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Abstract

In this paper, we consider nonlinear transformations of random walks driven
by thick-tailed innovations with undefined means or variances. In particular,
we show how nonlinearity, nonstationarity, and thick tails interact to generate
persistency in memory, and we clearly demonstrate that this triad may generate
a broad spectrum of persistency patterns. Time series generated by nonlinear
transformations of random walks with thick-tailed innovations have asymptotic
autocorrelations that decay very slowly as the number of lags increases or do
not even decay at all and remain constant at all lags. Depending upon the
type of transformation considered and how the model error is specified, they
are given by random constants, deterministic functions which decay slowly at
polynomial rates, or mixtures of the two. These patterns in autocorrelations,
along with other sample characteristics of the transformed time series, make it
very plausible that this triad is involved in the data generating processes for
many actual economic and financial time series data. We also discuss nonlinear
regression asymptotics when the regressor is observable and an alternative re-
gression technique when it is unobservable. We use our model to analyze two
empirical applications: exchange rates governed by a target zone and electricity
price spikes driven by capacity shortfalls. We demonstrate the importance of
extracting the unobserved regressor in the former case by using it to test the
long-run PPP hypothesis.
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1. Introduction

This paper considers nonlinear transformations of random walks driven by thick-tailed in-
novations with undefined variances and possibly undefined means. As we show, this specifi-
cation generates a wide spectrum of differing patterns of persistency in memory. The triad
of nonstationarity, nonlinearity, and thick tails generate time series with asymptotic auto-
correlations that decay very slowly as the number of lags increases or do not even decay at
all and remain constant at all lags. Depending upon the type of transformation considered
and how the model error is specified, they are given by random constants, deterministic
functions which decay slowly at polynomial rates, or mixtures of the two. Therefore, the
triad has the potential to generate the persistent memory patterns that are present in many
of economic and financial time series data. It may also yield several other prominent prop-
erties of many observed time series such as jumps in the sample paths, excessive volatility
and skewness, and leptokurtosis.

The theories for our model depend crucially on the type of transformation functions
involved. We therefore consider separately two types of functions for the underlying trans-
formations: integrable and asymptotically homogeneous functions. These are the classes of
functions introduced by Park and Phillips (1999, 2001) in their studies on nonlinear transfor-
mations of integrated time series. Our models with integrable transformations are referred
to as ITS models, where ITS denotes “integrable transformation of a stable process”. On
the other hand, we refer to those belonging to the class of models employing asymptoti-
cally homogeneous transformations as AHTS models, where AHTS signifies “asymptotically
homogeneous transformation of a stable process”. These models yield very different time
series characteristics, in terms of the asymptotics of the sample moments and differing rates
of convergence of the parameters estimates from regression.

In this paper, we establish various time series properties for ITS and AHTS models. ITS
models yield time series that have characteristics similar to those of stationary long-memory
processes. More precisely, the transformed processes have asymptotic autocorrelations de-
caying at a polynomial rate with the exact rate depending upon the thickness of the tails
of the innovations driving the underlying random walks. We find that they generate au-
tocorrelation patterns consistent with fractionally integrated I(d) processes with memory
parameter d between 0 < d ≤ 1/4. When model error is present, it is also possible to get
autocorrelations that have these patterns with additional Gaussian noise or that are deter-
mined by pure Gaussian noise at all lags. In contrast, AHTS models generate time series
that have asymptotic autocorrelation functions that are constant and do not decay at all.
The asymptotic autocorrelations of the non-constant asymptotically homogeneous trans-
formations of random walks are unity at all lags, just like those of untransformed random
walks.

We study other time series properties of these models, as well. In particular, we derive
asymptotics for the sample variance, skewness, and kurtosis. Calculating such statistics for a
time series implicitly assumes that the series is stationary, because these statistics are meant
to characterize the underlying distribution. These are spurious statistics when applied
to a nonstationary time series, but they still carry meaningful information that allows
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one to distinguish between a stationary series and one that may have a data generating
process described by our model. In terms of sample moments, an ITS process behaves
like a stationary time series if observed with error. If observed without error, however, it
has vanishing sample variance but diverging sample skewness and kurtosis. The sample
moments of an AHTS process do not depend upon whether it is observed with or without
error. In both cases, the sample variance diverges, and the sample skewness and kurtosis
are random in the limit.

The explanatory variable in our models may or may not be observed. If it is observ-
able, then the transformation function may be properly specified and can be consistently
estimated by the usual nonlinear least squares method. Here we extend the theories devel-
oped by Park and Phillips (2001) for nonlinear regressions with integrated processes to our
models driven by stable random walks. We find that all of the results in Park and Phillips
(2001) apply to our models, with different rates of convergence. If, on the other hand,
the explanatory variable is not observable, we suggest that it may be estimated together
with the transformation function using the extended Kalman filter. Although we do not
develop a rigorous theory to justify this approach, the method seems to work reasonably
well in extracting the unobserved explanatory variable and estimating the transformation
function. We evaluate the performance of the extended Kalman filter by simulations.

As illustrative examples of empirical applications of our models, we consider two mod-
els: exchange rates governed by a target zone and electricity price spikes driven by capacity
shortfalls. The target zone exchange rate model is an example of an AHTS model with
an unobserved explanatory variable. For the actual application, we look at DEM/FRF ex-
change rates. In particular, we extract what is believed to be the fundamental driving the
exchange rate and test for long-run purchasing power parity using the extracted fundamen-
tal. The model for electricity prices is an example of an ITS model with capacity utilization
as the observed explanatory variable. Price is specified as an integrable function of a mea-
sure of excess capacity, and the model is estimated by standard nonlinear least squares. The
fitted model appears to be quite reasonable and it generates time series patterns similar to
those of the observed prices.

The remainder of the paper is structured as follows. Section 2 describes the general
model. We formalize the concept of thick tails by introducing the class of α-stable distribu-
tions, which may have undefined moments. Section 3 defines the transformations we employ
in our analysis and derives sample statistics for series generated by ITS and AHTS mod-
els. Section 4 discusses regression using ITS and AHTS models. Regression asymptotics
are presented for the case in which (xt) are observable, and we discuss using the extended
Kalman filter to estimate the model parameters when (xt) are not observable. Section 5
presents two empirical applications, a target zone exchange rate model and a wholesale
electricity price model. We present results from Monte Carlo simulations for the specific
functional forms employed there, as well as empirical findings based on our model. Section 6
concludes. Appendix A contains useful lemmas and their proofs, and Appendix B contains
proofs of the main results of our analysis.
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2. The Model and Preliminaries

Let (xt) be the time series generated as

xt = xt−1 + vt (1)

where (vt) is a sequence of random variables, the densities of which have thick tails, as will
be specified in more detail below. We consider the time series (yt), whose conditional mean
is defined as a nonlinear transformation of (xt) with the transformation function F on R.
More specifically, we let

yt = F (xt) + εt (2)

where (εt) is assumed to be a martingale difference sequence (an MDS) with respect to a
filtration (Ft) to which (xt+1) is adapted, and E |εt|p < ∞ for some p ≥ 6. We further
assume that (vt) and (εt) are uncorrelated, or equivalently that (xt) are strictly exogenous.
This assumption may be relaxed for many of our results, but it is especially convenient
when dealing with regression asymptotics.

Let σ2
ε = Eε2

t . We consider two plausible alternative modeling assumptions in this
analysis:

σ2
ε > 0 (3)

and
σ2

ε = 0. (4)

The former amounts to including modeling error. In this case, (yt) are observable with
noise. In the latter case, (yt) are directly observable, and model error is omitted. In both
cases, we have

E(yt|Ft−1) = F (xt).

Consequently, the time series (yt) specified by this model has the conditional mean given as
a function of a random walk driven by innovations having thick tails. Our model thus has
three ingredients that are commonly observed in many economic and financial time series:
nonlinearity, nonstationarity, and thick tails.

We require some technical conditions. Throughout the paper, we assume that (vt) are
iid and have regularly varying tail probabilities, i.e.,

P{|vt| > x} = x−α`(x) (5)

with α > 0 and ` a slowly varying function at infinity. Moreover, we let the tail balancing
condition hold, i.e.,

P{vt > x}
P{|vt| > x} → p,

P{vt < −x}
P{|vt| > x} → q (6)

as x → ∞, 0 ≤ p, q ≤ 1, and p + q = 1. The conditions in (5) and (6) are essential for our
subsequent theoretical developments. However, the iid assumption of (vt) can be relaxed at
the cost of more involved exposition, as explained below.
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The standardized sum of (vt) converges to what is known as a stable distribution. For-
mally, a random variable v is said to have a stable distribution Sα(σ, β, µ), for 0 < α ≤ 2,
σ ≥ 0, −1 ≤ β ≤ 1, and µ real, if it has the characteristic function ϕ(s) given by

log ϕ(s) = iµs − σα|s|α (1 − iβ$(s, α))

where

$(s, α) =

{

sgn(s) tan(πα/2), α 6= 1
−(2/π)sgn(s) log |s|, α = 1

and sgn(s) is the usual sign function taking values −1, 0, and 1 respectively for s < 0, s = 0,
and s > 0. See Samorodnitsky and Taqqu (1994, pg. 5) for the characteristic function of
the stable distribution given above.2 The parameters µ, σ and β are called the shift, scale,
and skewness parameters, respectively. The densities of stable distributions are not known
in closed form with a few exceptions, notably Gaussian (α = 2) and Cauchy (α = 1 and
β = 0). For 0 < α < 2, (vt) have infinite variances, and for 0 < α ≤ 1, they have infinite
means, as well.

We first assume 0 < α < 2. The case α = 2 will be considered later. Define numerical
sequences (an) and (bn) by

nP{|vt| > anx} → x−α

as n → ∞, and
bn = Evt1{|vt| ≤ an}

Then it follows that

a−1
n

n
∑

i=1

(vt − bn) →d Sα(σ, β, 0) (7)

where

σα =

{

Γ(1 − α) cos(πα/2), α 6= 1
π/2, α = 1

and β = 2p−1. This is well known. See, e.g., Feller (1971, Theorem 3, pg. 580). According
to our definition of (an), we have C(2 − α)/α = 1 in his formula.3

It is well known that we may set

an = n1/α`(n) (8)

where ` is slowly varying at infinity. Moreover, we may let

bn =







0, 0 < α < 1
E
(

sin(a−1
n vt)

)

, α = 1
E(vt), 1 < α < 2

2The characteristic function of stable distribution given in Borodin and Ibragimov (1995) is in error, and
has the term 1 + iβ$(s, α) instead of 1 − iβ$(s, α) as we have here.

3The sign ∓ in the formula is in error and should be corrected to ±.
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Note that if α = 1 and Xi has a symmetric distribution, then bn = 0 for all n. If condition
(5) holds for large x > 0 with `(x) = c for some constant c > 0, then we have

an = c1/αn1/α (9)

as one may easily check.

If (7) holds with (8), then we say that the law of (vt) belongs to the domain of attraction

of a stable law. If (7) holds with (9), then it is said to belong to the domain of normal

attraction of a stable law. Any stable law itself belongs to the domain of normal attraction
of a stable law. If (vt) are iid Sα(σ, β, µ), then (5) indeed holds with `(x) = c, where c > 0
is given by

c =

{

σα/(Γ(1 − α) cos(πα/2)), α 6= 1
2σα/π, α = 1

See Brockwell and Davis (1987, pg. 480). Therefore, the conditions we introduced earlier
in (5) and (6) are necessary and sufficient in order that the underlying distribution of (vt)
belongs to the domain of attraction of a stable law.

Now we let α = 2. In this case, the limit theorem in (7) holds under somewhat weaker
conditions than those we require previously, with bn = E(vt) for all n. It is indeed shown in,
e.g., Ibragimov and Linnik (1971, Theorem 2.6.2, pg. 79) that the condition we introduce in
(5) alone is sufficient to have (7) with (an) specified in (8). Moreover, it is also well known
that (7) holds with (an) in (9), if and only if (vt) has finite variance. See, e.g., Ibragimov
and Linnik (1971, Theorem 2.6.6, pg. 92). Similarly as above, we say that the law of (vt)
belongs to the domain of attraction of a normal law if (7) holds with (8). If we have (7)
with (9), then the law of (vt) is said to belong to the domain of normal attraction of a
normal law.

