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Abstract

This paper is an adaptation of the Chamley-Gale endogenous-timing information-revelation
model of investment (Econometrica, 1994). The paper models a game with pure informational
externalities where agents can learn by observing others’ actions. Observational learning about
the value of the investment project can result in massive social imitation, possibly leading the
society to the incorrect choice, to an inefficient cascade. While Chamley and Gale characterize
the equilibrium of such a game, this paper yields an analytic approximation to the probability of
inefficient cascades and allows for  the derivation of comparative statics results. This is useful
for two reasons: i) these results indicate that some of the findings from the exogenous-timing
herding literature  may not necessarily be generalizable to the endogenous-timing framework. ii)
the study may be useful in the analysis of a wide variety of applied issues including IPO pricing,
speculative attacks and adoption of new technology.



1Also see the “living “document by Bikhchandani, Hirshleifer and Welch (1996) for an
overview of the theoretical and empirical literature on herding.
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1. Introduction

People often observe other people’s actions while making their own decisions. This might be due

to positive social or network externalities and/or it might be due to social learning. This paper

focuses solely on observational learning without any externalities. When signals are private,

rational agents may be able to infer the nature of the state from the actions of their predecessors.

Herd behavior or information cascade occurs when everyone is imitating the crowd, even when

their private information suggests the opposite. In this social learning process, if early movers’

signals happen to be incorrect then agents may settle on a common inefficient action, resulting

in an inefficient cascade.  This paper adapts the endogenous-timing information-revelation

investment model of Chamley and Gale (1994) to study the factors that make inefficient cascades

more likely. 

In a survey study, Devenow and Welch (1996) give an extensive list of empirical

phenomena that informational cascades may explain1. Examples come both from real markets

such as R&D investment decisions and from financial markets; among others, analysts’

recommendation of a particular stock, bank runs and managers decisions to pay dividends may

have elements of herding behavior. It is often argued that conformist behavior in financial and

real markets may lead to sudden booms and crashes. This paper studies the factors that influence

the likelihood of erroneous mass behavior, either when there is an investment boom even though

the true value of the project is low (inefficient positive cascade), or when there is an investment

collapse even though the true value is high (inefficient negative cascade).    

In seminal papers by Banerjee (1992) and Bikhchandani and Hirshleifer and Welch

(1992) each person observes the behavior of the people who went before him where there is an

exogenously determined sequence in the moves. These models show that society may settle in

an inefficient outcome because valuable information gets trapped at some stage of social

learning. Chamley and Gale (1994) prove the existence of herd behavior even when the timing

of moves and information revelation is endogenous. In an endogenous-timing framework, the

individual agent has an incentive to wait in order to observe the actions of other players.

However if everyone were to wait, the agent would rather move early in order to avoid cost of

delay. Hence the timing decision is strategic. 



2Zhang (1997) provides a endogenous timing framework where the first mover is the
agent with the highest precision of information. A cascade starts immediately after the first
mover, all  agents follow the expert leader. 

3This corresponds to Section 6 in Chamley and Gale. 
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While Chamley and Gale characterize the equilibrium of such a game, this paper yields

an analytic approximation to the probability of inefficient cascades and allows for  the derivation

of comparative statics results. 

To the best of my knowledge, in a framework where agents do not have preferential

access to information2, this is the first endogenous-timing herding model that allows for the

derivation of comparative statics results for the probability of negative and positive information

cascades. The analysis will allow us to examine whether inefficient cascades are more or less

likely as signal quality improves, as the observation period length increases and  as there is more

to lose or gain. This is useful for two reasons: First, it allows a deeper understanding of the

relationship between exogenous and endogenous timing herding models. This paper shows that

some of the results on exogenous-timing herding models do not necessarily generalize to models

with endogenous timing. Secondly, the derivation of comparative static results in the Chamley-

Gale model provides a framework that may be useful in the analysis of a wide variety of applied

issues. Some of these will be discussed in the conclusion.

2. Framework 

Each of the identical risk neutral agents with  an investment option can exercise the option at any

date T=0,1,2,...4 of his choice. All options are identical and indivisible. The investment decision

is irreversible. * 0(0,1) is the common discount factor. Each player with an option chooses either

to invest now or delay. If the player never invests the payoff is 0.  Whether or not the player has

an option is private information. Only if the option is exercised information is revealed. The true

value of the investment is identical for all players and it is denoted by V0{VH,VL} where VH>0 and

VL<0. V=VH with prior probability q*0(0,1).

