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1 Introduction

This paper derives a general model of second-degree discrimination in the pres-

ence of positive network effects. Positive network effects are also called strate-

gic complementarities in consumption, and are present if an economic agent’s

utility derived from the consumption of the good is positively affected by the

consumption level (or number) of other agents consuming the same or compat-

ible products.1 These effects commonly arise in various modern industries, like

telecommunications, hardware and software or banking, and these industries are

similar in the following properties: they are highly concentrated and the firms

use a wide variety of nonlinear tariffs or very detailed contracts. Our goal in

this paper is to use the tools of monotone comparative statics to describe the

screening problem faced by a monopolist seller of a network good, and to give

a complete characterization of the optimal contracts it can use.

We build a unifying framework to examine two well-known results, which are

usually referred separately in the analysis of network economics. The first is one

of the main conclusions in second-degree discrimination models, namely that the

incentive problem due to information asymmetry makes the monopoly distort

the quantity supplied to consumers with smaller willingness to pay for the good,

but makes ‘no distortion at the top’: consumers with the largest willingness to

pay are provided with the first-best optimal quantities.2 The second result

is due to the externality literature: once a consumer’s utility is not only the

function of his own consumption level, but of the others’ consumption levels as

well, then in equilibrium all economic agents end up with socially suboptimal

quantities.3 Network effects, which are generally assumed to be positive, result

in underconsumption of the network good for all consumers.
1For the implications of strategic complementarities on the production side (positive pro-

duction externalities) in principal-agent models, see Lockwood (2000).
2The seminal results of the second-degree discrimination literature were derived by Mussa

and Rosen (1978) and Maskin and Riley (1984), summarized for example in Fudenberg and

Tirole (1991) and Laffont and Martimort (2002).
3For a general overview on externalities, see for example Laffont (1988).
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The main aim of this paper is to show that if asymmetric information and

positive network effects are both present, these two impacts reinforce each other,

so there will be a strict downward distortion for all consumers in the quantities

provided. We also find that despite the downward distorting impact of posi-

tive network effects, the equilibrium outcome is an increasing function of the

intensity of the network effects, no matter which type of discrimination we con-

sider. The first result is a theoretical contribution to the literature on optimal

screening, and together with the second it has important implications for op-

timal pricing policies in network economies. Last, we show that in some cases

the discriminating monopoly supplies larger quantities for all consumers than

a perfectly competitive industry, which result may be relevant for regulatory

economics in these industries.

Let us demonstrate the strict downward distortion result by a simple exam-

ple. Suppose there are only two consumers of a network good, let us call them

sophisticated and normal. Assume that the sophisticated consumer benefits

more both from his individual consumption and from network size, where the

latter is now identified as total consumption level. Whenever the monopoly is

capable of perfectly discriminating between the two consumers, it grasps both

consumers’ surplus and supplies the welfare-maximizing quantities. However,

when the monopoly is restricted to offer the same menu of contracts to both

consumers, standard incentive theory tells us that it should distort the quantity

devoted to the normal consumer downwards in order to make switching less at-

tractive to the sophisticated consumer. Now if the normal consumer’s quantity

decreases, so does network size, and since positive network effects are present,

the sophisticated consumer’s utility from his individual consumption is nega-

tively affected. Thus, it is no more feasible to offer him the first-best optimal

quantity, and his consumption should be distorted downwards as well.

Before starting with the main model, we briefly discuss the related literature.

The “old literature” on network effects, which was basically on telecommuni-

cation pricing, focused on the question whether the network size would be the

3



one that maximizes social welfare.4 It was found that in perfect competition

the network effects cannot be fully internalized, and a monopoly may perform

better, since it controls both the price and the quantity, and may use cross-

subsidization policies more effectively.5 Our analysis reinforces the result that

the perfectly discriminating monopoly always supplies larger quantities for all

consumers than a perfectly competitive industry, since it may set the socially

optimal allocation and reap the increased surplus of each consumer. However,

the comparison of second-best discrimination and perfect competition alloca-

tions does not give unambiguous results, since we are comparing two outcomes

that fail to be the first-best for two different reasons: incentive problems due to

information asymmetry and the incapability of internalizing network effects.

The “new literature” on network effects considered mainly homogeneous

types of consumers and concentrated on the multiple equilibria problem created

by different (rational) expectations.6 Models with heterogeneous types of con-

sumers were only recently used by Fudenberg and Tirole (2000) and Ellison and

Fudenberg (2001). However, these models analyze the effectiveness of dynamic

strategies, like entry deterrence or software upgrades, in the presence of network

effects, hence they concentrate on intertemporal discrimination aspects. Hahn

(2003) builds a special model of telecommunication to examine the role of call

and network externalities in nonlinear pricing. He establishes the result that in

equilibrium all types end up with suboptimal quantities, so the ‘no distortion

on the top’ result does not hold. Nevertheless, since he works with a special

utility structure, he attributes this result to the existence of call externalities.

