̄
¯ φ̂x(t)− φx(t)

ηn

¯̄̄̄
¯dt+ (29)

+
1

2π

Z Tn

−Tn

¯̄̄̄
φx(t)

φx∗(t, ηn)
− φx(t)

φx∗(t)

¯̄̄̄
dt

First consider the second term on the right-hand side of (29) . For all t¯̄̄̄
φx(t)

φx∗(t, ηn)
− φx(t)

φx∗(t)

¯̄̄̄
≤ 2

¯̄̄̄
φx(t)

φx∗(t)

¯̄̄̄
(30)

and Z ∞

−∞

¯̄̄̄
φx(t)

φx∗(t)

¯̄̄̄
dt =

Z ∞

−∞
|φε(t)|dt <∞ (31)

Hence by dominated convergence for all sequences Tn and ηn = o(1), the second term on the

right-hand side of (29) converges to 0. The rate of convergence of the first term is determined

by the uniform rate of convergence of the empirical cf on intervals of diverging length.

The next lemma gives an almost sure rate of convergence that, as far as we know, is new.

It corrects the result in Lemma 1 of Horowitz and Markatou (1996)
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Lemma 1 Let φ̂(t) =
R∞
−∞ eitxdFn(x) be the empirical characteristic function of a random

sample from a distribution with cdf F and with E(|x|) < ∞. For 0 < γ < 1
2
, let Tn =

o
³³

n
logn

´γ´
. Then

sup
|t|≤Tn

¯̄̄
φ̂(t)− φ(t)

¯̄̄
= o(αn) a.s. (32)

with αn = o(1) and (
logn
n )

1
2−γ

αn
= O(1), i.e the rate of convergence is at most

¡
logn
n

¢ 1
2
−γ
.

Proof See appendix.

This result is used to establish the rate of convergence of the nonparametric Fourier

inversion estimators in the next two lemmas. The estimators are

ĝ1(ε) = Re
1

2π

Z Tn

−Tn

φ̂x(t)

φ̂x∗(t, ηn)
e−itεdt (33)

and

ĝ2(x
∗, w) = Re

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw φ̂xw(s, t)φ̂x∗(s)

φ̂x(s, γn)
dtds (34)

where the modified ecf is defined analogously to (24). We have

Lemma 2 Let φε be absolutely integrable and let φx∗ be a cf with a countable number of 0’s.

Define for the sequence Tn that satisfies the restrictions of Lemma 1, ηn = |φx∗(Tn)| 6= 0,

and let αn satisfy the restrictions of Lemma 1 and in addition αn
ηn
= o(1). Then a.s. for the

estimator in (33)

sup
(x,x∗)∈X×X∗

|ĝ1(x− x∗)− g1(x− x∗)| = o

µ
Tnαn

ηn

¶
(35)

with X ,X ∗ the support of x, x∗, respectively. These supports may be bounded.

and

Lemma 3 Let φx∗w be absolutely integrable and let φx have a countable number of 0’s. Define

for the sequence Sn that satisfies the restrictions of Lemma 1, γn = |φx(Sn)| 6= 0, and let

αn satisfy the restrictions of Lemma 1 and in addition αn
γn
= o(1). For some 0 < γ < 1

2
,
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Tn = o
³³

n
logn

´γ´
. Then a.s. for the estimator in (34)

sup
(x∗,w)∈X∗×W

|ĝ2(x∗, w)− g2(x
∗, w)| = o

µ
SnTnαn

γn

¶
(36)

The supports of x∗, x, w, denoted by X ∗,X ,W respectively, may be bounded.

Proof See appendix.

Comparison to the rate that can be obtained if the distribution of x∗ is known reveals

that the rate of convergence is not affected by the fact that distribution is estimated in

Lemmas 2 and 3. This result is consistent with the result in Diggle and Hall (1993) who

consider the Mean Integrated Squared Error of the Fourier inversion estimator.

3.2 The semi-parametric MLE

The data consist of a random sample yi, xi, wi, i = 1, . . . , n and an independent random

sample x∗i , i = 1, . . . , n1. The population density of the observations in the first sample is

f(y|x,w; θ0) =
Z
X∗

f∗(y|x∗, w; θ0)
g1(x− x∗)g2(x

∗, w)

g(x,w)
dx∗ (37)

in which f∗(y|x∗, w; θ) is the parametric model for the conditional distribution of y given w

and the latent x∗. The scores of f(y|x,w; θ) and f∗(y|x∗, w; θ) are denoted by s(y|x,w; θ)

and s∗(y|x,w; θ), respectively. The densities fx, fx∗, fw|x have supportX ,X ∗,W, respectively.

These supports may be bounded. The unknown densities in the likelihood are either g1, g2

or fx, fx∗, fw|x. We use h to denote either. The first choice is convenient in the consistency

proof, while the second choice is appropriate in the computation of the asymptotic variance.

The semi-parametric MLE is defined as

θ̂ = argmax
θ∈Θ

nX
i=1

ln f̂(yi|xi, wi; θ) (38)

with f̂(yi|xi, wi; θ) the conditional density in which we replace g1, g2 by their non-parametric

18



Fourier inversion estimators. The semi-parametric MLE satisfies the moment condition

nX
i=1

m(yi, xi, wi, θ̂, ĥ) = 0 (39)

where the moment function m(y, x, w, θ, h) is the score of the integrated likelihood

m(y, x, w, θ, h) =

R
X∗

∂f∗(y|x∗,w;θ)
∂θ

g1(x− x∗)g2(x
∗, w)dx∗R

X∗ f
∗(y|x∗, w; θ)g1(x− x∗)g2(x∗, w)dx∗

(40)

The next two theorems give conditions under which the semi-parametric MLE is consis-

tent and asymptotically normal.

Theorem 1 If

(A1) The parametric model f∗(y|x∗, w; θ) is such that there are constants 0 < m0 < m1 <∞

such that for all (y, x∗, w) ∈ Y × X ∗ ×W and θ ∈ Θ

m0 ≤ f∗(y|x∗, w; θ) ≤ m1¯̄̄̄
∂f∗(y|x∗, w; θ)

∂θ

¯̄̄̄
≤ m1

and that for all (y,w) ∈ Y ×W and θ ∈ Θ

Z
X∗

f∗(y|x∗, w; θ)dx∗ <∞

¯̄̄̄Z
X∗

∂f∗(y|x∗, w; θ)
∂θ

dx∗
¯̄̄̄
<∞

(A2) The characteristic functions of ε and x∗, w are absolutely integrable.

(A3) For 0 < γ < 1
2
, Tn = o

³³
n

logn

´γ´
, Sn = o

³³
n

logn

´γ´
, αn = o(1), (

logn
n )

1
2−γ

αn
= O(1),

θn = inf |s|≤Tn |φx∗(s)|, γn = inf |s|≤Tn |φx(s)|, we have Tnαn
θn

= O(1), SnTnαn
γn

= O(1).

then for the semi-parametric MLE

θ̂ = argmax
θ∈Θ

nX
i=1

ln f̂(yi|xi, wi; θ)

19



we have if n, n1 →∞

θ̂
p→ θ0

A sufficient condition for assumption (A1) is that for some 0 < m0,m1 < ∞ and all

(y, x∗, w) ∈ Y ×X ∗ ×W and θ ∈ Θ

m0 ≤ f∗(y|x∗, w; θ) ≤ m1 (41)

For example, for a probit model these conditions are easily satisfied if the supports X ∗ and

W are bounded.

Lemma 4 If the assumptions of Theorem 1 hold and in addition

(A4) lim
n→∞

n
n1
= λ, 0 < λ <∞, and E(m(y, x, w, θ0, h0)m(y, x, w, θ0, h0)0) <∞.

then (mn is defined in the Appendix)¯̄̄̄
¯ 1√n

nX
i=1

mn(yi, xi, wi, θ0, ĥ)−
1√
n

nX
i=1

(m(yi, xi, wi, θ0, h0) + δx(xi) + δxw(xi, wi))−
√
n

n1

n1X
i=1

δx∗(x
∗
i )

¯̄̄̄
¯ =

(42)

= op(1)

and

1√
n

nX
i=1

(m(yi, xi, wi, θ0, h0) + δx(xi) + δxw(xi, wi)) +

√
n

n1

n1X
i=1

δx∗(x
∗
i )

d→ N(0,Ω) (43)

Ω = E
£
(m(y, x, w, θ0, h0) + δx(x) + δxw(x,w)) (m(y, x, w, θ0, h0) + δx(x) + δxw(x,w))

0¤+
+λE [δx∗(x∗)δx∗(x∗)0]

and

δx(x̃) = −
Z
X∗

Z
Y×X×W

f∗(y|x∗, w)s0n(y|x,w)f0(x,w).

.(K1xn(x̃, x− x∗)g2n(x
∗, w) +K2xn(x̃, x

∗, w)g1n(x− x∗))dwdxdydx∗

K1xn(x̃, x− x∗) =
1

2π

Z Tn

−Tn

e−it(x−x
∗)+itx̃

φx∗(t, ηn)
dt
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K2xn(x̃, x
∗, w) = − 1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃I

µ
|φx(s)| >

1

2
γn

¶
φxw(s, t)φx∗(s)

φx(s, γn)
2

dsdt

and

δx∗(x̃
∗) = −

Z
X∗

Z
Y×X×W

f∗(y|x∗, w)s0n(y|x,w)f0(x,w).

.(K1x∗n(x̃
∗, x− x∗)g2n(x

∗, w) +K2x∗n(x̃
∗, x∗, w)g1n(x− x∗))dwdxdydx∗

K1x∗n(x̃, x− x∗) = − 1
2π

Z Tn

−Tn
I

µ
|φx∗(t)| >

1

2
ηn

¶
e−it(x−x

∗)+itx̃ φx(t)

φx∗(t, ηn)
2
dt

K2x∗n(x̃, x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃φxw(s, t)

φx(t, γn)
dsdt

and

δxw(x̃, w̃) = −
Z
X∗

Z
Y×X×W

f∗(y|x∗, w)s0n(y|x,w)f0(x,w).

.K2xwn(x̃, w̃, x
∗, w)g1n(x− x∗))dwdxdydx∗

K1xwn(x̃, w̃, x− x∗) ≡ 0

K2xwn(x̃, w̃, x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃+itw̃ φx∗(s)

φx(s, γn)
dsdt

and

g1n(x− x∗) =
1

2π

Z Tn

−Tn
e−it(x−x

∗) φx(t)

φx∗(t, ηn)
dt

g2n(x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itwφxw(s, t)φx∗(s)

φx(s, γn)
dsdt

Theorem 2 If assumptions (A1)-(A4) are satisfied, then if n, n1 →∞

√
n(θ̂ − θ0)

d→ N(0, V ) (44)

with V = (M 0)−1ΩM−1 where

M = E
µ
∂m(y, z, h0)

∂θ0

¶

Proof See appendix.
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We have left the variance in a form that can be easily estimated. Some simplifications occur

is we let n, n1 →∞, but the resulting expressions are not so easily estimated.

4 A Monte Carlo simulation

This section applies the method developed above to a probit model with a mismeasured

explanatory variable. The conditional density function of the probit model is

f∗(y|x∗, w; θ) = P (y, x∗, w; θ)y(1− P (y, x∗, w; θ))1−y

P (y, x∗, w; θ) = Φ(β0 + β1x
∗ + β2w),

where θ = (β0, β1, β2)
0 and Φ is the standard normal cdf. Four estimators are considered: (i)

the ML probit estimator that uses mismeasured covariate x in the primary sample as if it were

accurate, i.e. it ignores the measurement error. The MLE is not consistent. The conditional

density function in this case is written as f∗(y|x,w; θ), (ii) the infeasible ML probit estimator

that uses the latent true x∗ as covariate. This estimator is consistent and has the smallest

asymptotic variance of all estimators that we consider. The conditional density function is

f∗(y|x∗, w; θ),(iii) the mixture MLE that assumes that the density function of x∗ given x,w is

known and that uses this density to integrate out the latent x∗. This estimator is consistent,

but it is less efficient than the MLE in (ii),16 (iv) the semi-parametric MLE developed above

that uses both the primary sample {yi, xi, wi} for i = 1, 2, ..., n and the secondary sample

{xj} for j = 1, 2, ..., n1.

For each estimator, we report Root Mean Squared Error (RMSE), the average bias of

estimates, and the standard deviation of the estimates over the replications.

We consider three different values of the measurement error variance: large, moderate

and small (relative to the variance of the latent true value). The results are summarized in

Table 1.

16We could also have considered the estimator in which the density of x∗ given x,w is specified up to a
vector of parameters that are estimated together with the regression parameters in the probit. This estimator
will perform worse than the one we consider.
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Table 1: Simulation results Probit model: n = 500, n1 = 600, number of repetitions 200.

β1 β2 β0
σ2ε
σ2
x∗
= 1.96a Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev.

