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1 Introduction

Structural simultaneous equations models have long been of great interest to econometricians.
Recently interest has focused on nonparametric identification and estimation. In this paper
we consider a two-equation triangular simultaneous equations model, with a single right-hand
side endogenous variable having a reduced form, where both equations are nonseparable in
disturbances. This nonseparability is a key feature of many economic models. We assume that
the disturbances are independent of instruments and that the reduced form is monotonic in its
disturbance.

We give identification and estimation results when the structural equation disturbance has
a general form, i.e. can be a vector of any dimension. This general disturbance case allows for
individual heterogeneity and other random effects in a completely flexible way. We relate these
results to other, more conventional, cases where the disturbance is a scalar or a pair of random
variables.

Specifically we consider identification of quantiles of the structural outcome for a fixed
value of the endogenous variables. Such quantiles correspond to the value of the structural
function at quantiles of the disturbance when the disturbance is a scalar and otherwise can be
used to characterize how endogenous variables affect structural outcomes. Differences of these
quantiles over values of the endogenous regressors correspond to quantile treatment effects as
in Lehman (1974). We also consider identification and estimation of averages over disturbances
of features of the structural function. Such averages have long been of interest, because they
summarize structural effects for a whole population, whereas quantile effects only apply to a
small segment of the population. An early example of these averages is Chamberlain’s (1984)
average over individual effects of binary choice probabilities. Many more examples are found in
the large literature on (binary) treatment effects, where differences of these averages correspond
to the average treatment effect (e.g., Heckman, 1990; Imbens, 2003). These averages are also
important in the current literature on structural estimation in nonlinear models, and were
considered by Blundell and Powell (2002), Altonji and Matzkin (2001), and Wooldridge (2002).
Furthermore, we give identification results for average derivatives and some specific economic
policies such as the imposition of an upper or lower limit on the endogenous regressor.

We employ a multi-step approach to identification and estimation. The first step is to obtain
the conditional distribution function of the endogenous regressor given the instruments. Eval-
uating this conditional distribution function at the observed values gives a generalized “control
function.” The second-step consists of obtaining the conditional quantiles or expectations of the

outcome of interest given the endogenous variable and the control function. Various structural



effects are then recovered by averaging over the control function or the endogenous variable and
control function together.

An interesting feature of the model is that when the reduced form is linear the joint density
of the endogenous regressor and the control function goes to zero as the control function goes
to one or zero, even though the marginal density of the control function is uniform. Thus,
averaging over the control function "upweights” the tails relative to the joint distribution.
Consequently, estimators that average over the marginal distribution of the control function
have a convergence rate that is no faster than the full-dimensional rate. Also, the rate of
convergence will be affected by how fast the density goes to zero on the boundary, which is
related to the r-squared of the reduced form in the Gaussian case. Estimators of the average
derivative, and other averages over the joint distribution, do not suffer from this "upweighting,”
and so will converge faster.

We consider series estimation for both steps. Series estimators are theoretically useful for
the second step because one can obtain convergence rates that allow for the density to go to
zero on the boundary. Series estimators are also useful for computation. We derive convergence
rates and show asymptotic normality of these estimators.

We extend Blundell and Powell (2002) by using a generalized control function, that allows
for a nonseparable reduced form, by considering structural objects that are averages over the
joint distribution of disturbances and endogenous variables, and by explicit consideration of
quantile effects. All of this work extends Newey, Powell, and Vella (1999) and Pinske (2000b)
by allowing for nonseparable disturbances in the structural equation. A different kind of non-
parametric structural model, based on conditional mean restrictions, has been considered by
Newey and Powell (1988, 2003), Das (2000), and Darrolles, Florens, and Renault (2003). With
one or two structural disturbances, our model is a special case of that of Roehrig (1988), al-
though our identification results are not, because we do not require differentiability. Imbens
and Angrist (1994) and Angrist, Graddy, and Imbens (2000) also allow for nonseparable distur-
bances but focus on the interpretations of the limit of linear instrumental variable estimators.
Das (2001) also allows for nonseparable disturbances, but considers a single index setting with
monotonicity. Chesher (2003) and Ma and Koenker (2003) consider local identification and
estimation of a nonseparable model with two structural disturbances. One of our identification
results, which was given in Imbens and Newey (2001), is related to Chesher’s (2003) results, as
further explained below. Chesher (2002) also considers identification under index restrictions
with multiple disturbances. Chernozhukov and Hansen (2002) and Chernozhukov, Imbens and
Newey (2003) drop the control function assumption when the structural equation is strictly

monotonic in one disturbance.



In Section 2 of the paper we present and motivate our models. Section 3 considers identi-
fication. Section 4 describes the estimators and Section 5 gives some large sample theory. A

small Monte Carlo study is presented in Section 6.

2 The Model

The model we consider has a single right-hand side endogenous variable X; and a vector of

exogenous variables Z = (41, Z3). The first equation is a reduced form for X7,
X1 :}L(Zvn)v (21)

where 7 is a scalar disturbance. The second equation is the structural equation for the outcome
of interest Y,
Y:g(Xthv&)a (22>

where ¢ is a general disturbance vector. We are primarily interested in the relation between
X = (X1,2;) and Y, as well as more generally in the effect that policies which change the
distribution of X have on the distribution of Y. Endogeneity arises from statistical dependence
between ¢ and 1. The instrument Z will be assumed to be independent of the disturbances 7
and . We assume X; and Y are scalars, and allow Z to be a vector, although many of the
results in the paper can be generalized to triangular systems of equations.

An economic example may help explain the model. For simplicity suppose Z; is absent, so
that X3 = X. Let Y denote some outcome such as firm revenue or individual lifetime earnings
and let X be chosen by the individual agent. Here g(x,e) is the (educational) production
function and e represent inputs at most partially observed by agents or firms, with e being
a possible value for e. The agent optimally chooses X by maximizing the expected outcome
minus the costs associated with x given her information set. The information set consists of
a scalar noisy signal 7 of the unobserved input ¢ and a cost shifter Z.! The cost function is

c(z,z). Then X would be obtained as the solution to the individual choice problem
X = argmax, {Blg(z,e)ln, 2] - o(z, 2)}

leading to X = h(Z,n). Thus, this economic example leads to a triangular system of the type
we consider.
When X is schooling and Y is earnings this example corresponds to models for educational

choices with heterogenous returns such as the one used by Card (2001) and Das (2001). When

"Although we do not do so in the present example, we could allow the cost to depend on the signal #n, if, for
example financial aid was partly tied to test scores.



X is an input and Y is output, this example is a non-additive extension of a classical problem in
the estimation of production functions, e.g., Mundlak (1963). Note the importance of allowing
the production function g(z, €) to be non-additive in e (and thus allowing the marginal returns
gg(x,s) to vary with the unobserved heterogeneity). If the objective function g(z,e) were
additive in e, so that g(z,e) = go(x) + ¢ the optimal level of x would be argmax,{gg(z) +
Ele|n] — ¢(x, Z)}. In that case the solution would depend on Z but not on 7, and thus X would
be exogenous. Hence in these models nonadditivity is important for generating endogeneity of
choices.