Two works closely related to ours are Segal (1999, 2003), which develop a

4Seminal papers include Rohlfs (1974), Littlechild (1975) and Oren et al. (1982). This

classification between the old and new literature on network effects is based on Liebowitz and

Margolis (2002).
5Similar conclusions have been derived in the macroeconomics literature on imperfect com-

petition, for example in Cooper and John (1988, p. 454): “a demand externality may arise,

though, in market structures where agents require information on both prices and quantities

in making choices [...] In these cases quantities matter to individual decision makers, and

prices do not completely decentralize allocations”.
6Farrell and Saloner (1985) and Katz and Shapiro (1985) were the first to raise this problem.
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general model of contracting with externalities and characterize the nature of

the arising inefficiencies. When externalities are positive, Segal shows that each

agent’s consumption level is smaller in the resulting equilibrium allocation than

in the socially efficient one. Strategic complementarity is identified as the factor

accounting for this general feature;7 however, the analysis names two additional

assumptions that are useful in identifying the direction of distortions: first,

the consumers are identical (hence there are no information asymmetries), and

second, total welfare depends only on aggregate trade, and not on its allocation

across consumers.8

This paper shows that the underconsumption result holds without these sim-

plifying assumptions if externalities are positive. In our model consumers are

heterogenous in two respects: first, they have different (exogenously given) val-

uations towards the same menus, and second, depending on their (endogenous)

choices, they may have different valuations for the same network.9 This setting

can be applied both to networks where the agents are screened by the different

consumption or usage level (such as in telecommunication), and to networks

where agents have unit demand for the good and are screened by the quality of

the service (such as in software markets).

Strategic complementarity, which is an inherent characteristic of positive

network effects, is the “critical assumption” in the terminology of Milgrom and

Roberts (1994) that drives our results. It allows us to characterize the optimal

contracts in a general setting by applying monotone comparative static tools,

pioneered by Topkis (1978) and Milgrom and Shannon (1994). The main ad-

vantage of our approach is that instead of solving the model explicitly for the

different first- and second-best allocations, it gives a simple method to compare

the equilibrium allocations. We develop a parametrized functional form that

encompasses both regime as optimal solutions for different parameter values,
7Segal (1999, p. 356) names this key property “increasing externality”.
8Segal (1999, p. 341).
9The second property works for the other direction as well: different networks sizes result

in different marginal utilities of the same individual consumption for different consumers.
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and then show that the optimal solution is a strictly monotone function of this

parameter.

The rest of this paper is organized as follows. Section 2 introduces the main

setup of the model, then Section 3 presents the benchmark case of first-best

discrimination. In Section 4 we turn to the implementation of an incentive-

compatible menu of contracts, and characterize the second-best optimal contract

in the presence of positive network effects. Section 5 compares the outcomes

of the two previous sections and analyzes further comparative statics questions.

Since monotone comparative static tools can be more suitably used for sets of

finite dimensions, the main model is built for a discrete distribution of types.

In Section 6 we briefly discuss the continuous type case. Finally, Section 7

concludes and discusses the possible extensions of the model.

2 The model

Consider a monopoly that produces a good exhibiting positive network effects

at a constant marginal cost c. We assume that the network goods sold to the

consumers are perfectly compatible with each other. Consumers have heteroge-

nous preferences for the good, a consumer of type θi is assumed to have a utility

function of

U(θi) = θiV (qi, q)− ti,

where qi is the amount of the network good he consumes, q =
∑
i

q(θi)f(θi) is

the total amount of network good in the economy (network size), and ti is the

tariff charged for qi by the monopoly.

Suppose there are n different types of consumers, so that θ1 < θ2 < ... < θn,

and let N denote the set of different types. Consumer types are independently

distributed by a given cumulative distribution function F (θ), and this distribu-

tion function is common knowledge for all consumers and the monopoly. We

assume that there is a continuum of consumers in each type, so a single con-

sumer’s contribution to the network is negligible.
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Suppose that there are no externalities on non-traders: for all q, V (0, q) = 0,

so the outside option is zero for all consumers.10 However, we do not restrict

our analysis to pure network goods, i.e. the stand-alone utility V (q, 0) may

differ from 0. We assume that V (·) is twice continuously differentiable and that

V1 > 0 and V11 ≤ 0, so the marginal utility of individual consumption level is

positive and decreasing.11

The positivity of network effects is captured by the following two key as-

sumptions. First, V2 > 0, so the marginal utility of network size is always

positive. Second, the consumption levels of each consumer groups are strategic

complements, which is equivalent of stating that V (·) has increasing differences

on (qi, q−i).12 These two assumptions together imply that individual consump-

tion and network size are strategic complements as well, thus V12 ≥ 0.13

Three remarks are in order. First, instead of the classical quantity discrim-

ination approach, we could give another interpretation of this problem, where

consumers have unit demands for the network good, and the goods differ in

their quality qi. If in this case we normalize the mass of consumers to 1, q

can be seen as average quality level in the network. Second, this functional

form reflects the case as well, where each consumer looks at the usage levels of

different packages as perfect substitutes in the network size, but gives a higher

weight to the packages similar to his own. Formally, this would mean that

qi = αq(θi)f(θi) + β
∑
j 6=i

q(θj)f(θj), where α > β. However, we can rewrite qi as

10This property ensures that consumers’ reservation value is type-independent. See Jullien