From now on, we assume that (vt) are properly centered. For 1 < α ≤ 2, centering
simply requires demeaning or assuming zero mean. For α = 1, the proper centering can be
difficult and more involved unless we assume that the underlying distribution is symmetric.
No centering is necessary for the case of 0 < α < 1. The limiting distribution has the zero
shift parameter, i.e., µ = 0 if (vt) are centered. Furthermore, we let the adjustment for scales
be done apriorily so that the normalized sum of (vt) converges in distribution to a stable
distribution with unit scale parameter, i.e., σ = 1. The scale of the limit distribution only
has a trivial effect on our subsequent results, since the rescaling of (vt) amounts to merely
redefining the transformation function F by a constant multiplication of its argument. The
skewness parameter β is unrestricted, so we allow for asymmetric limit distributions for
(vt). Finally, the normalizing sequence (an) will be assumed to be given by (8) or (9),
depending upon whether the distribution of (vt) belongs the domain of attraction or of
normal attraction of a stable law.

The central limit theorem in (7) is not sufficient to establish the limit theory for our
model. To effectively deal with the nonstationarity in our models, we need a functional
central limit theorem. Therefore, we construct a stochastic process Vn on [0, 1] by

Vn(r) = a−1
n

[nr]
∑

t=1

vt
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where [x] denotes the largest integer which does not exceed x, and invoke the functional
central limit theorem as in e.g., Borodin and Ibragimov (1995, pg. 12, hereafter referred to
as BI), which yields

Vn →d V (10)

where V is a standard α-stable Lévy motion on [0, 1]. That is, V0 = 0 a.s., V has independent
increments, and Vt −Vs has Sα

(

(t − s)1/α, β, 0
)

distribution for any 0 ≤ s < t and for some
0 < α ≤ 2 and −1 ≤ β ≤ 1, as introduced in Samorodnitsky and Taqqu (1994, pg. 113).
The processes Vn and V take values in D[0, 1], the space of cadlag functions defined on
[0, 1], and in (10) we have weak convergence probability measures in D[0, 1].

The nonlinearity in our models requires some additional tools. In particular, it is nec-
essary to introduce the local time L of V . To do so, we first let the sojourn time of V in
the subset A of R up to time t > 0 be given by

m(t, A) = λ{s ∈ [0, t]|V (s) ∈ A}

where λ is the usual Lebesgue measure on R. Then the local time of L of V is defined by
the Radon-Nikodym derivative of the sojourn time m with respect to λ, i.e.,

L(t, x) =
dm

dλ
(t, x)

Roughly, the local time L characterizes the portion of time the process V spends at x up
to time t. As shown in BI (Theorem 4.1, pg. 18), standard Lévy motions have local times
that are continuous with respect to both parameters, if α > 1. For 0 < α ≤ 1, the local
time does not exist.

It is possible to consider a more general process (xt) driven by innovations that are
correlated. In particular, we may set xt = xt−1 + ut, where

ut =

∞
∑

k=0

ckvt−k (11)

and
∞
∑

k=0

|ck|δ < ∞ (12)

for some δ ∈ (0, α) ∩ [0, 1]. Under the summability condition in (12), the process (ut) in
(11) is well defined a.s., and if the underlying distribution of (vt) belongs to the domain of
normal attraction and (5) holds with `(x) = c, then

xαP{|ut| > x} → c

(

∞
∑

k=0

|ck|α
)

as x → ∞. Therefore, condition (5) holds also for (ut). Clearly, condition (6) can easily be
satisfied with p = q = 1/2 if we assume that the underlying distribution of (vt) is symmetric
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(and so is that of (ut)). See for instance Brockwell and Davis (1987, Remarks 1 and 2, pg.
481).

All of our subsequent results hold, at least qualitatively, for (xt) generated by the more
general linear process (ut) introduced in (11). Some are applicable without any modification.
Others just need somewhat obvious modifications and some additional theoretical develop-
ments using the Beveridge-Nelson decomposition studied in Phillips and Solo (1992). This,
however, will not be done in the present analysis, since it would simply add to expositional
complexity without yielding any new features.

3. Time Series Properties of ITS and AHTS Models

In this section, we first introduce the function classes for the transformation F . We sub-
sequently derive the asymptotics for the sample statistics based on the time series (yt)
generated by ITS and AHTS models. They include the sample autocorrelation function,
the sample variance, the sample skewness, and the sample kurtosis. We present asymptotics
for ITS and AHTS models separately.

3.1. Classes of Transformation Functions

For the transformation function F in (2), we consider two classes of functions: integrable and
asymptotically homogeneous. For any transformation F in the class of integrable functions,
we assume that

|F (x)| < c/(1 + |x|p)
for some constants c > 0 and p > 1. For example, any function that is bounded and has
compact support satisfies this condition. Also, all probability density functions (PDF’s) and
their rescaled and shifted versions belong to the class, as long as they are bounded and decay
at faster rates than |x|−1 as |x| → ∞. A possible interpretation of such a transformation
is that it returns a strong signal when the value of the underlying random walk is near
the mode (or modes) of some PDF-like function. We use an integrable transformation to
model the relationship between the wholesale electricity price and the capacity utilization
rate. Under our specification, we expect to observe a strong price spike whenever system
generation nears capacity.

Much of the econometrics literature that deals with persistency in memory hinges on the
assumption that a time series with long memory is generated by a fractionally integrated
model with well-behaved innovations, while maintaining stationarity. We show, however,
that ITS models may generate time series with autocorrelation functions exhibiting rates
of decay proportional to stationary fractionally integrated models, but with a very differ-
ent nonstationary nonlinear data generating mechanism driven by thick-tailed innovations.
More precisely, ITS models yield an autocorrelation pattern that is identical to the I(d)
model with the memory parameter d ∈ (0, 1/4]. This is just one example. Our results
indeed show that other sample characteristics commonly observed from economic and fi-
nancial time series data can be generated by ITS models.
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Following the convention of Park and Phillips (1999), we define an asymptotically ho-
mogeneous transformation F such that F (λx) = ν (λ) H (x) + R (x, λ) for large λ, where
H is locally integrable and R is such that

(a) |R (x, λ)| ≤ a (λ)P (x), where lim sup
λ→∞

a(λ)/ν(λ) = 0 and P is locally integrable, or

(b) |R (x, λ)| ≤ b (λ)Q (λx), where lim sup
λ→∞

b(λ)/ν(λ) < ∞ and Q is locally integrable

and Q (x) → 0 as x → ∞.

The asymptotic order (AO) of an asymptotically homogeneous transformation is ν (λ), and
H (x) is the limit homogeneous function (LHF). Intuitively, an asymptotically homogeneous
transformation exhibits an asymptotically dominant component that is homogeneous. For
any asymptotically homogeneous function, we assume throughout this analysis that the
LHF is in fact homogeneous.4

Park and Phillips (1999) present some useful examples of asymptotically homogeneous
transformations. The most common types of asymptotically homogeneous transformations
in the literature are homogeneous (especially linear), polynomial, and logarithmic. Obvi-
ously, any homogeneous function is also asymptotically homogeneous. Moreover, polyno-
mial functions are asymptotically homogeneous, with asymptotic properties stemming from
the term with the highest order. Functions such as log x and xk log x are, as well. The
latter have asymptotic orders and LHF’s of ν (λ) = log λ, H (x) = 1 and ν (λ) = λk log λ,
H (x) = xk, respectively. The more interesting sub-class of asymptotically homogeneous
functions are, however, those that resemble rescaled and shifted cumulative distribution
functions (CDF’s). Any kind of CDF’s have ν (λ) = 1 and H (x) = 1 {x ≥ 0}, and all their
rescaled and shifted versions have the same AO and LHF’s given by some affine transfor-
mations of the function 1 {x ≥ 0}.

Any kind of threshold model is essentially a CDF. Falling in this category are artificial
neural networks, which frequently use logistic CDF’s at the nodes of their hidden layers. If
the exogenous signal in such a model follows a random walk, then a feedforward artificial
neural network with one hidden layer is an AHTS model. Another example might be a
model that aims to capture the price behavior on a regulated market with a price ceiling
(such as some electricity and real estate markets). In this context, the limit of the observed
price as the “natural” price increases is the price cap itself. Since prices are bounded below
by zero, the LHF of such a transformation is essentially the same as that of a rescaled CDF.
Still another example of an asymptotically homogeneous model is a target zone exchange
rate model, in which policy actions force the observed exchange rate to stay within a fixed
band around the target rate. If the underlying fundamental follows a random walk, then
the exchange rate is generated by an AHTS model. We use a family of logistic functions
that are parametrized appropriately to model this relationship in the empirical section of
our analysis.

Asymptotically homogeneous transformations are closely related to the functions that
are regular-at-infinity. A function F is said to be regular-at-infinity if it satisfies the following

4This is not absolutely necessary, but substantially simplifies our subsequent theory.
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conditions:

lim
x→∞

F (x)

xκ`(x)
= c1 and lim

x→−∞

F (x)

|x|κ`(x)
= c2

for some number κ > −1, where c1 and c2 are constants such that |c1| + |c2| > 0, and
` is slowly varying at infinity, in the sense that lim

λ→∞
`(λx)/`(λ) = 1 for any x > 0. The

concept of regularity at infinity defines a very broad class of transformations, which includes
asymptotically homogeneous transformations. This is shown in the following lemma.

LEMMA 3.1 Asymptotically homogeneous functions are regular at infinity.

This is a useful and important lemma, as it allows us to tie in general results derived in
the mathematics literature for regular-at-infinity functions with the more specific functions
discussed in Park and Phillips (1999) and elsewhere in the econometrics literature. Note
that the reverse of this lemma is not true, since regular-at-infinity functions are a broader
class of functions than asymptotically homogeneous functions.

In the next subsections, we investigate the time series properties of ITS and AHTS
models. More specifically, we develop the asymptotics for the sample statistics such as the
sample autocorrelation function, the sample variance, the sample skewness and the sample
kurtosis. All of these sample statistics are defined in terms of the deviations from the sample
mean, and as a result, they are invariant with respect to a shift by a constant. It is therefore
obvious that the time series properties of ITS and AHTS models can be characterized by
their sample moments only up to a constant term. Consequently, a transformation which
is a constant plus an integrable transformation is asymptotically homogeneous but has the
same asymptotics as an integrable transformation. For this reason, our subsequent results
for ITS models apply also to integrable transformations shifted by arbitrary constants, and
those for AHTS models are valid only for asymptotically homogeneous transformations with
nonconstant LHF’s.

3.2. Asymptotics for ITS Models

Here we investigate the properties of a time series generated by an ITS model. In particular,
we look at the asymptotic behaviors of the sample autocorrelation, variance, skewness, and
kurtosis of such a series. Computing sample statistics for a nonstationary process may be
misleading, because they do not represent those of any well-defined underlying distribution.
When the process is nonstationary, these are spurious sample statistics. Nevertheless, our
results for these spurious statistics allow the comparison of our model with alternative
modeling assumptions about the data generating process for the given time series of interest.
Indeed, we show for instance that the autocorrelation pattern of the ITS process is directly
comparable with that of a stationary I(d) process.

Our subsequent asymptotic results rely on the following assumptions.
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ASSUMPTION 3.1 Let the time series (yt) be generated by (1) and (2) with integrable
F , and let (vt) belong to the domain of attraction of a stable law of order 1 < α ≤ 2 with
characteristic function ϕ satisfying the condition ϕ(s) 6= 1 for all s 6= 0.

Here we restrict the order of the limit stable law to 1 < α ≤ 2, because the asymptotics for
ITS models crucially rely on the local time of the limit stable process V , which exists only
when the stable index of V exceeds unity. Furthermore, we impose an extra condition on
the characteristic function of (vt). The condition just excludes the possibility that (vt) has
a lattice distribution with a support included in the set of integral multiples of some real
number. This is not overly restrictive.

Since the autocorrelation is the most important for our analysis, we begin with a theorem
that gives asymptotics results for that statistic. First, we define the sample autocorrelation
as

Rnk =
1

n−k

∑n
t=k+1 (yt − ȳn) (yt−k − ȳn)

1
n

∑n
t=1 (yt − ȳn)2

,

where k is any nonnegative integer and ȳn = 1
n

∑n
t=1 yt . In what follows, we denote by

D the PDF of the underlying distribution of (vt) with respect to the measure µ on R.
Moreover, we let Dk be the PDF of a−1

k (v1 + · · · + vk) with respect to the same measure.
Clearly, we have Dk = D, if the process (vt) itself is α-stable.

THEOREM 3.2 (Asymptotics for Rnk – ITS ). Let Assumption 3.1 hold, and define

Rk =
Nk

M
=

∫∞
−∞

∫∞
−∞ F (x)F (x + aky)Dk(y) dxµ(dy)

∫∞
−∞ F 2(x) dx

(13)

If σ2
ε = 0, then we have

Rnk →p Rk

Let σ2
ε > 0. If 1 < α < 2, then we have

anRnk →d (1/σ2
ε )L(1, 0)Nk

If α = 2, on the other hand, then

n1/2`(n)Rnk →d

{

(1/σ2
ε )L(1, 0)Nk if `(n) → 0

(1/σ2
ε )L(1, 0)Nk + N(0, c2) if `(n) → c for some constant c

n1/2Rnk →d N(0, 1) if `(n) → ∞

where N(0, 1) is a standard normal random variate independent of L(0, 1).