 This paper adapts the r-Fold Replica Game of Chamley and Gale 3.This implies that the

population is unboundedly large. While the population consists of  rN agents, only rn of them
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have an opportunity to undertake an investment project. The results will hold as r64. When the

project value is high, more people are aware of the investment opportunity and hence more

people have an option to invest.

 

(1)a

and .

Chamley and Gale assume that the number of people with an option is stochastic but it

is more likely to be high when the true value of the project is high. However, here the value of

the project is either high or low and there is a one-to-one mapping between V and n. The

restriction to only two possible project values will allow us to summarize agents’ beliefs about

the true state of the nature at time T in a single variable: the probability that the project value is

high. This mapping will prove to be very convenient in eventually formulating the learning

process in a linear fashion.  So far this is a special case of Chamley and Gale.

Let us now introduce the changes to the Chamley and Gale framework. In Chamley and

Gale both orders and processing of orders happen in discrete time. Whereas here, agents will

place discrete-time state-contingent orders which get processed in continuous time. Players place

their orders at the beginning of each period.  Orders are processed randomly during the period

– the exact time that an individual order is processed is distributed uniformly in the period. Since

information on others’ actions will be arriving during the period, players are permitted to make

their orders (both invest and wait orders) contingent on the flow of information. Payoffs on all

orders processed in a period are received at the end of the period. The benefit of moving to

continuous-time order processing is that it will allow us to approximate a transformation of the

agent’s problem as a Wiener process with absorbing boundaries and hence derive the probability

of inefficient cascades.

Each invest order comes with a state-contingent wait order. The investment cannot be

reversed in case the invest order is already processed. During the interval [T,T+1), if the state-

contingent wait order is triggered, then at most M of the newly triggered wait orders are

processed, where M is a large but finite number. The number of newly triggered wait orders W

may exceed M. In that case, a randomly selected W-M of these newly triggered wait orders are

ignored. These are simply continued to be  processed as invest orders. One can interpret M as the



4This approach cannot rule out the possibility that other equilibria may also exist.
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maximum capacity of the processing agency to accommodate  state-contingent orders. Each wait

order comes with a state-contingent invest order. During the interval [T, T+1), if the state of the

state-contingent invest order is triggered, then at most M of the newly triggered invest orders are

processes. If the number of the newly triggered invest orders Z is greater than M, then the

remaining Z-M are not processed during the period. As will be shown, this form of contingent

order will ensure that in equilibrium the expected payoffs from putting an invest or wait order

will be the same as the expected payoffs from putting in an invest or wait order in the Chamley

and Gale framework. 

3. Equilibrium

We will start out by conjecturing that the equilibrium of this new game mirrors the equilibrium

in the game of Chamley and Gale. Then it will be shown that in this conjectured equilibrium the

players’ expected payoffs from their equilibrium strategies and from possible deviations are the

same as those resulting to players in Chamley and Gale’s game. And hence Chamley and Gale’s

proof of equilibrium will apply here as well4.

 Each player who receives an investment option faces a tradeoff between investing and

delaying. If the player invests now he collects the undiscounted payoff but faces the risk of

making a loss in case the true value is VL. If the player delays he collects only discounted payoffs

but he can make use of information revealed by other players’ actions. If the agent knew how

many people had the investment option he would know V. Hence observing the number of people

who invest can help predict the true value of the project. The focus is only on the symmetric

Perfect Bayesian Equilibria. Before describing the equilibrium strategies, let us first introduce

some critical values.

3.1. Critical Values 

The prior probability that V=VH is q*. Denote qt as the subjective probability at time t that the true

value is high. Since orders are processed in continuous time, qt evolves in continuous time. The

index of time for discrete decision time nodes will be denoted by T.  While t0ú+, the index 

. So, at discrete time nodes when t=T, qt=qT. At the beginning of the game, the probability



5This implies that . 
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that the project has a high value, qT at time T=0, conditional on having received an investment

opportunity, is given by: 

(2)b

Since , (2) can be rewritten as,

(3)c

The game is of interest if initially the expected value of the project is positive. Otherwise each

agent would strictly prefer to wait and the game would end immediately with an investment

collapse5.