A scalar reduced form disturbance 7 (and the resulting identifiability of 1) is essential to
our results, because we use a “control function” approach to identification and estimation,
where conditioning on 7 removes the endogeneity of X;.? In comparison, many of the objects
we identify and estimate allow for ¢ to have any dimension. Thus, individual heterogeneity
and other sources of of uncertainty can affect the structural response function in a completely
flexible way. If we assume that ¢ has a specific dimension, the interpretation of g(x,¢) might
be sensitive to the correctness of that assumption. We try to avoid such interpretation issues
by allowing ¢ to have any dimension, although we will show some links to models with specified
dimension for €. On the other hand, by being agnostic about the dimension of e, we do lose
the ability to identify effects corresponding to particular elements of ¢, which might be useful
in some contexts.

For example, suppose ¢ is a scalar and the conditional CDF F,}, (e|t) of ¢ given 1) is strictly
monotone in e on the support of . Then V' = I, (¢|n) is uniformly distributed independently
of n and for the inverse F~!(v,t) of F.j,(elt) in its first argument, we have ¢ = F~(V, 7). It
follows that

9(X,e) = g(X,F*(V,n)) = §(X,n, V).

Thus, even though the true model has just one disturbance, a model with two disturbances, one
of which is 7, also is correct. However, if ¢ is the structural disturbance (e.g., unobserved ability
in the education example) then V' and its quantiles have no useful interpretation. Conversely,
if g(X,n, V) is structural, then assuming scalar ¢ is potentially a misspecification. We avoid
such interpretation issues when we allow the dimension of € to be unspecified and unknown.
Of course, we also then lose the ability to specify the disturbances, which could be useful when
they have interpretations as individual or market heterogeneity.

There are many interesting characteristics of the structural response function ¢ and distri-

butions that we will be able to identify and estimate. One of these is the 7" quantile of the

For scalar X we need scalar 7. In a systems generalization we would need 7 to have the same dimension as

X.



distribution of g(z, ), over the marginal distribution of ¢ for a fixed . We will refer to this as
the quantile structural function (QSF), and denote it by qy (7, z). This object describes how the
7th quantile of the outcome Y with 2 fixed depends on the value of the endogenous regressor.
If ¢ is a scalar and g(z,e) is increasing in e then qy (7, z) = g(z, ¢.(7)), where ¢.(7) is the 7/
quantile of ¢, i.e. the QSF is the value of the structural response function at the 7" quantile
for €. The QSF generalizes this object to the case where € can have arbitrary dimension. The
difference gy (7,%) — qv (7, %) is the quantile treatment effect of Lehman (1974) and Abadic.
Angrist and Imbens (2002). Distributional objects were also mentioned by Blundell and Powell
(2002).

Another object of interest is the average structural function (ASF) of Blundell Powell (2002).

o) = / o, ) Fu(de). (2.3)

As in the Chamberlain (1984) binary choice panel data model, pu(x) summarizes structural
effects for a whole population, whereas quantile effects only apply to a small segment. Also,
1(Z) — pu(T) corresponds to the average treatment effect which is the subject of a large literature
on program evaluation, (e.g. Heckman, 1990; Imbens, 2003). For instance, in a linear random
coefficients model where Y = a(e) + X'f3(e), the ASF is Ela(e)] + 2'E[S(¢)], and varying z gives
the average structural response to changes in =. See Blundell and Powell (2002), Altonji and
Matzkin (2001), and Wooldridge (2002) for further motivation.

An additional object of interest is the average derivative
d =E[0g(X,¢e)/0x].

This object is analogous to the average derivative studied in Stoker (1986) and Powell, Stock
and Stoker (1989) in the context of exogenous regressors. This parameter summarizes the
marginal effect of  on g over the population of X and e. In a linear random coefficients model
Y = a(e) + X'B(¢), the average derivative is 6 = E[B(e)], equal to the derivative of the ASF.
This is not true in general. If the structural function satisfies a single index restriction, with
g(x,e) = §(a' By, €), then ¢ will be proportional to 3.

There are also many specific policies that can be of interest. For instance, consider the
effect of imposing an upper limit Z on the choice variable X in the economic models described
above. Then, for a single peaked objective function it follows that the optimal choice will be
¢(X) = min{X,z}. Assuming there are no general equilibrium effects, the average difference
of the outcome with and without the constraint will be Elg(¢(X),e) — Y]. In what follows we
will consider identification and estimation of such a policy effect, as well as the objects we have

described in the previous paragraphs.



For some policies and effects the structural function g(z,e) itself may be the object of
interest. If the dimension of ¢ is unspecified then it is hard to see how g(z, e) could be obtained.
The function g(w, ) can be obtained if the dimension of e is one or two. If ¢ is a scalar and g(x, ¢)
is monotonic increasing in e then qy (7, ) = g(z, g-(7)), as discussed above. Also, if £ = (1, v)
for some scalar v that is independent of 77, and ¢ is monotonic in v, then the conditional quantile
of Y given X = z and n =t will be g(z,t, ¢,(7)), where t denotes a possible value of n. This
two disturbance case is that considered by Chesher (2003) and Ma and Koenker (2003). Here,
identification and estimation results for g will correspond to identification and estimation results
for this conditional quantile function. Identification conditions for g in both the one and two

disturbance case are given in the next Section.

3 Identification

In this section we give precise identification results. The first assumption we make is that the

instrument is independent of the disturbances.
ASSUMPTION 3.1: (Independence) The disturbances (g,n) are jointly independent of Z.

Here we require full independence as in Roehrig (1988) and Imbens and Angrist (1994),
rather than the weaker mean-independence as in Newey and Powell (1988, 2003), Newey, Pow-
ell and Vella (1999) and Darolles, Florens and Renault (2001). In the economic example of
Section 2 this assumption could be plausible if the value of the instrument was chosen at a
more aggregate level rather than at the level of the agents themselves. State or county level
regulations could serve as such instruments, as would natural variation in economic environment
conditions, in combination with random location of agents. For independence to be plausible
in economic models with optimizing agents it is also important that the relation between the
outcome of interest and the regressor, g(z,¢), is distinct from the objective function that is
maximized by the economic agent (g(x, ) — c(x, z) in the economic example from the previous
section), as pointed out in Athey and Stern (1998). To make the instrument correlated with the
endogenous regressor it should enter the latter (e.g., through the cost function), but to make
the independence assumption plausible the instrument should not enter the former.

The second assumption requires monotonicity in 7 of the reduced form for Xj.

ASSUMPTION 3.2: (Monotonicity of Endogenous Regressor in the Unobserved Component) With

probability one h(Z,t) is strictly monotone in t.

