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be reduced to a (stochastic, history-contingent) search problem in which the surplus

is measured in terms of virtual utilities minus search costs. Compared to the socially

efficient mechanism, the optimal mechanism features fewer participants, longer search

conditional on the same set of participants, and inefficient sequence of entry. When
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1 Introduction

Almost all the auction literature assumes that the set of bidders is either exogenous or

determined in advance before the auction begins. But auctions based on this assumption

are in general suboptimal, both socially and from the seller’s viewpoint, if the bidders’

participation in the auction is costly. In this paper we study the design of optimal (profit

maximizing) auctions under the assumption that the seller needs to incur costs in order to

contact prospective bidders and inform them about the auction. We show that the presence

of these costs raises interesting dynamic questions such as how to sequence the order in which

bidders are contacted and when to stop the auction process.

We start with an auction environment of one good, independent types with bidder-

specific distributions, and interdependent ex post values across bidders. Initially, a prospec-

tive bidder is not aware of the seller’s intention to sell the good. To attract his attention and

allow him to participate, the seller must contact a prospective bidder and provide him with

all the necessary information truthfully. In learning this information, a prospective bidder

also becomes privately informed of his valuation of the good, before he can contract with the

seller. Such individual-based contacts are necessary because the information to be conveyed

is too complex and too costly to be mass-broadcasted. (For example, a prospective bidder

needs hands-on training of the auction rules.) Thus, to attract a bidder, the seller needs to

incur a bidder-specific cost, called search cost in the sequel. Then it is generally not optimal

to contact all bidders at once: for instance, if the valuation of an early bidder turns out

to be sufficiently high it is optimal to end the mechanism and sell the good to that bidder.

Hence the seller designs a search mechanism that, contingent on history, specifies the order

in which prospective bidders are contacted and invited to participate, the time at which the

process ends, and the payments made by the bidders who have entered the mechanism.

In Section 2, we formally define the notion of search mechanism. Following some prelim-

inary derivations in Section 3.1, we prove one of our main results, Theorem 1, in Section 3.2:

the seller’s problem can be reduced to an operation research (stochastic, history-contingent)

search problem in which the surplus is measured in terms of the bidder’s virtual utilities

minus search costs. The seller can at most extract the virtual utilities of the bidders she has

contacted and invited to participate in the mechanism because these bidders are privately
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informed about their valuations before they can agree to participate (the participation con-

straints are interim). Since the seller searches for the bidder with the highest virtual (rather

than actual) utility, the profit maximizing mechanism creates distortions. Section 3.3.1 stud-

ies three of these distortions: fewer participants, longer search conditional on the same set

of participants, and inefficient sequence of entry. Section 3.3.2 presents another implication:

the seller wants noninfluential bidders to enter the mechanism before influential bidders.1

In Section 4, we relax the independence assumption and study a private value model

with correlated types. It is well known that, in the corresponding traditional model, the

seller’s optimal mechanism is a full extraction mechanism that implements the socially ef-

ficient allocation and gives the seller the entire ex ante social surplus. With search costs,

in contrast, achieving full extraction is harder because a bidder may be able to exclude the

entry of rivals by submitting a bid that terminates the search process. Hence the seller

may be unable to induce truth-telling by Crémer-McLean lotteries that condition a bidder’s

payment on all his rivals’ reports. This observation is formalized by Proposition 4. Despite

these difficulties, however, we construct in Theorem 2 a search mechanism that allows the

seller to achieve full extraction with a probability arbitrarily close to one.

Our theorems extend existing results in traditional mechanism design theory by endo-

genizing the set of participants through a stochastic, history-contingent, search procedure.2

In particular, McAfee and McMillan [6] have characterized profit maximizing search mech-

anisms but only considered the special case of independent private values and symmetric

bidders. Burguet [1] has considered a similar private-value i.i.d.-bidder model, except that

the participation constraint in his model is ex ante (before bidders become privately in-

formed) instead of interim. In an earlier paper, Crémer, Spiegel, and Zheng [3], we studied

1At first glance, this result may appear to be at odd with the linkage principle. However, the linkage

principle is not applicable here because of the sequential structure here. If the influential bidder enters first

and buys the good right away, he faces little competition due to the absence of his rival; if the influential

bidder does not buy the good right away, subsequent bidders would interpret this fact as a bad signal about

the value of the good.
2Our analysis may also contribute to the optimal search literature by highlighting a new parallel search

problem where the ex post social surplus from selling the good to a bidder depends on the signals of other

potential bidders, whether they have participated or not. We are not aware of any work in that literature

considering this problem.
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the design of optimal selling mechanisms when potential bidders do not know their valua-

tions at the outset but can learn them at a cost. A crucial assumption in that paper was that

the seller can costlessly contact the bidders before they learn their valuations and offer them

contracts. Hence the bidders’ participation constraints were ex ante rather than interim as

in the current paper. As a consequence, the profit maximizing search mechanism did not

introduce any distortions compared to the socially optimal mechanism.3

2 The Model

2.1 Search costs

A seller has an indivisible good that can be sold to one bidder out of a finite set I of

prospective bidders. Initially, none of the bidders is aware of the seller’s intention to sell the

good, the rules in the seller’s auction, or the environment (who the other bidders are, how

their valuations are distributed, etc.). In order to bring these information to a bidder i’s

attention, the seller needs to incur a commonly known bidder-specific fixed cost ci > 0,

to which we refer as search cost. This cost represents the cost of contacting bidder i and

providing him with all the necessary information about the good, the mechanism, and the

environment. This communication needs to be on a one-to-one basis because the information

to be conveyed is too complex and too costly to be advertised to the whole world. We

assume that the seller cannot lie about such information. In learning these information,

the bidder also privately learns his ex post valuation for the good, before he can contract

with the seller. (Hence bidders’ participation constraints are interim.) If a bidder agrees to

participate, he and the seller sign a binding contingency contract. In any period, bidders

who have agreed in previous periods to participate are called incumbents. At any time, the

3Other authors have studied the optimal choice of auction formats with costly information acquisition,

including Levin and Smith [5],Ye [13], Bergemann and Pesendorfer (2001), and Bergemann and Välimäki

(2002) (the latter is a general mechanism design problem). In all of these papers however the acquisition

of information is done by all agents before they participate and all agents participate in the mechanism

simultaneously. Hence, none of these paper consider search mechanisms as in our paper. There are also

papers that study the consequences of participation costs that to some extent correspond to the search costs

in our model. See for example, Stegeman [10] and in Gal, Landsberger, and Nemirovski [4].
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set of incumbents, their actions and messages up to that moment, and the set of entrants in

the current period are assumed commonly known (among all the contacted bidders and the

seller). Nonparticipants get zero payoff.

2.2 Utility functions and types

The value of the good to the seller is x0. For each bidder i, nature draws a type xi from a

commonly known distribution Fi, with density fi and support Xi, such that Xi is an interval

of real numbers with infimum xi and fi > 0 over its interior. Types are independent across i.