It will be useful to introduce two critical values for the subjective probability. Define q_

as the probability where the expected value of the project is zero:

q_ VH +(1- q_ ) VL =0 (4)d

When qT<q_, the expected value of investment is negative. So the agent will strictly prefer to wait.

Since everyone who has not yet invested is identical they all prefer to wait and the game

effectively ends. Investment stops for good.

Define q
_
 as the probability where the agent is just indifferent between investing now and

waiting even though information about the true value of the project is to be fully revealed with

certainty next period:

q
_
 VH +(1- q

_
 ) VL = * q

_
 VH (5)e

The left hand side is the expected value from investing. The right hand side gives the expected

value from waiting given that the true value of the project is to be revealed. When qT>q
_
  the agent

will strictly prefer to invest now. And so will all identical players, and the game ends where all

players with an option invest. The game will be said to be active when q_<qT<q
_
. 



6While intuitive, this argument assumes that is not optimal to wait for information that
may arrive several periods later. This is in fact the case. The optimal program will have a “one-
step property” where at any period the agent is willing to make a once and for all invest-not
invest decision. See Chamley and Gale proposition 3 for the proof.
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3.2. Learning

The player’s actions depend on the publicly observed history of the game which is described by

the sequence of the number of people who invested during each period. Following the notation

in Chamley and Gale, for any history h, let  8(h) denote the probability that a player who has not

yet invested does so after observing the history h. In the active phase of the game, it must be that

0<8(h)<1. Assume for a moment that an agent expects all people with an investment opportunity

to invest this period. Then he would strictly prefer to wait to be able to learn the value of the

project for sure. But so would everyone else. Hence 8(h)�1. If he expects nobody else to invest

this period, there would be no learning this period, so as long as expected value from investment

is positive he would strictly prefer to invest now.6 But so would everyone else. Hence 8(h)�0,

by contradiction. In equilibrium, 0<8(h)<1, such that players are just indifferent between waiting

and investing now. Notice that  8 is the endogenous information revelation parameter. If 8 were

zero, no information would be revealed. If 8 were equal to one, the number of people who invest

would fully reveal information about the value of the project. 

As r64, the number of people putting in invest orders at a decision node is given by the

Poisson approximation to the binomial distribution. The parameter of the Poisson distribution

is the mean number of invest orders, rn times 8=8(h). The probability that k players invest at a

decision node given 8 is: 

(6)f

Define  f H (k;8)/f(k;8) when n= nH, and  f L(k;8)/ f(k;8) when n= nL. If nL were equal to nH, then

R=1 and the two probability density functions would collapse together. In such an extreme case

the quality of the signal k would be nil and the signal would not reveal any information. However

as R decreases, the signal quality improves and an observation of the rate of investment provides

valuable information in distinguishing between f H(k;8) and f L(k;8).



7See Proposition 8 and the proof in Chamley and Gale.
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Define kT as the number of invest orders put in at the decision node T-1. Assuming no

contingencies are triggered, kT is  total number of people who invest in the time interval [T-1,T)

and it  is public knowledge at decision node T. The history up to time T is hT. The 8 that makes

the agents indifferent between investing and waiting at the decision node T is 8T. Bayesian

learning suggests that at time T, when the agent observes kT people investing, the subjective

probability will evolve following:

(7)g

Chamley and Gale prove that in equilibrium 8 is independent of both r and the total

number of people who have already invested7. The basic intuition is that the individuals’ learning

is equivalent to learning from sequence of samples. Since r64, the rate of investment is very

small compared to the size of the economy. Therefore one can think of the sampling simply as

sampling with replacement. The equilibrium 8 at the decision node T, will solely depend on

history captured by qT-1 and kT. In the active phase of the game, for each qT 0(q_ , q
_
), there will be

a critical 6=6(qT), such that qT+1 is just at or below q_. So the following equation implicitly defines

8T where the agent is just indifferent between investing now and waiting.

(8)h

The left hand side gives the expected payoff from investing now. The right hand side gives the

discounted expected payoff from waiting. The first term of the brackets is the probability of

observing a particular k at time T+1. The second term is the expected value of the project given

that the particular k is observed.