(2000) for a general model presenting the complications arising from type-dependent reserva-

tion values.
11In all of this paper, lower indexes refer to partial derivatives of the function V (·) in its

respective argument. Second, the words increasing (decreasing) and bigger (smaller) are used

in the weak sense.
12A function g(x, t) has increasing differences in (x, t) if g(x, t′) − g(x, t) is increasing in x

for all t′ > t.
13Note that the strategic complementarity of group consumption levels is a stronger as-

sumption, since it also captures that if a consumer’s individual consumption level increases

to q′i, the same will happen in equilibrium for all type-i consumers, therefore network size

changes as well (technically speaking, it is a total derivative instead of a partial one).
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(α − β)q(θi)f(θi) + q, where α − β > 0, and then an appropriate modification

of the original V (·) function will capture this case as well, and satisfy the as-

sumptions given above. Third, we have chosen constant marginal costs only for

expositional simplicity. Our qualitative results remain unchanged if we allow for

a cost function exhibiting weak cost complementarities (or so called economies

of scope), a property that generally fits the structure of network industries.14

The timing of the model is the following. First, the monopoly offers a menu

of contracts {(qi, ti)}n
i=1, among which consumers will self-select. Second, con-

sumers observe all possible contracts, and form their expectations about the

network size q. Finally, each consumer decides which package to purchase or

buys nothing, and payoffs are made.

We require that consumers’ expectations are rational, so they should be ful-

filled in equilibrium. However, we should also define an equilibrium selection

criterion, since as many models with network effects show, consumers’ expecta-

tions about others’ choices crucially influence their behavior, which may result

in multiple equilibria. In our model the consumers’ individual consumption lev-

els are strategic complements, which induces a so-called supermodular game, so

there will be a (rationally expected) equilibrium that Pareto-dominates the oth-

ers.15 We assume that once the monopoly offers the menu of contracts {(q, t)},

consumers coordinate on this equilibrium. Milgrom and Roberts (1996) give

a further justification to concentrate on the Pareto-dominant equilibrium by

showing that it is the only coalition-proof (correlated) equilibrium under any

admissible coalition communication structure.

14This is because weak cost complementarities imply a submodular cost function, as shown

by Sharkey (1982). It is also a sufficient condition for the firm being a natural monopoly.
15See Theorem 7 in Milgrom and Roberts (1990).
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3 The first-best optimal contract

As a benchmark case, suppose that the monopoly knows each consumer’s type,

and based on this information it can offer personalized contracts to them. Then

the contracts will be designed such that in equilibrium each type realizes non-

negative utility, that is

θiV (qi, q)− ti ≥ 0 (Pi)

for all i ∈ N . Since the distribution function is common knowledge, each con-

sumer rationally expects the network size q to be
∑

i∈N

qif(θi).

The profit of the monopoly is given by

Π =
∑
i∈N

(ti − cqi)f(θi),

and it has to be maximized such that participation constraints (Pi) are satisfied.

Naturally, all constraints will be binding in optimum, so the optimal quantity

schedule determines the optimal tariff schedule. Therefore, the key decision

variable for the monopoly is q = (q1, ..., qn) ∈ Q = Rn, the latter set being

a lattice.16 The function V (·) is defined on this lattice Q, and since we have

assumed that any qi and qj (i 6= j) are strategic complements, it implies that

V (·) is supermodular in q on Q.17

The final form of the profit function is

ΠFB =
∑
i∈N

θiV (qi, q) f(θi)− cq. (1)

Since there are no externalities on non-traders, the perfectly discriminating

monopoly internalizes all network effects. Thus the monopoly’s problem is

equivalent to the welfare-maximizing one, and the optimal allocation produces
16A lattice is a partially ordered set, which contains the least upper bound (so called join)

and greatest lower bound (so called meet) of each pair of its elements. The join (meet) of two

elements x′ and x′′ is denoted by x′∨x′′ (x′∧x′′). In R2, x′∨x′′ = (max{x′
1, x′′

1}, max{x′
2, x′′

2})

and x′ ∧ x′′ = (min{x′
1, x′′

1}, min{x′
2, x′′

2}).
17This follows from Theorem 2.6.2. in Topkis (1998). A function g(x) is supermodular on

the lattice X, if g(x′) + g(x′′) ≤ g(x′ ∨ x′′) + g(x′ ∧ x′′) for all (x′, x′′) ∈ X.
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no social inefficiency. This result is in line with Segal (1999), since so far the

heterogeneity of consumers played no role.

Note that the profit function is the sum of supermodular functions multi-

plied by positive constants, so it will be supermodular on Q.18 In all of this

paper, since we concentrate on the critical assumptions allowing to compare the

first- and second best outcomes, we assume that the respective profit function

has a positive bounded maximum, without imposing any sufficient conditions

guaranteeing this property.