A vector of types x := (xi)i∈I ∈ ×i∈IXi is called a realized state. As in Myerson [8], given

any realized state x, bidder i’s value of the good is equal to

ui(x) := xi +
∑
j∈I\i

eij(xj),

where eij is a commonly known real function that reflects bidder j’s influence on bidder i’s

valuation. Everyone’s discount factor is δ ∈ (0, 1]. If bidder i pays pti dollars in period t,

then his utility from the viewpoint of period s ≤ t′ is δt
′−sui(x)−

∑∞
t=s δ

t−spti if he gets the

good in period t′, and −
∑∞

t=s δ
t−spti if he does not get the good.

2.3 Search mechanisms

With search costs, it is in general suboptimal (both socially and from the seller’s viewpoint)

to commit in advance to a fixed set of participants without knowing the bidding history.

Hence the seller picks a contingent plan that, based on the incumbents’ messages, specifies

whether she should stop the mechanism and keep the good or allocate it to one of the

incumbent bidders, or whether she should continue and invite new bidders. Coupled with a

payment scheme, we refer to such a contingent plan as the seller’s search mechanism. Note

that parallel search is allowed since there can be several entrants in any given period.4

4In the traditional mechanism design framework with zero search cost, search mechanisms are available

for the seller but do not generate more revenues than mechanisms in which every bidder participates. In

our model, search mechanisms can be better because they economize on the search costs.
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A search mechanism works as follows. It defines a set ψ1 of entrants in period 1 who

send a vector of messages yψ1 . Then the set of period-2 entrants is a function ψ2(yψ1) of

yψ1 . If the search stops at the end of period 2, the winner is determined by the messages

from the set of incumbents, I2 := ψ1 ∪ ψ2(yψ1). Let yI2 be the profile of messages from the

incumbents. Then a lottery q(yI2) := (qi(yI2))i picks the seller or one of the incumbent as

the final owner of the good, where qi(yI2) is the probability that i is picked. Using i∗ to

denote the final owner of the good, each bidder i makes a payment p2
i (yI2 , i∗). If the search

continues, a new set ψ3(yψ2) of entrants is invited and the process continues.

Next we turn to a formal definition of search mechanisms. To make the definition

succinct, we extend the functions ψt (that specifies who should enter in period t), pti(·, i∗)
(that specifies how much i should pay in period t in case i∗ wins), and q (that specifies how

to select the final owner) into functions of the entire profile y of messages from all bidders

(subject to the conditions specified below):

ψt : Y → 2I , q : Y → ∆(I ∪ {0}), pti : Y × (I ∪ {0}) → R,

where Y := ×i∈IYi with Yi being the message space for bidder i, 2I is the set of all subsets

of I, and ∆(I ∪ {0}) is the set of lotteries that pick a final owner of the good from the set

of bidders and the seller. From the functions ψt we define for all y ∈ Y

I t(y) := ∪ts=1ψ
s(y),

which records the set of incumbents in each period, and we define for all y ∈ Y

τ(y) := max{s = 1, 2, . . . : ψs(y) 6= ∅},

the period at which the search ends. For any J ⊂ I and any y ∈ Y , let yJ := (yi)i∈J and

y−J := (yi)i6∈J . Then a search mechanism corresponds to a list ((ψt, (pti)i∈I)
∞
t=1, q) such that

1. ψ1 is constant on Y .

2. For any t = 1, 2, . . . and for any y, y′ ∈ Y , if I t(y) = I t(y′) and yIt(y) = y′It(y′), then

a. ψt+1(y) = ψt+1(y′) ⊆ I \ I t(y), and

b. q(y) = q(y′) if t = τ(y)
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3. For all y ∈ Y , qi(y) = 0 if i /∈ Iτ(y)(y), and pti(y, ·) = 0 if i 6∈ I t(y) or t > τ(y).

To calculate expected values, we require that these functions be measurable relative to the

message space.

2.4 Revelation search mechanisms and search procedures

A revelation search mechanism is a search mechanism in which each bidder i’s message

space Yi is i’s type space Xi. The sequence ((ψt)∞t=1, q) in a revelation search mechanism is

called a search procedure.

Once selected, a search mechanism induces a multistage game. If this induced game

has a perfect Bayesian equilibrium (PBE), the mechanism is said to be equilibrium feasible.

A search mechanism is (seller-)optimal if it maximizes the seller’s expected value of profits

among all equilibrium feasible search mechanisms. A revelation search mechanism is said to

be incentive feasible if the induced multistage game has a PBE where every invited bidder

participates and is truthful. The next lemma is analogous to the revelation principle, and

its proof is straightforward.

Lemma 2.1 (Revelation Principle for Search Mechanisms) For any equilibrium fea-

sible search mechanism, the seller can use an incentive feasible revelation search mechanism

that replicates the equilibrium outcome of the former mechanism.

2.5 Relation to optimal search theory

In traditional search theory there is no asymmetric information once the search cost has been

incurred. In our auction environment by contrast, after the seller incurs a search cost and

contacts a bidder, the bidder becomes privately informed about his type. Hence, the seller

must design a search mechanism that induces the bidders to reveal their private information.

For the moment, suppose that after a bidder is contacted by the seller, his type becomes

common knowledge. Then, the seller’s symmetric-information search problem would be as
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follows: the seller has an initial fallback reward r0 if she keeps the good. Given any realized

state x, the seller’s ex post reward from selling the good to participant i is ri(x) for some

known ri : Y → R. The seller also bears the search costs. Hence, if the seller follows a

search procedure ((ψt)∞t=1, q) and given the realized state x the search stops at the end of

period τ(x), the seller’s expected value of net profit from the viewpoint of period 1 is

Ex

δτ(x)−1

[∑
i∈I

qi(x) (ri(x)− r0)

]
−

∞∑
t=1

δt−1
∑

i∈ψt(x)

ci

 , (1)

where qi(xi) = 0 if i /∈ Iτ(x)(x) as part of the definition of search mechanism (Item 3 in §2.3)

and where Ex denotes the expected-value operator for functions of the random vector x.

(The notations Exi
and ExJ

in the sequel are analogous.)

A search procedure ((ψt)∞t=1, q) is said to be symmetric-information efficient relative

to the reward structure (r0, (ri)i∈I) if the expression in (1) is maximized over all search

procedures. A search procedure is said to be socially efficient if it is symmetric-information

efficient relative to (r0, (ri)i∈I) such that r0 = x0 and ri(x) = xi +
∑

j∈I\i eij(xj) for all i ∈ I
and all realized state x.

3 Independent Types

3.1 Preliminary analysis

By Lemma 2.1, we can confine attention to revelation search mechanisms. Let ((ψt, (pti)i∈I)
∞
t=1, q)

be such a mechanism. Let bidder i enter the mechanism in period t. Before submitting a

report, he already knows the set J of incumbents and the profile xJ of their reported types

(which is null if J = ∅), but he is still uncertain about the types x−(J∪i) of the other bid-

ders. Let i’s report be x̂i. From the viewpoint of period t and conditional on (xJ , x̂i), the

discounted expected value of the winning probability of bidder k ∈ I is

Qk(x̂i | xJ) = Ex−(J∪i)
qk(x̂i, xJ , x−(J∪i))δ

τ(x̂i,xJ ,x−(J∪i))−t, (2)
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and the discounted expected value of other bidders’ influence on bidder i’s utility is

e−i(x̂i | xJ) = Ex−(J∪i)

δτ(x̂,xJ ,x−(J∪i))−tqi(x̂, xJ , x−(J∪i))
∑
j∈I\i

eij(xj)

 . (3)

Analogously, one can calculate the discounted expected value of bidder i’s total payment

from the viewpoint of period t and conditional on (xJ , x̂i). Denote this discounted expected

value of payment by Pi(x̂i | xJ). If bidder i’s realized type is xi, then his discounted expected

utility from reporting x̂i is

ui(x̂i | xi, xJ) = xiQi(x̂i | xJ) + e−i(x̂i | xJ)− Pi(x̂i | xJ) (4)

from the viewpoint of period t. Given the independence of bidders’ types, Qi(x̂i | xJ),
Pi(x̂i | xJ), and e−i(x̂i | xJ) are all independent of bidder i’s actual type. Thus, each bidder

i’s objective function takes the quasilinear form xiAi(x̂i)+Bi(x̂i), standard in auction theory.