Ignoring meas. error 0.6909 -0.6871 0.0730 0.1452 0.0679 0.1283 0.0692 -0.0340 0.0603
True x∗ 0.1464 0.0221 0.1447 0.1310 -0.0143 0.1302 0.0598 0.0056 0.0595
Known meas. error dist. 0.2862 0.0330 0.2843 0.1498 -0.0151 0.1491 0.0712 0.0077 0.0708
Marginal information 0.3288 -0.0923 0.3156 0.1886 -0.0197 0.1876 0.0815 0.0025 0.0815

σ2ε
σ2
x∗
= 1b Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev.

Ignoring meas. error 0.5386 -0.5311 0.0894 0.1546 0.0562 0.1441 0.0698 -0.0177 0.0675
True x∗ 0.1407 0.0025 0.1407 0.1466 0.0007 0.1466 0.0705 0.0111 0.0696
Known meas. error dist. 0.2218 0.0152 0.2213 0.1563 -0.0046 0.1563 0.0758 0.0135 0.0746
Marginal information 0.2481 0.0082 0.2480 0.1701 -0.0158 0.1693 0.0873 0.0163 0.0858

σ2ε
σ2
x∗
= .36c Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev.

Ignoring meas. error 0.2938 -0.2723 0.1103 0.1449 0.0174 0.1439 0.0630 -0.0132 0.0616
True x∗ 0.1384 0.0123 0.1379 0.1477 -0.0130 0.1471 0.0642 0.0031 0.0641
Known meas. error dist. 0.1711 0.0336 0.1678 0.1518 -0.0177 0.1507 0.0655 0.0042 0.0653
Marginal information 0.1764 -0.0325 0.1733 0.1743 -0.0634 0.1624 0.0942 0.0206 0.0919

a β1 = 1,β2 = −1 ,β0 = .5; x∗ ∼ N(0, .25), w ∼ N(0, .25), ε ∼ N(0, σ2ε); the smoothing parameters are T = .7 for the density of ε
and S = T = .6 for the joint density of x∗, w.
b β1 = 1,β2 = −1 ,β0 = .5; x∗ ∼ N(0, .25), w ∼ N(0, .25), ε ∼ N(0, σ2ε); the smoothing parameters are T = .6 for the density of ε
and S = T = .7 for the joint density of x∗, w.
c β1 = 1,β2 = −1 ,β0 = .5; x∗ ∼ N(0, .25), w ∼ N(0, .25), ε ∼ N(0, σ2ε); the smoothing parameters are T = .75 for the density of ε
and S = T = .2 for the joint density of x∗, w.
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In all cases the smoothing parameters S, T are chosen as suggested in Diggle and Hall

(1993). The results are quite robust against changes in the smoothing parameters, and the

same is true in our application in section 5.

Table 1 shows that the MLE that ignores the measurement error is significantly biased

as expected. The bias of the coefficient of the mismeasured independent variable is larger

than the bias of the coefficient of the other covariate or the constant. Some of the consistent

estimators have a small sample bias that is significantly different from 0. In particular, the

(small sample) biases in the new semi-parametric MLE are similar to those of the other

consistent estimators.

In all cases the MSE of the infeasible MLE is (much) smaller than that of the other

consistent estimators. The loss of precision is associated with the fact that x∗ is not observed,

but that we must integrate with respect to its distribution given x,w. It does not seem

to matter that in the semi-parametric MLE this density is estimated non-parametrically,

because the MSE of the estimator with a known distribution of the latent true value given

x,w is only marginally smaller than that of our proposed estimator. As the measurement

error variance decreases the MSE of the semi-parametric MLE becomes close to that of the

infeasible efficient estimator, so that there is no downside to its use.

We also present the empirical distribution of the semi-parametric MLE. Figure 3 shows

the empirical distribution of 200 semi-parametric MLE estimates of β1. It is close to a normal

Figure 3: Estimate of density of sampling distribution of SPMLE β̂1, 200 repetitions

density with the same mean and variance.
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The computation of the Fourier inversion estimators in the simulation involve one dimen-

sional (distribution of ε) and two dimensional (distribution of x∗, w) numerical integrals. In

the simulations these are computed by Gauss-Laguerre quadrature.17 In the empirical appli-

cation in section 5 the second estimator involves a numerical integral of a dimension equal

to the number of covariates in w plus 1. This numerical integral is computed by the Monte

Carlo method (100 draws).

5 An empirical application: The duration of welfare

spells

5.1 Background

The Aid to Families with Dependent Children (AFDC) program was created in 1935 to

provide financial support to families with children who were deprived of the support of one

biological parent by reason of death, disability, or absence from the home, and were under

the care of the other parent or another relative. Only families with income and assets lower

than a specified level are eligible. The majority of families of this type are single-mother

families, consisting of a mother and her children. The AFDC benefit level is determined

by maximum benefit level, the so-called guarantee, and deductions for earned income, child

care, and work-related expenses. The maximum benefit level varies across the states, while

the benefit-reduction rate, sometimes called the tax rate, is set by the federal government.

For example, the benefit-reduction rate on earnings was reduced to 67 percent from 100

percent in 1967 and was raised back to 100 percent in 1981. AFDC was eliminated in 1996

and replaced by Temporary Assistance for Needy Families (TANF).

A review of the research on AFDC can be found in Moffitt (1992, 2002). In this appli-

cation, we investigate to what extent the characteristics of the recipients, external economic

factors, and the level of welfare benefits received influence the length of time spent on welfare.

Most studies on welfare spells (Bane and Ellwood, 1994; Ellwood, 1986; O’Neill et al, 1984;

Blank, 1989; Fitzgerald, 1991) find that the level of benefits is negatively and significantly

17All computations were performed in Gauss.
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related to the probability of leaving welfare. Almost all studies use the AFDC guarantee

rather than the reported benefit level of as the independent variable. One reason for not

using the reported benefit level is the fear of biases due to reporting error. The AFDC guar-

antee has less variation than the actual benefit level, as the AFDC guarantee is the same for

all families with the same number of people who live in a particular state.

5.2 Data

The primary sample used here is extracted from the Survey of Income and Program Partici-

pation, a longitudinal survey that collects information on topics such as income, employment,

health insurance coverage, and participation in government transfer programs. The SIPP

population consists of persons resident in U.S. households and persons living in group quar-

ters. People selected for the SIPP sample are interviewed once every four months over the

observation period. Sample members within each panel are randomly divided into four ro-

tation groups of roughly equal size. Each month, the members of one rotation group are

interviewed and information is collected about the previous four months, which are called

reference months. Therefore, all rotation groups are interviewed every four months so that

we have a panel with quarterly waves.

We use the 1992 and 1993 SIPP panels, each of which contains 9 waves.18 The SIPP

1992 panel follows 21,577 households from October 1991 through December 1994. The SIPP

1993 panel contains information on 21,823 households, from October 1992 through December

1995. Each sample member is followed over a 36-month period.

We consider a flow sample of all single mothers with age 18 to 64 who entered the AFDC

program during the 36-month observation period. For simplicity, only a single spell for each

individual is considered here. A single spell is defined as the first spell during the observation

period for each mother. A spell is right-censored if it does not end during the observation

period. The SIPP duration sample contains 520 single spells, of which 269 spells are right

censored. Figure 4 presents the empirical hazard function based on these observations.

The benefit level in the SIPP sample is expected to be misreported. The reporting error

18The 1992 panel actually has 10 waves, but the 10th wave is only available in the longitudinal file. The
original wave files are used here instead of the longitudinal file.
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Figure 4: Empirical hazard rate of welfare durations in SIPP

in transfer income in survey data has been studied extensively. In the SIPP the reporting of

transfer income is in two stages. First, respondents report receipt or not of a particular form

of income, and if they report that they receive some type of transfer income they are asked

the amount that they receive. Validation studies have shown that there is a tendency to

underreport receipt, although for some types there is also evidence of overreporting receipt.

The second source of measurement error is the response error in the amount of transfer

income. Several studies find significant differences between survey reports and administrative

records, but there are also studies that find little difference between reports and records.

Most studies find that transfer income is underreported, and underreporting is particularly

important for the AFDC program. A review of the research can be found in Bound et al

(2001).

The AFDC QC is a repeated cross-section that is conducted every month. Every month

each state reports benefit amounts, last opening dates and other information from the case

records of a randomly selected sample of the cases receiving cash payments in that state.

Hence for the QC sample we know not only the true benefit level of a welfare recipient but

also when the current welfare spell started. Therefore, we can select from the QC sample

all the women who enter the program in a particular month. The QC sample used here is

restricted to the same population as the SIPP sample, which is all single mothers with age

18 to 64 who entered the program during the period from October 1991 to December 1995.

Because the welfare recipients can enter welfare in any month during the 51 month
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observation period, the distribution of the true benefits given the reported benefits and the

other independent variables could be different for each of the 51 months. For instance, the

composition of the families who go on welfare could have a seasonal or cyclical pattern. If

this were the case we would have to estimate 51 distributions. Although this is feasible it is

preferable to investigate first whether we can do with fewer. We test whether the distribution

of the benefits is constant over the 51 months of entry or, if suspect cyclical shifts, the 5 years

of the observation period. Table 2 reports the Kruskal-Wallis test for the null hypothesis

of a constant distribution over the entry months (first row) and the entry years (second

row). Table 3 reports the results of the Kolmogorov-Smirnov test of the hypothesis that the

Table 2: Stationarity of distribution of nominal benefits in QC sample: Kruskal-Wallis test,
n = 3318.

Kruskal-Wallis statistic Degrees of freedom p-value

Nominal benefits between months 57.2 50 0.2254
Nominal benefits between years 6.1 4 0.1948

distribution of the welfare benefits in a particular month is the same as that in all other 50

months. The conclusion is that it is allowed to pool the 51 entry months and to estimate a

single distribution of the true benefits given the reported benefits and the other independent

variables.19

Since both the SIPP and AFDC QC samples come from the same population, we can

compare the distributions of the nominal benefit levels in the two samples. Figure 5 shows

the estimated density of log nominal benefit levels and table 4 reports summary statistics

and the result of the Kolmogorov-Smirnov test of equality of the two distributions. A

comparison of the estimated densities and the sample means shows that benefits are indeed

underreported. Indeed the Kolmogorov-Smirnov test confirms that the distribution in the

SIPP sample is significantly different from the distribution in the AFDC QC. The variance

of welfare benefits in the SIPP is larger than in the AFDC QC which is a necessary condition

19In table 3 we reject the null hypothesis once for the 51 tests. Although the test statistics are not
independent, a rejection in a single case is to be expected.
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Table 3: Stationarity of distribution nominal benefit levels in QC sample: Kolmogorov-
Smirnov test distribution in indicated month vs. the other months.

month # obs. K-S stat. p-value month # obs. K-S stat. p-value

1 82 0.077 0.725 27 80 0.078 0.727
2 82 0.062 0.923 28 48 0.094 0.793
3 75 0.105 0.391 29 67 0.120 0.301
4 64 0.082 0.798 30 67 0.112 0.383
5 67 0.106 0.455 31 63 0.096 0.623
6 63 0.089 0.711 32 54 0.137 0.273
7 58 0.127 0.319 33 62 0.091 0.694
8 55 0.172** 0.082 34 87 0.073 0.754
9 70 0.093 0.593 35 68 0.204* 0.008
10 68 0.071 0.889 36 66 0.119 0.317
11 68 0.120 0.293 37 68 0.136 0.168
12 67 0.076 0.840 38 81 0.090 0.551
13 69 0.142 0.132 39 62 0.146 0.151
14 59 0.102 0.589 40 45 0.117 0.573
15 61 0.123 0.329 41 72 0.057 0.975
16 62 0.110 0.449 42 50 0.141 0.279
17 57 0.103 0.594 43 61 0.137 0.208
18 47 0.106 0.677 44 55 0.166 0.101
19 59 0.074 0.905 45 68 0.113 0.364
20 52 0.105 0.623 46 57 0.110 0.507
21 43 0.109 0.694 47 63 0.088 0.724
22 69 0.125 0.242 48 83 0.117 0.221
23 70 0.041 1.000 49 80 0.140** 0.092
24 69 0.128 0.220 50 62 0.081 0.822
25 76 0.092 0.562 51 73 0.114 0.312
26 64 0.138 0.180

∗ significant at 5% level
∗∗ significant at 10% level

29



Figure 5: Density estimates log benefits in SIPP and QC

for classical measurement error in the log benefits.

5.3 The model and estimation

We use a discrete duration model to analyze the grouped duration data, since the welfare

duration is measured to the nearest month. As mentioned before, we consider a flow sample,

and therefore we do not need to consider the sample selection problem that arises with stock

sampling (Ridder, 1984). Let [0,M ] be the observation period, and let ti0 ∈ [0,M ] denote

the month that individual i enters the welfare program, and ti1 ∈ [0,M ] the month that she

leaves, if she leaves welfare during the observation period. If t∗i is the length of the welfare

spell in months, then the event ti0, ti1 is equivalent to

ti1 − ti0 − 1 ≤ t∗i ≤ ti1 − ti0 + 1

Also if the welfare spell is censored in month M , then

t∗i ≥M − ti0

Hence the censoring time is determined by the month of entry. We assume that this censoring

time is independent of the welfare spell conditional on the (observed) covariates zi and this

is equivalent to the assumption that the month of entry is independent of the welfare spell

conditional on these covariates.
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Table 4: Comparison of the distribution of welfare benefits in SIPP and QC samples.