This assumption is trivially satisfied if h(z,t) is additive in ¢, but allows for general forms

of non-additive relations. Matzkin (2003) considers nonparametric estimation of h(z.t) under
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Assumptions 3.1 and 3.2 in a single equation exogenous regressor framework and Pinkse (2000b)
gives a multivariate version. Das (2001) uses a stochastic version of this assumption to identify
parameters in single index models with a single endogenous regressor.

Das (2001) discusses a number of examples where monotonicity of the decision rule is im-
plied by conditions on the economic primitives using monotone comparative statics results (e.g.,
Milgrom and Shannon, 1994; Athey, 2002). For example, in the setting of the educational pro-
duction function in Section 2, assume that g(z, e) is twice continuously differentiable. Suppose
that: (¢) The educational production function is strictly increasing in ability ¢ and education
x; (it) the marginal return to formal education is strictly increasing in ability and decreasing
in education, so that dg/de > 0, dg/0x > 0, 0?g/0zde > 0, and §%g/0x> < O(this would be
implied by a Cobb-Douglas production function); (i4¢) the cost function and the marginal cost
are increasing in education, so that dc/dz > 0, 9%c/0z* > 0 and (iv) the signal 7 and ability ¢
are affiliated. Under those conditions the decision rule h(Z,t) is monotone in the signal t.?

Under these two condition the reduced form disturbance 7 is identified up to a one-to-one

transformation. Let F; () denote the CDF of 7.

THEOREM 1: (Identification of n) If Assumptions 3.1 and 3.2 are satisfied then Fy | ;(X1|Z) =
F,(n).

All of our results are proved in the Appendices. This result states that the one-to-one function
N = F,(n) of n is identified.

An important function of the data is the conditional quantile function Qyxp(T, X,7) of Y
given X and 7 = Fx, z(X1]Z), hereafter denoted as CQF. All of the structural objects we have
considered can be obtained from the CQF, under certain additional conditions. Intuitively,
after conditioning on 7, variation in X, in the data is statistically independent of variation
in €, so that we can separate out the effect of X; on g(X, <) from the effect of ¢, leading to
identification of structural effects. This approach is essentially a nonparametric generalization
of the control function approach (e.g., Heckman and Robb, 1984; Newey, Powell and Vella,
1999; Blundell and Powell, 2000), with ) = Fx,|z(X1|Z) being a generalized control function.

In order for this control function approach to identify structural effects, there must be
sufficient variation in X after conditioning on Z; and 7. This requires that X vary with Zs,
which is like the rank condition in linear simultancous equations models. For identification of
many effects, including average derivatives and limit policies, a little variation in X with Z,

will suffice, as discussed below. For identification of the ASF and QSF, we will need a strong

*Of course in this case one may wish to exploit these restrictions on the production function, as in, for example,
Matzkin, 1993.



condition, that the support of n = Fx 7(X1|Z1, Z2) conditional on X = (X1, Z;) is equal to

the marginal support of . Using the form of 7, a precise statement of this condition is:

ASSUMPTION 3.3: (Full Instrument Effect) For all (x,21) in some set that has probability one,
the support of Fx, z(x|21, Z2) equals the support of 7.

This condition requires that the excluded instrument Z, must move F' X1 z(%|21, Z2) over
the whole range of its possible values for every fixed value of z and z;. In addition to a rank
condition, with Z; affecting the distribution of X, it entails a full range condition, where Z
must cause variation over the whole support of 7.

An example may help clarify Assumption 3.3. Suppose z = 2y is a scalar and that the

reduced form is X = 6Z + 7, where 7 is continuously distributed with CDF G(u). Then
Fxz(z]2) = G(z — d2).

Assume that the support of Fx;(X|Z) is [0,1]. Then a necessary condition for Assumption
3.3 is that ¢ # 0, because otherwise Fy|z(z|Z) would be a constant. Together § # 0 and the
support of Z being the entire real line are sufficient. This example illustrates that Assumption
3.3 embodies two types of conditions, one being a generalization of a rank condition and the
other being a full support condition for the instrument.

To show identification of the QSF and ASF we give explicit formulae in terms of identified

objects. These formulae can then be used to construct estimators. For the QSF we have
gy (1,2) = G_I(T, z), (3.4)
where
Glm) = Pro(e,e) < 9) = [ Pr(glee) < ol Fy ) (35

_ /HWSMX:WMWM=/Q?mLmﬂWW

where the second equality follows by iterated expectations, the third by independence of Z and
n and by the fact that conditional on 7, X is function of Z. Thus the QSF is the inverse of the
integral over the marginal distribution of 7 of the inverse of the CQF, i.e. of the conditional
CDF of Y given X and 7.

For continuous Y the ASF is identified from the QSF as p(z) = ]01 gy (7, x)dr. Alternatively,
using the other representation of the ASF in (2.3) and following Blundell and Powell (2002),

) = /M%dﬂwd:/ﬁwadwﬂwm (3.6)

= [ BX X = oniFyfan) = [ BYPX = 0]y o).

8]



Thus, the ASF is the integral over the marginal distribution of 1 of E[Y| X, n].

The following theorem gives a precise statement of these results.

THEOREM 2: (Identification of the QSF and ASF) If Assumptions 3.1, 8.2, and 3.3 hold then
the QSF is identified. If, in addition, Bl|Y|] and [ [B[|Y||X,n|Fx(dX)F,(dn) are finite then
the ASF is identified.

As mentioned in Section 2, identification of the QSF also implies identification of the struc-

tural function in the one disturbance case.

COROLLARY 3: If €is a scalar, g(x, ¢) is strictly monotonic increasing in ¢, and Assumptions

3.1, 3.2, and 3.3 are satisfied then g(z,q.(7)) is identified for every 0 < 7 < 1.

The role of Assumption 3.3 is to allow us to integrate over the marginal distribution of 7
holding X fixed as in the previous formulae. If Assumption 3.3 holds for particular values of X
and Z1 we may be able to identify the QSF and ASF at particular values. If Assumption 3.3 is
not satisfied, we may be able to derive bounds on the QSF, and on the ASF if ¥ is bounded,
using the approach by Manski (1990, 1995). Also, Assumption 3.3 is not required to hold for
identification of other objects, including the average derivative and the limit policy.

For the average derivative parameter § we require that X is continuously distributed given
7, so that the derivative of #(z,n) = E[Y|X = =,n] with respect to x can be a well defined
object. Note that by independence of Z and 7,

B(X,n) = /'g<X., &) F(de] X, ) = /;,(X., &) F(deln), (37)

which is identified on the support of (X,n) by the same argument for the identification of the
CQF. Assuming that we can differentiate under the integral, it then follows that d8(X,7)/0x =
[ 9:(X, e)F(de|n). Then

=B (X,9) =B | [ 0 (X Pl )| <] [ a(x.epaen) =5 [ Locxn]
' ' ) (3.8)
where the third equality follows by independence of Z and 7.
For the limit policy, we require that the support of X = h(Z,n) given 7 include ¢(X) =
min(X, z). For this it is sufficient that Z is in the support of A(Z, n) given 7 for all 7. Then

Blg(€(X), Zy,e)] = E[E[g(U(X), Z1,¢)|X, 7] = E [/'Q(K(X), Zy, €)F(d5|77)} =E[B({(X), Z1,n)].
' (3.9)



In neither of these examples is it necessary that the conditional support of X given 7 contains
all possible values of X in order to achieve identification. We make this discussion precise in

the following result:

THEOREM 4: (Identification of the average derivative and limit policy). Suppose that Assump-
tions 8.1 and 3.2 are satisfied. If (i) X has a continuous conditional distribution given n, (i)
with probability one g(x,<) is continuously differentiable in x at x = X; (iii) for all x and
some A > 0, B[ supy,_x|<a Ilg9:(, )| F(deln)] exists, then § = Elg.(X,¢)] is identified. If
with probability one there is some point in the support of Xy given n that is less than or equal
to  then Blg(¢(X1), Z1,¢€)] is identified.