Proved by small extension of the routines in optimal auction theory, the next lemma

says that the seller’s problem is the same as a symmetric-information search problem with

a distorted reward structure if the solution of this search problem happens to satisfy a

monotonicity condition. In this distorted reward structure, the seller’s fallback value is x0

and her ex post gross reward from selling the good to bidder i is bidder i’s virtual utility Vi,

defined in the following for every realized state x:

Vi(x) := xi −
1− Fi(xi)

fi(xi)
+

∑
j∈I\i

eij(xj). (5)

Lemma 3.1 If a search procedure ((ψt)∞t=1, q) is symmetric-information efficient relative to

the reward structure (x0, (Vi)i∈I) and if

the function Qi(· | xJ) is monotone nondecreasing, for all i, J, and xJ , (6)

then there exists a payment scheme with which ((ψt)∞t=1, q) constitutes a seller-optimal search

mechanism.

Proof: By standard techniques (e.g., Myerson [8, Lemma 2]), the quasilinear form of (4)

implies that the seller’s problem is equivalent to maximizing the expected value of her profit
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among all revelation search mechanisms ((ψt, (pti)i∈I)
∞
t=1, q) subject to (6) and the following

two constraints for any xi and xJ :

ui(xi | xi, xJ) = ui(xi | xi, xJ) +

∫ xi

xi

Qi(z | xJ)dz; (7)

ui(xi | xi, xJ) ≥ 0. (8)

The solution of the seller’s problem is unchanged when (7) is replaced by

ui(xi | xi, xJ) = 0, (9)

for if (9) did not hold, slightly raising the payments of all types would raise profits.

For any realized state x and any bidder i ∈ I, let ti be the period in which the

mechanism asks bidder i to enter. At period ti, the realized reports xJ of the incumbents J

are commonly known and are assumed to be truthful. By Eqs. (4), (8), and (9), the seller’s

expected net profit extracted from bidder i, viewed from period ti, is

Exi

[
(xi − x0)Qi(xi | xJ) + e−i(xi | xJ)−

∫ xi

xi

Qi(z | xJ)dz − ci

]
.

This, again by a standard argument (e.g., Myerson [8, Lemma 3]), is equal to

Ex−J

[
δτ(xJ ,x−J )−tiqi(xJ , x−J) (Vi(xJ , x−J)− x0)− ci

]
,

where we have used Eqs. (2), (3), and (5). Viewed from period 1, the period ti(x) at which

bidder i enters the mechanism is a random variable that depends on the realized state x.

Thus, viewed from period 1, the seller’s expected profit extracted from bidder i is

Ex

[
Ex−J

[
δτ(xJ ,x−J )−1qi(xJ , x−J) (Vi(xJ , x−J)− x0)− ciδ

ti(x)−1
]]

(10)

= Ex

[
δτ(x)−1qi(x) (Vi(x)− x0)− ciδ

ti(x)−1
]
.

Summing (10) over all i ∈ I, the seller’s expected profit is equal to

Ex

[
δτ(x)−1

∑
i∈I

qi(x) (Vi(x)− x0)

]
−

∑
i∈I

Ex

[
ciδ

ti(x)−1
]

(11)

= Ex

δτ(x)−1
∑
i∈I

qi(x) (Vi(x)− x0)−
∞∑
t=1

δt−1
∑

i∈ψt(x)

ci

 ,
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where the equality follows because ti(x) is the period at which bidder i enters the mechanism

while ψt(x) is the set of entrants at period t. The second line in (11) is just equal to the

objective function (1) in the symmetric-information search problem with r0 = x0 and ri = Vi.

Thus, if ((ψt)∞t=1, q) solves that search problem and satisfies (6), then it is an optimum for

the seller if there is an associated payment scheme that satisfies (8) and (9). To this end,

construct the payment scheme by setting

Pi(xi | xJ) = xiQi(xi | xJ) + e−i(xi | xJ)−
∫ xi

xi

Qi(z | xJ)dz, for all i ∈ I \ J. (12)

Then Eq. (4) implies Eqs. (8) and (9). �

In the absence of search costs, proving that the seller’s objective is equal to (11) would

have given us the traditional recipe of optimal auction: for almost every realized state x,

set qi(x) := 1 for the bidder i whose virtual utility is highest among all bidders and exceeds

x0. This however is in general infeasible for a search mechanism, because the seller does not

know the realized types of bidders who have not yet been contacted.

3.2 An optimal search mechanism

We have seen from Lemma 3.1 that the symmetric-information efficient search procedure,

with rewards distorted into virtual utilities, is seller-optimal if it satisfies the monotonic-

ity condition (6). Verifying (6) is nontrivial because the search literature does not seem

to have considered the family of search problems encountered here.5 Here we prove that

any symmetric-information efficient search procedure satisfies (6).6 That implies our main

theorem. We need Assumption 1 which in the private-value case when eij are constants, is

implied by the standard monotone hazard rate assumption. With interdependent values, it

provides a virtual-utility analog of the single crossing property.

5Weitzman [12] and Vishwanath [11] considered only private values, while we allow interdependent values.

But even for the private-value case, we are not aware of any general characterization of efficient search

procedures that allow multiple entrants per period.
6In the private-value case where the eijs are all equal to zero, the revealed-preference argument in Ap-

pendix C of Crémer, Spiegel, and Zheng [3] yields the proof. The proof here is slightly more complicated

due to the interdependency of valuation across bidders.
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Assumption 1 For each i, j ∈ I, xi − 1−Fi(xi)
fi(xi)

and eji(xi) are differentiable functions of xi

on Xi, their derivatives are uniformly bounded, and d
dxi

(
xi − 1−Fi(xi)

fi(xi)

)
> e′ji(xi) ≥ 0 over

the interior of Xi.

Theorem 1 If Assumption 1 holds then the following revelation search mechanism is seller-

optimal: its search procedure is symmetric-information efficient relative to the virtual-utility

reward structure (x0, (Vi)i∈I), and its payment scheme satisfies (12) for all realized state x.

This theorem follows from Lemma 3.1 and Lemma 3.3 which we prove below. To prove

that lemma, we analyze the dynamic programming problem associated with a symmetric-

information search problem relative to the reward structure (x0, (Vi)i∈I). At each period,

the state variable (not to be confused with a realized state x) is (J, xJ), with J ⊆ I being

the set of incumbents and xJ the profile of their realized types. Denote π(J, xJ) the optimal

expected value of the seller’s net reward relative to (x0, (Vi)i∈I) conditional on the state

variable (J, xJ). The function π is defined recursively by the Bellman equation:

π(J ;xJ) := max

{
x0,max

j∈J
Ex−J

Vj(xJ , x−J), δ max
K⊆I\J

[
ExK

π(J ∪K;xJ , xK)−
∑
k∈K

ck

]}
.