If we maximize ΠFB in q, the following set of first-order conditions charac-

terize the first-best allocation qFB :19

θiV1(qi, q) +
∑
j∈N

θjV2(qj , q)f(θj) = c, for all i ∈ N. (2)

The first term measures the marginal utility of individual consumption for a

consumer of type i, we will call it individual effect. The second term sums the

marginal utility increases of all consumers due to the increased consumption of

consumer group i, which will be called network effect. Note that the network

effects are the same in all equations. If there are no network effects, we are back

to the standard result of first-best implementation: individual effect should

equal marginal cost.

By combining two first-order conditions, we have that

θiV1(qi, q) = θjV1(qj , q)

for all i, j ∈ N . Since V11 ≤ 0, θi < θj implies qi < qj , so in the first-best

optimum consumers of higher types end up with a larger quantity level than

consumers of lower types.
18See Lemma 2.6.1 in Topkis (1998). We use the fact that a one-dimensional function, like

cqi, is both super- and submodular, and a supermodular minus a submodular function is still

supermodular.
19Throughout the whole paper, the final forms of the first-order conditions are derived after

dividing the equations by the density of the respective type.
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4 The second-best optimal contract

If the monopoly should offer the same menu of contracts for all consumers, the

first-best optimum is not feasible, since all consumers except of the lowest type

θ1 will have an individual incentive to choose a contract devoted to a lower

consumer type, as in the standard screening model with network effects. An

incentive-compatible menu structure {(qi, ti)}n
i=1 should satisfy participation

constraints (Pi) and the following set of incentive constraints:

θiV (qi, q)− ti ≥ θiV (qj , q)− tj (ICij)

for all i, j ∈ N , where q =
∑

i∈N

qif(θi) is the rationally expected equilibrium

network size.

By adding incentive constraints (ICij) and (ICji), we see that

(θi − θj)[V (qi, q)− V (qj , q)] ≥ 0 (3)

should hold for all i, j ∈ N . Since V1 > 0, in order to have an implementable

mechanism, the quantity scheme q(θ) should be a non-decreasing function of the

type. We will refer to this condition as the monotonicity constraint.

The reason why we end up with exactly the same implementability condi-

tions as in the standard screening problem without network effects is because

in the incentive constraints we require only that no consumer has any incentive

to deviate individually from his equilibrium choice. Since we have assumed a

continuum of consumers in each type, a single consumer’s choice cannot have

a significant effect on network size, so q remains unchanged if other consumers

stick to their equilibrium choice.

As standard in incentive theory literature, we first analyze the set of con-

straints to find the relevant ones.

11



Lemma 1 In the second-best optimum there are n binding constraints: (P1),

the participation constraint of the lowest-type consumer, and (ICi(i−1)) for

i = 2, ..., n, the downward local incentive constraints. Furthermore, the opti-

mal tariffs are

t1 = θ1V (q1, q), and

ti = θiV (qi, q)−
i−1∑
j=1

∆θjV (qj , q), for i = 2, ..., n,

where ∆θj = θj+1 − θj .

Proof. See Appendix A.

These tariff equations demonstrate the standard intuition of second-degree

discrimination: the surplus of the lowest type consumers is fully grasped, while

consumers of higher types should get an information rent of
i−1∑
j=1

∆θjV (qj , q) in

order to satisfy incentive compatibility.

By substituting the optimal tariff functions into the profit function, it sim-

plifies to the following form:20

ΠSB = θ1V (q1, q)f(θ1) +
n∑

i=2

θiV (qi, q)−
i−1∑
j=1

∆θjV (qj , q)

 f(θi)− cq =

=
∑
i∈N

(
θi −∆θi

1− F (θi)
f(θi)

)
V (qi, q)f(θi)− cq. (4)

The function ΠSB should be maximized in q, with respect to the monotonic-

ity constraint (3) and q ≥ 0. We ignore these constraints for the moment, and

check at the end whether they are satisfied in equilibrium. Then the optimal

allocation qSB is characterized by the following first-order conditions:

θiV1(qi, q) +
∑
j∈N

θjV2(qj , q)f(θj)−∆θi
1− F (θi)

f(θi)
V1(qi, q)−

−
∑
j∈N

∆θj [1− F (θj)]V2(qj , q) = c, for all i ∈ N. (5)

20This simplified form contains a non-defined type parameter, θn+1 in ∆θn. However, it

does not play any role, since it is multiplied by 1− F (θn) = 0.
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The first term is the first-best individual effect, while the second is the

first-best network effect. The third subtracted term will be called second-best

individual effect, and this has exactly the same form as in the standard screening

model without network effects. This effect equals zero for consumers of type θn,

so produces ‘no distortion at the top’, and is positive for all other types.

However, there is the final sum to be subtracted, which will be called second-

best network effect, and is strictly positive for all consumers. The presence of a

second-best term in the optimum condition for the highest type consumers is due

to the fact that now all types’ information rent is affected by total network size

q as well, which contains qn, while in standard incentive theory the information

rent of the ith type depends only on qi−1. Its emergence already foreshadows

the result that in the presence of network effects the ‘no distortion at the top’

result will no longer hold.