We thus expect that the autocorrelation pattern of an ITS process is essentially determined
by Nk defined in (13). Note that Rk is also given by a constant multiple of Nk. As this
theorem shows, the asymptotic autocorrelation function of an ITS process is given by Rk,
possibly with some random scale and shift factors when the transformed series is observed
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with an error. There is only one exceptional case where α = 2 and `(n) → ∞. However,
even in this case, the second order term, which is of order smaller than the leading term
only by `(n), is given as a function of Nk. This is shown in the proof of the theorem.

If (vt) have an identical stable distribution and Dk = D for all k, then it follows directly
from dominated convergence that

Rk → 0

as k → ∞, since ak → ∞ and F is bounded and integrable. The asymptotic autocorrelation
of an ITS process thus decreases to zero. The following corollary extends this result to (vt) in
the domain of attraction of a stable law and only asymptotically stable. It also obtains the
explicit rate of decay for Rk. We let (ϕk) be the characteristic function of a−1

k (v1 + · · ·+vk).
As is well known, if (vt) belongs to the domain of attraction of a stable law, we have
ϕk(s) → ϕ(s) pointwise for all s ∈ R, where ϕ is the characteristic function of the limiting
stable distribution.

COROLLARY 3.3 (Rate of Decay of Rnk – ITS ). Let Assumption 3.1 hold, and assume
that (ϕk) are absolutely integrable, ϕk → ϕ in L1, and D is continuous at the origin. Then
we have

akRk →p D(0)

(
∫ ∞

−∞
F (x) dx

)2

as k → ∞.

It is well-known that the sample autocorrelations of stationary fractionally integrated
processes also decay at polynomial rates. In particular, such autocorrelations decay at the
rate of k2d−1 where d ∈ (0, 1/2) is defined as the degree of fractional integration or the
memory parameter. The autocorrelations of processes generated by fractional Gaussian
noise as specified by Mandelbrot decay at the rate of k2H−2 where H ∈ (1/2, 1) is the Hurst
coefficient. Geweke and Porter-Hudak (1983) show that any process generated by one of
the models can be expressed in terms of the other model, with the expected relationship
between these parameters H = d + 1/2.

One can see that as k increases, the rate of decay of our autocorrelation function ex-
hibits behavior consistent with that of these other long-memory models (except when the
model error dominates the asymptotic distribution). Observationally speaking, there is
no difference between the rates of decay of the autocorrelation of these ITS models and
that of either an I(d) process with d ∈ (0, 1/4] or a fractional Gaussian noise process with
H ∈ (1/2, 3/4]. Therefore, it would be easy to mistake a time series generated by an ITS
model for a process generated by one of these well-known models. If the underlying DGP of
an observed time series is in fact an ITS model, then such a misspecification would ignore
valuable structural information about the process.

Moving on to the observed sample variance, skewness, and kurtosis of a time series (yt)
generated by an ITS model, we define these statistics as

S2
n =

1

n

n
∑

t=1

(yt − ȳn)2 ,
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Q3
n =

1
n

∑n
t=1 (yt − ȳn)3

(

1
n

∑n
t=1 (yt − ȳn)2

)3/2
,

and

K4
n =

1
n

∑n
t=1 (yt − ȳn)4

(

1
n

∑n
t=1 (yt − ȳn)2

)2 ,

respectively. We would expect that if (yt) were in fact stationary, with an underlying
symmetric distribution with existing fourth moment, then the skewness of that distribution
would naturally converge to zero. The variance and kurtosis would converge to some finite
number, depending on the rate at which the tails decay, roughly speaking.

In order to compare an ITS process with a stationary process, we introduce the following
three theorems, which provide limiting distributions of these statistics.

THEOREM 3.4 (Asymptotics for S2
n – ITS ). Let Assumption 3.1 hold. Then we have

S2
n →p σ2

ε

when σ2
ε > 0, and

anS2
n →d L (1, 0)

∫ ∞

−∞
F 2 (x) dx

when σ2
ε = 0.

THEOREM 3.5 (Asymptotics for Q3
n – ITS ). Let Assumption 3.1 hold and define τ3

ε =
Eε3

t . Then we have
Q3

n →p τ3
ε /σ3

ε

when σ2
ε > 0, and

a−1/2
n Q3

n →d

∫∞
−∞ F 3 (x) dx

√

L (1, 0)
(

∫∞
−∞ F 2 (x) dx

)3/2

when σ2
ε = 0.

THEOREM 3.6 (Asymptotics for K4
n – ITS ). Let Assumption 3.1 hold and define κ4

ε =
Eε4

t . Then we have
K4

n →p κ4
ε/σ

4
ε

when σ2
ε > 0, and

a−1
n K4

n →d

∫∞
−∞ F 4 (x) dx

L (1, 0)
(

∫∞
−∞ F 2 (x) dx

)2

when σ2
ε = 0.
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We can see that ITS models with model error have observed sample statistics that are
observationally equivalent to those of stationary processes. This is because both those ITS
processes and stationary processes are dominated by the error term, since the deterministic
term or terms collapse to zero at a faster rate. Consequently, if the true DGP of a given
process is an ITS model with error, then it would be quite easy to confuse it with a stationary
process, based on these statistics. Again, such a mistake would omit valuable structural
information about the DGP that would otherwise enable more accurate inferences.

3.3. Asymptotics for AHTS Models

We derive the same sample statistics for the AHTS model in this section as we derived
for the ITS model in the preceding section. This model is perhaps more important than
its integrable counterpart, because the literature is replete with examples of asymptotically
homogeneous transformations, as previously discussed. If the underlying exogenous variable
in such a model is nonstationary and the limiting distribution of the innovations are α-stable
(including Gaussian), then our results apply.

The asymptotics here are based on the following assumptions.

ASSUMPTION 3.2 Let the time series (yt) be generated by (1) and (2) with asymp-
totically homogeneous F and (vt) belonging to the domain of attraction of a stable law.

Note that we do not impose the extra condition for the distribution of the innovation
sequence (vt) that was required for the asymptotics of ITS models. As a result, any lattice
distribution is allowed for (vt) here. Furthermore, the stable parameter for the limit process
is allowed to be 0 < α ≤ 2.

Again, we start with asymptotics for the sample autocorrelation, which are given by the
following theorem.

THEOREM 3.7 (Asymptotics for Rnk – AHTS ). Let Assumption 3.2 hold. Then we
have

Rnk →p 1

regardless of whether σ2
ε = 0 or σ2

ε > 0.

This theorem implies that shocks in (yt) never die out at all, just as shocks in the underlying
random walk (xt) never die out. Given that linear functions are a subset of asymptotically
homogeneous transformations, and a linear function of a random walk is itself either a
random walk or a random walk with drift, this is not surprising. But what is surprising is
that this result holds for any asymptotically homogeneous transformation, regardless of its
functional form. It would be impossible to conclude, based on this statistic, that the series
(yt) is stationary. Nevertheless, as we will see in the empirical section of this paper, this
asymptotic result does not hold in small samples for the specific functional form discussed
there (a rescaled and shifted CDF). As a result of some obvious small sample bias, we
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interpret this result to imply that the rate of decay is very slow, and that relatively large
values of Rnk may be observed at large values of k.

The following three theorems give us limiting distributions for the remaining statistics.

THEOREM 3.8 (Asymptotics for S2
n – AHTS ). Let Assumption 3.2 hold. Then we

have
[

ν2 (an)
]−1

S2
n →d

∫ ∞

−∞
H2 (V (r)) dr −

(
∫ ∞

−∞
H (V (r)) dr

)2

regardless of whether σ2
ε = 0 or σ2

ε > 0.

THEOREM 3.9 (Asymptotics for Q3
n – AHTS ). Let Assumption 3.2 hold. Then we

have

Q3
n →d

∫∞
−∞

(

H (V (r)) −
∫∞
−∞ H (V (r)) dr

)3
dr

(

∫∞
−∞

(

H (V (r)) −
∫∞
−∞ H (V (r)) dr

)2
dr

)3/2

regardless of whether σ2
ε = 0 or σ2

ε > 0.

THEOREM 3.10 (Asymptotics for K4
n – AHTS ). Let Assumption 3.2 hold. Then we

have

K4
n →d

∫∞
−∞

(

H (V (r)) −
∫∞
−∞ H (V (r)) dr

)4
dr

(

∫∞
−∞

(

H (V (r)) −
∫∞
−∞ H (V (r)) dr

)2
dr

)2

regardless of whether σ2
ε = 0 or σ2

ε > 0.

The implications of these theorems are clear. The observed sample variance of a series
generated by the AHTS model diverges at the rate of ν2 (an), which depends not only on
the stable parameter α but also on the asymptotic order ν of the transformation. Both the
skewness and kurtosis are random, neither converging to zero nor exploding in the limit.
In the empirical section of the paper, we simulate a rescaled and shifted CDF to give us a
better sense of what the variance, skewness, and kurtosis might look like in that case.

4. Regressions for ITS and AHTS Models

Having established some tools one may use to distinguish series driven by nonlinear trans-
formations of stable random walks from alternative specifications, we now turn to the issue
of regression. Adding an error term to the transformation, which is precisely what we did
to create the models with σ2

ε > 0, naturally leads one to wonder about statistical inference.
(Throughout this section, we assume that σ2

ε > 0.) We first consider the simplest case, in
which (xt) are observable. Nonlinear least squares will generate consistent standard errors
as long as the assumption about the uncorrelatedness of (vt) and (εt) is maintained. The
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asymptotic distributions of the estimators are similar to those derived in Park and Phillips
(2001), with rates of convergence consistent with our more general innovations. We also
consider regression when (xt) are unobservable. Naturally, this requires additional assump-
tions, but we suggest obtaining parameter estimates by way of the extended Kalman filter.
We subsequently consider an example of each of these situations in the empirical section of
the paper.

4.1. Regression When (xt) Are Observable

Regressions in which (xt) are observable yield asymptotics results similar to those explored
in detail in Park and Phillips (2001). The difference between that analysis and this one
is simply that we allow for non-Gaussian stable innovations, but that analysis focused on
Gaussianity. We replace (2) with the following refinement. Let

yt = F (xt, θ) + εt, (14)

so that the only difference between (2) and (14) is that we are now explicitly incorporating
the model parameters θ, which will be estimated by θ̂n. In this light, we present the following
two theorems.

THEOREM 4.1 (Asymptotics for θ̂n – ITS ). Consider the time series (yt) generated by
(1) and (14), with integrable F and (vt) belonging to the domain of attraction of a stable
law. Let the conditions of Theorem 5.1 in Park and Phillips (2001) hold. For 1 < α ≤ 2, as
n → ∞ the limiting distribution of θ̂n is given by

a−1/2
n n1/2

(

θ̂n − θ0

)

→d

(

L (1, 0)

∫ ∞

−∞
Ḟ (x, θ0) Ḟ (x, θ0)

′ dx

)−1/2

W (1)

where Ḟ (s, ·) denotes ∂F/∂θ and W is standard Brownian motion independent of L.

THEOREM 4.2 (Asymptotics for θ̂n – AHTS ). Consider the time series (yt) generated
by (1) and (14), with asymptotically homogeneous F and (vt) belonging to the domain of
attraction of a stable law. Let the conditions of Theorem 5.2 in Park and Phillips (2001)
hold. For 0 < α ≤ 2, as n → ∞ the limiting distribution of θ̂n is given by

n1/2ν̇ (an)′
(

θ̂n − θ0

)

→d

(
∫ 1

0
Ḣ (V (r) , θ0) Ḣ (V (r) , θ0)

′ dr

)−1 ∫ 1

0
Ḣ (V (r) , θ0) dU (r)

where Ḣ (V (r) , ·) denotes ∂H/∂θ, ν̇ (·) denotes the asymptotic order of Ḣ and U (r) is
limiting stochastic process generated by summing (εt) and scaling by

√
n.