3.3. Equilibrium Strategies
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Let us first assume that the institutional setup restricts the agents to only use is q_ and q
_
 as their

triggers for the contingency orders. In Appendix C, this assumption is relaxed. The equilibrium

of the game with any finite set ' of possible contingency trigger points with cardinality greater

than one and which contains both and  is shown to yield the same boundary crossing

probabilities as the baseline model.

 

PROPOSITION: Let 8T be described by Equation (8), the following equilibrium strategy supports

a symmetric Perfect Bayesian Equilibrium:   

a) If subjective probability is sufficiently low qT #q_, put in a wait order with a state-contingent

invest order. If in the time interval [T,T+1), qt $q,
_
 the state-contingent invest order is triggered.

b) If subjective probability is sufficiently high,  qT $q
_
, put in an invest order with a state-

contingent wait order. If in the time interval [T,T+1), qt#q_, the state-contingent wait order is

triggered. 

c)If subjective probability is q_<qT<q
_
 , with probability 8T, put in an invest order with a stat-

contingent wait order. If in the time interval [T,T+1), qt#q_, the state-contingent wait order is

triggered. With probability (1-8T ) put in a wait order with a state-contingent invest order. If in

the time interval [T,T+1), qt$q
_
 the state-contingent invest order is triggered.

PROOF: a) By equation (4), when the subjective probability is q_, the expected value of the project

is just equal to zero. Hence the agent strictly prefers to wait when qT <q_. If in the time interval

[T,T+1), qt$q
_
 the expected value of the project would be so high that the agent would  prefer to

invest. Note that in this case, the contingency order will never be triggered in equilibrium. Once

qT #q_ all identical agents with an investment opportunity will prefer to wait. This becomes an

absorbing state and the investment ends for good. No new information can be received in the

time interval [T,T+1) to increase qt above q
_
. 

b) By equation (5), when the subjective probability is q
_
, the expected value of investing now is

just equal to waiting one more period assuming that information about the true value of the

project were to be reveal for sure next period. Hence, when qt$q
_
, the agent prefers to invest right

away. If in the time interval [T,T+1) new information were to arrive such that qt#q_ the agent

would prefer to wait. Notice that this is an absorbing state. When qt$q
_
 all agents with an

investment option would prefer to invest. Since r64, the rate of information flow would be a



8Proposition 8 in Chamley and Gale. 
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continuous variable and the true value of rn and hence V, would be revealed at once. If V=VH,

agents subjective probability would remain above q
_
. If V=VL, the subjective probability would

immediately drop down below q_. All agents state contingent orders would be triggered at once

but only M of them would be able to stop the investment. The game would end with all investing

except for those lucky M people. 

c) If subjective probability is q_<qT<q
_
 , the expected value of investing is positive but the agent

will also consider waiting in order to learn about the true value of the project. In equilibrium the

agents is just indifferent between investing now and waiting. See the beginning of section 3.2 for

the discussion of the non-existence of pure-strategy equilibrium.

i) The agent with an investment option who has not yet exercised his option will put an invest

order at time T with probability 8T.  If however in the time interval [T,T+1), qt falls below q_, the

agent would prefer to wait. Once the contingency is triggered all unprocessed invest orders would

convert into wait orders. Since M is a very large number, investment would stop for good. 

ii) The agent with an investment option who has not yet exercised her option will put a wait order

at time T with probability (1-8T). If however in the time interval [T,T+1), qt rises above q
_
 the

agent would prefer to invest. In fact all agents would now prefer to invest all at once. M is very

large but finite, whereas r64. Hence M newly arrived invest orders would be processed this

period. All the rest would be processed next period. At time T, the agent realizes that the is an

infinitely small probability that his invest order would be processed if the state is triggered.

Hence equation (H) continues to define 8T.

The equilibrium strategies and the possible deviations of this game yield the same

payoffs as in Chamley and Gale.

 

4. Information Cascades

The subjective probability evolves as a result of observational learning from the rate of

investment each period, which is a stochastic variable. Chamley and Gale prove that eventually

the game will end with an information cascade8. If the subjective probability hits q_ before q
_
, the

game ends with an investment collapse. If the subjective probability hits q
_
 before q_, the game

ends with an investment boom. We are particularly interested in the probability of inefficient
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cascades. The measures of interest are then the probability that the process hits q_ before q
_
 when

V= VH , and the probability that the process hits q
_
 before q_ when V= VL . The first would be an

inefficient negative cascade and the latter would be an inefficient positive cascade.