(13)

On the right-hand side of Eq. (13), the first term (x0) is the seller’s reward from stopping

the search and keeping the good, the second term is the expected value of her reward from

stopping and selling the good to an incumbent with the highest reward, and the third term

is the optimal value from continuing the search. The equation for the case where J = I, is

implied by Eq. (13) given the convention that the maximum over the empty set is zero.

Obviously any solution to the dynamic programming problem (13) yields a search

procedure, which, depending on the value of π, either stops and gives the good to the seller or

to one of the incumbents or continues and invites more bidders. If ExJ
π(J ;xJ)−

∑
i∈J ci ≤ r0

for all J ⊆ I, the seller should keep the good and not contact any bidder. By induction on

the size of I \ J , one can easily prove the fact that, given any state variable (J, xJ), a search

procedure is symmetric-information efficient relative to reward structure (x0, (Vi)i∈I) if and

only if it solves equation (13).
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In a symmetric-information efficient search procedure relative to (x0, (Vi)i∈I), how does

a change in an incumbent i’s realized type xi affect his probability of winning the good? To

answer this question, we prove the next lemma, where π+(J, xJ) denotes the expected value

of the distorted reward from continuing the search:

π+(J, xJ) := δ max
K⊆I\J

[
ExK

π(J ∪K;xJ , xK)−
∑
k∈K

ck

]
. (14)

Lemma 3.2 If i ∈ J ⊆ I and xJ is a profile of realized types on J , then Ex−J
Vi(xJ , x−J)

and π+(J, xJ) are absolutely continuous functions of xi; whenever their derivatives exist,

∂

∂xi
Ex−J

Vi(xJ , x−J) >
∂

∂xi
max
j∈J\i

Ex−J
Vj(xJ , x−J) and (15)

∂

∂xi
Ex−J

Vi(xJ , x−J) ≥ ∂

∂xi
π+(J, xJ), (16)

and the equality in (16) holds only if Ex−J
Vi(xJ , x−J) ≥ π+(J, xJ).

Proof: Denote Hi(xi) := xi− 1−Fi(xi)
fi(xi)

. By Eq. (5), ∂
∂xi

Ex−J
Vi(xJ , x−J) = H ′

i(xi), and, for all

j 6= i, xi enters Vj(x) only through the term eji(xi). Hence Assumption 1 implies (15).

To prove (16), we use a revealed-preference argument. Let ((ψt)∞t=1, q) denote a search

procedure that solves Eq. (13). Given state variable (J, xJ), consider a deviant plan of

replacing the xi in xJ by an x̂i ∈ Xi and carrying out subsequent search according to

((ψt)∞t=1, q) with the revised state variable (J, xJ\i, x̂i). Let π̂+(J, xJ ; x̂i) be the expected

value of virtual utility from this deviant plan, discounted back to the current period t.

Then xi enters π̂+(J, xJ ; x̂i) only in the term

Ex−J

∑
k∈I

Vk(xJ\i, xi, x−J)qk(xJ\i, x̂i, x−J)δ
τ(xJ\i,x̂i,x−J )−t.

Hence
∂

∂xi
π̂+(J, xJ ; x̂i) = Qi(x̂i | xJ\i)H ′

i(xi) +
∑
k∈I\i

Qk(x̂i | xJ\i)e′ki(xi),

where Qk(x̂i | xJ\i) denotes the discounted expected value of bidder k’s winning probability

from the viewpoint of period t conditional on the profile (xJ\i, x̂i) (defined in Eq. (2), with

J there replaced by J \ i here). As ((ψt)∞t=1, q) solves the dynamic programming problem

given the state variable (J, xJ),

π+(J, xJ) = π̂+(J, xJ ;xi) = max
x̂i

π̂+(J, xJ ; x̂i).
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Thus, the Milgrom-Segal envelope theorem ([7]) implies that π+(J, xJ) is an absolutely con-

tinuous function of xi and, whenever its derivative exists,

∂

∂xi
π+(J, xJ) = Qi(xi | xJ\i)H ′

i(xi) +
∑
k∈I\i

Qk(xi | xJ\i)e′ki(xi). (17)

Thus, Assumption 1 implies (16). If its equality holds, bidder i wins almost surely in subse-

quent search if search were to continue. Then continuing search is dominated by awarding

the good to bidder i right now, due to search costs. Hence Ex−J
Vi(xJ , x−J) ≥ π+(J, xJ). �

Now we are ready to prove the lemma that immediately implies Theorem 1.

Lemma 3.3 Given Assumption 1, if a search procedure is symmetric-information efficient

relative to reward structure (x0, (Vi)i∈I), then it satisfies the monotonicity condition (6).

Proof: Let J ⊆ I be the set of incumbents and let i ∈ J . We shall prove (6) by induction

on the size of I \ J . The case of J = I follows directly from (15). Pick any n = 1, 2, . . . and

suppose the claim is true if the size of I \ J is less than or equal to n − 1. We shall prove

the claim when I \J is of size n. Since the symmetric-information efficient search procedure

solves the problem

max

{
x0,Ex−J

Vi(xJ , x−J),max
j∈J\i

Ex−J
Vj(xJ , x−J), π+(J, xJ)

}
,

Lemma 3.2 implies that the probability g(xi) for bidder i to win in the current period is

monotone nondecreasing in xi. The induction hypothesis implies that the probability h(xi)

(discounted back to next period) that he wins later, conditional on the event that he does

not win in the current period, is monotone nondecreasing in xi. Thus, his total discounted

winning probability g(xi) + (1− g(xi))δh(xi) is monotone nondecreasing in xi, as desired. �

3.2.1 An optimal mechanism with private values

Let us illustrate Theorem 1 for a special private-value case where eij = 0 for all i, j ∈ I and

there is no discounting. With private values, a bidder’s virtual utility becomes a function of

only his own type (hence we write Vi(xi) instead of Vi(x)):

Vi(xi) = xi −
1− Fi(xi)

fi(xi)
. (18)
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By Theorem 1, a solution to the dynamic programming problem (13), with the private-

reward structure (x0, (Vi)i∈I), is optimal for the seller. The solution in such private-reward

cases has been characterized by Weitzman [12]. (Weitzman allowed only one entrant per

period, which we can do with no loss of generality when there is no discounting.) In our

auction environment, the solution to the problem is: For every bidder, calculate a cutoff

level such that if the seller’s current fallback reward is below this cutoff then it is worthwhile

to invite that bidder before ending the search. In any period t, if the seller’s current fallback

reward is greater than or equal to the cutoffs of all bidders who were not yet invited, the

search terminates. Otherwise, the search continues to period t + 1 and the seller contacts

the bidder with the highest cutoff among all bidders who were not invited up to that point.

The cutoffs in the Weitzman algorithm, given a private-reward structure (r0, (ri)i∈I),

are computed as follows. Suppose that before the seller faces bidder i, she already has the

opportunity to get a fallback reward z. The net change in the seller’s expected payoff from

inviting bidder i is equal to

Exi
[ri(xi)− z]+ − ci,

where

[y]+ := max{y, 0}.