Analogous identification results can be formulated for expectations of other linear trans-
formations of g(x,¢). Let h(z) denote a function of  and T'(h(-),z) be a transformation that
is linear in h. Then, by linearity of T the order of integration and transformation can be

interchanged to obtain, from equation (3.7),

T(B(-1), x) = T( /'g<-,s>Fg,f,<dsrt>,:z:>=./'T<g<-,s> 1) Fupy(delt) = '/.T(g(wf)af’f)Fs[X,ﬁ(dfmt)-

Taking expectations of both sides we find that

This formula leads to the following general identification result:

THEOREM 5: (Identification of expectations of linear functions): Suppose that Assumptions
3.1 and 3.2 are satisfied, that T(B(-,n), X) is a well defined random variable, B[T(3(-,n), X)]
exists, and T(‘[‘g(-,s)FEi,—/(dsh)),X) = [T(g(-,¢), X)F.5(dein). Then E[T(g(-, <), X)] is iden-
tified.

Theorem 4 is a special case of this result with T'(h(:),2z) = 0h(x)/0z and T(h(-),z) =
h(£(z), z). Additional examples include integrals of g over elements of =, expectations of ¢
evaluated at functions of @ other than ¢(x), and other linear functionals of g.

In addition to helping identify other structural objects, the CQF can be of interest in its own

right, being equal to the structural function in the two disturbance case mentioned in Section

2.

COROLLARY 6: If ¢ = (n,v), v 45 independent of n, g(x,m,v) is strictly monotonic in v,
and Assumptions 3.1 and 3.2 are satisfied, then Qy|x7(7, X, n) = 9(X,n,qu(7)), where q,(7)

is the 7" quantile of v.

[10]



This result shows that the function g(X,7,q.(7)) is identified on the support of (X,n).
However, identification of this function does not mean that structural effects of changing x
while holding n and v fixed, like the partial derivative with respect to x, are identified. For this
purpose it is necessary that the support of (X, ) include subsets where x varies while holding
z1 and 7 fixed. This would entail that 7, affects X1, which again is a kind of "rank condition.”

Corollary 6 was given in an early version of this paper.! In independent work Chesher
(2001, 2003) gave an identification result for the structural effect dg(z, ¢, q,(7))/0z at a point.
Neither result implies the other, since we do not assume g is differentiable. The approaches to
identification are related though. We identify ¢ using a generalized control function. Chesher
(2003) identifies 0g/0x with a certain function of quantile derivatives. In Appendix A we show
that for Xy = X, Z scalar, and (X, Fx|z(X|Z)) a one-to-one function of (X, Z), that his func-
tion of quantile derivatives is 9Qy x5(7, X, n)/0x, without Assumptions 5.1, 3.2, or equations
(2.1), (2.2) being satisfied. Thus, the generalized control function method and Chesher’s (2003)
approach lead to the same conditional quantile derivative, even when the model is incorrect. He
uses it to identify dg/0x in the two disturbance model. We use the control function to identify
g without requiring differentiability in the two disturbance model (in Corollary 6) and also to
identify structural effects when e has one or arbitrary dimension (in the other results of this
Section).

A parametric version of the CQF may be of some interest. One version is a second stage
linear quantile regression of Y on (X,U), where U is the residual from a first stage linear
quantile regression of X on Z. When Z is scalar and the quantile regression of Y on (X, Z) and
X on Z are linear then the coefficient of X in the second stage regression is Chesher’s quantile
derivative, as shown in Appendix A. Here U acts as a control function, which is an additional
regressors, making this quantile estimation different than that of Amemiya (1982), because it
includes an additional right-hand side variable. By including additional terms in the second
stage regression, one could also estimate nonlinear models, such as the location scale model of
Koenker and Ma (2002). Further consideration of this control function approach to controlling

for endogeneity in parametric quantile regression is beyond the scope of this paper.

4 Estimation

We follow a multistep approach to estimation from ii.d. data (Y;, Xy, Z;), (i = 1,....n). The

first step is estimation of the control function i) = Fx,|z(X1|Z). From an estimator EX1|Z(;E‘Z)

'The two disturbance model and the result of Corollary 6 were formulated and presented in the spring of
2001.
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we can constructs estimates of the control function observations as
i = Fx,12(X1ilZ:).

These estimates can then be used to construct an estimator FY]X,7](y]$7t) of the conditional
distribution function of ¥ given X and n or an estimator B(x,t) of the conditional mean.
Estimators of objects of interest can then be formed by plugging these estimators into the
formulae of Section 3. Assuming that 7 is continuously distributed (so that it is U(0,1) by

n = F,(n)), estimators of the QSF and ASF are given by

1
dv(ne) = G 'ya); Cly,a) = /O Fyixn(yl, £)dt

fle) = /O Bz, t)dt.

Alternatively, the integrals over t could be estimated by simulation. Estimators of the aver-
age derivative and the upper limit effect can be constructed by plugging in the formulae and

replacing the expectation over (X,n) with a sample average, as in

3= 30 ) (X772 - v) = SO - Y
n oxr " — B

We consider a power series estimator of 8(x,t). We use power series for the sccond step (e.g.
rather than kernels) because theory for them can allow densities to go to zero on boundaries,
which is an important feature of this model. We use them for the first step because they lead
to simple conditions. Almost any other series estimator could be used for the first step also,
including splines and Fourier series.

To describe the first step estimation of §§ = Fx,z(X1|Z), suppose that z is 7 x 1 and let
qe(z) = H;Zl(zj))‘@(-j), (¢ =1,2,...), denote multivariate power series terms, where A\y(j) > 0, the
order of the term is 25:1 Ae(7), and we assume that the order is increasing in L and that all
terms of given order are included before increasing the order. Examples include power series or
spline functions. Also, let ¢%(2) = (q1(2), ..., qr(2)) and M = "7 q*(Z:)q*(Z;) /n. A series
estimator of the conditional CDF at a particular & and z can be obtained as the predicted
value from regressing an indicator function for Xy; < z on functions of Z;. It has the form
n, = F(XU | Z;), where

n

F(z|2) = ¢"(2)M™ > q"(Z)1(Xy; < @)/n,
=1

where A™ denotes any generalized inverse of the matrix A. As is well known, the predicted

values F (X1i]Z;) will be invariant to the choice of generalized inverse, which is important here
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because we will allow for M to be singular, even asymptotically. One feature of this estimator
is that it is not necessarily bounded between 0 and 1. We impose that restriction by fixed
trimming. Let 7(n) = 1(n > 0)min{n, 1} be the CDF of a uniform distribution. Then our

estimate of the control function is given by
i = T(F (X1l Z2)).