Real benefits Nominal benefits

SIPP QC SIPP QC

Mean 285.3 303.8 304.2 327.7
Std. Dev. 169.6 156.9 180.9 169.4
Min 9.3 9.6 10 10
Max 959 1598 1025 1801
Skewness 1.08 1.27 1.07 1.33
Kurtosis 4.60 6.83 4.54 7.46
n 520 3318 520 3318
Kolmogorov-
Smirnov statistic .123 .128
p-value .0000 .0000

The primary sample sample contains ti0, ti1, zi, δi where δi is the censoring indicator.

The latent t∗i has a continuous conditional density that is assumed to be independent of

the starting time, ti0, conditional on the vector of observed covariates zi. Let λ(t, z, θ) be a

parametric hazard function and let Pm(zi, θ) denote the probability that a welfare spell lasts

at least m months, given that it has lasted m− 1 months. Then

Pm(zi, θ) = P (t∗i ≥ m|t∗i ≥ m− 1, zi) = exp
µ
−
Z m

m−1
λ(t, zi, θ)dt

¶
, (45)

If we allow for censored spells, the conditional density function for individual i with welfare

spell ti is

f∗(ti, δi, |zi; θ) = [1− Pti(zi, θ)]
δi

ti−1Y
m=1

Pm(zi, θ). (46)

The hazard is specified as a proportional hazard model with a piece-wise constant baseline

hazard

λ(t, zi, θ) = λm exp(ziβ), m− 1 ≤ t < m.

31



This hazard specification implies that

Pm(zi, θ) = exp[−λm exp(ziβ)],

If the λm are unrestricted, then the covariates zi cannot contain a constant term. For

simplicity, define λ = (λ1, λ2, ..., λM)0. The unknown parameters then are θ = (β0, λ0)0.

The covariates are zi = (x∗i , w
0
i)
0 , where the scalar x∗i is the log real benefit level and the

vector wi contains the other covariates. The log real benefit level is defined as

x∗i = ex∗i − p,

where ex∗i is the log nominal benefit level and p is the log of the deflator20.

The measurement error εi is i.i.d. and and the measurement error model is

exi = ex∗i + εi, εi ⊥ ti, zi, δi, (47)

where exi is the log reported nominal benefit level and εi is the individual reporting error.

Note that error εi is not assumed to have a zero mean, and a non-zero mean can be interpreted

as a systematic reporting error.

The variables involved in estimation are summarized in table 5. The MLE are reported

in table 6. We report the biased MLE that ignores the reporting error in the welfare benefits

and the semi-parametric MLE that uses the marginal information in the AFDC QC. Note

that the coefficient on the benefit level is larger for the semi-parametric MLE. This in line

with the bias that we would expect in a linear model with a mismeasured covariate.21 The

other coefficients and the baseline hazard seems to be mostly unaffected by the reporting

error. This may be due to the fact that the measurement error in this application is relatively

small.
20We take the consumer price level as the deflator. We match the deflator to the month for which the

welfare benefits are reported.
21There are no general results on the bias in nonlinear models and the bias could have been away from 0.
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Table 5: Descriptive statistics, n = 520.

Mean Std. Dev. Min Max

Welfare spell (month) 9.07 8.25 1 35
Fraction censored 0.52 - 0 1
Age (years) 31.8 8.2 18 54
Disabled 0.84 - 0 1
Labor hours per week 13.3 17.6 0 70
Log real welfare benefits (month) 5.46 0.68 2.23 6.86
Log nominal welfare benefits (month) 5.52 0.68 2.30 6.93
Number of children under 18 1.92 1.02 1 7
Number of children under 5 0.60 0.76 0 4
Real non-benefits income ($1000/month) 0.234 0.402 0 0.360
State unemployment rate (perc.) 6.72 1.41 2.9 10.9
Education (years) 11.6 2.64 0 18

6 Conclusion

This paper considers the problem of consistent estimation of nonlinear models with mismea-

sured explanatory variables, when marginal information on the true values of these variables

is available. The marginal distribution of the true variables is used to identify the distribu-

tion of the measurement error, and the distribution of the true variables conditional on the

mismeasured variables and the other explanatory variables. The estimator is shown to be
√
n consistent and asymptotically normally distributed. The simulation results are in line

with the asymptotic results. The semi-parametric MLE is applied to a duration model of

AFDC welfare spells with misreported welfare benefits. The marginal distribution of welfare

benefits is obtained from the AFDC Quality Control data. We find that the MLE that

ignores the reporting error underestimates the effect of welfare benefits on probability of

leaving welfare.
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Table 6: Parameter estimates of duration model, n = 520, n1 = 3318.

MLE with marginal information MLE ignoring measurement error

Variable MLE Stand. Error MLE Stand. Error
Log real benefits -0.3368 0.1025 -0.2528 0.0877
Hours worked per week(/24) 0.2828 0.0955 0.2828 0.0938
Real non-benefits inc. 0.1891 0.1425 0.1842 0.1527
No. of children age < 5 -0.1855 0.1095 -0.1809 0.1111
No. of children age < 18 0.0724 0.0674 0.0712 0.0718
Age (years/100) -0.1803 0.9877 -0.3086 0.9663
State unempl. rate (perc.) -0.0692 0.0505 -0.0691 0.0481
Years of education 0.0112 0.0295 0.0082 0.0290
Disabled -0.1093 0.1833 -0.1198 0.1867
Baseline hazard (months)

1 0.0516 0.0097 0.0546 0.0105
2 0.0662 0.0120 0.0697 0.0127
3 0.0409 0.0097 0.0429 0.0104
4 0.1385 0.0203 0.1445 0.0211
5 0.0433 0.0121 0.0450 0.0128
6 0.0771 0.0169 0.0798 0.0177
7 0.0543 0.0151 0.0562 0.0156
8 0.0646 0.0180 0.0668 0.0186
9 0.0787 0.0211 0.0807 0.0217
10 0.0565 0.0189 0.0575 0.0195
11 0.0480 0.0184 0.0486 0.0186
12 0.0750 0.0250 0.0756 0.0252
13-14 0.0438 0.0146 0.0440 0.0144
15-16 0.0226 0.0113 0.0227 0.0114
17-18 0.0286 0.0143 0.0285 0.0143
19-20 0.0263 0.0152 0.0261 0.0150
21+ 0.0116 0.0058 0.0114 0.0055

The smoothing parameters are: distribution ε, T = .7, distribution of x∗, w, S = .875 and T = .9.
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APPENDIX

1 Notation

The data consist of a random sample yi, xi, wi, i = 1, . . . , n and an independent random

sample x∗i , i = 1, . . . , n1. The population density of the observations in the first sample is

f(y|x,w; θ0) =
Z
X∗

f∗(y|x∗, w; θ0)
g1(x− x∗)g2(x

∗, w)

g(x,w)
dx∗ (48)

in which f∗(y|x∗, w; θ) is the parametric model for the conditional distribution of y given w

and the latent x∗. The scores of f(y|x,w; θ) and f∗(y|x∗, w; θ) are denoted by s(y|x,w; θ)

and s∗(y|x,w; θ), respectively.

The population densities fx, fx∗ , fw|x have support X ,X ∗,W, respectively. The densities

are assumed to be bounded on their support. The supports can be bounded or unbounded.

Often the assumption of bounded supports is made to obtain simple a.s. rates of convergence

(see below).

The moment function m(y, x, w, θ, fx, fx∗, fw|x) is the score of the integrated likelihood

m(y, x, w, θ, fx, fx∗, fw|x) =

R
X∗

∂f∗(y|x∗,w;θ)
∂θ

g1(x− x∗)g2(x
∗, w)dx∗R

X∗ f
∗(y|x∗, w; θ)g1(x− x∗)g2(x∗, w)dx∗

(49)

with

g1(x− x∗) =
1

2π

Z ∞

−∞
e−it(x−x

∗) φx(t)

φx∗(t)
dt (50)

g2(x
∗, w) =

1

(2π)2

Z ∞

−∞

Z ∞

−∞
e−iux

∗−ivwφxw(u, v)φx∗(u)

φx(u)
dudv (51)

and
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φx(t) =

Z
X
eitxfx(x)dx (52)

φx∗(t) =

Z
X∗

eitx
∗
fx∗(x

∗)dx∗ (53)

φxw(t) =

Z
X

Z
W
eitxfx(x)dx (54)

2 Organization of the proof

The first step is to give conditions under which the non-parametric estimators of g1(x− x∗)

and g2(x
∗, w) are uniformly (in x, x∗ and x∗, w, respectively) consistent. In Lemma 1 we

give a new a.s. bound on the empirical characteristic function that does not require that the

support is bounded. We also establish consistency if the support of the random variables is

bounded.

The second step of the proof is to establish Fréchet differentiability of the moment func-

tion (or functional) with respect to fx, fx∗ , fw|x. The Fréchet differential linearizes the mo-

ment function(al) in fx, fx∗ , fw|x and this is needed to prove asymptotic normality of the

semi-parametric MLE. The expected value of the Fréchet derivative is the term that is

added to the moment function evaluated in the population densities to obtain the influence

function of the estimator.

3 Rate of convergence of the empirical characteristic

function

We first prove a general result on the a.s. rate of convergence of the empirical characteristic

function.

Lemma 1 Let φ̂(t) =
R∞
−∞ eitxdFn(x) be the empirical characteristic function of a random

sample from a distribution with cdf F and with E(|x|) < ∞. For 0 < γ < 1
2
, let Tn =
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o
³³

n
logn

´γ´
. Then

sup
|t|≤Tn

¯̄̄
φ̂(t)− φ(t)

¯̄̄
= o(αn) a.s. (55)

with αn = o(1) and (
logn
n )

1
2−γ

αn
= O(1), i.e the rate of convergence is at most

¡
logn
n

¢ 1
2
−γ
.

Proof. Consider the parametric class of functions Gn = {eitx||t| ≤ Tn}. The first step, is to

find the L1 covering number of Gn. Because eitx = cos(tx)+i sin(tx), we need covers of G1n =

{cos(tx)||t| ≤ Tn} and {F2n = sin(tx)||t| ≤ Tn}. Because | cos(t2x)− cos(t1x)| ≤ |x||t2 − t1|

and E(|x|) <∞, an ε
2
E(|x|) cover (with respect to the L1 norm) of G1n is obtained from an ε

2

cover of {t||t| ≤ Tn} by choosing tk, k = 1, . . . ,K arbitrarily from the distinct covering sets,

whereK is the smallest integer larger than 2Tn
ε
. Because | sin(t2x)−sin(t1x)| ≤ |x||t2−t1|, the

functions sin(tkx), k = 1, . . . ,K are an ε
2
E(|x|) cover of F2n. Hence cos(tkx) + i sin(tkx), k =

1, . . . ,K is an εE(|x|) cover of Gn, and we conclude that

N1(ε, P,Gn) ≤ A
Tn
ε

(56)

with P an arbitrary probability measure such that E(|x|) <∞ and A > 0, a constant that

does not depend on n.

The next step is to apply the argument that leads to Theorem 2.37 in Pollard (1984).

The theorem cannot be used directly, because the condition N1(ε, P,Gn) ≤ Aε−W is not met.

In Pollard’s proof we set δn = 1 for all n, and εn = εαn. Equations (30) and (31) in Pollard

(1984), p. 31 are valid for N1(ε, P,Gn) defined above. Hence we have as in Pollard’s proof

using his (31)

Pr

Ã
sup
|t|≤Tn

|φ̂(t)− φ(t)| > 2εn

!
≤ 2A

µ
εn
Tn

¶−1
exp

µ
− 1

128
nε2n

¶
+ (57)

+Pr

Ã
sup
|t|≤Tn

φ̂(2t) > 64

!
The second term on the right-hand side is obviously 0. The first term on the right-hand side

is bounded by

2Aε−1 exp

µ
log

µ
Tn
αn

¶
− 1

128
nε2α2n

¶
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The restrictions on αn and Tn imply that Tn
αn
= o

µq
n

logn

¶
, and hence log

³
Tn
αn

´
− 1

2
log n→

−∞. The same restrictions imply that nα2n
logn
→ ∞. The result now follows from the Borel-

Cantelli lemma. 2

Remark 1 Horowitz and Markatou (1996), Lemma 1, p. 164, claim that

sup
|t|<∞

¯̄̄
φ̂(t)− φ(t)

¯̄̄
= o

Ãr
logn

n

!
a.s. (58)

This cannot be correct, because it would imply uniform convergence of the empirical char-

acteristic function without bounds on t, a result that does not hold (see e.g. Feuerverger

and Mureika (1977), p. 89). The problem with their proof is that they assume that the

functions eitx have a finite covering number if there is no restriction on t, a statement that

is obviously not true. The rate result above does not require any assumption on the tail of

F (except existence of the mean). Such assumptions seem necessary, if one uses the usual

proof for uniform convergence to obtain a bound on the rate of convergence.