This expression reflects the fact that if ri(xi) < z, then the seller’s fallback reward remains

equal to z but if ri(xi) > z then ri(xi) becomes the new fallback reward. The seller gains from

inviting bidder i if and only if the resulting net change in her expected payoff is positive.

Hence the cutoff for bidder i is equal to the solution r∗i for the following equation (the

existence and uniqueness of the solution are obvious):

Exi
[ri(xi)− r∗i ]

+ = ci.

When the reward structure is distorted into virtual utilities (r0 = x0 and ri = Vi for all

i ∈ I), the optimal search procedure follows Weitzman’s algorithm with the cutoffs, called

seller-optimal cutoffs v∗i , implicitly defined by

Exi
[Vi(xi)− v∗i ]

+ = ci. (19)

That yields the following optimal mechanism: Relabel the bidders if necessary so that v∗1 ≥
· · · ≥ v∗n (n = #I). If 0 ≥ v∗1, the seller keeps the good. Otherwise, invite bidder 1. If
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the search continues to period t and (x̂s)
t−1
s=1 is the profile of reports so far, invite bidder t;

based on his report x̂t, set the bidder’s payment such that its expected value is equal to the

amount Pt(x̂t | (x̂s)
t−1
s=1) specified by Eq. (12). If v∗t+1 > maxs≤t Vs(x̂s)), continue the search

and invite bidder t + 1. Otherwise or if all bidders have been invited, stop the search and

give the good to the participant whose reported virtual utility is at least x0 and is highest

among all participants. If no such participant exists, the seller consumes the good.7

From the above search procedure and Eq. (12), one can derive the following payment

scheme for any bidder t who enters at period t. Since v∗t+1 ≤ v∗t , either v∗t+1 ≤ maxs<t Vs(x̂s) ≤
v∗t or maxs<t Vs(x̂s) < v∗t+1 ≤ v∗t . (maxs<t Vs(x̂s) < v∗t because otherwise search would have

stopped before t.) In the first case, the search will stop before period t + 1 regardless of

bidder t’s report, and bidder t’s payment scheme is a take-it-or-leave offer at the price equal

to the bidder’s minimum realized value that allows him to outbid the incumbents in terms of

virtual utilities. In the second case, bidder t is pivotal to the decision of search continuation.

If his report exceeds V −1
t (v∗t+1), he buys the good now and pays a price equal to V −1

t (v∗t+1)

minus a discount (the discount is needed to counterbalance his incentive of prolonging the

search by underbidding); if his report is below V −1
t (v∗t+1), search continues and bidder t is

committed to a payment plan whose discounted expected value is determined by Eq. (12).

3.3 Policy implications

3.3.1 Distortion on social efficiency

In the traditional optimal auction theory, asymmetric information can lead to inefficiency

in the form of no trade in some states of nature and, sometimes, biased allocations. In our

search-theoretic framework, asymmetric information leads to a third form of inefficiency:

inefficient search procedures. To focus on the effect of asymmetric information, we consider

in this subsection only a case of private values where eij = 0 for all i, j ∈ I and there is no

discounting.

7The sequence of entry is predetermined in this case because values are private and there is no discounting.

In general, the sequence of entry is stochastic.
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With private values and no discounting, Weitzman’s algorithm solves the symmetric-

information search problem. When the reward structure is based on the actual utilities (r0 =

x0 and ri(xi) = xi for all i ∈ I), the socially efficient search procedure follows Weitzman’s

algorithm with the cutoffs x∗i , called efficient cutoffs, implicitly defined by the equation

Exi
[xi − x∗i ]

+ = ci. (20)

Crémer, Spiegel, and Zheng [3] have proved that this procedure can always be implemented

by a perfect Bayesian equilibrium (PBE).8 Theorem 1 above implies that the seller-optimal

search procedure, which follows Weitzman’s algorithm with the cutoffs v∗i defined by Eq. (19)

replacing the efficient cutoffs (x∗i )i∈I , is also implemented by a PBE. In what follows we can

compare the two search procedures.

Fewer Participants. Because a bidder’s actual utility exceeds his virtual utility, the ben-

efit of including a bidder is lower in a seller-optimal search mechanism than in a socially

efficient search mechanism if the fallback rewards are the same. The optimal mechanism

may completely exclude a bidder even before the search begins, while that bidder has a

positive probability of participation in an efficient mechanism.

Proposition 1 From the standpoint of period 1, every bidder i’s probability of participation

in a socially efficient mechanism is positive whenever his probability of participation in a

seller-optimal mechanism is positive, but bidder i’s probability of participation in a seller-

optimal mechanism can be zero even when his probability of participation in a socially efficient

mechanism is positive.

Proof: Note that for all z, Exi
[Vi(xi)− z]+ ≤ Exi

[xi − z]+, with strict inequality for all

z < supXi; also note

d

dz

(
Exi

[Vi(xi)− z]+
)
≤ 0,

d

dz

(
Exi

[xi − z]+
)
≤ 0,

with strict inequalities for all z < supXi. Hence, v∗i < x∗i for all i ∈ I. The proof is

completed by noting that a bidder i has a positive probability of participating in the socially

8Although the participation constraint is ex ante in that paper, its efficiency result is applicable here

because interim participation constraints can always be satisfied by transfers from the seller.
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efficient mechanism if x∗i > x0 and a positive probability of participation in the seller-optimal

mechanism only if v∗i ≥ x0. �

Longer Search. As a bidder’s virtual utility is less than his value, the seller’s fallback

value in an optimal mechanism is less than her fallback value in an efficient mechanism.

That leads to an effect opposite to the previous one. The lower fallback value makes it more

attractive to continue the search. A simple case for this effect is that bidders’ types are

drawn from an identical distribution F with density f , so their virtual utility functions are

the same, though their participation costs may be different. While the cost of an additional

searching period is the same in both efficient and optimal mechanisms, the gains are different.

To see that, suppose that an additional search increases the highest reported value and hence

the social surplus by ∆x. The resulting effect on the seller’s revenue, which is measured in

virtual utilities, is approximately V ′(x)∆x. Under the monotone hazard rate assumption

that f(xi)/(1− F (xi)) is weakly increasing, V ′(x) ≥ 1. Hence, other things equal, the seller

is more willing to continue searching than a benevolent social planner would.

Proposition 2 Assume that types xi are identically distributed across bidders, with V de-

noting the common virtual utility function and V ′ its derivative (though their participation

costs ci may be different), and assume that V ′ > 1 and v∗i > x0 for all i ∈ I. Then a seller-

optimal search lasts at least as long as an efficient search, and with a positive probability the

former lasts longer than the latter.

Proof: First, note the fact that V −1(v∗i ) > x∗i for all i ∈ I: Let

φ(z) :=

∫ xi

z

(xi − z)dFi(xi); ϕ(z) :=

∫ xi

z

(Vi(xi)− Vi(z))dFi(xi),

where xi := supXi. The solution for ϕ(z) = ci is V −1
i (v∗i ). By assumption V ′ > 1, ϕ′ < φ′ <

0 throughout their common domain. Then the fact φ(xi) = 0 = ϕ(xi) implies V −1(v∗i ) > x∗i .