The ITS asymptotics require that (vt) and (εt) are uncorrelated. While the AHTS
asymptotics do not require this condition, the interpretation of the result is more intuitive
when it holds. In particular, both results give us Gaussianity from the Brownian motion
W (1) and from the continuous martingale U (r). This means that standard errors, t-tests,
etc. that are generated by a standard regression package will be asymptotically unbiased.
Thus, when the (xt) are observable, inference from regression is straightforward.
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4.2. Regression When (xt) Are Unobservable

When (xt) are unobservable, we need additional assumptions and tools to get parameter
estimates. First, we consider the case in which the innovations (vt) are Gaussian and thus
have finite variance. The traditional method for dealing with linear models in which an
exogenous variable is unobservable but assumed to follow an autoregressive process with
such innovations is to use the Kalman filter (KF) fed into an MLE routine. This technique
assumes values for the model parameters, then creates E [xt|Ft] and E

[

σ2
xt
|Ft

]

(where the
latter denotes the conditional variance of (xt) given information available at time t) for each
t. These are based on some initial values at time t = 0 and the law of iterated projections.
Once these series are created, MLE is used to optimize the model parameters. The series
of conditional expectations of (xt) generated by the optimal parameters are subsequently
smoothed, in order to take into account information through the end of the sample. Even in
the absence of Gaussianity, this method (quasi-MLE) yields consistent and asymptotically
normal estimates of the model parameters, according to Hamilton (1994).

Since we are dealing with a nonlinear function F , the Kalman filter will not work. To
find an alternative to the traditional Kalman filter, we turn to the engineering literature.
The Kalman filter and its variants are widely used in this literature for such applications
as tracking satellites and spacecrafts entering Earth’s orbit. A common work-around is the
extended Kalman filter (EKF), as described in Zarchan and Musoff (2000). The EKF is
intuitively appealing, since it approximates F (xt) by expanding around E [xt|Ft−1], which
is “known” at time t − 1 (albeit unobservable), using a first-order Taylor series expansion.
According to Zarchan and Musoff (2000), higher order expansions do not significantly im-
prove the performance of the EKF. Since the EKF is clearly suboptimal, a number of papers
have dealt with improving upon this methodology. See, for example, Crassidis and Markley
(1997) or Julier and Uhlmann (1997). The econometrics literature also contains alterna-
tives to the EKF. For example, Tanizaki (2000) surveys nonlinear, non-Gaussian state-space
modeling using Monte-Carlo techniques.

We use the EKF to estimate E [xt|Ft] and then smooth these estimates to obtain
E [xt|Fn]. We summarize the discrete-time EKF below. Our EKF has a measurement
equation given by

yt = F (xt) + εt

and a transition equation of
xt = xt−1 + vt.

For convenience of exposition, we use the conventional notation ·t|t−1 to denote E [·t|Ft−1].
Using this notation, we expand F around xt|t−1 to get

F (xt) ≈ F
(

xt|t−1

)

+
∂F
(

xt|t−1

)

∂xt|t−1

(

xt − xt|t−1

)

.

This allows us to write
yt ≈ µF + F̃ xt + εt
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where µF is defined as

µF = F
(

xt|t−1

)

−
∂F
(

xt|t−1

)

∂xt|t−1
xt|t−1,

which is constant at time t, and F̃ is simply the derivative of F
(

xt|t−1

)

with respect to
its argument. Once the linear approximation is implemented, the EKF works exactly like
the linear KF. Defining Ωt|· ≡ E

[

σ2
xt
|F·

]

and Σt|· ≡ E
[

σ2
yt
|F·

]

as conditional variances, we
replace the usual linear prediction equations of the Kalman filter with

xt|t−1 = xt−1|t−1,

yt|t−1 = F
(

xt|t−1

)

,

Ωt|t−1 = Ωt−1|t−1 + σ2
v ,

and
Σt|t−1 = F̃ 2Ωt|t−1 + σ2

ε ,

where σ2
v is the variance of (vt). This is well-defined in the Gaussian case, but in the more

general α-stable case, we will use this notation to denote the pseudo-variance of (vt), since
the true variance is infinite. The updating equations become

xt|t = xt|t−1 + Ωt|t−1F̃Σ−1
t|t−1

(

yt − yt|t−1

)

and
Ωt|t = Ωt|t−1 − Ω2

t|t−1F̃
2Σ−1

t|t−1.

MLE is then performed in order to maximize the model parameters, and thus obtain optimal
series of

(

xt|t

)

and
(

Ωt|t

)

. The final step consists of smoothing
(

xt|t

)

by taking into account
information through the end of the sample. This starts at the end of the sample and
proceeds back to the beginning of the sample with

xt|n = xt|t + Ωt|tΩ
−1
t+1|t

(

xt+1|n − xt+1|t

)

.

See Hamilton (1994) for a more detailed description of the filter in discrete time or Zarchan
and Musoff (2000) for continuous time.

Similarly to the KF, in the absence of Gaussianity (but with (vt) having finite variance),
quasi-MLE using the EKF still retains the well-defined projection properties that make it
optimal. Allowing for (vt) having infinite variance, we can no longer make the projection in-
terpretation. Nevertheless, since we are minimizing the sum of squared errors, the resulting
parameter estimates and estimates of (xt) should still be optimal. Once the conditional ex-
pectations of the unobserved series are extracted using the EKF, we estimate the stable and
scale parameters of the empirical distribution of the innovation. This two-step methodology
might be improved by incorporating the stable distribution directly into the log-likelihood
function of the EKF procedure and estimating the parameters of the distribution directly.
However, such a one-step procedure would be very difficult to implement, since the stable



18

distribution does not have a closed form solution, except in special cases (Gaussian and
Cauchy).

Since our theoretical assumptions dictate that the limiting distribution of the innovations
is α-stable, possibly with α 6= 2, estimates of the pseudo-variance of (vt) generated by the
EKF are not meaningful. Furthermore, omitting higher order terms of the Taylor series
expansion biases estimates of the variance of (εt). For these reasons, and since these may be
considered nuisance parameters, we suggest that estimates of these parameters be dropped.
These problems also affect the standard errors of the parameters of interest. In this light, we
suggest obtaining confidence intervals for estimates of these parameters by bootstrapping
the fitted residuals (v̂t) and (ε̂t) and iteratively re-estimating the parameters.

5. Applications, Simulations, and Empirical Results

We examine two empirical applications of our theoretical models. The first application is
a target zone exchange rate model. Theory does not always keep up with practice, and
this seems to be true in this case. Target zone models have been used and tested since the
1980’s, but the time series properties of such a nonlinear transformation of a nonstationary
process were not well-known. With this in mind, we introduce an AHTS model in which (xt)
are unobservable. This illustrates a case in which something very similar to our model has
already been used, but the asymptotics were not well-known. Furthermore, we demonstrate
the importance of extracting the unobserved fundamental from a target zone model, by
testing the long-run purchasing power parity (PPP) hypothesis using this fundamental.
Exchange rates under an exchange rate targeting regime are assumed to be generated by a
much more complicated DGP than that of a simple integrated process. Since cointegration
relies on the assumption that the dependent variable is I(1), cointegration tests using such
exchange rates are misspecified. These tests must be conducted on the fundamental and
not on the exchange rate.

The second application is a model designed to capture observed price “spikes” on whole-
sale electricity markets by using an integrable transformation of excess capacity, which is
observable. As opposed to the target zone model, which is formulated in the literature
and already fits within the framework of one of our econometric models, we propose an
electricity price ITS model as an alternative to more conventional approaches.

5.1. Target Zone Exchange Rate Model

Under the European Monetary System (EMS) of the 1980’s and 1990’s, exchange rates
between participating EU countries were allowed to fluctuate within a fixed band around a
central parity, which for most participating currencies was ±2.25% (and which was subse-
quently tightened to ±1.125% in 1990). Under the first phase of the EMS, the target rate
could be adjusted by policymakers, if they chose not to defend the bands, but this was only
allowed until 1990.
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Since the EMS was replaced by the Euro by the majority of EU members in 2002,
interest in target zone exchange rate models has waned. Many economists have taken the
bipolar view that since enforcement of target zones lacks credibility, monetary authorities
around the world are increasingly following either floating or fixed exchange rate regimes.
While the bipolar view may be accurate, there are still a large number of countries that
have regimes that fall somewhere between the ends of the spectrum. The IMF classifies
exchange rate regimes into eight groups in its annual report, two of which are groups that
have explicitly announced bands. As of April 2003, there are 10 countries that follow an
explicit target zone regime. Among them are some of the European countries that aspire
to join the EU, such as Hungary and Cyprus, as well as Denmark, which is already part
of the EU but chose not to adopt the Euro. A few developing countries also have explicit
targeting regimes. An additional 42 (mostly developing) countries fall into the category
of having “other conventional fixed peg arrangements” (other than a currency board). As
defined by the IMF, this category includes regimes that allow fluctuations of up to ±1%
around a central rate. A target zone model with narrow bands may still be appropriate for
some of these countries.5 Evidently, there are still a large number of countries that neither
completely fix there currency to that of another country nor completely let the value of
their currency float. For a number of these countries, a target zone exchange rate model
may be an appropriate way to capture exchange rate behavior.

Nonlinear Nonstationary Model. Much was written in the economics literature of
the 1980’s and 1990’s about target zone exchange rate models (TZM’s), which fall into a
class of models that attempt to capture the behavior of exchange rates under this type
of regime. Perhaps the most widely known of the target zone models was developed by
Krugman (1991). The Krugman model postulates an exchange rate yt that is a nonlinear
function of a fundamental xt = mt + wt, where (mt) represent the endogenous money
supply, (wt) represents exogenous velocity shocks that follows a Brownian motion, and all
variables are expressed in logs. Krugman (1991) derives an “S”-shaped function that maps
the fundamental xt onto the realized exchange rate yt. Specifically,

yt = K (xt) = xt + B
(

e−λxt − eλxt

)

where B and λ are model parameters. The transformation is a result of not only policy
intervention, but perhaps even more importantly of rational expectations about policy in-
tervention. These expectations bend the function at the bands to create the “S” shape.
Stronger expectations of policy intervention correspond to a less steep function – i.e., more
deviation from the 45-degree diagonal that maps the fundamental onto the exchange rate
under a free floating exchange rate system.

While the literature generally agrees on the random walk assumption about (wt), there
seems to be disagreement on the interpretation of (wt) and also on how to treat (mt).

5In addition, there are 46 countries that fall into the category of “managed floating with no pre-announced
path for the exchange rate.” While some of these countries explicitly target inflation or monetary aggregates,
many of them do not announce explicit targets. Central banks of these countries may be de facto anchoring
to an exchange rate (either implicitly or explicitly but unannounced) in such a way that a target zone model
would capture the behavior of exchange rates.
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Krugman (1991) interprets (wt) as velocity shocks. Svensson (1990) also interprets them
as such, but defines them more precisely in terms of income, the real exchange rate, and
the foreign price level and interest rate, among other terms. Mark (2001) defines the
fundamental in a different way, in which (wt) are implicitly defined in terms of the foreign
money supply and domestic income relative to foreign income. The literature also differs
in treatments of (mt), which in every case essentially act as horizontal shifts, allowing the
implicit targeting of a higher or lower fundamental, while retaining the same explicit target
for the exchange rate. Svensson (1990) treats (mt) in such a way that (xt) follow a regulated
Brownian motion. de Jong (1994) and Mark (2001) assume that (xt) follow a random walk
with a constant drift term, possibly included to reflect the belief that money growth is (on
average) constant.

It is not immediately obvious that such a model may be specified as an AHTS model.
First, we must assume that (xt) follow a random walk. This is not an unrealistic assumption.
If interventions – shifts in (mt) – are not large, then they will be captured in the innovation
of the random walk. Larger interventions will be captured by outliers of that innovation. In
this sense, a thick-tailed α-stable innovation is appropriate to model jumps created by (mt).
Second, note that K is not asymptotically homogeneous. In fact, this is not necessary. The
function derived in the Krugman model is not compatible with (xt) that follow a random
walk, for the very simple reason that such a series may take values on (−∞,∞) and K loses
the “S” shape abruptly beyond the bands.6

We postulate an alternative function for the model, which also follows the intuition
of the “S” shape. We want a function that bends at the bands as Krugman’s does, but
does not allow the exchange rate to deviate from the band when the fundamental becomes
too large or too small. Such a transformation might resemble a CDF with two horizontal
asymptotes. To that end, we propose a generalized version of a logistic CDF as the heart
of our TZM. In particular, we choose

F (x) = µ (1 − δ/2) + δµ

(

1 + exp

{

−1

γ
(x − µ)

})−1

= µ − h/2 + h

(

1 + exp

{

−1

γ
(x − µ)

})−1

where µ is the shift parameter, γ is the scale parameter, and δ is the width of the band within
which the exchange rate is allowed to fluctuate (as a percentage of the shift parameter).
Multiplying the CDF by δµ merely squeezes the function vertically to fit within the band.
Adding µ (1 − δ/2) creates a fixed point at µ. We must necessarily use h = δµ to represent
the bandwidth, because we modify (xt) by taking logs and then demeaning. If the bandwidth
is expressed as a percentage of the target rate, it will lose its interpretation as a result of
the modifications to (xt). Figure 5.1.1 illustrates this transformation. Even though (xt) are

6In fact, as the fundamental takes arbitrarily large (small) values, K (xt) takes arbitrarily small (large)
values! So, K cannot be used for any fundamental thus specified. If K is to be employed, (xt) must be
limited as in Svensson (1990). This misspecification may account for some of the rejections of the Krugman
model in the literature.
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demeaned, we retain the shift parameter, since there is no reason why EF (xt) should be
equal to the target rate. In fact, we can interpret µ as the target rate of the logged-then-
demeaned exchange rate,7 and at that point we would like the function to return the same
value as its argument. Thus defined, our TZM is an AHTS model. The AO of the function
F (x) is unity and the LHF is

(

µ +
h

2

)

× 1 {x ≥ 0} +

(

µ − h

2

)

× 1 {x < 0} ,

which is homogeneous of degree zero for any positive transformation.