Remark 2 If the support of x is bounded we can obtain a slightly faster rate of convergence.

The proof of Theorem 1 in Csörgö (1980) shows that with bounded support the a.s. bound

is Tn(
log log n

n
)
1
2 . Hence if for 0 < γ < 1

2
, Tn = o

³
( n
log log n

)γ
´
, then the rate of convergence is at

most
¡
log logn

n

¢ 1
2
−γ
. Because the assumptions that ensure convergence with unbounded sup-

port are stronger than those for the case of bounded support we only consider the former case.

Using the same method of proof we obtain the rate of uniform convergence for a bivariate

empirical characteristic function.

Lemma 2 Let φ̂(s, t) =
R∞
−∞
R∞
−∞ eisx+itydFn(x, y) be the empirical characteristic function of

a random sample from a bivariate distribution with cdf F and with E(|x| + |y|) < ∞. For
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0 < γ < 1
2
, let22 Sn = o

³³
n

logn

´γ´
and Tn = o

³³
n

logn

´γ´
. Then

sup
|s|≤Sn,|t|≤Tn

¯̄̄
φ̂(s, t)− φ(s, t)

¯̄̄
= o(αn) a.s. (59)

with αn = o(1) and (
logn
n )

1
2−γ

αn
= O(1), i.e the rate is the same as in the one-dimensional

case.

Proof. The ε
2
covers of |s| ≤ Sn and |t| ≤ Tn generate ε

2
E(|x| + |y|) covers of cos(sx + ty),

and sin(sx+ ty) and an εE(|x|+ |y|) cover of eisx+ity. Hence (56) becomes

N1(ε, P,Gn) ≤ A
SnTn
ε2

(60)

Hence in (57) we must replace εn
Tn
by εn

Sn
εn
Tn
and in the next equation log

³
Tn
αn

´
by log

³
Sn
αn

´
+

log
³
Tn
αn

´
2.

In the sequel we also need the a.s. rate of convergence of φ̂(t)
φ(t)
. This rate depends on a

lower bound on φ(t) for t large. Define K1(t) = inf |s|≤t |φ(s)|. If φ(t) 6= 0 for all t, then

continuity of φ implies that K1(t) > 0 for all t. Hence we have the following obvious result

Lemma 3 Under the conditions of Lemma 1 we have for 0 < γ < 1
2
and Tn = o

³³
n

logn

´γ´

sup
|t|≤Tn

¯̄̄̄
¯ φ̂(t)− φ(t)

φ(t)

¯̄̄̄
¯ = o

µ
αn

θn

¶
a.s. (61)

with αn = o(1) and (
logn
n )

1
2−γ

αn
= O(1), and θn = K1(Tn).

For convergence θn must go to 0 at a rate that is the same as that of αn or slower, i.e. the

rate is at most
¡
logn
n

¢ 1
2
−γ
. This implies a restriction on the rate of Tn that depends on the tail

behavior of φ. For instance, if φ(t) ≥ C1t
−θ, then γ ≤ 1

2(θ+1)
. If φ is absolutely integrable,

then θ > 1 and this implies that γ < 1
4
.

22We could allow for different growth in Sn and Tn, but nothing is gained by this.
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4 Nonparametric estimators of g1(x− x∗) and g2(x
∗, w)

The nonparametric estimator of the density g1(x− x∗) is

ĝ1(x− x∗) =
1

2π

Z Tn

−Tn
e−it(x−x

∗) φ̂x(t)

φ̂x∗(t)
dt (62)

Lemma 4 Let φε be absolutely integrable and let φx∗(t) 6= 0 for all t. Define K1x∗(t) =

inf |s|≤t |φx∗(s)| and θn = K1x∗(Tn), and let Tn, αn satisfy the restrictions of Lemma 1. Then

a.s.

sup
−∞<x,x∗<∞

|ĝ1(x− x∗)− g1(x− x∗)| = o

µ
Tnαn

θ2n

¶
Proof. Define z = x− x∗. Then

sup
−∞<z<∞

|ĝ1(z)− g1(z)| ≤ sup
−∞<z<∞

¯̄̄̄
¯ 12π

Z Tn

−Tn
e−itz

Ã
φ̂x(t)

φ̂x∗(t)
− φx(t)

φx∗(t)

!
dt

¯̄̄̄
¯ (63)

+ sup
−∞<z<∞

¯̄̄̄
1

2π

Z −Tn

−∞
e−itzφε(t)dt

¯̄̄̄
+ sup
−∞<z<∞

¯̄̄̄
1

2π

Z ∞

Tn

e−itzφε(t)dt

¯̄̄̄
We give bounds on the terms that are uniform over −∞ < z < ∞. First, we consider the

first term on the right-hand side that is bounded by

1

2π

Z Tn

−Tn

¯̄̄̄
¯ φ̂x(t)− φx(t)

φx∗(t)

¯̄̄̄
¯
¯̄̄̄
¯̄ 1
φ̂x∗(t)
φx∗(t)

¯̄̄̄
¯̄dt+ (64)

+
1

2π

Z Tn

−Tn

¯̄̄̄
φε(t)

φx∗(t)

¯̄̄̄ ¯̄̄̄
¯ φ̂x∗(t)− φx∗(t)

φx∗(t)

¯̄̄̄
¯
¯̄̄̄
¯̄ 1
φ̂x∗(t)
φx∗(t)

¯̄̄̄
¯̄dt

By Lemma 2 we have that a.s. with K1x∗(t) = inf |s|≤t |φx∗(s)| and θn = K1x∗(Tn) Hence (64)

is a.s. bounded by (αn satisfies the restrictions of Lemma 1)

Tno(αn)

θn
³
1− o

³
αn
θn

´´ + Tno
³
αn
θn

´
θn
³
1− o

³
αn
θn

´´
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The other (non-stochastic) terms in (63) are bounded by (note that |φε(t)| is symmetric

around 0)

O

µZ ∞

Tn

|φε(t)|dt
¶

(65)

which is o(1) if φε is absolutely integrable 2.

Remark The nonparametric estimator converges a.s. uniformly for all x, x∗ if αn
θ2n
= O(1).

Also note that the result does not require an assumption on the support of x∗.

Next we consider the case that the the cf of x∗ has a countable number of ’isolated’ zeros.

For all t

φx(t) = φx∗(t)φε(t)

Hence, if the number of 0’s of φx∗(t) is countable, we have for all t, if we define
0
0
= 0,

φε(t) =
φx(t)

φx∗(t)
(66)

Hence, if we define ε = x− x∗, the Fourier inverse

g1(ε) =
1

2π

Z ∞

∞
e−itε

φx(t)

φx∗(t)
dt (67)

is well-defined. An estimator is obtained if the cf of x is replaced by the empirical cf

φ̂x(t) =
R∞
−∞ eitxdFn(x) and we integrate over [−Tn, Tn]. A change in the order of integration

gives

ĝ1(ε) =
1

2π

Z ∞

−∞

Z Tn

−Tn

eit(x−ε)

φx∗(t)
dtdFn(x) (68)

Hence, we can express the estimator as a sample average. However,

Z Tn

−Tn

¯̄̄̄
eit(x−ε)

φx∗(t)

¯̄̄̄
dt =

Z Tn

−Tn

¯̄̄̄
1

φx∗(t)

¯̄̄̄
dt

and the latter integral diverges if the cf can be 0. For instance, the cf of the uniform

distribution on [−a, a] is φx∗(t) = sin ta
ta

and
R Tn
−Tn

at
sin at

dt diverges if Tn > π
a
. In general,

symmetric bounded distributions have cf’s with infinitely, but countably many 0’s. Hence
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the integral of the inverse cf diverges if Tn is large enough. This precludes the use of e.g.

the Von Mises calculus (see e.g. Serfling (1980)), because the corresponding derivatives are

infinite.

The next step is to propose a solution to this problem. First, we assume that the

distribution is known, a common assumption in the deconvolution literature. Let η > 0 and

define

φx∗(t, η) = φx∗(t)I

µ
|φx∗(t)| >

1

2
η

¶
+
1

2
ηI

µ
|φx∗(t)| ≤

1

2
η

¶
(69)

The function φx∗(t, η) is not continuous in t and hence is not a cf. We have

sup
−∞<t<∞

|φx∗(t)− φx∗(t, η)| ≤ sup
{t||φx∗(t)| 12η}

|φx∗(t)− φx∗(t, η)| ≤ η (70)

and for all t

|φx∗(t, η)| ≥ max
½
|φx∗(t)| ,

1

2
η

¾
(71)

Consider the estimator

ĝ1(ε) = Re
1

2π

Z Tn

−Tn

φ̂x(t)

φx∗(t, ηn)
e−itεdt (72)

Note that we must take the real part of the function on the right-hand side, because the

integrand is not necessarily real. Hence

ĝ1(ε)− g1(ε) = Re
1

2π

Z Tn

−Tn

Ã
φ̂x(t)

φx∗(t, ηn)
− φx(t)

φx∗(t)

!
e−itεdt− (73)

− 1
2π

Z
|t|>Tn

φε(t)e
−itεdt

Hence for the first term on the right-hand side¯̄̄̄
¯ 12π

Z Tn

−Tn
e−itε

Ã
φ̂x(t)

φx∗(t, ηn)
− φx(t)

φx∗(t)

!
dt

¯̄̄̄
¯ ≤ 1

2π

Z Tn

−Tn

¯̄̄̄
¯ φ̂x(t)− φx(t)

φx∗(t, ηn)

¯̄̄̄
¯dt+ (74)

+
1

2π

Z Tn

−Tn

¯̄̄̄
φx(t)

φx∗(t, ηn)
− φx(t)

φx∗(t)

¯̄̄̄
dt
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First consider the second term on the right-hand side. For all t¯̄̄̄
φx(t)

φx∗(t, ηn)
− φx(t)

φx∗(t)

¯̄̄̄
≤ 2

¯̄̄̄
φx(t)

φx∗(t)

¯̄̄̄

and Z ∞

−∞

¯̄̄̄
φx(t)

φx∗(t)

¯̄̄̄
dt =

Z ∞

−∞
|φε(t)|dt <∞

Hence by dominated convergence for all sequences Tn and ηn = o(1), the second term on the

right-hand side of (74) converges to 0.

For first term on the right-hand side of (74) we have

1

2π

Z Tn

−Tn

¯̄̄̄
¯ φ̂x(t)− φx(t)

φx∗(t, ηn)

¯̄̄̄
¯dt ≤ CTn

sup|t|≤Tn

¯̄̄
φ̂x(t)− φx(t)

¯̄̄
inf |t|≤Tn |φx∗(t, ηn)|

= o

µ
αnTn
ηn

¶
(75)

because for Tn sufficiently large the interval [−Tn, Tn] always contains 0’s of φx∗(t). Without

loss of generality we can choose ηn = |φx∗(Tn)| 6= 0. The rate of convergence is essentially

the same as in the case that φx∗(t) is nowhere 0.

Hence we have proved

Lemma 5 Let φε be absolutely integrable and let φx∗(t) be a known cf with a countable

number of zeros. Define for the sequence Tn that satisfies the restrictions of Lemma 1,

ηn = |φx∗(Tn)| 6= 0, and let αn satisfy the restrictions of Lemma 1 and in addition αn
ηn
= o(1).

Then a.s. for the estimator in (72)

sup
(x,x∗)∈X×X∗

|ĝ1(x− x∗)− g1(x− x∗)| = o

µ
Tnαn

ηn

¶

with X ,X ∗ the support of x, x∗, respectively. These supports may be bounded.

Next we consider the case that the cf of x∗ is estimated. We redefine φx∗(t, ηn) as

φx∗(t, ηn) = φx∗(t)I

µ
|φx∗(t)| >

1

2
ηn

¶
+
1

2
ηnsign(φx∗(t))I

µ
|φx∗(t)| ≤

1

2
ηn

¶
(76)
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with sign(φ(t)) short-hand for sign(Reφ(t)).23 Note that this change of definition leaves

|φx∗(t, ηn)| unchanged, and all statements that depend on φx∗(t, ηn) only through |φx∗(t, ηn)|

still apply. We also define

φ̂x∗(t, ηn) = φ̂x∗(t)I

µ¯̄̄
φ̂x∗(t)

¯̄̄
>
1

2
ηn

¶
+
1

2
ηnsign(φ̂x∗(t))I

µ¯̄̄
φ̂x∗(t)

¯̄̄
≤ 1
2
ηn

¶
(77)

φ̃x∗(t, ηn) = φ̂x∗(t)I

µ
|φx∗(t)| >

1

2
ηn

¶
+
1

2
ηnsign(φx∗(t))I

µ
|φx∗(t)| ≤

1

2
ηn

¶
(78)

From Lemma 1 we have for all |t| ≤ Tn

|φ̃x∗(t)| ≥ |φx∗(t)|− o(αn) a.s. (79)

By (78) we have that |φ̃x∗(t, ηn)| ≥ 1
2
ηn unless both |φx∗(t)| > 1

2
ηn and |φ̃x∗(t)| < 1

2
ηn. In

that case by (79)

|φ̃x∗(t, ηn)| = |φ̃x∗(t)| ≥
1

2
ηn − o(αn) a.s. (80)

Hence

inf
|t|≤Tn

|φ̃x∗(t, ηn)| ≥
1

2
ηn − o(αn) a.s. (81)

Obviously

sup
|t|≤Tn

|φ̃x∗(t, ηn)− φx∗(t, ηn)| = o(αn) a.s. (82)

Also

φ̂x∗(t, ηn)− φ̃x∗(t, ηn) = φ̂x∗(t)− sign(φx∗(t))
1

2
ηn if |φ̂x∗(t)| ≥

1

2
ηn, |φx∗(t)| <

1

2
ηn

(83)

= sign(φ̂x∗(t))
1

2
ηn − φ̂x∗(t) if |φ̂x∗(t)| <

1

2
ηn, |φx∗(t)| ≥

1

2
ηn

and 0 otherwise. By Lemma 1 for |t| ≤ Tn, |φ̂x∗(t) − φx∗(t)| = o(αn) with probability 1.