Second, the queue of entry is the same in both mechanisms: with i.i.d. bidders, x∗i > x∗j

if and only if ci < cj if and only if v∗i > v∗j . Thus, we can relabel the bidders so that

v∗1 ≥ v∗2 ≥ · · · ≥ v∗n and x∗1 ≥ x∗2 ≥ · · · ≥ x∗n. By the assumption v∗i > 0, the optimal
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mechanism for sure conducts the search in period one. We shall claim that the seller-

optimal search continues from period t to period t + 1 in a higher probability than the

efficient search procedure does from t to t + 1. To see that, let (x1, . . . , xt) be the sequence

of realized values up to period t. If the efficient search continues to period t + 1, then

max{x0, x1, . . . , xt} < x∗t+1; by the fact V −1(v∗i ) > x∗i and the assumption v∗i > x0,

v∗t+1 > max{x0, V1(x1), . . . , Vt(xt)}.

Hence the seller-optimal search continues to period t + 1. Thus, the optimal procedure

continues if the efficient procedure continues. The converse, however, is false: when

x∗t+1 < max{x1, . . . , xt} < V −1(v∗t+1),

which occurs with a positive probability, the efficient search stops while the seller-optimal

search procedure continues. This proves our claim. �

Inefficient Queue of Entry. Determined by different sets of cutoffs, the queues of entry

in the efficient mechanism and in the optimal mechanism can be different. Here is an example

where the seller-optimal queue of entry is the reverse of the efficient queue: there are two

bidders and the seller’s value x0 is zero; bidder 1’s type is uniformly distributed on [x1, x1];

bidder 2’s type is drawn from an exponential distribution F2(x2) := 1 − exp(−λx2). We

calculate the virtual utility functions and cutoffs of the two bidders:

V1(x1) = 2x1 − x1; V2(x2) = x2 − 1/λ;

x∗1 = x1 −
√

2c1(x1 − x1); x∗2 = − ln(λc2)/λ;

v∗1 = x1 − 2
√
c1(x1 − x1); v∗2 = − (1 + ln(λc2)) /λ.

Since x∗i > v∗i , there exist two numbers a and b such that v∗1 < a < b < x∗1. Let

λ := 1/(b− a); c2 := exp(−λb)/λ.

The choice of λ and c2 implies that x∗1 > x∗2 and v∗1 < v∗2. Thus, bidder 2 enters first in the

optimal mechanism, whereas bidder 1 enters first in the efficient mechanism.

In this example, search costs can be arbitrarily small (when c1 → 0, b − a → 0+ and

c2 → 0). Thus, when search costs go to zero, the distortion due to asymmetric information

persists, while the delay of market clearance in the traditional search models vanishes.
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3.3.2 Delayed participation of influential bidders

When bidders’ values are interdependent, we can address the following question: If bidder i

has stronger influence on others than bidder j, should the seller let i enter before j or vice

versa? For simplicity, assume that, for all j ∈ I, there is a number αj such that eij(xj) = αjxj

for all xj and i 6= j. We can therefore regard bidders with higher α’s as more influential.

By the Milgrom-Weber linkage principle, one might think that the seller would rather

have influential bidders enter earlier. The principle, however, is not applicable here, because

only bad signals can affect future potential entrants. Suppose that an influential bidder

enters first. If he does not purchase the good, then later entrants will take this as a bad

signal about the good and hence reduce their willingness-to-pay. If the influential bidder

does purchase the good, then the potential entrants, having no chance to compete, do not

contribute to the bidding competition. Thus, a seller would like noninfluential bidders to

enter the mechanism before influential bidders do.

Proposition 3 For every i ∈ I, assume: Vi ≥ 0, xi ≥ 0, and there is a number αi such

that eji(xi) = αixi for all xi and all j 6= i. Also assume that δ = 1 and search costs and

type-distributions are identical across i ∈ I. Then the higher αi, the later and less probable

is i’s entry in a seller-optimal search mechanism.

Proof: For every i ∈ I and every xi ∈ Xi, let

Wi(xi) := xi −
1− Fi(xi)

fi(xi)
− αixi.

Note that Vi(x) = Wi(xi) +
∑

j∈I αjxj. Thus, for any state variable (J, xJ),

Ex−J
Vi(xJ , x−J) > Ex−J

Vj(xJ , x−J) ⇐⇒ Wi(xi) > Wj(xj). (21)

Since Vi ≥ 0 by assumption, the seller-optimal search mechanism never results in no sale.

Hence (21) implies that the search procedure is equivalent to a symmetric-information ef-

ficient procedure relative to the reward structure (r0, (ri)i∈I) such that r0 = −∞ and

ri(x) = Wi(xi) for all i and all x. In this transformed search problem, the reward ri is

a function of only xi. Hence the search procedure is obtained via Weitzman’s algorithm,
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with the cutoffs w∗
i implicitly defined by the next equation (the existence and uniqueness of

w∗
i are obvious):

Exi
[Wi(xi)− w∗

i ]
+ = ci. (22)

Thus, it suffices to prove that w∗
i is strictly decreasing in αi for each i ∈ I. To this end, note

that Exi
[Wi(xi)− w∗

i ]
+ is a strictly decreasing function of w∗

i and moreover note that Wi(xi)

is a strictly decreasing function of αi (since xi ≥ 0 by assumption). Hence (22) implies the

desired assertion. �

4 Correlated Types

Thus far, we have assumed that the bidders’ types, x1, ..., xn, are stochastically independent

across bidders. In this section we relax this assumption. It is well known that when bidders’

types are correlated, the seller can generically use lotteries that condition the payment of each

bidder on the reports of other bidders to fully extract the entire social surplus (see Crémer-

McLean [2, Theorem 2]). The presence of search costs, however, renders such full extraction

difficult because a search procedure continues or stops depending on incumbents’ reports.

Hence an incumbent can prevent the entry of rivals and therefore make it impossible to use

the appropriate lotteries. We begin this section by analyzing the source of this difficulty

and then prove that the seller can overcome this difficulty and achieve almost full extraction

albeit this may require the use of arbitrarily large transfers.

We consider a correlated private value case with a finite nonsingleton set I of bidders.

The seller’s value is normalized to zero. We assume that bidder i’s ex post utility from

winning the good is equal to the realized value of his type xi, and we assume that the set of

possible realized values of xi is a finite set Xi.

4.1 A case where full extraction is impossible

If the socially efficient search procedure invites a single bidder in period 1, this bidder may be

able to make a report that induces the seller to stop the mechanism. Consequently, the seller
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is unable to use lotteries to fully extract the surplus from this bidder. The next proposition

makes this statement precise.

Proposition 4 If the socially efficient search procedure invites a single bidder in period 1,

and if there are at least two possible realized values of his type at which the efficient procedure

calls for awarding the good to the bidder without further search, then the seller cannot fully

extract the maximum social surplus in the symmetric-information search problem.