Before examining empirical results from our model, we look at some simulated results.
Consider a single simulated series of exchange rates (yt), generated by a series of simulated
fundamentals (xt) following a thick-tailed random walk that are fed through our TZM.
Figure 5.1.2 illustrates one such simulation, with parameters based on our estimates below.
As expected, we can see that when the fundamental is within the bands, the value of the
exchange rate will be close to that of the fundamental. As the fundamental approaches a
band, the observed exchange rate is dampened and stays within the band. The exchange
rate should stay near that band until the fundamental returns to within the bands. In
order to generalize our results, we repeat this simulation 5, 000 times. Figure 5.1.3 shows
the average of the sample autocorrelation from such simulations. Obviously, there is a
small-sample bias, since our asymptotic result for series generated by an AHTS model
suggested that the autocorrelations would not die out at all. We can see from the figure
that simulation autocorrelations do in fact decay, albeit at a slow rate.

Having a functional form for F allows us to simulate the asymptotic distributions of the
other sample statistics, since those distributions rely on F . The following table summarizes
the mean and median of these simulated asymptotic distributions, as well as the mean and
median from the simulations mentioned in the preceding paragraph.

Table 5.1.1

Statistic Simulated Asy. Dists. Simulated Sample Stats.

Mean Median Mean Median

Variance 0.0006 0.0006 0.0003 0.0002

Skewness −0.0811 −0.0784 −0.0178 −0.0893

Kurtosis 99.8315 4.6518 3.2710 2.7952

Clearly, the mean and median of the observed sample variance and skewness in finite samples
are adequately represented by their asymptotic distributions. Asymptotically, there appears
to be a strong tendency towards leptokurtosis, which is not apparent in small samples. This
may be due to the fact that the Gaussian (εt) used in simulating the sample statistics have
second-order effects that are not completely dominated in small samples. The asymptotic
leptokurtosis appears to be neutralized by this small sample bias.

7As in Krugman (1991), both exchange rate and underlying fundamental are expressed in logs. This
creates a minor empirical problem, namely, asymmetric bands. With the data we use in this analysis,
we find that the asymmetry is negligible. Moreover, the derivation of our model does not rely on perfect
symmetry, as does that of Krugman (1991).
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Figure 5.1.4 shows the asymptotic distributions of the sample variance, skewness, and
kurtosis from simulation. The unusual shape of the distribution of the variance comes from
the well-known fact that the spatial distribution of an indicator function of a random walk
follows the arcsine distribution. Since the variance is essentially the spatial distribution of
the square of an indicator function, less a constant, it also follows the arcsine distribution.
The distribution of the skewness comes from the facts that a random walk has a symmetric
spatial distribution and our transformation is symmetric around the origin. The distribution
of the kurtosis has an average that is quite high, but the median reveals another central
tendency much closer to 3. Observed platykurtosis is also possible.

Data and Empirical Results. The data used in this empirical exercise are (demeaned
log of) daily DEM/FRF exchange rates from March 1, 1979 to December 31, 1989 from
OANDA (http://www.oanda.com). The original series (before demeaning and logging) is
illustrated in Figure 5.1.5. It spans the early period of the EMS, in which the window was
±2.25%. In order to compare periods in which the target rates are different, we “level” the
series using publicly available information on the dates and magnitudes of realignments, as
shown in Figure 5.1.6. This procedure may introduce some irregularities in exchange rate
dynamics near the “fault lines”, but we do not expect these irregularities to significantly
affect the results.

Revisiting Figure 5.1.3, it is clear that this series has an autocorrelation function that
dies out at a slow rate consistent with our simulations. Estimates of the memory parameter
range from 0.33 using the technique developed by Mandelbrot and Wallis (1969) based on
the Hurst coefficient to 0.50, 0.56, and 0.66 using the techniques of Geweke and Porter-
Hudak (1983) and two refinements of those techniques from Andrews and Guggenberger
(2003), respectively. While these reveal a significant small-sample bias compared to our
asymptotic prediction that autocorrelations generated by an AHTS model do not die out
at all, they suggest that the autocorrelations die out more slowly than those of a stationary
fractionally integrated process, which has d ∈ (0, 1/2).

We find an observed sample variance, skewness, and kurtosis of 0.0003, −0.4719, and
4.4049, respectively. These are consistent with our simulations of the AHTS model dis-
cussed above, suggesting that it may be an appropriate model for these data. Note that
these statistics are not very consistent with a stationary autoregressive series generated
by an underlying Gaussian distribution, suggesting that it would be difficult to conclude
stationarity and dismiss the more complicated model.

In section 4, we discussed limitations of using the EKF in the context of a nonlinear,
nonstationary model with thick-tailed innovations. For these reasons, we do not expect to
get reasonable standard errors using this technique. Consequently, we use a bootstrap to
estimate confidence intervals around the parameter estimates. The bootstrap confidence
intervals were created by bootstrapping the fitted residuals (ε̂t) and (v̂t) generated by the
EKF to create a new series (ŷt) using the parameter estimates. The EKF was then re-
run to get new parameter estimates. This was performed iteratively (1,000 times) to get
distributions for the parameter estimates, from which the confidence intervals were created.
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98% of the parameter estimates lie within the respective intervals, so if zero does not lie
within an interval, this may be interpreted as a significance test of size 0.01. Our results
are summarized in the following table.

Table 5.1.3

Parameter Estimate Boot. Conf. Int.

µ −0.0072 (−0.0139,−0.0011)

h 0.0700 (0.0646, 0.0716)

γ 0.0349 (0.0312, 0.0403)

The densities of the parameter estimates, from which the bootstrap confidence intervals are
constructed, are shown in Figure 5.1.7. We conclude that all parameters are significant with
99% confidence, since zero does not lie within any of the intervals. Parameter estimates
for the variance of (εt) and pseudo-variance of (vt) are not reported for reasons discussed
above.

We may interpret µ as the target for the (demeaned log of the) exchange rate. This
parameter gives us a de facto target of

exp (−0.0072 − 1.2151) = 0.2946 DEM/FRF

where −1.2151 is the mean of the logged exchange rate and µ̂ = −0.0072. The distance
between the bands is ĥ, which yields de facto bands of

± exp

(

1

2
× 0.0700

)

− 1 = ±3.56%

where ĥ = 0.0700. An alternative to estimating γ is to fix a value of γ such that the
fundamental is preserved in a nearly linear transformation between the bands. This would
be accomplished by setting γ so that the derivative of F (x) is unity at x = µ. By not fixing
γ, we are implicitly allowing the authorities to intervene when the exchange rate is still
within the bands and for rational expectations about future policy interventions to bend
the “S”-shape further.

Figure 5.1.8 illustrates the leveled exchange rate (yt), the smoothed conditional ex-
pectations of the fundamental

(

xt|n

)

, the estimated target µ̂, and the estimated bands

µ̂
(

1 ± δ̂/2
)

. The fundamental exhibits the expected properties. When the exchange rate

approaches one of the bands, the fundamental can be seen to exceed that band. This
lends credence to the nonlinear TZM specification. Also, using McCulloch’s procedure for
estimating α, based on Chambers, et al. (1976), we estimate a stable parameter of approx-
imately 1.54 for the empirical distribution of the innovations. This suggests that thick tails
is an appropriate assumption. Since nonstationarity is an assumption in this case and not a
testable result, we can neither confirm nor reject it. However, it is commonly believed that
free-floating interest rates follow a random walk, which means that the fundamental must
also follow a random walk in a free-floating exchange rate regime. There is no reason why
this exogenous fundamental should behave differently in a TZM.
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When de Jong (1994) tested the Krugman model, he concluded that it was misspecified,
and the misspecification was specifically blamed on three assumptions: 1) the fundamental
follows a random walk, 2) the random walk has Gaussian innovations, and 3) the model
does not allow for interventions within the band. The random walk assumption is critical
to our model, but we do relax the latter two assumptions. Theory and empirical evidence
discussed above support using the AHTS model in this application.

Cointegration Test of the PPP Hypothesis. Finally, now that we have extracted (the
conditional expectation of) the fundamental driving the exchange rate, we will demonstrate
its importance. Suppose we want to test the long-run purchasing power parity (PPP)
hypothesis. This long-run relationship is given by

yt = α0 + α1 (pt − p∗t ) + ey
t

where yt is the log of the exchange rate (DEM/FRF), pt is the log of the German price index,
p∗t is the log of the French price index, and ey

t is added to allow for short-run deviations from
the PPP equilibrium. Common PPP tests use cointegration or fractional cointegration to
test whether or not the series (ey

t ) exhibits long-run mean-reversion. Under a target zone
exchange rate regime, such tests are inherently misspecified, since the observed exchange
rate is not an I(1) process, as it would be under a free-floating regime. Instead of using
the exchange rate, cointegration tests may be performed on the fundamental driving the
exchange rate, since the fundamental is I(1) by assumption.

Testing the fundamental instead of the exchange rate can be justified by linearizing the
inverse of the target zone function, as follows. We can write

F
(

xt|n

)

= α0 + α1 (pt − p∗t ) + ey
t

xt|n = F−1 (α0 + α1 (pt − p∗t ) + ey
t )

xt|n = G (zt)

where xt is (the conditional expectation of) the fundamental, F is defined as above, G (·) =
F−1 (·), and zt = pt − p∗t . Now, using a Taylor series expansion around z0 yields

xt|n = G (z0) +
∂G (z0)

∂z0
(zt − z0) + O

(

z2
t

)

= β0 + β1 (pt − p∗t ) + ex
t

where

β0 = G (z0) −
∂G (z0)

∂z0
z0,

β1 =
∂G (z0)

∂z0
zt,

and ex
t is an error term meant to capture the higher-order terms in the Taylor series expan-

sion. Thus, we may perform the same test on the fundamental driving the exchange rate
under a target zone regime as we could on the exchange rate under a free-floating regime
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such as (USD/DEM or USD/JPY).8 Monthly consumer price indices for each country were
obtained from the International Monetary Fund’s International Financial Statistics. The
fundamental extracted using the EKF was transformed by the same vector used to “level”
the exchange rate, so that an “unleveled” fundamental could be compared to the original
exchange rate. Figure 5.1.9 provides a graphical comparison. The series was then averaged
across months to obtain observations at intervals comparable to the CPI data. The results
of cointegration tests for long-run PPP between Germany and France using the augmented
Dickey-Fuller ρ-test and t-test on ey

t and ex
t are presented in Table 5.1.4.

Table 5.1.4

Misspecified Well-Specified

Parameter value: 0.85 0.92

ADF ρ-test: 60.07 −12.20

ADF t-test: −5.36 −2.63

Using the original exchange rate (the misspecified test), provides ambiguous evidence for the
long-run PPP hypothesis, since the positive critical value of the ρ-test strongly suggests a
unit root, while the t-test does not. On the other hand, the well-specified test shows critical
values that suggest rejecting the unit root hypothesis in either case (even though the leading
coefficient is closer to unity). Our second test therefore provides unambiguous evidence in
support of the long-run PPP hypothesis, demonstrating the importance of extracting the
fundamental using our model.