Hence, if αn
ηn
= o(1), then for all t such that |t| ≤ Tn, |φ̂x∗(t)| ≥ 1

2
ηn, |φx∗(t)| < 1

2
ηn the sup

of |φ̂x∗(t, ηn)− φ̃x∗(t, ηn)| is o(αn) almost surely. For the second line in (83) we prove in the

23Without loss of generality, we set sign(0) = 1.
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same way that sup of the absolute deviation is o(αn) almost surely, so that we have

sup
|t|≤Tn

|φ̂x∗(t, ηn)− φ̃x∗(t, ηn)| = o(αn) a.s. (84)

The estimator is

ĝ1(ε) = Re
1

2π

Z Tn

−Tn

φ̂x(t)

φ̂x∗(t, ηn)
e−itεdt (85)

First we consider the infeasible estimator

ĝ1(ε) = Re
1

2π

Z Tn

−Tn

φ̂x(t)

φ̃x∗(t, ηn)
e−itεdt (86)

and we determine its rate of convergence. We need a bound on¯̄̄̄
¯ 12π

Z Tn

−Tn
e−itε

Ã
φ̂x(t)

φ̂x∗(t, ηn)
− φx(t)

φx∗(t)

!
dt

¯̄̄̄
¯ ≤ (87)

1

2π

Z Tn

−Tn

¯̄̄̄
¯ φ̂x(t)− φx(t)

φ̃x∗(t, ηn)

¯̄̄̄
¯dt+ 1

2π

Z Tn

−Tn

¯̄̄̄
φx(t)

φ̃x∗(t, ηn)
− φx(t)

φx∗(t)

¯̄̄̄
dt

First, consider the second term on the right-hand side. The integrand in that term is bounded

by ¯̄̄̄
φx(t)

φ̃x∗(t, ηn)

¯̄̄̄
+

¯̄̄̄
φx(t)

φx∗(t)

¯̄̄̄
(88)

For the first term ¯̄̄̄
φx(t)

φ̃x∗(t, ηn)

¯̄̄̄
=

¯̄̄̄
φx(t)

φx∗(t, ηn)

¯̄̄̄
1¯̄̄

φ̃x∗(t,ηn)−φx∗(t,ηn)
φx∗(t,ηn)

+ 1
¯̄̄ ≤

≤ |φε(t)|
1

1−
¯̄̄
φ̃x∗(t,ηn)−φx∗ (t,ηn)

φx∗ (t,ηn)

¯̄̄ ≤ |φε(t)| 1

1− o
³
αn
ηn

´
for |t| ≤ Tn and almost surely. Hence (88) is bounded by

|φε(t)|
2− o

³
αn
ηn

´
1− o

³
αn
ηn

´ a.s. (89)
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By dominated convergence we have that if αn
ηn
= o(1), then the second term on the right-hand

side of (87) is o(1) almost surely.

By Lemma 1 and (81) the first term on the right-hand side of (87) is bounded by

C sup
|t|≤Tn

¯̄̄
φ̂x(t)− φx(t)

¯̄̄ Tn
ηn
= o

µ
αnTn
ηn

¶
a.s. (90)

Finally

|ĝ1(ε)− g̃1(ε)| ≤
1

2π

Z
|t|≤Tn

¯̄̄̄
¯ φ̂x(t)

φ̃x∗(t, ηn)

¯̄̄̄
¯
¯̄̄̄
¯ φ̂x∗(t, ηn)− φ̃x∗(t, ηn)

φ̂x∗(t, ηn)

¯̄̄̄
¯dt ≤ (91)

≤ o

µ
αn

ηn

¶Z
|t|≤Tn

¯̄̄̄
¯ φ̂x(t)

φ̃x∗(t, ηn)

¯̄̄̄
¯dt a.s.

with Z
|t|≤Tn

¯̄̄̄
¯ φ̂x(t)

φ̃x∗(t, ηn)

¯̄̄̄
¯dt ≤

Z
|t|≤Tn

¯̄̄̄
¯ φ̂x(t)− φx(t)

φ̃x∗(t, ηn)

¯̄̄̄
¯dt+

Z
|t|≤Tn

¯̄̄̄
φx(t)

φ̃x∗(t, ηn)

¯̄̄̄
dt ≤ (92)

o

µ
αnTn
ηn

¶
+

R
|t|≤Tn |φε(t)|dt

1− o
³
αn
ηn

´ <∞ a.s

We have proved

Lemma 6 Let φε be absolutely integrable and let φx∗(t) be a cf with a countable number of

0’s. Define for the sequence Tn that satisfies the restrictions of Lemma 1, ηn = |φx∗(Tn)| 6= 0,

and let αn satisfy the restrictions of Lemma 1 and in addition αn
ηn
= o(1). Then a.s. for the

estimator in (85)

sup
(x,x∗)∈X×X∗

|ĝ1(x− x∗)− g1(x− x∗)| = o

µ
Tnαn

ηn

¶

with X ,X ∗ the support of x, x∗, respectively. These supports may be bounded.

Remark This proof applies to the case considered in Lemma 4 as well. Hence, a more careful

analysis reveals that we can use the absolute integrability of the cf of ε to deal with the sec-

ond term in the bound which is o(1) a.s. under the conditions that ensure a.s. convergence

to 0 of the first term. This result is consistent with the result in Diggle and Hall (1993) who
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indicate that the convergence speed is not affected by the estimation of the denominator. In

the sequel we will use the rate established in this lemma.

For the nonparametric estimator of g2(x∗, w) we use the same method of proof as in

Lemma 5. This means that there are no restrictions on the support of the random variables.

The estimator is

ĝ2(x
∗, w) = Re

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw φ̂xw(s, t)φ̂x∗(s)

φ̂x(s, γn)
dtds (93)

with an obvious definition of φ̂x(s, γn).

Lemma 7 Let φx∗w(t) be absolutely integrable and let φx(t) have a countable number of 0’s.

Define for the sequence Sn that satisfies the restrictions of Lemma 1, γn = |φx(Sn)| 6= 0,

and let αn satisfy the restrictions of Lemma 1 and in addition αn
γn
= o(1). Then a.s. for the

estimator in (93)

sup
(x∗,w)∈X∗×W

|ĝ2(x∗, w)− g2(x
∗, w)| = o

µ
SnTnαn

γn

¶

The supports of x∗, x, w, denoted by X ∗,X ,W respectively, may be bounded.

Proof. We have

sup
(x∗,w)∈X∗×W

|ĝ2(x∗, w)− g2(x
∗, w)| ≤ (94)

≤ sup
(x∗,w)∈X∗×W

¯̄̄̄
¯ 1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw

Ã
φ̂xw(s, t)φ̂x∗(s)

φ̂x(s)
− φxw(s, t)φx∗(s)

φx(s)

!
dsdt

¯̄̄̄
¯+

+ sup
(x∗,w)∈X∗×W

¯̄̄̄Z
|s|>Sn

Z Tn

−Tn
e−isx

∗−itwφx∗w(s, t)dsdt

¯̄̄̄
+

+ sup
(x∗,w)∈X∗×W

¯̄̄̄Z Sn

−Sn

Z
|t|>Tn

e−isx
∗−itwφx∗w(s, t)dsdt

¯̄̄̄
+

+ sup
(x∗,w)∈X∗×W

¯̄̄̄Z
|s|>Sn

Z
|t|>Tn

e−isx
∗−itφx∗w(s, t)dsdt

¯̄̄̄
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If φx∗w(t) is absolutely integrable, then the final three terms are o(1). The first term is

bounded by
1

(2π)2

Z Sn

−Sn

Z Tn

−Tn

¯̄̄̄
¯ φ̂x∗(s)

φ̂x(s, γn)

¯̄̄̄
¯ |φ̂xw(s, t)− φxw(s, t)|dsdt+ (95)

+
1

(2π)2

Z Sn

−Sn

Z Tn

−Tn

¯̄̄̄
¯ φxw(s, t)φ̂x(s, γn)

¯̄̄̄
¯ |φ̂x∗(s)− φx∗(s)|dsdt+

+
1

(2π)2

Z Sn

−Sn

Z Tn

−Tn

¯̄̄̄
¯φxw(s, t)φx∗(s)φ̂x(s, γn)

− φxw(s, t)φx∗(s)

φx(s, γn)

¯̄̄̄
¯dsdt

Using the same line of proof as in Lemma 5, the final term is o(1) almost surely, if αn
γn
= o(1).

Using Lemma 2 the first two terms are almost surely of order o(αn)TnSn
γn−o(αn)

= o
³
αnTnSn

γn

´
. 2

5 Consistency

First we linearize of the moment function. Let h be the joint density of x∗, x, w. Under

the assumptions made h(x∗, x, w) = g1(x − x∗)g2(x
∗, w). Both the population densities

g10, g20 and their estimators are obtained by Fourier inversion. Because the corresponding

characteristic functions are assumed to be absolutely integrable, g10, g20 are bounded on their

support. Their estimators are bounded for finite n. Hence without loss of generality we can

restrict g1, g2 and hence h to the set of densities that are bounded on their support.

The moment function is

m(y, x, w, θ, h) =

R
X∗

∂f∗

∂θ
(y|x∗, w; θ)h(x∗, x, w)dx∗R

X∗ f
∗(y|x∗, w; θ)h(x∗, x, w)dx∗ (96)

The joint density of y, x, w is denoted by f(y, x, w; θ). The population density of x∗, x, w is

denoted by h0 and f0(y, x, w, θ) =
R
X∗ f

∗(y|x∗, w; θ)h0(x∗, x, w)dx∗.

Both the numerator and denominator in (96) are linear in h. Hence m is Fréchet differ-

entiable in h and

sup
y,x,w

|m(y, x, w, θ, h)−m(y, x, w, θ, h0)− (97)

−
Z
X∗

∙
f∗(y|x∗, w; θ)
f0(y, x, w; θ)

(s∗(y|x∗, w; θ)− s0(y|x,w; θ))
¸
.
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.(h(x∗, x, w)− h0(x
∗, x, w))dx∗| = o(||h− h0||)

with s∗ and s the scores of f∗(y|x∗, w; θ) and f(y|x,w; θ) respectively.

To prove consistency we need that or all θ ∈ Θ

|m(y, x, w, θ, h0)| ≤ b1(y, x, w) (98)

with E(b1(y,w, x)) <∞. For all h in a (small) neighborhood of h0 and all θ ∈ B¯̄̄̄Z
X∗

f∗(y|x∗, w; θ)
f(y, x, w; θ)

(s∗(y|x∗, w; θ)− s(y|x,w; θ))dx∗
¯̄̄̄
≤ b2(y, w, x) (99)

with E(b2(y,w, x)) <∞.

The following weak restrictions on the parametric model are sufficient. There are con-

stants 0 < m0 < m1 <∞ such that for all (y, x∗, w) ∈ Y × X ∗ ×W and θ ∈ Θ

m0 ≤ f∗(y|x∗, w; θ) ≤ m1¯̄̄̄
∂f∗(y|x∗, w; θ)

∂θ

¯̄̄̄
≤ m1

This is sufficient for (98). For (99) we need in addition that for all (y, w) ∈ Y×W and θ ∈ Θ

Z
X∗

f∗(y|x∗, w; θ)dx∗ <∞

¯̄̄̄Z
X∗

∂f∗(y|x∗, w; θ)
∂θ

dx∗
¯̄̄̄
<∞

It may be possible to relax this assumption using the type of expansion considered in the

asymptotic normality proof.