To describe the power series estimator in the second step, let w = (z,t) denote the entire
s x 1 vector of regressors in S(X,7) = E[Y[|X,7]. Let py(w) = II5_, (w; WRID (= 1,2..),
be multivariate power series with order increasing in K and all terms of given order included
before increasing the order. Let p™(w) = (py(w), ..., pr(w)), @; = (X;,7;), and &(z) be a
trimming function of x that is either zero or one, and P = S (X)) (0)p" (@) n. A
nonparametric estimator of the ACR g(w) = E[Y|W = w] is then

Blw) = p"(w)' 54 ]Zf(le F(w))Y;/n.

This estimator can be used as described above to estimate the ASF, average derivative, or input
limit response. The trimming function is present to keep X; away from the boundary of its
support which prevents the joint density of X;; and #; from becoming unbounded. We could
let £(z) depend on data, but for simplicity do not.

An important issue for practice is the choice of number of terms. We have tried cross-

validation on the second stage as a method for this.

5 Convergence Rates for the ASF

To derive large sample properties of the estimator it is essential to impose some conditions.
The first assumption imposes smoothness conditions on the control function Fx z(x|z). Let X

and Z denote the support of Xy; and Z;, respectively.

ASSUMPTION 5.1: Z; has compact support and Fx\z(x|z) is continuously differentiable of order

di on the support with derivatives uniformly bounded in = and z.

This condition implies an approximation rate of K~9/7 for the CDF that is uniform in both
its arguments; see Lorentz (1986). The following result gives a convergence rate for the first

step:

LEMMA 7: If Assumption 5.1 is satisfied,

n

Z(ﬁi - 7‘71;)2/71} =0O(L/n+ Lldel/r).

i=1

E
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The two terms in this rate result are variance (L/n) and squared bias (L'72%1/") terms
respectively. In comparison with previous results for series estimators, this convergence result
has L1721/ for the squared bias term as a rate rather than L=271/". The extra L arises from
the predicted values 7, being based on regressions with the dependent variables varying over
the observations.

To obtain a convergence rate for the average structural function, it is necessary to account
for the fact that the joint pdf of (X, 7) behaves differently in the tails that does the marginal
density of f, which is uniform. In the linear reduced form case X = Z + 7 it is easy to see why

this is so. For fz(z) and f,(¢) the marginal pdf’s of Z and 1, the joint pdf of (X,#) is
fxa(x,t) = fz(e—F 1 (t),0<t <1

This allows for 2 to be unbounded, but this feature is accounted for by the trimming function
&(z1). The more difficult problem is that as ¢ goes to 0 or 1 holding x fixed, the joint pdf
goes to zero. Thus, in the ASF estimator ji(z) = ng@,t)dt, the tails of the 7 distribution
are being upweighted relative to the joint distribution. Consequently, we expect that, unlike
other settings, integration of E[Y'|X, 7] over the marginal distribution of 7 will not increase the
convergence rate. Indeed, with the upweighting one might expect that the convergence rate
would involve a uniform rate for the 7 argument.

To obtain convergence rates for series estimators it is necessary to restrict the rate at which

the density goes to zero as 7) approaches zero or one. The next condition fulfills this purpose:

ASSUMPTION 5.2: X is a Cartesian product of compact intervals, p! (w) = p=(2) @ p™u(t),

and there exist constants C,« > 0 such that
inf fxg(r,t) > Clt(1 —1t)]".
T1EX

This condition will be satisfied with a linear, Gaussian reduced form with an « that is

related to the R?, as shown in the following result.

LEMMA 8: If X = Z 4+ where Z and 1 are normally distributed and independent, then
for R* = Var(Z)/[Var(X)] and & = (1 — R?)/R?, for any B,§ > 0 there exists C' such that
for all |z| < B, t € [0,1],

Clt(L = )]%7° = fxplz,t) = O H(1 —1)]**°

Here we see that the rate at which the joint density vanishes increases as the R? falls. We

conjecture that R? will also affect the attainable convergence rate for the ASF. The faster the
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The choice of L minimizing this expression is proportional to nl/(Zd+s=1) and nr/24 respectively.

For this choice of K, and L the rate hypothesis and the convergence rate are given by

n[(l+ﬂ+5)/d]+(7'/2dl)—1 N O,

/ (@) — (@) Fx (dx) = Op(n~Hd-a-/Qdts=l) o p[(ka)/di(r/2di) -1y

The rate hypothesis means that [(1 + « + s)/d] + (r/2dy) < 1, which requires that S(w)
have more than 1+ o + s derivatives and that Fy, z(z1]z) have more than r/2 derivatives.
In the Gaussian example of Lemma 8, d — s > 1+ « is equivalent to d — s > 1/R% 1In
microeconometric applications, where reduced form r-squareds are low, this condition would
require many derivatives to exist.

We emphasize that these results only provide a bound on the convergence rate of the es-
timators. Some improvements may be possible, although currently it seems not to be known
whether series estimators can attain optimal uniform rates, see deJong (2003). It would be
good to know what the best attainable rate is, but that does not yet seem to be known when
the density goes to zero at the boundary, and derivation of such rates is beyond the scope of
this paper.

For comparison purposes consider the additive disturbance model
Y =g(X)+e, X =Z+1,Z~ N(0,1),n~ N(0,(1 - R*/R?),

where X, 7, ¢, and 7 are scalars and we normalize E[e] = 0. Here the ASF is g(X). Under reg-
ularity conditions like those give above the estimator will converge at a rate that is a power of
n, but slower than the optimal one-dimensional rate. In contrast, the estimator of Newey, Pow-
ell, and Vella (1999), which imposes additivity, does converge at the optimal one-dimensional
rate. Also, the estimator of Severini and Tripathi (2003), which only uses the conditional mean
restriction Ele|Z] = 0, converges at a rate that is slower than any power of n. Thus, the con-
vergence rate we have obtained here is intermediate between that indicate that estimators of
g(X) would converge at a rate that is slower than any power of n, due to an ill-posed inverse
problem. Thus, our estimator has rates of convergence that are intermediate between those
of a control function estimator where additivity is imposed and those of an estimator of the

conditional mean model.

6 Extensions

It is also possible to show asymptotic normality of the ASF estimator at a point = and to show

root-n consistency and asymptotic normality of the average derivative and estimators of other
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policy parameters. These results are important because they allow us to do inference and show
that the slow convergence rate of the ASF does not carry over to other important estimators. By
averaging over the joint distribution of X and 7 we avoid the upweighting problem associated
with the ASF. In future work we will also give a Monte Carlo example.