5.2. Electricity Price Spikes

Wholesale electricity markets in most regions of the U.S. and elsewhere are characterized
by price “spikes” that occur during peak periods of demand when suppliers are short of
capacity. These markets typically feature a Walrasian-type auction to determine the market
clearing price. Specific market designs vary by region, but the basic auction mechanism
used in energy markets (as opposed to capacity markets or markets for ancillary services) is
essentially the same. Bids are ordered from lowest to highest to create a “supply stack”, and
the intersection of the supply stack with the demand curve determines the wholesale price.
The demand curve is usually assumed to be completely or almost completely inelastic, due
to heavy regulation of prices on the retail market, as well as time inconsistency issues caused
by billing at monthly intervals (since prices change hourly or more frequently on wholesale
markets). This is exacerbated by the fact that electricity is not storable in large amounts,
so the traditional price-smoothing role of inventories cannot come into play. While the
competitive market solution with a deregulated retail market would be the most efficient
from the point of view of social welfare, this would not meet policymakers’ long-standing
goals of equitable distribution of cheap power. Consequently, it is necessary to allow bidding
above marginal cost, in order to induce marginal units to produce during peak periods. The

8Incidentally, this technique assumes that ∂G(z0)
∂z0

is well-defined, which is the case with our TZM. The
derivative of the inverse of Krugman’s function would not be well-defined, however, since the function has a
derivative of zero at the bands.
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price must be bid up significantly in order for these marginal units to cover their fixed costs
over the short period of time in which they are necessary to maintain supply at the quantity
demanded. This allows marginal units to exercise considerable market power during peak
periods, through what is sometimes referred to as the “last-man bidding problem”.

To illustrate the last-man bidding problem, consider a power system that is operating
near full capacity. Suppose an unplanned outage occurs, meaning that the system operator
must find additional power. Ignoring imports for the sake of expositional simplicity, it is
clear that one or more marginal units must be brought online. If there are only a small
number of these units available, or they are all owned by one firm, then clearly there is an
incentive to bid up the price as high as possible. Whence the sharp “spikes” that frequently
occur in price series from these markets. In light of the California electricity crisis and its
aftermath, market power has become a very important issue in the energy literature. Many
recent analyses in the literature have focused on forecasting wholesale prices, as such an
exercise is valuable not only to market participants who might want to determine when
they can employ market power, but also to system regulators who want to try to prevent
abuse.9

Because of the peculiarities that exist in this market, we believe one of the best indi-
cators predictors of price should be excess capacity. Let (ut) represent capacity utilization,
measured as quantity divided by total system capacity an any given day. We consider

xt = 1 − ut

where xt represents a measure of excess capacity. We cannot assume that (xt) follow a
random walk, because the random variables in this series are bounded on the interval [0, 1]
by construction. However, we can and do assume that (xt) are generated by some function
g of a random walk (zt). Thus, our function F must be a composite function such that
F = f ◦ g, for some f that we assume to be integrable. Since g is bounded, F should
also be integrable. Thus yt = F (zt) + εt is an ITS model by assumption, and we can get
parameter estimates and perform simulations using yt = f (xt)+εt since (xt) are observable.
Unfortunately, we cannot directly test the thick-tailed random walk assumption, since (zt)
is unobservable.

To the extent that we believe (xt) will behave like a random walk within [0, 1], due to
the fact that (ut) are generated by adding power generation shocks, we can test for integrat-
edness and thick-tailed innovations directly on (xt). We expect that a unit root test on (xt)
will have a tendency to over-reject the null, since (xt) are generated by a transformation

9For example, McMenamin and Monforte (2000) use a feedforward artificial neural network with one
hidden layer to forecast price based on lagged price, quantity, and some other exogenous variables. Knittel
and Roberts (2001) explore several continuous-time diffusion specifications for electricity prices. Stevenson
(2002) uses a wavelet filtering technique to “denoise” electricity prices, and then forecasts based on linear
autoregressive and autoregressive switching models. While the latter two add structure to their reduced-
form models, they do not use additional information beyond prices, lagged prices, and variables designed to
capture temporal effects. The first analysis mentioned does use additional explanatory variables, but assumes
no structure. The artificial neural network specification is unnecessarily flexible, since some structural
assumptions can be made to strengthen the forecast.
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that flattens the random walk when (zt) exceed the interval. Using maximum daily load
divided by daily scheduled capacity over the period of April 1, 2002 through December 31,
2002 from the Pennsylvania-Jersey Maryland (PJM) power pool (http://www.pjm.com),
we test both of these assumptions. Using McCulloch’s procedure for estimating α, based
on Chambers, et al. (1976), we obtain an estimate of about 1.6. Thus, we find evidence for
thick tails. A Dickey-Fuller test fails to find a unit root, however, so nonstationarity is not
apparent in (xt). Of course, this does not rule out a unit root in the unobservable series
(zt).

Finding evidence for nonlinearity is straightforward from observation. Using maximum
daily real-time locational marginal price with the capacity data described above (also avail-
able at http://www.pjm.com), we perform a Nadaraya-Watson kernel regression of (xt) onto
the electricity price (yt). The results are illustrated in Figure 5.2.1. Based on observation,
we believe that a rescaled PDF is an appropriate function to model price as a function
of capacity on the interval 0 ≤ xt < 1. These endpoints come from the fact that excess
capacity must be between 0% and 100%. Our postulated function is

f (x) =











0 if x < 0

θ1 exp
{

− 1
θ2

(x − θ3)
2
}

if 0 ≤ x < 1

0 if x ≥ 1

,

where θ1, θ2, and θ3 are parameters to be estimated. Parameter estimates using nonlinear
least squares are summarized in the following table.

Table 5.2.1

Parameter Estimate Std. Error

θ1 361.0024 32.9786

θ2 0.1061 0.0076

θ3 −0.0001 0.0898

Significant parameter estimates for the first two parameters support our specification. Since
the third parameter is just a shift parameter, lack of significance is not a problem. The
fitted model using these parameter estimates is also illustrated in Figure 5.2.1. It seems to
follow the nonparametric fit quite well, except in the tails, where kernel estimates typically
suffer from “empty bin” deficiencies.

Since we have postulated a functional form for f , we can compare observed sample
statistics with those calculated from simulation. Unlike in the case of the target zone ex-
change rate model, we have observable (xt). The only right-hand side series that must be
simulated is (εt). Figure 5.2.2 illustrates one such sample simulation using the parameters
estimated above compared to the actual price series (yt). Figure 5.2.3 illustrates |Rnk| of the
actual price series compared to that of simulation averages. The autocorrelation function
of (yt) clearly dies out at a similar slow rate as that of simulated averages, which also die
out at the polynomial rate of approximately k−1/1.6, as our theory predicts. Furthermore,
estimates of the memory parameter suggest that the process (yt) is equivalent to a frac-
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tionally integrated process of approximately 0.14.10 Simulation results for the other sample
statistics are summarized in the following table.

Table 5.2.2

Statistic Mean Median

Variance 4351.6389 4344.3117

Skewness 0.5948 0.5898

Kurtosis 4.0269 3.9400

Our asymptotic results from Section 3 suggest that the variance converges to the variance of
(εt), and that the skewness and kurtosis also converge. If we assume that (εt) are symmetric
disturbances, then we would get a skewness of zero. If we further assume that (εt) are
Gaussian disturbances, we would get a kurtosis of 3. Our simulations did in fact assume
that (εt) were Gaussian, which suggests that there are small sample biases that give us
positive skewness and leptokurtosis. The observed sample variance, skewness, and kurtosis
for the actual series (yt) are 4392.4926, 7.2313, and 68.6309, respectively, suggesting an even
larger skewness and kurtosis, which could be the result of this bias, as well as non-Gaussian
(εt). While these results do not uniquely point to an ITS model, they do not rule it out,
either. Nevertheless, we believe that the fundamental relationship between the wholesale
electricity price and excess system capacity supports the ITS specification.

6. Conclusion

We considered nonlinear transformations of random walks driven by thick-tailed innova-
tions in this paper. We showed that such models generate a wide spectrum of patterns of
persistency in memory. In particular, they generate time series that have asymptotic au-
tocorrelations that decay very slowly as the number of lags increases or do not even decay
at all and remain constant at all lags. The combination of nonlinearity, nonstationarity,
and thick tails thus has the potential to generate the persistent memory patterns that are
present in many of economic and financial time series data, as well as other prominent
properties of many observed time series.

We established various time series properties for ITS and AHTS models. ITS models
yield time series that have characteristics similar to those of stationary long-memory pro-
cesses, with asymptotic autocorrelations decaying at a polynomial rate. In contrast, AHTS
models generate time series that have asymptotic autocorrelation functions exhibiting no
decay at all. We also derived asymptotics for the sample variance, skewness, and kurtosis.
We extended the theories developed by Park and Phillips (2001) for nonlinear regressions
with integrated processes to our models driven by stable random walks, in the case in which
the explanatory variable is observable. When the explanatory variable is not observable,
we discussed the use of the extended Kalman filter.

10Techniques based on Mandelbrot and Wallis (1969) obtain 0.15, Geweke and Porter-Hudak (1983) obtain
0.14, and Andrews and Guggenberger (2003) obtain 0.14 or 0.25.
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As illustrative examples of empirical applications of our models, we considered a target
zone exchange rate model and an electricity price model. We argued that not only did the
theoretical underpinnings of these models suggest our econometric framework, but also that
both the series generated by these models and the random walk driving the models have
empirical characteristics suggested by our theoretical and simulated results. We further
tested the long-run PPP hypothesis using the fundamental extracted from the first model,
since such tests conducted with the actual exchange rates are misspecified when a target
zone regime is in effect.
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Appendix A: Useful Lemmas and Their Proofs

LEMMA A1 Consider integrable F and (vt) belonging to the domain of attraction of a
stable law. If we define

Mn = ann−1
n
∑

t=1

F (xt),

then we have
sup
n≥1

E |Mn|2 < ∞,

and therefore, in particular, (Mn) is uniformly integrable.

Proof of LEMMA A1 Let F̂ be the Fourier transform of F , i.e.,

F̂ (λ) =

∫ ∞

−∞
eiλxF (x)dx.

As in the proof of Theorem 2.1 of BI (pg. 143), we may assume without loss of generality
that F̂ has compact support. Moreover, since F is bounded, so is F̂ . Therefore, we may
write

F (xt) =
1

2π

∫ ∞

−∞
e−iλxtF̂ (λ)dλ

=
1

2π

∫ ∞

−∞
e−iλ(a−1

n xt)F̂ (a−1
n λ)d(a−1

n λ)

and consequently, we have

Mn ≡ ann−1
n
∑

t=1

F (xt)

= an

∫ 1

0
F (anVn (r)) dr

=
1

2π

∫ ∞

−∞
F̂ (a−1

n λ)

∫ 1

0
e−iλVn(r)drdλ

as one may easily see. The last line follows from Fubini’s Theory.

Now note that F̂ (a−1
n ·) vanishes outside the interval [−can, can] for some constant c > 0,

since we have assumed that F̂ has compact support. Moreover, if we let

I(F ) =

∫ ∞

−∞
F (x)dx,

then we may write

∫ ∞

−∞

∣

∣

∣
F̂ (a−1

n λ) − I(F )
∣

∣

∣

2

1 + |λ|2 dλ =

∫ ∞

−∞

|
∫∞
−∞ ei(a−1

n λx)F (x) dx −
∫∞
−∞ F (x) dx|2

1 + |λ|2 dλ → 0
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as n → ∞ by dominated convergence, since |F (x)| is bounded. Also, note that

∫ ∞

−∞

|I (F )|2
1 + |λ|2 dλ < ∞

The conditions for Theorem 2.1 of BI (pg. 85) are thus satisfied. Following the proof of
Theorem 2.1 of BI (pp. 87-88), we may now readily deduce that

E |Mn|2 = E

∣

∣

∣

∣

1

2π

∫ ∞

−∞
F̂ (a−1

n λ)

∫ 1

0
e−iλVn(r)drdλ

∣

∣

∣

∣

2

≤ c

(

∫ ∞

−∞

|I (F )|2
1 + |λ|α dλ

)1/2

for some constant c > 0. See Equation (2.14) of BI (pg. 88). This completes the proof.