If assumption (99) holds then by Proposition 2, p. 176 in Luenberger (1969)

|m(z, θ, h)−m(z, θ, h0)| ≤ b2(y, x, w) sup
x∗,x,w

|h(x∗, x, w)− h0(x
∗, x, w)| (100)

Hence Assumptions 5.4 and 5.5. in Newey (1994) are satisfied and we conclude that the

semiparametric MLE is consistent if we use a (uniformly in x∗, x, w) estimator for h.
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Theorem 1 If

(A1) The parametric model f∗(y|x∗, w; θ) is such that there are constants 0 < m0 < m1 <∞

such that for all (y, x∗, w) ∈ Y × X ∗ ×W and θ ∈ Θ

m0 ≤ f∗(y|x∗, w; θ) ≤ m1¯̄̄̄
∂f∗(y|x∗, w; θ)

∂θ

¯̄̄̄
≤ m1

and that for all (y,w) ∈ Y ×W and θ ∈ Θ

Z
X∗

f∗(y|x∗, w; θ)dx∗ <∞

¯̄̄̄Z
X∗

∂f∗(y|x∗, w; θ)
∂θ

dx∗
¯̄̄̄
<∞

(A2) The characteristic functions of ε and x∗, w are absolutely integrable.

(A3) For 0 < γ < 1
2
, Tn = o

³³
n

logn

´γ´
, Sn = o

³³
n

logn

´γ´
, αn = o(1), (

logn
n )

1
2−γ

αn
= O(1),

θn = inf |s|≤Tn |φx∗(s)|, γn = inf |s|≤Tn |φx(s)|, we have Tnαn
θn

= O(1), SnTnαn
γn

= O(1).

then for the semi-parametric MLE

θ̂ = argmax
θ∈Θ

nX
i=1

ln f̂(yi|xi, wi; θ)

we have

θ̂
p→ θ0

6 Asymptotic distribution

The first step is to derive the correction term that accounts for the fact that the density

h(x∗, x, w) is estimated. This requires to linearize the moment function with respect to

the estimated densities. In the sequel, the moment functions are evaluated at θ = θ0, and

the dependence on θ0 is suppressed in the notation, e.g. f∗(y|x∗, w) = f∗(y|x∗, w; θ0) etc.
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In the consistency proof we linearized with respect to the densities g1 and g2 that appear

in the moment function. This linear approximation does not give the asymptotic linear

representation of the moment function, because it involves estimated densities. For that

reason we linearize here with respect to the densities fx, fx∗, fxw. The linearization should

avoid the infinite derivatives associated with distributions of bounded support. This leads

us to linearize mn(y, x, w, h) where h = (fx fx∗ fxw)
0, and

mn(y, x, w, h) =

R
X∗

∂f∗(y|x∗,w)
∂θ

g1n(x− x∗)g2n(x
∗, w)dx∗R

X∗ f
∗(y|x∗, w)g1n(x− x∗)g2n(x∗, w)dx∗

(101)

and

g1n(x− x∗) =
1

2π

Z Tn

−Tn
e−it(x−x

∗) φx(t)

φx∗(t, ηn)
dt (102)

g2n(x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itwφxw(s, t)φx∗(s)

φx(s, γn)
dsdt (103)

Because the moment function is itself a function of (modified) characteristic functions, its

Fréchet derivatives can be computed using the chain rule (Luenberger (1969), Proposition 1,

p. 176). The characteristic functions are linear functionals. The Fréchet differential of the

modified characteristic function defined in (69) is at fx∗0

Dφx∗0(t, ηn)(fx∗ − fx∗0) = I

µ
|φx∗0(t)| >

1

2
ηn

¶Z
X∗

eitx(fx∗(x̃)− fx∗0(x̃))dx̃ (104)

with φx∗0(t) the characteristic function of fx∗0. The Fréchet derivative does not exist if

φx∗0(t) =
1
2
ηn, but we can set that derivative to any value without changing the following

results. An analogous result holds for φx(t, γn).

Although we formally take the derivative with respect to fx, fx∗ , fxw, we can also take the

derivative withe respect to the corresponding characteristic functions φx, φx∗, φxw. This gives

the same result. In the sequel we express the differential as a linear functional of fx, fx∗ , fxw,

but if convenient as a linear functional of φx, φx∗, φxw.

As an intermediate step we list the Fréchet derivatives of the densities g1n, g2n with respect
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to fx, fx∗ , fxw.

Dg1n(x− x∗)(hx) =

Z
X
K1xn(x̃, x− x∗)hx(x̃)dx̃

Dg2n(x∗, w)(hx) =
Z
X
K2xn(x̃, x

∗, w)hx(x̃)dx̃

Dg1n(x− x∗)(hx∗) =

Z
X∗

K1x∗n(x̃, x− x∗)hx∗(x̃)dx̃

Dg2n(x∗, w)(hx∗) =
Z
X∗

K2x∗n(x̃, x
∗, w)hx∗(x̃)dx̃

Dg1n(x∗, w)(hxw) =
Z
W

Z
X
K1xwn(x̃, w̃, x− x∗)hxw(x̃, w̃)dx̃dw̃

Dg2n(x∗, w)(hxw) =
Z
W

Z
X
K2xwn(x̃, w̃, x

∗, w)hxw(x̃, w̃)dx̃dw̃

with

K1xn(x̃, x− x∗) =
1

2π

Z Tn

−Tn

e−it(x−x
∗)+itx̃

φx∗(t, ηn)
dt

K2xn(x̃, x
∗, w) = − 1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃I

µ
|φx(s)| >

1

2
γn

¶
φxw(s, t)φx∗(s)

φx(s, γn)
2

dsdt

K1x∗n(x̃, x− x∗) = − 1
2π

Z Tn

−Tn
I

µ
|φx∗(t)| >

1

2
ηn

¶
e−it(x−x

∗)+itx̃ φx(t)

φx∗(t, ηn)
2
dt

K2x∗n(x̃, x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃φxw(s, t)

φx(t, γn)
dsdt

K1xwn(x̃, w̃, x− x∗) ≡ 0

K2xwn(x̃, w̃, x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃+itw̃ φx∗(s)

φx(s, γn)
dsdt

Note that e.g. K1xn is the Fréchet derivative of g1 with respect to fx. If Tn → ∞ and

ηn → 0, then possibly |K1nx(x̃, x − x∗)| → ∞ if x∗ has bounded support. However, if fx is

the population density of x, then

Dg1n(x− x∗)(fx) =
1

2π

Z Tn

−Tn
e−it(x−x

∗) φx(t)

φx∗(t, ηn)
dt

which is finite if n→∞, because of the absolute integrability of the characteristic function of

ε. The same remark applies toK2xn(x̃, x
∗, w), K1x∗n(x̃, x−x∗), K2x∗n(x̃, x

∗, w), K2xwn(x̃, w̃, x
∗, w).
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A second application of the chain rule gives the Fréchet derivatives of the moment function

with respect to h.

Dm(y, x, w, h)(hx) =
Z
X
Lxn(x̃, y, x, w)hx(x̃)dx̃

Dm(y, x, w, h)(hx∗) =
Z
X∗

Lx∗n(x̃, y, x, w)hx∗(x̃)dx̃

Dm(y, x, w, h)(hxw) =
Z
W

Z
X
Lxwn(x̃, w̃, y, x, w)hxw(w̃, x̃)dx̃dw̃

with

Lxn(x̃, y, x, w) =

Z
X∗

f∗(y|x∗, w)
f0n(y|x,w)

(s∗(y|x∗, w)− s0n(y|x,w)).

.(K1xn(x̃, x− x∗)g2n(x
∗, w) +K2xn(x̃, x

∗, w)g1n(x− x∗))dx∗

Lx∗n(x̃, y, x, w) =

Z
X∗

f∗(y|x∗, w)
f0n(y|x,w)

(s∗(y|x∗, w)− s0n(y|x,w)).

.(K1x∗n(x̃, x− x∗)g2n(x
∗, w) +K2x∗n(x̃, x

∗, w)g1n(x− x∗))dx∗

Lxwn(x̃, w̃, y, x, w) =

Z
X∗

f∗(y|x∗, w)
f0n(y|x,w)

(s∗(y|x∗, w)− s0n(y|x,w)).

.K2xwn(x̃, w̃, x
∗, w)g1n(x− x∗)dx∗

We also need the second-order Fréchet derivatives. The first step is to obtain the deriv-

atives of f0(y|x,w) with respect to fx,fx∗ and fw|x

Mkn(x̃, y, x, w) =

Z
X∗

f∗(y|x∗, w).

. (g2n(x
∗, x)K1kn(x̃, x− x∗) + g1n(x− x∗)K2kn(x̃, x

∗, w))dx∗

for k = x, x∗, and

Mxwn(x̃, w̃, y, x, w) =

Z
X∗

f∗(y|x∗, w).

.g1n(x− x∗)K2xwn(x̃, w̃, x
∗, w)dx∗

We also need the derivatives ofK1xn, K2xn,K1x∗n,K2x∗n, K2xwn with respect to fx,fx∗ and
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fw|x

K1x,xn(x̃1, x̃2, x− x∗) ≡ 0

K1x,x∗n(x̃1, x̃2, x− x∗) = − 1
2π

Z Tn

−Tn
I

µ
|φx∗(t)| >

1

2
ηn

¶
e−it(x−x

∗)+itx̃1+itx̃2

φx∗(t, ηn)
2

dt

K1x,xwn(x̃1, x̃2, w̃2, x− x∗) ≡ 0

K2x,xn(x̃1, x̃2, x
∗, w) = − 2

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃1+isx̃2I

µ
|φx(s)| >

1

2
γn

¶
φxw(s, t)φx∗(s)

φx(s, γn)
3

dsdt

K2x,x∗n(x̃1, x̃2, x
∗, w) = − 1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃1+isx̃2I

µ
|φx(s)| >

1

2
γn

¶
φxw(s, t)

φx(s, γn)
2
dsdt

K2x,xwn(x̃1, x̃2, w̃2, x
∗, w) = − 1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃1+itsx̃2+itw̃2 .

.I

µ
|φx(s)| >

1

2
γn

¶
φx∗(s)

φx(s, γn)
2
dsdt

K1x∗,x∗n(x̃, x− x∗) =
1

π

Z Tn

−Tn
I

µ
|φx∗(t)| >

1

2
ηn

¶
e−it(x−x

∗)+itx̃1+itx̃2 φx(t)

φx∗(t, ηn)
3
dt

K1x∗,xwn(x̃1, x̃2, w̃2, x− x∗) ≡ 0

K2x∗,x∗n(x̃1, x̃2, x
∗, w) ≡ 0

K2x∗,xwn(x̃1, x̃2, x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃1+isx̃2+itw̃2 1

φx(t, γn)
dsdt

K1xw,xwn(x̃1, w̃1, x̃2, w̃2, x− x∗) ≡ 0

K2xw,xwn(x̃1, w̃1, x̃2, w̃2, x
∗, w) ≡ 0

Finally define

Nkn(x̃, x
∗, y, x, w) = − f∗(y|x∗, w)

f0n(y|x,w)2
(s∗(y|x∗, w)− s0n(y|x,w))Mkn(x̃, y, x, w)−

−f
∗(y|x∗, w)

f0n(y|x,w)
Lkn(x̃, y, x, w)

for k = x, x∗, and

Nxwn(x̃, w̃, x
∗, y, x, w) = − f∗(y|x∗, w)

f0n(y|x,w)2
(s∗(y|x∗, w)− s0n(y|x,w))Mxwn(x̃, w̃, y, x, w)−
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−f
∗(y|x∗, w)

f0n(y|x,w)
Lxwn(x̃, w̃, y, x, w)

The second-order Fréchet derivatives of the moment function are

Lkln(x̃1, x̃2, y, w, x) =

Z
X∗

Nln(x̃2, x
∗, y, x, w) ((K1kn(x̃1, x− x∗)g2n(x

∗, w)+

+K2kn(x̃1, x
∗, w)g1n(x− x∗))dx∗ +

Z
X∗

f∗(y|x∗, w)
f0n(y|x,w)

(s∗(y|x∗, w)− s0n(y|x,w)).

.(K1kn(x̃1, x− x∗)K2ln(x̃2, x
∗, w) +K1kln(x̃1, x̃2, x− x∗)g2n(x

∗, w)+

+K2kn(x̃1, x
∗, w)K1ln(x̃2, x− x∗) +K2kln(x̃1, x̃2, x

∗, w)g1n(x− x∗))dx∗

for k, l = x, x∗, and

Lxw,ln(x̃1, w̃1, x̃2, y, w, x) =

Z
X∗

Nln(x̃2, x
∗, y, x, w) ((K2xwn(x̃1, x

∗, w)g1n(x− x∗))dx∗+

+

Z
X∗

f∗(y|x∗, w)
f0n(y|x,w)

(s∗(y|x∗, w)− s0n(y|x,w)).

.(K2xwn(x̃1, w̃1, x
∗, w)K1ln(x̃2, x− x∗) +K2xwln(x̃1, w̃1, x̃2, x

∗, w)g1n(x− x∗))dx∗

for l = x, x∗.

The first-order Fréchet derivative is used to derive the correction term that accounts for

the fact that the densities fx,fx∗ and fxw are estimated. This correction term is equal to the

sum of the conditional expectations of the Fréchet derivatives of the moment function with

respect to these densities evaluated in θ0 and in the population fx, fx∗, fxw given x,w, where

the expectation is taken with respect to the population distribution of y, x, w with density

f(y, x, w; θ0) = f0(y, x, w). We find

δx(x̃) = E(Lxn(x̃, y, x, w)) = −
Z
X∗

Z
Y×X×W

f∗(y|x∗, w)s0n(y|x,w)f0(x,w).