Since the network effects are the same in all first-order conditions, combining

two of them gives(
θi −∆θi

1− F (θi)
f(θi)

)
V1(qi, q) =

(
θj −∆θj

1− F (θj)
f(θj)

)
V1(qj , q)

for all i, j ∈ N . Now let us examine the implications of the omitted constraints.

First, θi − ∆θi
1−F (θi)

f(θi)
should be positive for all consumers supplied with

a positive quantity, since θn − ∆θn
1−F (θn)

f(θn) = θn and V1 are both positive. If

θi −∆θi
1−F (θi)

f(θi)
≤ 0, the ith type (and by the monotonicity constraint all lower

types) will be shut down, so qi = 0. Note that no shut-down condition has the

same form as in the classical screening literature without network effects.

Second, since V11 ≤ 0, in order to satisfy the monotonicity constraint, θi −

∆θi
1−F (θi)

f(θi)
> θj − ∆θj

1−F (θi)
f(θi)

should be satisfied for i > j, if the monopoly

wants to separate type-i and type-j consumers. If θi − ∆θi
1−F (θi)

f(θi)
≤ θj −

∆θj
1−F (θi)

f(θi)
, the two types will be bunched, that is qi = qj . A possible sufficient

condition to avoid bunching is that ∆θi is the same for all i and F (θ) satisfies

the monotone hazard rate property: d
dθ

(
1−F (θ)

f(θ)

)
≤ 0.

In the following discussion we assume that in the optimal mechanism at least

two different types are served and discriminated.
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5 Comparison of different outcomes

We have derived the first-order conditions for the perfect (first-degree) and

incentive (second-best) discrimination cases, which characterize the equilibrium

quantities, and thereby the equilibrium tariffs in the respective regimes. We

have seen that in the second-best case the presence of network effects distorts

the first-best allocations for all consumers. In the next proposition we prove

that this is a strict downward distortion for all consumers.

Instead of solving these equation systems and comparing directly the equilib-

rium allocations, we develop a parametrized functional form that encompasses

both regimes as optimal solutions for different parameter values, and then use

monotone comparative statics tools to show that the optimal solution is a strictly

monotone function of this parameter. Note that the original Monotone Selection

Theorem derived by Milgrom and Shannon (1994, Theorem 4’) shows that the

conditions under which the set of maximizers of a supermodular function is only

non-decreasing in response to an exogenous parameter. By arguing from first-

order conditions, Edlin and Shannon (1998) extend this result by showing that

under some conditions the maximizer should be strictly increasing in at least

one dimension. Our next lemma builds on their result by identifying a sufficient

condition so that the maximizer is strictly increasing in all dimensions.

Lemma 2 Let Q = Rn and T = R, and let f : Q × T → R be a continuously

differentiable function, which is supermodular in q on Q, and has strictly in-

creasing differences in (q, t) on Q × T . Furthermore, suppose that f(q, t) has

increasing marginal returns for all choice variables, that is ∂2Π
∂qi∂t > 0 for all qi.

Let q(t) ∈ arg max
q∈Q

Π(q, t). Then q(t′′) > q(t′) if t′′ > t′.

Proof. See Appendix B.

Armed with this lemma, we are able to give a simple proof for our main

theorem.
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Proposition 3 The second-best allocation is strictly smaller than the first best

allocation, that is qSB < qFB .

Proof. Consider only the types that are not shut down in the second-best regime

(set S), since for the others the strict downward distortion holds trivially. Let

us take the following parametrized form Π : Q× T → R:

Π(q, α) =
∑
i∈S

(
θi + α∆θi

1− F (θi)
f(θi)

)
V (qi, q)f(θi)− cq,

where T = [−1, 0]. When α = 0, we have the first-best profit function given

in (1), while for α = −1 we have the second-best profit function given in (4).

Then the function Π(q, α) is supermodular in q on Q for all α, since by the no

shut-down condition the multipliers of V (·) are always positive for all i ∈ S.

Moreover, Π(q, α) has strictly increasing differences in (q, α) on Q × T , and

the marginal returns of all qi-s are increasing in α, since ∂2Π
∂qi∂α > 0 for all qi.

Therefore, since αFB > αSB, Lemma 2 ensures that q(αFB) > q(αSB).

Second, we compare the equilibrium allocations of first- and second-best

discrimination regimes to the perfectly competitive case, where identical firms

supply the network good at a price equal to marginal cost c. Then each consumer

of type θi derives a utility of

θiV (qi, q
PC)− cqi,

where qPC is the expected network size under perfect competition, which should

be fulfilled in equilibrium.

Maximizing utility in qi results in the first-order condition of

θiV1(qi, q
PC) = c, for all i ∈ N. (6)

Let us denote the solution of this equation system by qPC . By combining two

first-order conditions, we see that qPC
i > qPC

j if θi > θj .
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Proposition 4 The equilibrium allocation under perfect competition is strictly

smaller than in the first-best discrimination case, that is qPC < qFB .