Proof: Consider any revelation search mechanism that implements the efficient search pro-

cedure. (There is no need to consider any other mechanisms by the revelation principle,

Lemma 2.1.) Suppose the efficient procedure invites only bidder i in period 1 and awards

the good to i if xi = L or xi = H, with L,H ∈ Xi and L < H. Then, if xi = L or xi = H,

all other bidders are nonparticipants and bidder i’s payment cannot depend on their realized

signals. Hence incentive compatibility requires that bidder i pay the same amount when

xi = L or xi = H. Moreover, interim participation constraint when xi = L implies that this

payment cannot exceed L. Hence the seller cannot fully extract the social surplus. �

The following example illustrates Proposition 4 and shows that the hypothesis in the

proposition is nonvacuous. Suppose that there are two ex ante identical bidders, 1 and 2.

The discount factor is one, and the search cost is c > 0. Each bidder’s type can take three

possible values: L, M , and H, with L < M < H. The joint probability of (x1, x2) is:

x2

L M H

L fLL fLM fLH

x1 M fLM fMM fMH

H fLH fMH fHH

The entries in the matrix are probabilities that sum up to one. For instance, Pr(x1 = M,x2 =

H) = fMH . To ensure that it is socially efficient to invite at least one bidder, assume

fLL+ fMM + fHH > c, (23)

where fL := fLL + fLM + fLH , fM := fLM + fMM + fMH , and fH := fLH + fMH + fHH . Note

that since there is no discounting, there is no loss of efficiency to invite only one of the ex
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ante identical bidders, say bidder 1, in period 1. If x1 = H, then obviously search should

stop and bidder 1 should get the good. Otherwise, if

fLMM + fLHH − (fLM + fLH)L

fL
< c <

fMH(H −M)

fM
, (24)

then it is optimal to stop if x1 = L but continue if x1 = M .9 Obviously the set of parameters

satisfying both (23) and (24) is nonempty (also not nongeneric, as (23) and (24) are strict

inequalities). Hence Proposition 4 implies that full extraction is impossible.

4.2 Almost full extraction

Although full extraction may be impossible, it is nonetheless possible to modify the efficient

search procedure and achieve almost full extraction of surplus. This modification requires

that the procedure always continue with a positive probability, thereby eliminating the first

entrant’s ability to exclude rivals.

Let us start with the previous example, assuming that both (23) and (24) are satisfied

and assuming that the above joint probability matrix satisfies the cone condition for full

extraction (Crémer and McLean [2, Theorem 2]; stated here as Assumption 2). Pick any

small ε > 0. If bidder 1 reports M , continue search as in the efficient procedure. If bidder 1

reports L or H, stop search as in the efficient procedure with probability 1− ε, and continue

search with probability ε. Since the procedure reaches bidder 2 with a positive probability

and since the Crémer-McLean cone condition is assumed to hold, it is possible to design a

Crémer-McLean lottery for bidder 1 that induces him to make a truthful report in period

one. It remains to show that it is also possible to design such a lottery for bidder 2. To

this end, suppose that bidder 2 is unaware of bidder 1’s report. If the mechanism reaches

bidder 2, the posterior joint probability measure from bidder 2’s viewpoint corresponds to

the following matrix up to normalization:

9If x1 = L, then stopping yields a social surplus L while contacting bidder 2 and allocating the good

to the higher-value bidder yields a social surplus of fLLL+fLM M+fLHH
fL

− c. Likewise, if x1 = M , then

stopping yields M , while contacting bidder 2 and allocating the good to the higher-value bidder yields
(fLM+fMM )M+fMHH

fM
− c. When (24) holds, L > fLLL+fLM M+fLHH

fL
− c and M < (fLM+fMM )M+fMHH

fM
− c.
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x2

L M H

L εfLL εfLM εfLH

x1 M fLM fMM fMH

H εfLH εfMH εfHH

For instance, Pr(x1 = L | x2 = H) = εfLH/(εfLH + fMH + εfHH). To see that the associated

conditional probability matrix satisfies the Crémer-McLean cone condition, suppose by way

of negation that one of the column vectors, say the first column, belongs to the closed cone

generated by the other two column vectors. Then for some nonnegative numbers λ1, λ2:

εfLL = λ1εfLM + λ2εfLH ;

fLM = λ1fMM + λ2fMH ;

εfLH = λ1εfMH + λ2εfHH .

But then the prior probability measure also violates the cone condition, a contradiction.

Hence it is also possible to induce truth-telling from bidder 2 by offering him a Crémer-

McLean lottery contingent on bidder 1’s report.

The above mechanism implements the efficient search procedure with probability 1− ε,
where ε can be arbitrarily small. With both bidders being truthful, the seller fully extracts

the social surplus in the event that the efficient procedure is implemented. Hence she obtains

the maximum social surplus with probability at least 1− ε.

To allow the above mechanism, we expand the definition of search procedure to include

the possibility of randomization on whether to continue and on the set of new entrants to

be invited. We also replace the assumption that previous messages are common knowledge

(§2.1) by the assumption that an incumbent’s message is unknown to everyone else unless

revealed by the mechanism. Without this, a lottery contingent on incumbents’ messages

could be degenerate. To ensure the credibility of the seller’s mechanism, we further assume

that a mechanism, once selected, is operated by a neutral trustworthy mediator.10

10These changes do not alter the results in the case of independence. Randomization does not make the

seller better-off because a tiny tremble does not lead to a discontinuous change in the information rent.

Nor can she do better by hiding previous messages in the independence case: as long as the mechanism is
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Let f((xi)i∈I) denote the joint prior probability of the realized state (xi)i∈I , with xi ∈ Xi

for each i. Assume that f((xi)i∈I) > 0 for all realized states (xi)i∈I . Let X−i := ×j 6=iXj. For

any x−i ∈ X−i, let f−i(x−i | xi) denote the probability of x−i being the profile of realized

types of all bidders but i, conditional on i’s type being xi. As each possible state has a

positive prior probability, f−i(x−i | xi) is well defined. Note that f−i(· | xi) is a vector whose

length is equal to the size of X−i. The next assumption is exactly the cone condition in

Crémer and McLean [2, Theorem 2].

Assumption 2 For any bidder i and for any xi ∈ Xi, the vector f−i(· | xi) does not belong

to the closure of the cone generated by the vectors in the family {f−i(· | x′i) : x′i ∈ Xi \ {xi}}.

As in the previous example, the main idea in the proof of the next theorem is to ensure a

positive probability for the event of full participation, in which case Crémer-McLean lotteries

can be carried out. Although this probability may be tiny, the lotteries can be scaled up to

deter lying. The only complication in the proof is due to the fact that entrants can learn

from the history of entry. To achieve full extraction, the seller needs to ensure that every

entrant’s posterior belief will satisfy the condition for full extraction, which requires a bidder’s

posterior conditional probabilities to be well defined. To guarantee that, we generalize the

above ε-deviation technique into totally mixed strategies at the end of every period so that

a new entrant always assigns positive posterior probabilities to any possible realized state.

Theorem 2 Given Assumption 2, for any η > 0 there exists a search mechanism with which

the seller obtains the maximum social surplus of the symmetric-information search problem

with a probability at least 1− η.