4.1. Transformation 

In order to obtain the boundary crossing  probabilities, we will need to transform the problem

into an equivalent problem that is tractable. Subjective probabilities evolve following (7),

substitute f H(kT;8T-1) and f L(kT;8T-1) into (7). Cancel out kT  factorial from the numerator and

denominator. Take the inverse of both the left and right hand side of the equation and subtract

one from each side. Now plugging in R for  yields,

(9)k

Taking the natural logarithm of both sides yields:

(10)m

where kT  is distributed Poisson with the parameter 8T-1rnH when the true value of the project is

high and it is distributed Poisson with the parameter 8T-1rnL when the true value of the project is

low. For large 8rn, the Poisson distribution can be approximated by the normal distribution.

Notice that kT$0. However the normal distribution assigns positive probability to events with

kT<0. Hence this approximation is less than perfect for small 8rn. Define wT as:

 (11)p

Notice that wT is an increasing monotonic transformation of qT.  Plugging (p) into (m), we get a

transformed  problem:

(12)zh



9See Luce (1986) for an introduction to this literature. MORE?
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where kT
* is distributed normal with mean : and variance F2:

. (14)zo

:H>0 by Appendix Claim A1. And :L<0 by Appendix Claim A3.

Individual learning is a stochastic process with independent increments. This process is

a well known description of individual learning in cognitive psychology. In much of that

literature individuals are modeled as learning through random sampling with exogenously

determined “response thresholds.” This characterization of the learning process is used to explain

laboratory evidence on individual response times and error rates. The present paper shows that

even with fully rational agents group behavior will resemble individual behavior with boundedly

rational agents of the type used in cognitive psychology.9

The transformation (p) of the lower bound given by (4), of the upper bound given by (5)

and of the starting point given by (3) yield :

The lower bound: q_ Y w_ w_ =  (15)q

The upper bound: q
_
  Y w

_
  w

_
 = (16)r

The starting point: q0 Y w0 w0 = (17)s

Notice that for the game to be active, w_ <w0 since initially the expected value of the project is

positive (see footnote 5). And w0 <w
_
 examining (e) and (c) together.

4.2. Boundary Crossing Probabilities with constant 8

The individual learning process follows the equation (14) where the error term is distributed

approximately normal with mean : and variance F2. Both the mean and the variance of the

process depend 8T and hence they depend on the history of the game. They are not constant.

Now we are going to examine a different process. In this modified problem, we will

examine the process described by equation (zh) and (zo) yet with a constant 80(0,1), implying
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a constant drift and variance. In section 4.3, we will prove that the process with the endogenously

determined 8T will yield identical boundary crossing probabilities as in the modified problem with

fixed 8.   

Note that orders are processed in continuous time and the processing time of each order

is distributed uniformly over the period [T,T+1).  So we can define wt as a continuous variable

which coincides with wT when t=T. Denote  as the stochastic term which is distributed normal

where : and F2 (given by Equation (zo)) are respectively the drift velocity and the power of the

noise of the process. Assuming 8T-1= 8T., wt can be approximated by a Wiener process10:

(Az)

 Equations (17), (15) and (16) give the starting point and the bounds. We can easily compute the

boundary crossing probabilities. 

i) Probability of hitting w_ before w
_
 when V=VH and 8T-1= 8T: In this case, the drift is

positive, :H>0. The probability of hitting w_ before w
_
  is given by11:

(18)t

 

The system is defined by six equations: (8), (15), (16), (17), (18) and (12) that defines :H. and

(F2)H. Combining the six equations, one can find a closed form solution for the probability of

hitting the lower bound before the upper bound. Divide the numerator and the denominator of

(18) by and plug in the values of   w_, w
_
, w0 and :H and (F2)H:

(19)u

where . n<0 by Claim A1 in the Appendix. Notice that this probability is

independent of 8.
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ii) Probability of hitting w_ before w
_
 when V=VL and 8T-1= 8T: In this case the drift is

negative, :L<0. The probability of by of hitting w_ before w
_
 when V=VL: 

(20)v

 The system is thus defined by six equations: (8), (15), (16), (17) , (20) and (12) describing :L and

(F2)L. Combining these six equations, one can find a closed form solution for the probability of

by of hitting w_ before w
_
 when V=VL:

(21)w

where . (>0  by Claim A3 in the Appendix.