Appendix

A Relationship to Chesher (2003)

We consider the relationship to Chesher (2003) when z = 2 is a scalar, using his notation. Let
Qvixs(T,2,1), Qy|xz(T,,2), and @x|z(t, z) be conditional quantile functions of Y given X
and 1) = F, z(X|Z), Y given X and Z, and of X given Z, respectively. Also let V, denote
a partial derivative with respect to a variable a. The functional used by Chesher (2003) for
identification of structural effects is
VoQy|xz(T, 2, 2)

V.Qxz(n, 2)

W(Tu 7}7*/1/') - V.T/QY‘XZ(T./ x, Z) +

assuming that the expression on the right exists.

THEOREM Al: If Qyxz(7,7,2) and Fyiz(x|z) are continuously differentiable in a neigh-
borhood of (xo,20), V:Fx|z(w0l20) # 0, VaFx|z(20|z0) # 0, and (X, Fxz(X1Z)) is a one-to-
one transformation of (X,Z), then for n = Fx z(X|Z) and 1y = Fx,z(zo|z0),

7T(TO, Mo> :I;O) = V.T,QY!X?](Ta Zo, 7]())'

Thus we find that Chesher’s 7 is equal to the derivative of the CQF with respect to .
when (X, Fx|7(X|Z)) is a one-to-one transformation of (X, Z) and the derivative conditions of
this result are satisfied. This result holds without equations (2.1) or (2.3) being satisfied and
without any independence assumption. Thus, in a specification robust sense, our generalized
control function approach and Chesher’s approach lead to the same functional of the data.

A linear quantile model provides further insight. Suppose that the conditional quantile

functions are linear, with
Qvixz(1, X, Z) = B(T) X + (1) Z + a1(7), Qx12(n, Z) = v(n) Z + aa(n).

Then 7 = B(7) + [v(7)/v(n)]. Define U = X — y(n)Z — az(n), the residual from the quantile
regression for X. If y(n) # 0 then (X,U) is a one-to-one transformation of (X, Z), so that

Qvixv(T, X, U) = Qyixz(1,X,Z) = Qyixz(7, X, [ X = U — aa(n)] /v(n))

BMX + (1) X ~ U — aa(n)]/v(n) + a1(n)
= 7X + [=9(7)/v(MIU + a1(n) — aa(n)y(7)/v(n).

I

[17]



Thus, the quantile regression of Y on X and U is also linear, and the coefficient of X is 7,
so that in a linear quantile model 7 can also be interpreted as coming from a control function
approach, where the residual U is the control function.

In both the nonparametric and linear models, the relationship of the Chesher’s (2003)
approach to the corresponding control function approach is analogous to the relationship of
indirect least squares to two-stage least squares. Like indirect least squares, m is obtained
by combining coefficients from two regressions, while like two-stage least squares, the control
function obtains the coefficient from a second stage regression. Thus, one might refer to the
Chesher (2003) approach as an indirect control function method. This indirect method avoids
inference difficulties associated with two-step methods and only requires that F|;(z,z) be
one-to-one locally, but is awkward to use when averaging over the control function.

PROOF OF THEOREM Al: Let (X, k(n, X)) denote the inverse of (X, Fx|z(X|Z)), so that
Z = k(n, X). It then follows by (X,7) and (X, Z) being one-to-one transformations of each
other that

QY|X77(T7 X, 7)) = QY|XZ(7-7X7 Z) = QY\XZ(TvX’ k(an))

Also, by the inverse function theorem, Qx|z(n,z) is differentiable at (1, 20) and k(n,z) is

differentiable at (1, zo) with
Vik(ng, 20) = =V Fx z(%0, 20)/V: Fx|z(%0, 20) = 1/V:Qx)z(n0, 20)-

Then by the chain rule
0
Ox
= V.Qyixz(T, %0, 20) + V.Qy|x2(T, 0, 20)Vak(ng, 20)
= V.Qy|xz(T,20,20) + V:Qy|xz(T, %0, 20)/VQxz(1ny, 20)- Q. E.D.

Vz’QY\Xn(Tv o, o) QY|XZ(77 z, k(1o ©))|z=x0

B Proofs of Identification

PrOOF OF THEOREM 1: Let h!(z,z) denote the inverse function for h(z,n) in its second

argument, which exists by Assumption 3.2. Then,

Fx,z(x]2) = Pr(Xi<a|lZ=2z2)=Pr(h(z,n) <z|Z=2z)=Pr(n <h ' (z,2)|Z =2)
= Pr(n<h™z2) = F,(h(z,2)),

where the third equality follows by Assumption 3.2 and the fourth by Assumption 3.1. The
conclusion then follows by Assumption 3.1, which implies = h~1(Z, X1). Q.E.D.
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Proor or THEOREM 2: By Theorem 1, 7 is identified. By Assumption 3.3 the support of 7
conditional on X = x is the support of F(x|z1, Z2) and is equal to the support of 7. Therefore,
Pr(g(z,e) < y|X = z,7n) is well defined on the Cartesian product of the support for X and
n, so that [Pr(Y < y|X,n)F,(dn) is well defined. Also, conditional on 7, X1 = (h(Z,n), Z)
is a function of only Z, so that X; and ¢ are independent. Then the conclusion for the QSF
follows from in eq. (3.5), which gives the QSF as an explicit functional of the identified object
Pr(Y < y|X = z,7n). For the ASF, it follows similarly that, by E[|Y|] finite, both E[|Y||X, ]
and E[Y|X,n| are well defined on the Cartesian product of the support of X and 7, and
IE[Y|X, ]| <E[|Y||X,n]. Then by the Fubini theorem and the integrability hypothesis in the
statement of the Theorem it follows that [E[Y|X,n)F,(dn) exists with probability onc. It then
follows from equation (3.7) that the ASF is an explicit function of the data distribution, so that
it is identified. Q.E.D.

Proor or COROLLARY 3: By g(z,e) strictly monotonic increasing it follows, as noted in the

text that for each x the 7" quantile of g(z,¢) is g(x, ¢.(7)), so that the conclusion follows from
Theorem 3. Q.E.D.

Proor oF THEOREM 4: By the fact that g(x,<) continuously differentiable and the in-
tegrability condition, it follows that [ g(x,e)F(de|n) is differentiable with probability one at
z = X and 9 [ g(x,e)F(de|n)/¢ = [ 9.(X,2)F(deln). Then by equation (3.7) it fol-
lows that E[Y|X = =,7] is differentiable at = X, and by equation (3.8) that the average

derivative is an explicit functional of the data distribution, an so is identified. For the limit
policy, by the assumption about Z it follows that 8(z,t) is well defined, with probability one.
at (x,t) = (£(X),n), so that the conclusion follows as in equation (3.9) Q.E.D.