Proof. If we compare first-order conditions (6) with the first-order conditions

(2) of the first-best discrimination case , we see that

θiV1(qFB
i , qFB) < θiV1(qPC

i , qPC)

for all i ∈ N . In the first-best case, the monopoly is supplying the welfare-

maximizing allocation, so qFB cannot be smaller than qPC , since the externali-

ties are positive. Then since V12 ≥ 0, for all qFB
i

V1(qFB
i , qPC) ≤ V1(qFB

i , qFB).

Combining this inequality with the former one, we have that

θiV1(qFB
i , qPC) < θiV1(qPC

i , qPC),

which yields that qFB
i > qPC

i for all i ∈ N , since V11 ≤ 0.

Thus, the perfectly competitive outcome is smaller than the first-best dis-

crimination outcome. This is because perfectly competitive firms cannot in-

ternalize the network effects implied by larger allocations, since they cannot

influence the quantity choice of the consumers. On the other hand, the per-

fectly discriminating monopoly can set the (larger) socially optimal allocation,

and reap the increased surplus of each consumer.

The comparison of the allocations under second-best discrimination and per-

fect competition (defined by equations (5) and (6)) does not give unambiguous

results, since we are comparing two outcomes, which fail to be the first-best for

two different reasons: incentive problems due to information asymmetry and

the incapability of internalizing network effects. However, if the impact of net-

work effects is large enough to offset the effect due to the decrease in individual

consumption (loosely speaking, if V2 is sufficiently larger than ∆θi
1−F (θi)

f(θi)
V1),

then we may have a larger allocation in the screening monopoly regime than

under perfect competition.
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Last, we show that the equilibrium outcome is a strictly increasing function

of the intensity of the network effects, no matter which type of discrimination

we consider. As a corollary, we can state that discrimination in the presence of

network effects always leads to a larger allocation than in the standard screening

case (i.e. without network effects). This result is natural in the case of first-best

discrimination, but it also shows that despite the downward distorting factor

from the first-best allocation, the presence of network effects has a positive

impact in total on the resulting allocation in the second-best case as well.

Let us consider the utility function U(θi) = θiV (qi, βq) − ti, where β ≥ 0

measures the intensity of network size. If β = 0, we are back to the standard

discrimination case without positive network effects, while our original model

refers to β = 1.

Proposition 5 Both for first- and second-best discrimination in the presence of

network effects, the equilibrium allocation q(β) is a strictly increasing function

of β for the types supplied with positive quantities.

Proof. The set of types supplied with positive quantities is N in the first-best

regime and S for the second-best regime, where S is defined by the same no

shut-down condition for any network size intensity. The profit function takes

the form of Πj : Q× T → R:

Πj(q, β) =
∑ (

θi + αj∆θi
1− F (θi)

f(θi)

)
V (qi, βq)f(θi)− cq,

where β ∈ T = R+. The higher index j shows whether we are in the first- or

second-best regime, so αFB = 0, αSB = −1. We have seen that the function

Πj(q, β) is supermodular in q on Q for each β and j. Now Πj(q, β) has strictly

increasing differences in (q, β) only on Q × (T \ {0}), so applying Lemma 2

shows only that q(β) is strictly increasing for β ∈ (0,∞). However, the Mono-

tone Comparative Statics Theorem guarantees the smallest elements of q(β) is

increasing on the whole T , and if there exists a sufficiently small β′ > 0 such

that the smallest element of q(β′) equals the unique q(0), then q(β′/2) < q(0),

which is a contradiction. Therefore q(β) should be strictly increasing on T .
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6 Discussion of the continuous-type case

In the screening literature it is common to discuss the models in a continuous-

type framework, since it simplifies considerably the exposition of the imple-

mentation problem.21 Indeed, the description of first- and second best optimal

contracts presented in Section 3 and 4 can be easily modified to account for

a continuum of types, and the characterizing conditions will have exactly the

same form stated in integrals instead of sums. In this case, however, defining

strategic complementarity and proving the supermodularity of the general profit

function, which is the key for the monotone comparative statics results of Sec-

tion 5, is not straightforward. In this section we briefly sketch the analysis and

the arising difficulties, which leads to slightly weaker results.

Suppose now that θ is distributed on [θ, θ] according to a continuous dis-

tribution function F (θ), with a positive density f(θ) at each point. As in the

discrete-type case, the relevant decision variables are the quantity choices of

the monopoly, since the optimal tariff schedule t(θ) will be determined by the

optimal quantity schedule q(θ). Now let Q be the set of bounded, piecewise con-

tinuous functions q(θ) defined on [θ, θ], and the join and meet of two elements

q′(θ) and q′′(θ) are defined as the upper and lower envelope of the two functions:

q′(θ) ∨ q′′(θ) = max{q′(θ), q′′(θ)} and q′(θ) ∧ q′′(θ) = min{q′(θ), q′′(θ)}. Then

Q is a lattice, since it always contains the join and meet of any two elements.

So far in our model we have been working with a discrete distribution of

types, that is F (θ) was an n-step function where the interval of possible types

was divided into n partitions. Let us call this partitioning Ωn, and take finer and

finer partitions by increasing n towards infinity in such a way that Ωn uniformly

converges to Ω characterized by the continuous distribution function F (θ). We

have seen that for any finite n, the Ωn partitioning of the type space yielded a

supermodular objective function Π(q) in q on Rn, and now we show that this

property holds in the limit on the lattice Q defined above.