.(K1xn(x̃, x− x∗)g2n(x
∗, w) +K2xn(x̃, x

∗, w)g1n(x− x∗))dwdxdydx∗

δx∗(x̃
∗) = E(Lx∗n(x̃

∗, y, x, w)) = −
Z
X∗

Z
Y×X×W

f∗(y|x∗, w)s0n(y|x,w)f0(x,w).
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.(K1x∗n(x̃
∗, x− x∗)g2n(x

∗, w) +K2x∗n(x̃
∗, x∗, w)g1n(x− x∗))dwdxdydx∗

δxw(x̃, w̃) = E(Lxwn(x̃, w̃, y, x, w)) = −
Z
X∗

Z
Y×X×W

f∗(y|x∗, w)s0n(y|x,w)f0(x,w).

.K2xwn(x̃, w̃, x
∗, w)g1n(x− x∗))dwdxdydx∗

where the notation for the argument indicates which random variable enters the correction

term. The correction term now is

α(x,w, x∗) = δx(x) + δx∗(x
∗) + δxw(x,w) (105)

At the population densities we have that if Tn = Sn = ∞ and ηn = γn = 0, E(δx(x)) =

E(δx∗(x
∗)) = E(δxw(x,w)) = 0 so that (105) is indeed the correction term.

We now prove that the semi-parametric MLE is asymptotically linear. We essentially

follow the steps of Newey (1994). Define

mn(θ0, ĥ) =
1

n

nX
i=1

mn(yi, zi, ĥ) (106)

with ĥ = (f̂x f̂x∗ f̂xw)
0 and mn defined in (101). The population densities are denoted by

h0 = (f̂x0 f̂x∗0 f̂xw0)
0.

If the first two statements of assumption A1 in Theorem 1 hold, then |s∗(y|x∗, w; θ0)|,

f0n(y|x,w), |s0n(y|x,w)| are also bounded from 0 and ∞ on their support and for all h.

From their definition |g1n(x− x∗)| and |g2n(x∗, w)| are also bounded on on their support for

all h, and the same is true for |K1xn|,|K2xn|, |K1x∗n|, |K2x∗n|, |K2xwn| and |K1x,x∗n|, |K2x,xn|,

|K2x,x∗n|, |K2x,xwn|, |K1x∗,x∗n|, |K2x∗,xwn|. This in turn implies that |Lxn|, |Lx∗n|, |Lxwn| and

|Mxn|, |Mx∗n|, |Mxwn| are bounded functions for all h, so that the same is true for |Nxn|,

|Nx∗n|, |Nxwn|. Together this implies that the second-order Fréchet derivatives are bounded

functions of their arguments for all h and certainly for h in some neighborhood of h0. By

Proposition 3, p. 177 in Luenberger (1969) this implies that (to economize we use the same

notation for the integration variables and the arguments of h)

sup
(x̃,x̃∗,w̃)∈X×X∗×W

|mn(y, x, w, h(x̃, x̃
∗, w̃))− (107)
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−mn(y, x, w, h0(x̃, x̃
∗, w̃))−

Z
X
Lxn(x̃, y, x, w)(fx(x̃)− fx0(x̃))dx̃−

−
Z
X∗

Lx∗n(x̃
∗, y, x, w)(fx∗(x̃

∗)− fx∗0(x̃
∗))dx̃∗−

−
Z
X

Z
W
Lxwn(x̃, w̃, y, x, w)(fxw(x̃, w̃)− fxw0(x̃, w̃))dx̃dw̃| ≤

≤ b3(y, x, w) sup
|s|≤Sn,|t|≤Tn

|φ(s, t)− φ0(s, t)|2

where φ = (φx φx∗ φxw)
0 and φ0 the same characteristic functions for the population dis-

tributions. The function b3(y, x, w) is bounded and hence E(b3(y, x, w)) < ∞. Hence,

if we estimate fx, fx∗, fxw by their empirical distributions, that assign 1
n
to observations

xi, wi, i = 1, . . . , n and 1
n1
to x∗i , wi, i = 1, . . . , n1

¯̄̄̄
¯√nmn(θ0, ĥ)−

1√
n

nX
i=1

µ
mn(yi, xi, wi, h0) +

Z
X
Lxn(x̃, yi, xi, wi)(f̂x(x̃)− fx0(x̃))dx̃+

(108)

+

Z
X∗

Lx∗n(x̃
∗, yi, xi, wi)(f̂x∗(x̃

∗)− fx∗0(x̃
∗))dx̃∗+

+

Z
X

Z
W
Lxwn(x̃, w̃, yi, xi, wi)(f̂xw(x̃, w̃)− fxw0(x̃, w̃))dx̃dw̃

¶¯̄̄̄
≤

≤ 1

n

nX
i=1

b3(yi, zi)
√
n sup
|s|≤Sn,|t|≤Tn

|φ̂(s, t)− φ0(s, t)|2

The right-hand side is o(1) almost surely if the Sn, Tn, αn satisfy the conditions in Lemmas

1 and 2. Note that in the notation we do not distinguish between the sample sizes in the

two samples. It is obvious that no assumption on the relative rate at which these samples

sizes increase is needed. It suffices that both go to ∞.

The next step is the stochastic equicontinuity of this asymptotically equivalent expression

which can be checked for each term. For instance we need to show¯̄̄̄
¯ 1√n

nX
i=1

µZ
X
Lxn(x̃, yi, xi, wi)(f̂x(x̃)− fx0(x̃))dx̃− (109)

−
Z
Y

Z
X

Z
W

Z
X
Lxn(x̃, y, x, w)(f̂x(x̃)− fx0(x̃))dx̃f0(y, x, w)dydxdw

¶¯̄̄̄
= op(1)
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From the definition of Lxn we must consider terms as¯̄̄̄
¯ 12π

Z Tn

−Tn

1√
n

nX
i=1

Z
X∗

¡
h(yi, xi, wi, x

∗)g2n(x
∗, wi)e

−it(xi−x∗)− (110)

−
Z
Y

Z
X

Z
W
h(y, x, w, x∗)g2n(x

∗, w)e−it(x−x
∗)f0(y, x, w)dydxdw

¶
dx∗.

.
φ̂x(t)− φx0(t)

φx∗(t, ηn)
dt

¯̄̄̄
¯

with

h(y, x, w, x∗) =
f∗(y|x∗, w)
f0n(y|x,w)

(s∗(y|x∗, w)− s0n(y|x,w))

which is bounded by

1

2π
sup
|t|≤Tn

Tn

¯̄̄̄
¯ φ̂x(t)− φx0(t)

φx∗(t, ηn)

¯̄̄̄
¯
¯̄̄̄
¯ 1√n

nX
i=1

µZ
X∗

h(yi, xi, wi, x
∗)g2n(x

∗, wi)
1

Tn

Z Tn

−Tn
e−it(xi−x

∗)dtdx∗−

(111)

−
Z
Y

Z
X

Z
W

Z
X∗

h(y, x, w, x∗)g2n(x
∗, w)

1

Tn

Z Tn

−Tn
e−it(x−x

∗)dtdx∗f0(y, x, w)dydxdw
¶¯̄̄̄

The second factor is a normalized sum of i.i.d. mean 0 random variables. This sum is Op(1)

if the second moment of these random variables is finite. We have¯̄̄̄Z
X∗

h(y, x, w, x∗)g2n(x
∗, w)

1

Tn

Z Tn

−Tn
e−it(x−x

∗)dtdx∗
¯̄̄̄
≤ 2

Z
X∗
|h(y, x, w, x∗)g2n(x∗, w)|dx∗ ≤

(112)

≤ C

Z
X∗
|g2n(x∗, w)|dx∗

if h is bounded for which (109) is sufficient. By dominated convergence the second factor

converges to f0(w) which is also bounded by (109). We conclude that the equicontinuity

condition is satisfied if

sup
|t|≤Tn

Tn

¯̄̄̄
¯ φ̂x(t)− φx0(t)

φx∗(t, ηn)

¯̄̄̄
¯ = op(1) (113)

Because the left-hand side is o
³
Tnαn
ηn

´
almost surely, this is true under the same conditions

that ensure uniform consistency of ĝ1(x − x∗) (see Lemma 6). The rest of the proof of

stochastic equicontinuity is analogous, except that for some terms the conditions coincide
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with those of Lemma 7 that ensure uniform consistency of ĝ2(x∗, w). The correction term for

the estimation of fx∗ involves an independent sample of size n1. From the proof it is clear

that stochastic equicontinuity holds of both sample sizes go to ∞ and that no assumption

on the relative rate is needed.

By (109) the correction term for the fact that fx is estimated is

√
n

Z
X

Z
Y

Z
X

Z
W
Lxn(x̃, y, x, w)f0(y, x, w)dydxdw(f̂x(x̃)− fx0(x̃))dx̃ = (114)

=
1√
n

nX
i=1

δx(xi)−
√
n

Z
Y

Z
X

Z
W

Z
X
Lxn(x̃, y, x, w)fx0(x̃)dx̃f0(y, x, w)dydxdw

Now consider

√
n

Z
X
Lxn(x̃, y, x, w)fx0(x̃)dx̃ =

√
n

Z
X∗

h(y, x, w, x∗)

µ
g2n(x

∗, w)

Z
X
K1xn(x̃, x− x∗)fx0(x̃)dx̃+

(115)

+g1n(x− x∗)

Z
X
K2xn(x̃, x

∗, w)fx0(x̃)dx̃
¶
dx∗

Note Z
X
K1xn(x̃, x− x∗)fx0(x̃)dx̃ = g1n(x− x∗)

and

Z
X
K2xn(x̃, x

∗, w)fx0(x̃)dx̃ = −
1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itwI

µ
|φx(s)| >

1

2
γn

¶
φxw(s, t)φx∗(s)φx(s)

φx(s, γn)
dsdt

If we choose Sn as in Lemma 7, then the indicator function is 1 and φx(s, γn) = φx(s) for

|s| ≤ Sn. Hence Z
X
K2xn(x̃, x

∗, w)fx0(x̃)dx̃ = −g2n(x∗, w)

We conclude that for this choice of Sn (115) is 0 for all n. If we choose Tn as in Lemma 6 the

corresponding expressions in the other correction terms also vanish. Note that the correction

term for the estimation of fx∗ is a sum over the independent sample of size n2.

We summarize the discussion in

Lemma 8 If the assumptions of Theorem 1 hold and in addition
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(A4) lim
n→∞

n
n1
= λ, 0 < λ <∞, and E(m(y, x, w, θ0, h0)m(y, x, w, θ0, h0)0) <∞.

then¯̄̄̄
¯√nmn(θ0, ĥ)−

1√
n

nX
i=1

(m(yi, xi, wi, h0) + δx(xi) + δxw(xi, wi))−
√
n

n1

n1X
i=1

δx∗(x
∗
i )

¯̄̄̄
¯ = op(1)

and

1√
n

nX
i=1

(m(yi, xi, , wi, h0) + δx(xi) + δxw(xi, wi)) +

√
n

n1

n1X
i=1

δx∗(x
∗
i )

d→ N(0,Ω)

Ω = E
£
(m(y, x, w, h0) + δx(x) + δxw(x,w)) (m(y, x, w, h0) + δx(x) + δxw(x,w))

0¤+λE [δx∗(x∗)δx∗(x∗)0]
and

δx(x̃) = −
Z
X∗

Z
Y×X×W

f∗(y|x∗, w)s0n(y|x,w)f0(x,w).

.(K1xn(x̃, x− x∗)g2n(x
∗, w) +K2xn(x̃, x

∗, w)g1n(x− x∗))dwdxdydx∗

K1xn(x̃, x− x∗) =
1

2π

Z Tn

−Tn

e−it(x−x
∗)+itx̃

φx∗(t, ηn)
dt

K2xn(x̃, x
∗, w) = − 1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃I

µ
|φx(s)| >

1

2
γn

¶
φxw(s, t)φx∗(s)

φx(s, γn)
2

dsdt

and

δx∗(x̃
∗) = −

Z
X∗

Z
Y×X×W

f∗(y|x∗, w)s0n(y|x,w)f0(x,w).

.(K1x∗n(x̃
∗, x− x∗)g2n(x

∗, w) +K2x∗n(x̃
∗, x∗, w)g1n(x− x∗))dwdxdydx∗

K1x∗n(x̃, x− x∗) = − 1
2π

Z Tn

−Tn
I

µ
|φx∗(t)| >

1

2
ηn

¶
e−it(x−x

∗)+itx̃ φx(t)

φx∗(t, ηn)
2
dt

K2x∗n(x̃, x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃φxw(s, t)

φx(t, γn)
dsdt

and

δxw(x̃, w̃) = −
Z
X∗

Z
Y×X×W

f∗(y|x∗, w)s0n(y|x,w)f0(x,w).