PROOF OF THEOREM 5: By independence of (¢,n) and Z we have (X, n) = E[Y|X,n] =
J 9(X,e)F(de|n). Then by T([ g(-,€)F(ds|n), X) = [T(g(-,¢), X)F(de|n) and iterated expec-
tations,
BIT(5(.n), X)] = T( / F(deln), X)) = B[ [ T(g(-,<), X)F(dzl)]
= T(g( ;5) X, 2]l = B[T(g(- ), X)].

Since E[T(g(-,¢), X)] is equal to an explicit function of the data distribution, it is identified.

Q.E.D.

PROOF OF COROLLARY 6: Since 7 is identified and we can normalize = 7 by Theo-

rem 1, it follows that the 7¢" conditional quantile Qyvix7(7, X,n) of Y given (X,7n) is iden-
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tified. By Y = ¢g(X,n,v) and g(X,n,v) strictly monotonic in v and by invariance of quan-

th

tiles to monotonic transformations, it follows that the 7¢" conditional quantile of g(X, 7, v) is

g(X,n,¢,(7)). QED.

C Proofs of Consistency

Throughout the remainder of the Appendix, C' will denote a generic positive constant that
may be different in different uses. Also, with probability approaching one will be abbreviated
as w.p.a.l, positive semi-definite as p.s.d., positive definite as p.d., Amin(A) and Apax(A4), and
AY? will denote the minimum and maximum eigenvalues, and square root, of respectively of
a symmetric matrix A. Let >, denote > " ;. Also, let CS, M, and T refer to the Cauchy-
Schwartz, Markov, and triangle inequalities, respectively. Also, let CM refer to the following

well known result: If B(|Y,||Zn] = Op(ry) then Y, = Op(ry).

Before proving Theorem 4, we prove a some preliminary results. Let ¢; = ¢“(Z;), v;; =
L( X1 < X1i) — Fxy2(X1ilZy).

LemMA Cl: For Z = (Zy,...,Z,) and L x 1 vectors of functions bi(Z), (i = 1,...,n), if
S b(Z2)'Qbi(Z)/n = Op(ry) then
D {bi(2) > qjuig /i [n = Op(ra).
i=1 j=1

Proof: Note that |v;;| < 1. Consider j # k and suppose without loss of generality that j # @
(otherwise reverse the role of j and k because we cannot have i = j and i = k). By independence

of the observations,
E[’Uij’vik‘Z] = E[E[vijvik\Z., X{,, Xk”Z] = E['Uik]E[Uij‘Z, X{,, Xk]|Z] = ]E[UikE[UiﬂZj, Z,,j, XLHZ}
= BlupdB{L(X1; < X1)|Z;, Zi, Xi] — Fx,1z(XulZ;)}Z] = 0.

Therefore, it follows that
B[ {6:(2)" > qyuig /Nyl Z) < i(2)0) ] ;Blvijvil Zlg;,/n}0i(Z) fn =
i=1 j=1 i=1 jk=1

ZM(Z {Z ¢ B[v;| Z]q; /nybi(Z)/n < Zb (2)'Qbi(Z) /n,

=1

so the conclusion follows by CM. Q.E.D.

LeEmMMA C2: (Lorentz, 1986, p. 90, Theorem 8). If Assumption 5.1 is satisfied then there
exists C' such that for each x there is y(z) with sup,cy |Fy, z(z|z) — ¢"(2)v(x)| < CK—/r,
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LeMMA C3: If Assumption 5.2 is satisfied then for each K there exists a nonsingular con-
stant matriz B such that ' (w) = Bp™ (w) satisfies E[pX (w;)p™ (wi)'] = Ik, supwew||p (w)]| <
CK7 K, supuewl 05 (w)/6t] < CKZP2K, and supig, |70 (1)| < CKE¥.

Proof: For u € [0, 1], let Pf*(u) be the g orthonormal polynomial with respect to the
weight u®(1 — u)®. Denote X' = TI_{[x¢, T¢]. By the fact that the order of the power series is
increasing and that all terms of a given order are included before a term of higher order, for

each k and A(k, ) with py(w) = szlw?(k’g), there exists by;, (j < k), such that

k
Z bijpj(w) = HE;%PS@,@([M = x¢/[Ze — %4]) P 5 (1)
j=1

Let By, denote a K x 1 vector By = (bg1, ..., bgk, 0')', brx # Owhere 0 is a K — k dimensional zero
vector and let B be the K x K matrix with k" row B;.. Then B is a lower triangular matrix
with nonzero diagonal elements and so is nonsingular. As shown in Andrews (1991) there is C'
such that |Pf(u)| < C(joH/2 + 1) < Cj /2 and |dPf(u) /du| < Cjo+5/2 for all w € [0, 1] and
7 €{1,2,...}. Then for p(w) = Bp®(w), it follows that |p(w)| < CA(k, )AL ZIA(k, )2,
so that ||p¥ (w)|| < CKSK, and supuew||0p (w)/dt]| < CKTK. Then by Assumption 5.2,
it follows that Qp = E[p* (w;)p¥ (w;)'] > Clk. Let B = Ql_(l/z, and define p¥(w) = Bp™ (w).
Then |55 (w)|| = VPR W)PX (w) < /FE(w) Q15K (w) < C||p¥ (w)|| and an analogous in-
equality holds for ||05% (w)/0t|, giving the conclusion. Q.E.D.

Henceforth define ( = CKYK and ¢ = C’K;,”QK . Also, since the estimator is invariant to
nonsingular linear transformations of p* (w), we can assume that the conclusion of Lemma C3

is satisfied with p® (w) replacing P (w).

Proof of Theorem 4: Let 6;; = Fy,(X1:|Z;) — q;-fyL(Xh;), with |0;;] < L="/" by Lemma
C2. Then for 7; = F(X|Z;)
0y = = A+ AT+ A

where . .
Al =07 > qyu/n, AT =qiQ > q;0u/n, Al = =55,
J=1 J=1
Note that |AM| < CL=%/" by Lemma C2. Also, by Q p.s.d. and symmetric there exists a
diagonal matrix of eigenvalues A and an orthonormal matrix B such that Q = BAB'. Let A~

denote the diagonal matrix of inverse of nonzero eigenvalues and zeros and Q‘ = BA~B’. Then



> qﬁ@‘qi = tr(Q*Q) < CL. By CS and Assumption 5.1,

kes

Z(Afl)2/n < Z((I;quf,: Z 0% /n)/n < CZ((I;Q_%‘)L“M/”
i—1 i=1 i=1

i=1 — j= j=
= CL*"u(Q™Q) < CL'*h /T,

Note that for b;(Z) = ¢/Q™ /y/n we have

Z bi( Z)/n = tr(QQ~QQ™)/n = tr(QQ™)/n < CL/n = Oy(L/n),
so it follows by Lemma Al that > 7"  (Al)2/n = O,(L/n). The conclusion then follows by T
and by [7(7) — 7(n)| < |7} = 7], which gives 37, (i) —7;)*/n < 32,(0; — 0;)*/n. Q.E.D.