4.3.  Inefficient Cascade Probabilities for the Original Problem

Proposition 1: The boundary crossing probabilities of the original problem are equal to the
boundary crossing probabilities found using a Wiener process, (19) and (21) of the modified
problem.

Proof: In the actual learning process the parameter 8 is updated via equation (8) at each 

As long as contingencies are not triggered 8 stays constant during the interval [T, T+1). The

boundary crossing probabilities for this process can be reconstructed iteratively using the Lemma

in Appendix C1.  Starting with the Wiener process with absorbing boundaries defined in (*), (**),

(15), (16) and (17), create a process where the parameter changes to (which is stochastic)

at t=1 and stays constant thereafter. From the lemma this new process has the same transition

probabilities as the original process. Since after t=1 the process is a Wiener process we can do

this again after one more period and the new process will also have the same transition

probabilities. Iterating this argument yields the result. ~
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5. Comparative Statics

Since we have approximated closed-form solutions for the probability of inefficient cascades we

can examine the comparative statics. We will start with the comparative statics that behave same

as in exogenous-timing models and then move on to the new comparative statics results we learn

from this endogenous-timing framework. 

5.1. The Prior:

As one would expect, increasing the ex-ante probability that V=VH decreases the probability of

an inefficient negative cascade. 

(22)x

since n<0 and .

The likelihood of getting into  into a positive cascade even though V=VL , increases as the

prior goes up.

(23)y

since (>0 and . The prior probability q* can take the interpretation of reputation.

The comparative statics results indicate that the  better the  initial  reputation of the investment

project, the higher chances it will have to be undertaken by masses even when the true value of

the project is low.  

5.2. Project Value:

In an exogenous-timing herding framework Welch (1992) shows that as the expected value from

investment goes up, early movers are more likely to invest. Hence the is a higher change that the

society ends up with a positive cascade. In our endogenous-timing framework, we get the similar

comparative statics for different reasons. If there is more to gain from successful investment, the

probability of inefficient negative cascade goes down.

(24)ze
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and likewise if there is less to lose from investing the probability of an inefficient negative

cascade goes down.

(25)zf

         

There are three forces. When the expected value of the project goes up either due to an increase

in VH or VL, the agent is more inclined to move now rather than delay. Hence the equilibrium rate

of information flow goes up, making the agent just indifferent between waiting and not. With a

higher information flow it becomes less likely to fall into a negative cascade since the true value

is high (a stronger :H due to a higher 8). However as the information flow goes up, so does the

power of the noise of the learning process. The noise makes it more likely to fall into a negative

cascade when V=VH. These two forces exactly cancel each other out since 8 cancels out from the

probability of inefficient negative cascade. Meanwhile as the expected value of the project goes

up, the upper bound q
_
 and the lower bound q_ both decrease, see equations (5) and (4), while the

starting point is unchanged. Therefore the probability of hitting the lower bound before hitting

the upper bound decreases, making an inefficient negative cascade less likely.

When the expected value of the project goes up, either due to an increase in VH or in VL,

the likelihood of an inefficient positive cascade goes up. 

(26)zg

and

(27)zk

As the expected value of the project goes up, both the lower bound and the upper bounds goes

down. The probability of hitting the lower bound before hitting the upper bound decreases,

making an inefficient positive cascade more likely. 

5.3. Discounting:

Discounting doesn’t play a role in exogenous timing models. Examination of this issue requires

an endogenous timing model. To my knowledge, This is the first endogenous-timing paper with
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comparative statics results on discounting. The agent makes a choice between investing now or

later. If the agent waits, he can learn by observing other people’s actions, however the payoff gets

discounted.  All else constant, as people get more patient,  * goes up, they will be more willing

to wait. Since waiting induces learning, one might be tempted to conclude that higher * would

be associated with a smaller probability of an inefficient negative cascade. However this is not

the case. 