LEMMA A2 (Asymptotics for Some Sample Moments – ITS ). Consider (2) with an
integrable transformation F , (xt) generated by (1), an MDS (εt) with respect to a filtration
(Ft) to which (xt+1) is adapted, and (vt) belonging to the domain of attraction of a stable
law. Define σ2

ε = Eε2
t and τ3

ε = Eε3
t . The following sample moments have asymptotic

distributions and rates of convergence given as follows:

(a) ann−1
∑n

t=1 F 2 (xt) →d L (1, 0)
∫∞
−∞ F 2 (x) dx

(b) a
1/2
n n−1/2

∑n
t=1 F (xt) εt →d MN

(

0, σ2
εL (1, 0)

∫∞
−∞ F 2 (x) dx

)

(c) ann−1
∑n

t=k+1 F (xt) F (xt−k) →d L(1, 0)
∫∞
−∞

∫∞
−∞ F (x)F (x + aky)Dk(y) dxµ(dy)

(d) a
1/2
n n−1/2

∑n
t=k+1 F (xt−k) εt →d MN

(

0, σ2
εL (1, 0)

∫∞
−∞ F 2 (x) dx

)

(e) a
1/2
n n−1/2

∑n
t=k+1 F (xt) εt−k →d MN

(

0, σ2
εL (1, 0)

∫∞
−∞ F 2 (x) dx

)

(f) ann−1
∑n

t=1 F 3 (xt) →d L (1, 0)
∫∞
−∞ F 3 (x) dx

(g) a
1/2
n n−1/2

∑n
t=1 F 2 (xt) εt →d MN

(

0, σ2
εL (1, 0)

∫∞
−∞ F 4 (x) dx

)

(h) ann−1
∑n

t=1 F (xt) ε2
t →d σ2

εL (1, 0)
∫∞
−∞ F (x) dx

(i) ann−1
∑n

t=1 F 4 (xt) →d L (1, 0)
∫∞
−∞ F 4 (x) dx

(j) a
1/2
n n−1/2

∑n
t=1 F 3 (xt) εt →d MN

(

0, σ2
εL (1, 0)

∫∞
−∞ F 6 (x) dx

)

(k) ann−1
∑n

t=1 F 2 (xt) ε2
t →d σ2

εL (1, 0)
∫∞
−∞ F 2 (x) dx

(l) ann−1
∑n

t=1 F (xt) ε3
t →d τ3

ε L (1, 0)
∫∞
−∞ F (x) dx
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Proof of LEMMA A2 (Asymptotics for Some Sample Moments – ITS ).

(a) Since F is integrable, F 2 must also be integrable. The result thus follows directly
from Theorem 2.1 in BI (pg. 143).

(b) Since (εt) is assumed to be an MDS with respect to a filtration (Ft), which is
contemporaneously uncorrelated with (vt), we may apply Lemma 6.2 of Park and Phillips
(1999, pg. 279). Hence, there exists a Brownian motion U (r) constructed from compressing
(εt) to fit the unit interval (by way of r), taking the partial sum over that interval, scaling
by n−1/2, and letting n → ∞. The result then follows essentially from the proof of Theorem
3.2 in Park and Phillips (2001) with the appropriate substitution for the rate of convergence
an of a stable process. Note that since we assumed that (vt) and (εt) are uncorrelated, we
do not have to worry about σuv being ill-defined in light of the distributions of the (vt)
having thick tails.

(c) For the sake of clarity, we first consider the case in which k = 1 and a1 = 1. We also
use the notation D for D1 to simplify the notation. Write

n
∑

t=2

F (xt)F (xt−1) =

n
∑

t=2

(SF )(xt−1) +

n
∑

t=2

F (xt−1)ut (15)

where

S(x) =

∫ ∞

−∞
F (x + y)D(y)µ(dy)

and
ut = F (xt) − S(xt−1)

for t ≥ 1. Obviously, S is well-defined for all x ∈ R, since F is bounded. Note that

E (F (xt)|Ft−1) = S(xt−1)

where (Ft) is a filtration such that Ft is defined by the σ-field generated by (xs)
t
s=1 for each

t ≥ 1. Consequently, (ut,Ft) is an MDS.
It is easy to see that S is bounded. Therefore, since F is integrable, SF is also bounded.

Furthermore, we have
∫ ∞

−∞
(SF )(x) dx =

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)D(y)dxµ(dy)

due to the Fubini’s theorem. It therefore follows from Theorem 2.1 in BI (pg. 143) that

ann−1
n
∑

t=2

(SF )(xt−1) → d L(1, 0)

∫ ∞

−∞
(SF )(x)dx

= L(1, 0)

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)D(y)dxµ(dy) (16)

Now, if we can show

ann−1
n
∑

t=2

F (xt−1)ut = op(1), (17)
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then the stated result would be immediate from (15) and (16).
First, note that (F (xt−1)ut) is an MDS, which means that

E

(

ann−1
n
∑

t=2

F (xt−1)ut

)

→ 0.

To establish (17), we will further prove that

E

(

ann−1
n
∑

t=2

F (xt−1)ut

)2

→ 0 (18)

for any α > 1. Using the fact that (F (xt−1)ut) is an MDS, we may deduce that

E

(

ann−1
n
∑

t=2

F (xt−1)ut

)2

= ann−1E

(

ann−1
n
∑

t=2

F 2(xt−1)u
2
t

)

= ann−1E

(

ann−1
n
∑

t=2

F 2(xt−1)E
(

u2
t |Ft−1

)

)

(19)

Moreover, we may write

E
(

u2
t |Ft−1

)

= Q(xt−1) − S2(xt−1)

where

Q(x) =

∫ ∞

−∞
F 2(x + y)D(y)µ(dy).

It is easy to see that R is well defined and bounded, just like S introduced above.
Now we define

Nn = ann−1
n
∑

t=2

F 2(xt−1)E
(

u2
t |Ft−1

)

= ann−1
n
∑

t=2

(QF 2 − S2F 2)(xt−1)

Then we have, again due to Theorem 2.1 in BI (pg. 143),

Nn →d L(1, 0)

∫ ∞

−∞
(QF 2 − S2F 2)(x)dx.

Since (Nn) is uniformly integrable as shown in Lemma A1, we have

E [Nn] → E

[

L(1, 0)

∫ ∞

−∞
(QF 2 − S2F 2)(x)dx

]

.

Consequently, (18) follows from (19) whenever α > 1, as was to be shown. The proof for
k = 1 is now complete. The proof for the general case is obvious and omitted.
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(d) From our functional central limit theorem in Section 2, we have

Vn(r) = a−1
n

[nr]
∑

t=k+1

vt−k

Since we let n → ∞, fixed k is negligible. Therefore, the asymptotics follow exactly the
case in which k = 0, which was illustrated in part (b) of this lemma.

The proof of part (e) is identical to that of the previous proof, once it is noted that
the functional central limit theorem governing the asymptotic distribution of (εt) is also
invariant with respect to fixed k. The proofs of parts (f), (g), (i), and (j) are obvious by
noting that F 2, F 3, and F 4 are integrable.

(h) We can rewrite the sample moment as

n
∑

t=1

F (xt) ε2
t =

n
∑

t=1

F (xt)Eε2
t +

n
∑

t=1

F (xt)
(

ε2
t − Eε2

t

)

.

The distribution of the first term is obvious. To get the stated result, we just need to
show that the second term is o

(

a−1
n n

)

. We follow the convention of Park (2002) by writing
ε2,t ≡

(

ε2
t − Eε2

t

)

. (ε2,t,Ft−1) is clearly an MDS, since

E [ε2,t|Ft−1] = E
[

ε2
t − Eε2

t |Ft−1

]

= 0.

Since we assume that E |εt|p < ∞ for some p ≥ 6, it is clear that Eε2
2,t < ∞. The second

term is Op

(

a
−1/2
n n1/2

)

due to part (b) of this lemma, and is therefore o
(

a−1
n n

)

when α > 1.

The second term is therefore dominated and the asymptotics are determined by the first
term.

The proof of part (k) follows directly from that of part (h) and the fact that F 2 is
integrable, and that of part (l) also follows directly from that of part (h) by defining ε3,t ≡
(

ε3
t − Eε3

t

)

and noting that Eε2
3,t < ∞.

For ITS models, it can be shown that parts (h), (k), and (l) hold under more general
conditions. In particular, (ε2,t,Ft−1) and (ε3,t,Ft−1) need not be homogeneous MDS’s. We
can let p ≥ 3. Again, we just have to show that the second term is o

(

a−1
n n

)

, so that the
first term dictates the asymptotic distribution of the entire moment. We illustrate with
(ε2,t,Ft−1). Define

Nn (r) = ann−1/2
j−1
∑

t=1

F

(

anVn

(

t − 1

n

))

(

U2

(τnt

n

)

− U2

(τn,t−1

n

))

+ann−1/2F

(

anVn

(

j − 1

n

))

(

U2 (r) − U2

(τn,j−1

n

))
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where
τn,j−1

n < r ≤ τnj

n and τ is a stopping time as specified in Park & Phillips 2001 and U2

is the Brownian motion constructed form (ε2,t). Thus, we may write

ann−1
n
∑

t=1

F (xt) ε2,t = Nn

(τnn

n

)

.

Now, in order to show that this is asymptotically dominated, we need only show that the
quadratic variance is degenerate. This is given by

[Nn]r = a2
nn−1

j−1
∑

t=1

F

(

anVn

(

t − 1

n

))2
(τnt

n
− τn,t−1

n

)

+a2
nn−1F

(

anVn

(

j − 1

n

))2
(

r − τn,j−1

n

)

= a2
nn−1

∫ r

0
F (anVn (s))2 ds (1 + oa.s. (1)) .

Given the results from part (a) of this lemma – in particular the rate of convergence – it is
clear that

[Nn]r →p 0,

since ann−1 → 0 for 1 < α ≤ 2. (This holds regardless of how ` (n) is specified. See the
proof of Theorem 3.2.) This gives us the stated result.

LEMMA A.3 (Asymptotics for Some Sample Moments – AHTS ). Consider (2) with an
asymptotically homogeneous transformation F , (xt) generated by (1), an MDS (εt) with
respect to a filtration (Ft) to which (xt+1) is adapted, and (vt) belonging to the domain of
attraction of a stable law. Define σ2

ε = Eε2
t and τ3

ε = Eε3
t . The following sample moments

have asymptotic distributions and rates of convergence given as follows:

(a)
[

nν2 (an)
]−1∑n

t=1 F 2 (xt) →d

∫ 1
0 H2 (V (r)) dr

(b)
[

n1/2ν (an)
]−1∑n

t=1 F (xt) εt →d

∫ 1
0 H (V (r)) dU (r)

(c)
[

nν2 (an)
]−1∑n

t=k+1 F (xt)F (xt−k) →d

∫ 1
0 H2 (V (r)) dr

(d)
[

n1/2ν (an)
]−1∑n

t=k+1 F (xt−k) εt →d

∫ 1
0 H (V (r)) dU (r)

(e)
[

n1/2ν (an)
]−1∑n

t=k+1 F (xt) εt−k →d

∫ 1
0 H (V (r)) dU (r)

(f)
[

nν3 (an)
]−1∑n

t=1 F 3 (xt) →d

∫ 1
0 H3 (V (r)) dr

(g)
[

n1/2ν2 (an)
]−1∑n

t=1 F 2 (xt) εt →d

∫ 1
0 H2 (V (r)) dU (r)

(h) [nν (an)]−1∑n
t=1 F (xt) ε2

t →d σ2
ε

∫ 1
0 H (V (r)) dr

(i)
[

nν4 (an)
]−1∑n

t=1 F 4 (xt) →d

∫ 1
0 H4 (V (r)) dr

(j)
[

n1/2ν3 (an)
]−1∑n

t=1 F 3 (xt) εt →d

∫ 1
0 H3 (V (r)) dU (r)

(k)
[

nν2 (an)
]−1∑n

t=1 F 2 (xt) ε2
t →d σ2

ε

∫ 1
0 H2 (V (r)) dr

(l) [nν (an)]−1∑n
t=1 F (xt) ε3

t →d τ3
ε

∫ 1
0 H (V (r)) dr
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Proof of LEMMA A.3 (Asymptotics for Some Sample Moments – AHTS ).

(a) It is easy to see from Theorem 1.6 of BI (pg. 138) that

[nν (an)]−1
n
∑

t=1

F (xt) →d

∫ 1

0
H (V (r)) dr,

since we show in Lemma 3.1 that all asymptotically homogeneous functions are regular-at-
infinity. It remains only to show that F 2 (x) is asymptotically homogeneous with AO ν2 (λ)
and LHF H2 (x). We may write

F 2 (x) = ν2 (λ)H2 (x) + ν (λ)H (x)R (x, λ) + R2 (x, λ)

1

ν2 (λ)
F 2 (x) = H2 (x) + H (x)

R (x, λ)

ν (λ)
+

R2 (x, λ)

ν2 (λ)
.

From the definition of an asymptotically homogeneous function, the last two terms obviously
disappear. This proves the result.

The proof of part (b) is similar to that of Lemma A2(b), with the appropriate substi-
tution for the rate of convergence.

(c) As in the case of the Lemma A2(c), we first consider the case in which k = 1 and
a1 = 1. Invoking definitions from that lemma, we may again write

n
∑

t=1

F (xt) F (xt−1) =

n
∑

t=1

(SF )(xt−1) +

n
∑

t=1

F (xt−1)ut. (20)

We claim that S (x) is asymptotically homogeneous with the same AO and LHF as F (x).
To verify this claim, write

S (λx) =

∫ ∞

−∞
F
(

λ
[

x +
y

λ

])

D (y)µ (dy)

=

∫ ∞

−∞

{

ν (λ) H
(

x +
y

λ

)

+ R
(

x +
y

λ
, λ
)}

D (y)µ (dy) .