21See for example Section 7.3 of Fudenberg and Tirole (1991) or Appendix 3.1 of Laffont

and Martimort (2002).
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Lemma 6 If Π(q) is supermodular in q on Q for all finite Ωn partitioning of

the type space, then Π(q(θ)) will be supermodular in q(θ) on Q.

Proof. See Appendix C.

Given this property, we can use the Monotone Selection Theorem to show

that qSB(θ) ≤ qFB(θ). Note that we can show only the downward distortion

result, but not in the strict sense. The proof of Theorem 3 relies on the finite

dimension of the choice space, and by using the result that network size should

decrease under second-degree discrimination, we can only show that qSB(θ) is

strictly smaller than qFB(θ) for a set of positive measure.

7 Concluding remarks

In this paper we have derived a general model to analyze the second-degree price

discrimination problem of a monopoly selling a network good exhibiting strate-

gic complementarities. By using the tools of monotone comparative statics, we

were able to give a full characterization of screening contracts. We have seen

that strategic complementarities and asymmetric information together lead to

a strict downward distortion for all consumers, and the equilibrium outcome is

an increasing function of the intensity of the network effects. Additionally, we

have shown that a discriminating monopoly may supply larger quantities for all

consumers than a perfectly competitive industry.

A crucial feature of our model was that the optimal contracts are designed

such that it is individually not profitable for deviating from the truthtelling

equilibrium. However, the natural question arises whether it could be advanta-

geous for some consumers to form a coalition to coordinate their decisions and

then reallocate the goods among themselves. Jeon and Menicucci (2002) show

that there is no loss of generality in restricting our attention to contracts that

satisfy only individually incentive compatibility constraints, if the coalitions are

formed under asymmetric information. This is because buyers fail to realize the

gains from joint deviations due to the transaction costs of asymmetric informa-
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tion among themselves, and the monopoly can use this fact to construct a menu

of contracts, by which it can do at least as well as when there is no coalition.

Although network effects are not present in their model, the intuition seems to

hold in our setting as well.

In the whole paper the network goods provided to different types of con-

sumers were assumed to be compatible with each other. Let us briefly discuss

the case of two types where the monopoly chooses the network good provided

to low-type consumers to be incompatible with the high-types’ goods, while the

high-types’s good has full compatibility. Now low-types benefit less from the

network, so the monopoly cannot charge such a high tariff for them. However,

a high-type consumer will now have less incentive to choose the menu devoted

to low-type consumers, since then he excludes himself from using a part of the

network, so information rent of high-type consumers should decrease as well,

which is profitable for the monopoly. Therefore, it is a natural conjecture that

if the monopoly chooses to make its good partially incompatible, then it will

choose to do so with the good devoted to low-type consumers, since high-type

consumers have a higher marginal utility for the network.

If the good devoted to low-type consumers is incompatible with the good de-

voted to high-type consumers, then in equilibrium low-type consumers’ utilities

depend only on low-type consumers’ choices. This is exactly the same case as if

low-type consumers had the pessimistic expectation that high-type consumers

will stay out of the market, so the monopoly has to design the contract devoted

to low-type consumers such that they would accept it ‘without the high-types’

as well. But if high-type consumers observe the contract devoted to low-type

consumers, no matter how pessimistic prior expectations they had about low-

types’ behavior, they will realize that low-types will accept that contract in

any case. Then they will make their choices by expecting low-type ones ‘in the

network’, thus the monopoly can design the menu devoted to high-types accord-

ingly. This “divide-and-conquer” strategy, presented also in Jullien (2002) and

Segal (2003), may help to overcome the problem of multiple equilibria induced

by different consumers’ expectations and to end up with unique implementation.
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8 Appendices

A Proof of Lemma 1

First, the participation constraint (Pi) will be automatically satisfied for all

types i ≥ 2 if the constraints (P1) and (ICi1) are satisfied, since

θiV (qi, q)− ti ≥ θiV (q1, q)− t1 > θ1V (q1, q)− t1 ≥ 0.

Second, by adding any two incentive constraints (ICij) and (ICjk) such that

i > j > k, we have

θiV (qi, q)− ti ≥ (θi − θj) V (qj , q) + θjV (qk, q)− tk.

Rearranging the monotonicity constraint (3) gives (θi − θj) V (qj , q)+θjV (qk, q) ≥

θiV (qk, q). Therefore

θiV (qi, q)− ti ≥ θiV (qk, q)− tk,

so the incentive constraint (ICik) is satisfied. The same reasoning can be done

for the case of i < j < k, thus the local incentive constraints (the ones involving

adjacent types) imply the global incentive constraints.

Now suppose that (ICij) for i < j will not be binding in equilibrium, so

we ignore them for the moment and check later whether they will be satisfied.