.K2xwn(x̃, w̃, x
∗, w)g1n(x− x∗))dwdxdydx∗
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K1xwn(x̃, w̃, x− x∗) ≡ 0

K2xwn(x̃, w̃, x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itw+isx̃+itw̃ φx∗(s)

φx(s, γn)
dsdt

and

g1n(x− x∗) =
1

2π

Z Tn

−Tn
e−it(x−x

∗) φx(t)

φx∗(t, ηn)
dt

g2n(x
∗, w) =

1

(2π)2

Z Sn

−Sn

Z Tn

−Tn
e−isx

∗−itwφxw(s, t)φx∗(s)

φx(s, γn)
dsdt

We have left the variance in a form that can be easily estimated. Some simplifications occur

is we let n, n1 →∞, but the resulting expressions are not so easily estimated.

Finally we have

Theorem 2 If assumptions (A1)-(A4) are satisfied, then

√
n(θ̂ − θ0)

d→ N(0, V ) (116)

with V = (M 0)−1ΩM−1 where

M = E
µ
∂m(y, x, w, h0)

∂θ0

¶

References

[1] Amemiya, Y. and Fuller, W.A., 1988, “Estimation for the nonlinear functional relation-

ship,” the Annals of Statistics, 16, pp. 147-160.

[2] Angrist, J., and A. Krueger, 1999, “Empirical strategies in labor economics,” in: O.

Ashenfelter and D. Card, eds., Handbook of Labor Economics, Vol. 3A (North-Holland,

Amsterdam) pp. 1277-1366.

[3] Bane, M.J. and D. Ellwood, 1994, “Understanding welfare dynamics,” in Welfare Real-

ities: From Rhetoric to Reform, eds. M.J. Bane and D. Ellwood. Cambridge: Harvard

University Press.

61



[4] Barron, J.M., M.C. Berger and D.A. Black, 1997, On the Job Training (W.E. Upjohn

Institute for Employment Research, Kalamazoo, MI).

[5] Bekker, P.A., 1986, “Comment on identification in the linear errors in variables model,”

Econometrica, Vol. 54, No. 1, pp. 215-217.

[6] Blank, Rebecca, 1989, “Analyzing the length of welfare spells,” Journal of Public Eco-

nomics, 39(3), pp. 245-73.

[7] Blank, R. and P, Ruggles, 1994, “Short-term recidivism among public assistance recip-

ients,” American Economic Review 84 (May), pp. 49-53

[8] Blank, R. and P, Ruggles, 1996, “When do women use Aid to Families with Dependent

Children and Food Stamps?” Journal of Human Resources 31 (Winter), pp. 57-89.

[9] Bound, J. Brown, C., Duncan, G. J., and Rodgers, W.L., 1989, “Evidence the validity of

cross-sectional and longitudinal labor marker data,” unpublished manuscript, University

of Michigan.

[10] Bound, J. Brown, C., Duncan, G. J., and Rodgers, W.L., 1994, “Evidence the validity

of cross-sectional and longitudinal labor marker data,” Journal of Labor Economics 12,

pp. 345-368.

[11] Bound, J., Griliches, Z. and Hall, B. 1986, “Wages, schooling and IQ of brothers and

sisters: do the family factors differ?,” International Economic Review, 27, pp. 77-105.

[12] Bound, J. C. Brown, G.J. Duncan and N. Mathiowetz, 2001, “Measurement error in

survey data,” in J.J. Heckman and E. Leamer eds., Handbook of Econometrics Vol 5.

[13] Bound, J. C. Brown, G.J. Duncan and W.L. Rodgers, 1989, “Measurement error in

cross-sectional and longitudinal labor marker surveys: results from two validation stud-

ies,” NBER Working Paper 2884.

[14] Bound, J., and Krueger, A.B., 1991, “The extent of measurement error in longitudinal

earnings data: do two wrongs make a right?” Journal of Labor Economics, 9, pp. 1-24.

62



[15] Card, D., A. Hildreth, and L. Shore-Sheppard, 2001, “The measurement of Medicaid

coverage in the SIPP: evidence from California, 1990-1996,” NBER.

[16] Carroll, .J. and L.A. Stefanski, 1990, “Approximate quasi-likelihood estimation in mod-

els with surrogate predictors,” Journal of the American Statistical Association 85, pp.

652-663.

[17] Carroll, R.J., D. Ruppert, and L.A. Stefanski, 1995, Measurement Error in Nonlinear

Models. Chapman & Hall, New York.

[18] Carroll, R.J. andM.P. Wand, 1991, “Semiparametric estimation in logistic measurement

error models,” Journal of the Royal Statistical Society B 53, pp. 573-585.

[19] Chen, X, H. Hong, and E. Tamer, 2003, “Measurement Error Models with Auxiliary

Data,” unpublished manuscript.

[20] Code, J., 1992, “Using administrative record information to evaluate the quality of the

income data collected in the survey of income and program participation,” Proceed-

ings of Statistics Canada Symposium 92, Design and Analysis of Longitudinal Surveys

(Statistics Canada, Ottawa) pp. 295-306.

[21] Cohen, S., and B. Carlson, 1994, “A comparison of household and medical provider

reported expenditures in the 1987 NMES,” Journal of Official Statistics 10, pp. 3-29.

[22] Csörgö, S., 1980, Empirical Characteristic Functions, Carleton mathematical lecture

notes; no. 26.

[23] Dibbs, R., A. Hale, R. Loverock and S. Michaud, 1995, “Some effects of computer

assisted interviewing on the data quality of the survey of labour and income dynamics,”

SLID research paper, series No. 95-07 (Statistics Canada, Ottawa).

[24] Diggle, P.J. and Hall, P., 1993, “A Fourier approach to nonparametric deconvolution of

a density estimate,” Journal of Royal Statistical Society, series B 55, pp. 523-531.

[25] Ellwood, David, 1986, “Targeting ’Would Be’ long-term recipients of AFDC,” Princeton,

NJ: Mathematica Policy Research.

63



[26] Feuerverger, A. and Mureika, R. A., 1977, The empirical characteristic function and its

applications, Annals of Statistics, 5 pp. 88-97.

[27] Fitzgerald, J, 1995, “Local labor markets and local area effects on welfare duration,”

Journal of Policy Analysis and Management 14 (Winter), pp. 43-67.

[28] Fitzgerald, John, 1991, “Welfare durations and the marriage marker: evidence from the

Survey of Income and Program Participation,” Journal Human Resource, 26(3), pp.

545-61.

[29] Gini, C. 1921, “Sull’interpolazione di una retta quando i valori della variabile indipen-

dente sono affetti da errori accidentali,” Metroeconomica, 1, pp. 63-82.

[30] Grondin, C., and S. Michaud, 1994, “Data quality of income data using computer-

assisted interview: the experience of the Canadian survey of labour and income dy-

namics,” Proceedings of the Survey Research Methods Section (American Statistical

Association, Alexandria, VA) pp. 830-835.

[31] Hausman, J., Ichimura, H., Newey, W., and Powell, J., 1991, “Identification and es-

timation of polynomial errors-in-variables models,” Journal of Econometrics, 50, pp.

273-295.

[32] Hausman, J.A., W.K. Newey, and J.L. Powell, 1995, “Nonlinear errors in variables:

estimation of some Engel curves,” Journal of Econometrics 65, pp. 205-233.

[33] Horowitz, Joel L. 1998, Semiparametric methods in econometrics. Springer.

[34] Horowitz, Joel L. and M. Markatou, 1996, “Semiparametric estimation of regression

models for panel data,” Review of Economic Studies 63, pp. 145-168.

[35] Hotz, V. J., R. George, J. Balzekas and F. Margolin, 1998, “Administrative data foe

policy-relevant research: assessment of current utility and recommendations for de-

velopment”. Northwestern University/ University of Chicago Joint Center for Poverty

Research.

64



[36] Hoynes, H., 2000, “Local labor markets and welfare spells: do demand conditions mat-

ter?” Review of Economics and Statistics 82 (August), pp. 351-368.

[37] Hoynes, H. and T. MaCurdy, 1994, “Has the decline in benefits shortened welfare

spells?” American Economic Review 84 (May), pp. 43-48.

[38] Horowitz, J.L. andM. Markatou, 1996, “Semiparametric estimation of regression models

for panel data” Review of Economic Studies 63, pp. 145-168.

[39] Hsiao, C., 1989, “Consistent estimation for some nonlinear errors-in-variables models,”

Journal of Econometrics, 41, pp. 159-185.

[40] Hsiao, C., 1991, “Identification and estimation of dichotomous latent variables models

using panel data,” Review of Economic Studies 58, pp. 717-731.

[41] Hsiao, C. and Q.K. Wang, 2000, “Estimation of structural nonlinear errors-in-variables

models by simulated least-squares method,” International Economic Review, Vol. 41,

No. 2, pp. 523-542.

[42] Hu, Y, 2002, “Identification and estimation of the regression model with nonclassical

measurement error using additional information,” 2002, unpublished manuscript.

[43] Johnson, A., and M.E. Sanchez, 1993, “Household and medical provider reports on

medical conditions: national medical expenditure survey, 1987,” Journal of Economic

and Social Measurement 19, pp. 199-223.

[44] Kane, T.J., C.E. Rouse and D. Staiger, 1999, “Estimating the returns to schooling when

schooling is misreported,” Working Paper 7235 (NBER).

[45] Lee, L.-F., and J.H. Sepanski, 1995, “Estimation of linear and nonlinear errors-in-

variables models using validation data,” Journal of the American Statistical Association,

90 (429).

[46] Lewbel, A., 1997, “Constructing instruments for regressions with measurement error

when non additional data are available, with an application to Patents and R&D,”

Econometrica, 65(5), 1201-1213.

65



[47] Lewbel, A. 1998, “Semiparametric latent variable model estimation with endogenous or

mismeasured regressors,” Econometrica, 66, pp. 105-121.

[48] Li, T., and Q. Vuong, 1998, “Nonparametric estimation of the measurement error model

using multiple indicators,” Journal of Multivariate Analysis, 65, pp. 139-165.

[49] Li, T., 2002, “Robust and consistent estimation of nonlinear errors-in-variables models,”

Journal of Econometrics, 110, pp. 1-26.

[50] Lukacs, E, 1970, Characteristic Functions, 2nd ed., Griffin, London.

[51] Luenberger, D. G., 1969, Optimization by Vector Space Methods, Wiley, New York.

[52] Mathiowetz, N., and G. Duncan, 1988, “Out of work, out of mind: response errors in

retrospective reports of unemployment,” Journal of Business and Economic Statistics

6, pp. 221-229.

[53] Meyer, B. D., 1990, “Unemployment insurance and unemployment spells,” Economet-

rica, Vol 58, No. 4, pp. 757-782.

[54] Moffitt, R. 1992. “Incentive effects of the U.S. welfare system: a review.” Journal of

Economic Literature 30(March), pp. 1-61.

[55] Moffitt, R. 2002, “The Temporary Assistance for Needy Families Program,” NBER

working paper 8749.

[56] Newey, W.K., 1994, “The asymptotic variance of semiparametric estimators,” Econo-

metrica 62, pp. 1349-1382.

[57] Newey, W.K., 2001, “Flexible simulated moment estimation of nonlinear errors-in-

variables models,” Review of Economics and Statistics, 83(4), pp. 616-627.

[58] O’Neill, June et al, 1984, “An analysis of time on welfare,” Washington, DC: The Urban

Institute.

66



[59] Pepe, M.S. and T.R. Fleming, 1991, “A general nonparametric method for dealing

with errors in missing or surrogate covariate data,” Journal of the American Statistical

Association 86, pp. 108-113.

[60] Pollard, D., 1984, Convergence of Stochastic Processes, Springer, New York.

[61] Ridder, G. 1984, “The distribution of single-spell duration data,” in G. R. Neumann

and N. Westergard-Nielsen (eds), Studies in Labor Marker Analysis, Springer-Verlag,

Berlin.

[62] Ridder, G. and R. Moffitt, 2003, “The econometrics of data combination,” Submitted

chapter for Handbook of Econometrics.

[63] Rodgers, W., and C. Brown and G. Duncan, 1993, “Errors in survey reports of earnings,

hours worked, and hourly wages,” Journal of the American Statistical Association 88,

pp. 1208-1218.

[64] Schennach, S., 2000, “Estimation of nonlinear models with measurement error,” Ph.D.

thesis, MIT.

[65] Sepanski, J.H. and R.J. Carroll, 1993, “Semiparametric quasilikelihood and variance

function estimation in measurement error models,” Journal of Econometrics, 58, pp.

223-256.

[66] Serfling, R. J., 1980, Approximation Theorems of Mathematical Statistics, Wiley, New

York.

[67] Van der Vaart, A.W., 1998, Asymptotic Statistics, Cambridge University Press.

[68] Wang, L., 1998, “Estimation of censored linear errors-in-variables models,” Journal of

Econometrics 84, pp. 383-400.

[69] Wansbeek, T. and E. Meijer, 2000, Measurement Error and Latent Variables in Econo-

metrics, North Holland.

67