Letting λ → ∞ gives us
S (λx) →p ν (λ)H (x) + R (x, λ) ,

since
∫∞
−∞ D (y)µ (dy) = 1 by definition. We also claim that F (x + y) →p F (x). To verify

this second claim, write

F (λ (x + y)) = ν (λ)H
(

x +
y

λ

)

+ R
(

x +
y

λ
, λ
)

→ p ν (λ) H (x) + R (x, λ)

as λ → ∞.
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Now, if we can show that the last term of (20) is o
(

nν2 (an)
)

, the stated result will
obtain. Since (ut) is an MDS, the expectation of that term obviously collapses to zero. We
must further show that

E

(

[

nν2 (an)
]−1

n
∑

t=2

F (xt−1)ut

)2

→ 0.

Exactly the same techniques may be applied as in the ITS lemma to rewrite the left-hand
side of the above expression to obtain

[

n2ν4 (an)
]−1

n
∑

t=2

F 2(xt−1)
(

Q (xt−1) − S2 (xt−1)
)

→ 0,

since
[

nν4 (an)
]−1

n
∑

t=2

F 2(xt−1)Q (xt−1) →d

∫ 1

0
H4 (V (r)) dr,

and
[

nν4 (an)
]−1

n
∑

t=2

F 2(xt−1)S
2 (xt−1) →d

∫ 1

0
H4 (V (r)) dr.

This yields the desired result for k = 1. The proof for general k is now straightforward and
omitted.

The proofs of parts (d), (e), (h), (k), and (l) of the lemma are completely analogous to
the proofs of the corresponding parts of Lemma A2, and are therefore omitted. Noting that
F 3 and F 4 are asymptotically homogeneous with appropriate AO’s and LHF’s trivializes
the proofs of parts (f), (g), (i), and (j), so we omit those proofs, as well.
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Appendix B: Proofs of the Main Results

Proof of LEMMA 3.1 Let F be asymptotically homogeneous with LHF H satisfying

H(x) = |x|κH(1) (21)

for some κ > −1. If we define
`κ(x) = |x|−κF (x)

then it follows immediately that

lim
|x|→∞

F (x)

|x|κ`κ(x)
= 1

Therefore, it suffices to show that `κ is slowly varying at infinity, i.e.,

lim
λ→∞

`κ(λx)

`κ(λ)
= 1 (22)

to finish the proof. However, (22) readily follows from the asymptotic homogeneity of F
and (21), since

F (λx) = ν(λ)[H(x) + o(1)]

F (λ) = ν(λ)[H(1) + o(1)]

for large λ > 0, and therefore

`κ(λx)

`κ(λ)
→ H(x)

|x|κH(1)
= 1

as λ → ∞.

Proof of THEOREM 3.2 (Asymptotics for Rnk – ITS ). We let σ2
ε > 0. The result for

the model with σ2
ε = 0 may simply be derived as a special case for which (εt) ≡ 0 in what

follows. Note that

n
∑

t=1

yt =

n
∑

t=1

F (xt) +

n
∑

t=1

εt = Op(a
−1
n n) + Op(n

1/2),

and therefore, for fixed k,

n
∑

t=k+1

(yt − ȳn) (yt−k − ȳn) =
n
∑

t=k+1

ytyt−k + Op

(

a−2
n n

)

+ Op

(

a−2
n

)

+ Op

(

a−1
n n1/2

)

+ Op

(

a−1
n n−1/2

)

+ Op (1) + Op

(

n−1
)

=

n
∑

t=k+1

ytyt−k + o
(

a−1
n n

)

,
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due in particular to Lemma A2. As a consequence, the mean adjustment in the definition
of the sample correlation becomes negligible and does not affect the asymptotics, as long
as ann−1 → 0. This will be seen clearly in the subsequent proof.

Write

n
∑

t=k+1

ytyt−k =
n
∑

t=k+1

F (xt)F (xt−k)+
n
∑

t=k+1

F (xt)εt−k +
n
∑

t=k+1

F (xt−k)εt +
n
∑

t=k+1

εtεt−k. (23)

Due to Lemma A2, we have

n
∑

t=k+1

F (xt)F (xt−k) = Op(a
−1
n n) (24)

and
n
∑

t=k+1

F (xt)εt−k,

n
∑

t=k+1

F (xt−k)εt = Op(a
−1/2
n n1/2) (25)

for all k ≥ 0. Moreover, we have

1

n

n
∑

t=k+1

ε2
t →p σ2

ε , (26)

and for all k ≥ 1
1√
n

n
∑

t=k+1

εtεt−k →d N
(

0, σ4
ε

)

, (27)

by the standard law of large numbers and central limit theorem.
We first consider the case k = 0 in (23), which also gives us asymptotics for the denom-

inator. It is obvious from (24)–(26) that

1

n

n
∑

t=k+1

y2
t =

1

n

n
∑

t=k+1

ε2
t + op(1) →p σ2

ε , (28)

since an → ∞, and hence,
a−1

n n, a−1/2
n n1/2 = o(n).

Next, to consider the case k ≥ 1 in (23), we first note that

n−δ < `(n) < nδ (29)

for any δ > 0 and for all n sufficiently large. This is well known [see for example Feller
(1971, Lemma 2, pg. 277)]. Since we assume α > 1, this implies that

a−1
n n → ∞,

and therefore,
a−1/2

n n1/2 = o(a−1
n n)



43

for all large n. Consequently, the terms in (25) are smaller than those in (24) and asymp-
totically negligible for all k ≥ 0.

Let 1 < α < 2. Then it follows from (29) that

n1/2 = o(a−1
n n),

and therefore we have for all k ≥ 1

ann−1
n
∑

t=k+1

ytyt−k = ann−1
n
∑

t=k+1

F (xt)F (xt−k) + op(1)

= L(1, 0)

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + aky)Dk(y) dxµ(dy),

due to Lemma A2(c), which together with (27) immediately yields the stated result in this
case. Now we let α = 2. In this case, the dominant terms would differ depending upon
whether `(n) → 0, c,∞. If, for instance, `(n) → c for some constant c, then we have both
the first term and the last term in (23) for our asymptotics. As a result, we have

n−1an

n
∑

t=k+1

ytyt−k = n−1an

n
∑

t=k+1

F (xt)F (xt−k) + n−1/2`(n)

n
∑

t=k+1

εtεt−k + op(1),

and the stated result easily follows. The result for each of the cases `(n) → 0 and `(n) → ∞
can also be readily deduced upon noticing that the first or the last term dominates the
other in each case.

Proof of COROLLARY 3.3 (Rate of Decay of Rnk – ITS ). Since we assume that (ϕk)
are absolutely integrable, we may have

Dk(x) =
1

2π

∫ ∞

−∞
e−isxϕk(s) ds (30)

due to the Fourier inversion formula. By the same token, we may also have

D(x) =
1

2π

∫ ∞

−∞
e−isxϕ(s) ds, (31)

since the characteristic function ϕ of a stable distribution is absolutely integrable. Therefore,
it can be easily deduced from (30) and (31) that

sup
x∈R

|Dk(x) − D(x)| ≤ 1

2π

∫ ∞

−∞
|ϕk(s) − ϕ(s)| ds → 0

as k → ∞, since ϕk → ϕ in L1. The sequence of PDF’s (Dk) thus converge uniformly.
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Now we have
∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + aky)Dk(y) dx dy

= a−1
k

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)Dk(a

−1
k y) dx dy

= a−1
k

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)D(a−1

k y) dx dy + o(a−1
k )

= a−1
k D(0)

(
∫ ∞

−∞
F (x) dx

)2

+ o(a−1
k )

for large k, by the change of variables, the uniform convergence of Dk to D and the continuity
of D at the origin. Note that the absolute integrability of (ϕk) implies that the distribution
of (vt) is absolutely continuous with respect to Lebesgue measure, and for this reason, we
use the notation dy in place of µ(dy). The stated result now follows immediately and the
proof is complete.

Proof of THEOREM 3.4 (Asymptotics for S2
n – ITS ). The proof follows directly from

the asymptotics of the denominator in Theorem 3.3.

Proof of THEOREM 3.5 (Asymptotics for Q3
n – ITS ). The proof for the asymptotics

of the denominator follows directly from Theorem 3.3. Letting σ2
ε > 0, we focus on the

numerator. It is easy to show that the mean adjustment is asymptotically negligible, as in
the proof for the autocorrelation. Expanding the dominant term yields

1

n

n
∑

t=1

y3
t =

1

n

n
∑

t=1

F 3 (xt) +
3

n

n
∑

t=1

F 2 (xt) εt +
3

n

n
∑

t=1

F (xt) ε2
t +

1

n

n
∑

t=1

ε3
t ,

which with the fact that
1

n

n
∑

t=1

ε3
t →p τ2

ε

and with Lemma A2 gives us the desired result. When σ2
ε = 0, only the first term remains.

Proof of THEOREM 3.6 (Asymptotics for K4
n – ITS ). The proof is very similar to

that of the sample skewness, by expanding the numerator and noting that

1

n

n
∑

t=1

ε4
t →p κ4

ε

which determines the probability limit of the numerator when σ2
ε > 0. Again, the case in

which σ2
ε = 0 is trivial.
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Proof of THEOREM 3.7 (Asymptotics for Rnk – AHTS ). Let σ2
ε > 0. Again, the case

in which σ2
ε = 0 is a special case. Note that

n
∑

t=k+1

(yt − ȳn) (yt−k − ȳn)

=
n
∑

t=k+1

ytyt−k − 1

n

n
∑

t=k+1

yt−k

n
∑

t=1

yt −
1

n

n
∑

t=k+1

yt

n
∑

t=1

yt +
n
∑

t=k+1

(

1

n

n
∑

t=1

yt

)2

,

which means that the mean adjustment may not be dismissed, as it was in the ITS case.
First, consider the case in which k = 0. The above expression reduces to

n
∑

t=1

y2
t −

1

n

(

n
∑

t=1

yt

)2

. (32)

We may expand the first term of (32) to obtain

n
∑

t=k+1

F (xt) F (xt−k) +

n
∑

t=k+1

F (xt) εt−k +

n
∑

t=k+1

F (xt−k) εt +

n
∑

t=k+1

εtεt−k.

which by Lemma A3 has the distribution of its first term. We may similarly expand the
second term of (32), which also has the distribution of the first term of that expansion. The
result for k = 0 obviously follows. The result for k ≥ 1 follows directly from the appropriate
parts of Lemma A3, using the same logic.

Proof of THEOREM 3.8 (Asymptotics for S2
n – AHTS ). The proof follows directly

from the asymptotics in Theorem 3.7 (when k = 0).

Proofs of THEOREM 3.9 and 3.10 (Asymptotics for Q3
n and K4

n – AHTS ). The
proofs are essentially the same as that for the sample variance, using the appropriate parts
of Lemma A3.

Proof of THEOREM 4.1 and 4.2 (Asymptotics for θ̂n – ITS ). The proofs follow that
of Theorems 5.1 and 5.2 in Park and Phillips (2001), with rates of convergence following
from the first and second parts of our Lemmas A2 and A3.
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Figure 5.1.1: The target zone transformation F (x) with our parameter esti-
mates..
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Figure 5.1.2: Sample simulated exchange rate and fundamental with our pa-
rameter estimates.
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Figure 5.1.3: |Rnk| of actual exchange rate and average |Rnk| of simulated
exchange rates.
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Figure 5.1.4: Density estimates of the asymptotic distributions of the sam-
ple variance, skewness, and kurtosis of (yt), calculated from an AHTS model
generated by the LHF of our TZM with our parameter estimates.
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Figure 5.1.5: DEM/FRF exchange rate (3/1/79-12/31/89).
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Figure 5.1.6: Leveled DEM/FRF exchange rate (vertically shifted to allow for
actual realignments).
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Figure 5.1.7: Densities of the model parameter estimates from the EKF used
to construct the bootstrap confidence intervals.
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Figure 5.1.8: Leveled exchange rate and estimated fundamental (3/1/79-
12/31/89).
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Figure 5.1.9: Original exchange rate and unleveled fundamental (3/1/79-
12/31/89).
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Figure 5.2.1: Electricity prices vs. excess capacity (4/1/02-12/31/02).
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Figure 5.2.2: Actual and sample simulated electricity prices.
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Figure 5.2.3: |Rnk| of actual prices and average |Rnk| of simulated prices.