Then the remaining n constraints constraints should be binding in equilibrium,

implying the optimal tariff functions (t1)−(tn). Finally, by substituting the cor-

responding tariff functions into the ignored upward local incentive constraints,

we see that they are indeed satisfied if

∆θi−1[V (qi, q)− V (qi−1, q)] ≥ 0, for i = 2, ..., n,

which is fulfilled by the monotonicity constraint (3).
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B Proof of Lemma 2

For any selections from this set of maximizers, the Monotone Selection Theorem

ensures that q(t′′) ≥ q(t′) if t′′ > t′, and from Theorem 3 of Edlin and Shannon

(1998) we also know that q(t′′) 6= q(t′), so they are different in at least one

coordinates of Rn.

Now let us assume indirectly that q(t′′) is identical to q(t′) in 0 < k < n

coordinates, and they differ in the remaining l = n − k coordinates. We may

assume without any loss of generality that the matching coordinates are the

first k ones, so q(t′′) = (q′′k , q′′l ) and q(t′) = (q′k, q′l), where q′′k = q′k, and q′′l > q′l.

Now pin down the last l coordinates to q′l and find qk(ql, t) = arg max
qk∈Rk

f(qk, ql, t).

Let qk(q′l, t
′′) be denoted by q∗k. By definition qk(q′l, t

′) = q′k, and by replicating

the arguments given above, we see that q∗k cannot be smaller than q′k, and

differs from q′k in at least one coordinate. Based on these points, we can define

q∗ = (q∗k, q′l) and q∗∗ = (q∗k, q′′l ), and then q(t′′) ∨ q∗ = q∗∗ and q(t′′) ∧ q∗ =

q(t′). Basically we are constructing a rectangle characterized by the points

q(t′), q(t′′), q∗ and q∗∗.

The supermodularity on Q ensures that

f(q(t′′), t′′) + f(q∗, t′′) ≤ f(q∗∗, t′′) + f(q(t′), t′′),

and f(q(t′), t′′) < f(q∗, t′′) by the definition of q∗. These two conditions imply

that f(q∗∗, t′′) should be strictly larger than f(q(t′′), t′′), which contradicts the

indirect assumption that the optimal solution q(t′′) is identical to q(t′) in the

first k coordinates. This method can be applied for any positive k (since the

marginal returns of all qi-s are increasing), so after n− 1 steps we can conclude

that q(t′′) should differ from q(t′) in all coordinates.
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C Proof of Lemma 6

For any Ωn partitioning, by the supermodularity of the function Π(q) we have

Π(q′) + Π(q′′) ≤ Π(q′ ∨ q′′) + Π(q′ ∧ q′′)

for any q′, q′′ ∈ Rn, where q′ ∨ q′′ = (max{q′1, q′′1}, ...,max{q′n, q′′n}) and

q′ ∧ q′′ = (min{q′1, q′′1}, ...,min{q′n, q′′n}). Note that each n-dimension vector

q can be represented by an n-step function qn(θ), so the previous inequality can

be reformulated in terms of step functions:

Π(q′n(θ)) + Π(q′′n(θ)) ≤ Π(q′n(θ) ∨ q′′n(θ)) + Π(q′n(θ) ∧ q′′n(θ)), (7)

where q′n(θ)∨ q′′n(θ) = max{q′n(θ), q′′n(θ)} and q′n(θ)∧ q′′n(θ) = min{q′n(θ), q′′n(θ)}.

Suppose that as we are taking finer and finer partitions, lim
n→∞

q′n(θ) = q′(θ)

and lim
n→∞

q′′n(θ) = q′′(θ). Then by the continuity of the profit function,

lim
n→∞

Π(q′n(θ)) = Π(q′(θ)) and lim
n→∞

Π(q′′n(θ)) = Π(q′′(θ)).

Now for any ε > 0 there exists a high enough n such that |q′n(θ)− q′(θ)| ≤ ε

and |q′′n(θ)− q′′(θ)| ≤ ε, that is q′(θ)− ε ≤ q′n ≤ q′(θ) + ε and q′′(θ)− ε ≤ q′′n ≤

q′′(θ) + ε for each θ ∈ [θ, θ]. Therefore,

max{q′(θ), q′′(θ)} − ε ≤ max{q′n(θ), q′′n(θ)} ≤ max{q′(θ), q′′(θ)}+ ε,

so |max{q′n(θ), q′′n(θ)} −max{q′(θ), q′′(θ)}| ≤ ε for each θ ∈ [θ, θ]. The similar

argument can be replicated for the minimum operator, so we have that the

functional limit of the upper (lower) envelope of the two functions is the upper

(lower) envelope of the functional limits of the two functions.

Then by the continuity of Π(·), lim
n→∞

Π(q′n(θ)∨ q′′n(θ)) = Π(q′(θ)∨ q′′(θ)) and

lim
n→∞

Π(q′n(θ) ∧ q′′n(θ)) = Π(q′(θ) ∧ q′′(θ)). Therefore, by taking the limits of

inequality (7), we have

Π(q′(θ)) + Π(q′′(θ)) ≤ Π(q′(θ) ∨ q′′(θ)) + Π(q′(θ) ∧ q′′(θ)).
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