Proof: Pick a sufficiently small ε > 0 such that 1 − η < (1 − ε)n−1 (n being the size

of I). Consider the following mechanism: In period one, invite the entrants prescribed by

the efficient procedure. In every period t, offer a menu of Crémer-McLean lotteries (specified

later) to every period-t entrant, then solicit secret reports from them. If all bidders have

participated, stop. Otherwise, with probability 1 − ε follow the instruction of the efficient

operated by a neutral trustworthy mediator rather than the seller herself, the seller does not know more

than the bidders about previous messages, and hence she cannot take advantage of the hidden history.
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procedure in period t + 1, and with probability ε randomly pick, with equal probability, a

nonempty set of bidders who are not yet incumbents and invite them in period t + 1. If

search stops, sell the good to a highest-value participant at a price equal to his reported

value. In addition, participants make transfers according to their Crémer-McLean lotteries.

If all participants are truthful, the efficient search procedure is implemented with prob-

ability at least (1− ε)n−1. If the lotteries have the Crémer-McLean property of ensuring zero

expected payoff for truth-tellers and sufficiently large negative payoffs for liars, then par-

ticipants are indeed truthful so the seller obtains the entire social surplus if the efficient

procedure is implemented. By definition of efficiency, that surplus is the maximum sur-

plus in the symmetric-information search problem. Thus, the proof is complete if such a

Crémer-McLean lottery exists for every participant i.

To this end, consider any bidder i who enters at period t = 1, 2, . . .. Given i’s report,

x̂i, suppose that he is offered the following lottery: if search ends before all potential bidders

participate, bidder i gets zero payoff; otherwise (full participation) and if x−i is the profile of

reports from all potential bidders but i, then bidder i gets a payoff equal to γi(x̂i)gi(x̂i, x−i)

for some functions γi and gi. We shall prove that there exist such functions for which the

lottery has the desired Crémer-McLean property. By the totally mixed strategy described

above, given any profile x−i there is a unique positive probability a(x−i) with which the

mechanism coupled with x−i leads to the observed sequence of entry up to the current

period. (Actually a(x−i) depends only on the reports of the incumbents before i enters.)

Derived from the design of the mechanism, a(x−i) is commonly known. Likewise, given

any x−i and s = 0, 1, 2, . . ., there is a unique positive probability β(x̂i, x−i, s) with which the

mechanism coupled with (x̂i, x−i) leads to the observed sequence of entry up to the current

period and will end with full participation in period t+ s. Given (x̂i, x−i, s), this probability

is commonly known. Let bidder i’s actual type be xi. Denote

b(xi) :=
∑

x′−i∈X−i

a(x′−i)f−i(x
′
−i | xi);

Gi(x̂i, x−i) :=
∞∑
s=0

δsβ(x̂i, x−i, s)gi(x̂i, x−i).

26



Then bidder i’s expected payoff from the lottery, viewed from the current period, is equal to

γi(x̂i)
∑

x−i∈X−i

f−i(x−i | xi)
b(xi)

Gi(x̂i, x−i), (25)

We claim that the family {f−i(· | xi)/b(xi) : xi ∈ Xi} of vectors satisfies the cone condition for

full extraction (Assumption 2 with f−i(· | xi)/b(xi) taking the role of f−i(· | xi)); otherwise,

there exist an xi ∈ Xi and a nonnegative vector (λ(x′i))x′i∈Xi\{xi} such that

f−i(x−i | xi)
b(xi)

=
∑

x′i∈Xi\{xi}

λ(x′i)
f−i(x−i | x′i)

b(x′i)

for all x−i ∈ X−i, which implies

f−i(· | xi) =
∑

x′i∈Xi\{xi}

λ(x′i)b(xi)

b(x′i)
f−i(· | x′i),

contradicting Assumption 2. Now that the cone condition is satisfied, the Farkas lemma

implies that there exists function Gi(x̂i, ·) that makes (25) zero if x̂i = xi and negative if

x̂i 6= xi. Then the lottery γi(x̂i)gi(x̂i, ·) is obtained via setting

gi(x̂i, xi) :=
Gi(x̂i, x−i)∑∞

s=0 δ
sβ(x̂i, x−i, s)

and picking a scalar γi(x̂i) so large that the negative payoff when x̂i 6= xi outweighs bidder i’s

gain from buying the good. Thus, a Crémer-McLean lottery exists for i, as desired. �

Although the seller can almost fully extract social surplus, search cost makes this task

more difficult. In the Crémer-McLean model, for any environment, the size of necessary

transfers is given and finite (though the size need not be uniformly bounded when the

environment varies). In our proof, by contrast, for any environment where full participation

is not socially efficient, the size of transfers needs to be large in the low-probability event

that full participation occurs and a bidder’s report matches the others’ poorly. When the

seller reduces the probability of this inefficient event to arbitrarily close to zero, she needs

to enlarge the transfers in this event without bound.

5 Discussion

We have studied a single unit auction environment in which the set of bidders is endogenously

determined through a dynamic search process. Our main results are that with independent
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bidders’ types, an optimal mechanism amounts to symmetric-information optimal search

where the prizes are the virtual utilities. That is, the seller conducts a costly search for

the bidder with the highest virtual utility. In traditional optimal auction problems, the

information rents that the seller concedes to the bidders create inefficiencies in the form of

no trade in some states of nature and, sometimes, biased allocations. Our search-theoretic

framework gives rise to a third form of inefficiency: inefficient search procedures. In the

case of private values with no discounting, this inefficiency results in fewer participants,

longer search conditional on the same set of participants, and inefficient sequence of entry,

relative to the socially efficient mechanism. With correlated bidders’ types, the dynamic

nature of our model precludes full rent extraction as in the case of a static auction model.

Nonetheless, we proved that it is possible to design a mechanism that fully extract the ex

ante social surplus with an arbitrarily high probability.

Myerson [9, Ch. 10] has established an elegant virtual utility result in a general model

of the traditional mechanism design framework where the set of participants is exogenous.

There, the virtual utilities are functions of the dual variables of the designer’s constrained

optimization problem. Being endogenous, the dual variables usually do not result in explicit

characterization of the distortion of asymmetric information. In our model, the designer’s

problem is a stochastic dynamic programming, and its dual variables may be intractable.

Fortunately, the (ex post) virtual utility functions in our model are directly determined

by the primitives. That makes the designer’s job quite convenient: simply transform the

potential bidders’ distributions by the virtual utility functions and then plug the transformed

distributions into an operation research program that yields a solution for optimal search.
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π(J, xJ): value function, 12

π+(J, xJ), 13

ψt(y): set of new entrants, 6

τ(y): end of a search, 6

xi, 5

a(x−i), 26

b(xi), 26

ci: search cost, 4

eij: j’s influence on i, 5

f−i(x−i | xi), 25

fi: i’s pdf, 5

gi, 26

q(y): winner-selection lottery, 6

r0: initial fallback reward, 8

ri(x): reward, 8

v∗i : seller-optimal cutoff, 15

w∗
i , 21

x−J , y−J , 6

x0: seller’s value, 5

xi: i’s realized signal, 5

x∗i : efficient cutoff, 17

Ex, Exi
, ExJ

: expected-value operators, 8

cutoff, 15

efficient

socially, 8

symmetric-information, 8

entrant, 5

incumbent, 4, 5

linkage principle, 20

realized state, 5

revelation search mechanism, 7

reward, 8

initial fallback, 8

search cost, 2

search mechanism, 2, 5, 6

revelation, 7

search procedure, 7

socially efficient, 8

symmetric-information efficient, 8

symmetric-information search problem, 7

virtual utility, 9
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