Before proving other results we give some useful lemmas. For these results let p; = p™* (w;),
pi = pR (i), p = [p1, s ul, D = [B1, s P}y P = §'B/n, P = p'p/n, P = B[p;pl]. Note that in
the statement of these results we allow 7, and 7; to be vectors. Also, as in Newey (1997) it can

be shown that without loss of generality we can set P = .
LEMMA C4: If Assumptions 3.1 - 3.2 are satisfied then B[Y|X, Z] = B(X, 7).

Proof: By the proof of Theorem 1, §) = Fx,1z(X;|Z) is a function of X; and Z that is invertible
in X; with inverse X; = h(Z,7). By independence of Z and (e,7), ¢ is independent of Z
conditional on 7, so that
BlY|X,Z] = E[Y[X,Z 1) =BElg(X, )X, Z,n] = E[g(h(Z,n),¢)In, Z]
= /g(h(Z7 ), e)Fy,(deln) = B(X,n),

Let w; = Y; — B8(X;,n;), and let uw = (uy, ..., u,) .
LeMMA C5: If S 19 — mill2/n = O,(A2) and Assumptions 5.1 - 5.4 are satisfied then

(@), IIP P Op(CV/ K [n); (id) |Ip'u/nl| = Op(v/K/n), (iid) | ~ pl|*/n = O,(CTA7),
(), |12 = Pll = Op(CIAL + VEC AL (v) 1|5 — p)'u/nll = Op(¢1 A0/ V).

Proof: The first two results follow as in eq. A.1 and p. 162 of Newey (1997). For (i) a

mean value expansion gives p; = p; + [0p™ (w;)/0n](7; — 7;), where W; = (z,, ;) and 7, lies in
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between 7); and 7;. Since 7); and 7, lie in [0, 1], it follows that 7}; € [0, 1] so that by Lemma C3,
|6p™ (a0;) /dv)| < C¢y. Then by CS, |pi — pill < C¢y|7; — n;|- Summing up gives

o = pll*/n =Y 1B = pill*/n = Op(G1A%). (C.1)
i=1
For (iv), by Lemma C3, >"%, ||pil|?/n = Op(B[||pi||*]) = tr(Ix) = K. Then by T, CS, and M,
1P =Pl < S lpih —pipill/m <> 16 = pill*/n+ 200 i = pill*/m) 2O Mlil* /m) 2.
i=1 i=1 i=1 i=1
= O0,(GA% + VE( A,

Finally, for (v), for Z = (71, ..., Z,) and X = (X1, ..., Xy,), it follows from Lemma C4, Assump-
tion 5.4, and independence of the observations that Eluu'|X, Z] < CI,, so that by p and p
depending only on Z and X,

E[|(® — p)'u/nl*| X, Z]

tr{(p — p)'Bluv/| X, Z)(p — p)/n*}
Cllp — pl|*/n* = Op((EAL /n).

IA

Q.E.D.

LEMMA C6: If Assumptions 5.1-5.4 are satisfied and KCAA2 — 0, then w.p.a.1, /\min(fj) >
C, Amin(P) > C.

Proof: By Lemma C3 and (2K /n < CK(2L/n, we have |P — P|| % 0 and |P — P|| £ 0,
so the conclusion follows as on p. 162 of Newey (1997). Q.E.D.

Let 8 = (B(wr), ..., B(wy,)), and B = (B(i), . .., B(i,)).

LeMMA C7: If 2. |0, —m;l12/n = Op(A2), Assumptions 5.1 - 5.4 are satisfied, VKA, —
0, and K¢?/n — 0 then for & = P~y 3/n,a = P~'§B/n,

(i) 116 — G} = Op( /KT, (i) & = &l = Op(An) (i) & — || = O (K %),

Proof: For (i)

E[||PY%(a — &)|?| X, Z) Blu'pP~ ' plu/n?| X, Z] = tr{ P~V 2§ Blud| X, Z1pP~ Y2} /n?

Ctr{pP~1'} /n? < Ctr(Ix)/n = CK/n.

IA

Since by Lemma C6, Amin(P) > C w.p.a.l, this implies that B[||& — a||*|X, 2] < CK/n.
Similarly, for (%),

|PY2(& - a)|2 < C(B - BYPP™'H(B — B)/n? < C|B — B> /n = O,(A2),

23]



which follows from S(w) being Lipschitz in 1, so that also ||& — &[> = O,(AZ2). Finally for (iii),

|23 @ = oMY = fla = P ) < CB = o) pP (B - ) /n?
< B =paR|Pn<C sgp |Bo(w) — p& (w) o |? = OP(K—‘M/S)7

so that ||PY2(& — o)|? = O,(K~%%%). QE.D.

Proof of Theorem 5: Note that by Theorem 4, for A2 = L/n + L'*"24/7 we have Y, ||, —
n;112/n = Op(A2), so by K¢*/n < CK(3L/n the hypotheses of Lemma C7 are satisfied. Also
by Lemma C7 and T, ||& — o||2 = Op(K/n 4+ K245 + AZ). Then

| /‘[B<w> — B(w)2E, (dw) = / D" (w) (6 — o) + p" () e — B(w)|2Fy(duw)
< Clla— o |+ CK=% = Op(K/n + K2/ 4 A2).

For the second part of Theorem 5,

sup |5(w) — fw)] = sup [p*(w)'(a — o)+ p"(w) ok — plw)|
wEW weW
OP(C(K/H -+ I(‘Qd/s + Ai)]/Q) + Op([{—d/S)
= Op(C(K/n+ K2/5 4 [Jn + [}=20/r)1/2)
Q.E.D.

Proof of Theorem 6: Let p = /01 p™(t)dt and note that by Lemma C3, p'p < CK?. Also,
plz) = /:pK(w)dt =pi=(z) © p. (C2)
As above, Bluv/| X, Z] < C1,, so that by Fubini’s Theorem,
B( [ {p(e) (6= @) Fx(dn)|X, 2] = [{p(e) P~/Blwd|X, 219D~ pa)} Px (o)

< C [ play P~ p(e) x(dz)/m < CEIR(XYP(X))/n

= C{EP(X)p(XIFP)}/n= KK, /n.
It then follows by CM that [{p(z) (& — &) }*Fx (dz) = Op(K K272*)/n).

/. p(x)p(a) Fx (da) = I, @ pp < CIxp'p < CIi K3+,

so that by Lemma C7 and T,

/ {B(2) (& — oK)} Fy (da)

IN

(@— oy / p(z)p(x) Fx (do)(a — o)

CK%+2G||@ _ O‘KHZ — Op(KT‘ZI+2a(K72d/s + Aﬁ))

VAN

[24]



Also, by CS,

/@@Wﬁ—MWHﬁﬂﬁﬂﬁ/A{ﬁﬁwa—mwfmﬁﬂmﬂ=ﬂK”WW

Then the conclusion follows by T and

[ lota) = pia) o) = [ @6 = %) + ey o — (o)) ()

= Op(Ko/n+ K%+ A2) + O,(K,*). Q.E.D.
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