(28)z

With a higher *, at the ongoing rate of information flow agents would strictly prefer to wait, 8

would be equal to zero. However as argued earlier, 8=0 cannot be sustained in equilibrium. So

the rate of information flow goes down. In other words, in equilibrium, people are just indifferent

between waiting and moving, hence a higher * induces a smaller rate of information flow. Since

V=VH, a weaker information flow simply increasing the likelihood of a negative cascade due to

a weaker :H. However at the same time the weaker information flow would increase the noise in

the learning process. And these two opposing effects cancel each other out since 8 cancels out

from the probability of inefficient cascade. Meanwhile, a higher * yields a higher upper bound

q
_
, leaving the starting point and the lower bound unchanged. This also makes the inefficient

negative cascade more likely.

On the other hand, the probability of an inefficient positive cascade goes down as * goes

up.

(29)za

A higher * induces a higher upper bound q
_
. The subjective probability that V=VH must be higher

for a patient agent to prefer to invest now when she is to find out the true value of the project for

sure next period.  This makes the inefficient positive cascade less likely.

5.4. Quality of information:

In the exogenous-timing model of Bikhchandani, Hirshleifer and Welch (1996) as quality of

information goes up the likelihood of incorrect cascades unambiguously goes down. However in

our endogenous-timing framework the effect of signal quality on the probability of inefficient
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herding is not monotone. As the signal quality improves, the likelihood of inefficient cascades

may go up or down depending on the parameter values. (NELSON?, Decamps?)

A decrease in the signal quality (an increase in R) leads to a decrease in q0, leaving the

upper bound and the lower bound unchanged. An decrease in q0 increase the probability of a

positive cascade and decreases the probability of a negative cascade. Meanwhile, an increase in

R (decrease in signal quality) also affects the drift velocity and the power of the noise of the

stochastic learning process:

    and 

    and 

 Denote:

(30)zb

then,

(31)zc

The effect of an increase in R on the probability of an inefficient negative cascade may be positive

or negative depending on the value takes (See Appendix A3). Appendix A4

shows that the increase in R may result in an increase or in a decrease in the probability of an

inefficient positive cascade depending on the parameter values.



12See Beatty and Ritter (1986).
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(32)zd

This suggest that the results on signal quality of the exogenous timing herding literature may not

be applicable to the endogenous timing herding. When the sequence of moves is endogenous

there are three forces to be studied; Higher quality information (smaller R) increases the chances

of efficient learning, and hence decreases the probability of an inefficient cascade. But as quality

of information goes up, the rate of information arrival goes down. This increases the probability

of an inefficient cascade. The third factor is the starting point. When R goes up, the starting point

qT=1 goes down. This makes the probability of a positive cascade go down and it makes the

probability of a negative cascade go up. Exactly which force overwhelms the other/s depends on

the parameter values of the problem. Examples?

6. Discussion

The comparative statics results from this endogenous timing herding model may be able to shed

some light on a variety of questions from different fields of economics. The parameters of the

model, the discount factor, the prior beliefs, the signal quality and the expected value of the

project can take different interpretations depending on the market under consideration.  

6.1. Initial Public Offerings

The IPO market is a fixed-price common-value good market where later potential investors can

observe the investment decisions of early investors. One of the puzzles in this market is the strong

documented underpricing 12. And casual observation of the IPO market shows that offerings

occasionally fail because there is too low of a demand. Both these features are consistent with our

herding model of investment. A lower offering price increases the expected value to potential

investors. This model would predict that  a lower offering price would be associated with a lower

probability of a negative cascade where the offering fails. Welch (1992)  examines the price
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setting by an informed seller of an IPO where buyers cascade. When there is inside information,

Welch (1992) can explain why an optimally priced IPO might fail. This paper, however, predicts

positive probability of a negative cascade for any price the seller picks even when there is no

inside information.       

6.2. Financial versus Real Markets

While * simply represents the discount factor, it may also be regarded as capturing the time

required to process and react to information. Keeping the rate of time preference constant, as the

time to process information increases so does the distance between the time periods in the model,

leading to a lower *. In financial markets agents tend to attain and process information very

quickly. In real investment, however, there is often a non-negligible time gap between the

moment of a decision to undertake an investment project and the visibility of that decision. Hence

in financial markets the relevant * would be larger than in real markets. The paper suggests that

as * goes up the rate of information flow goes down and hence, the likelihood of an inefficient

collapse would be higher in markets with quick information dissemination and processing even

though one might be tempted to think that financial markets would have more information

efficiency. 

In a more fully developed model for the purposes, one could analyze the effect of liquidity

on the probability of inefficient collapses. The more liquid market might imply a higher * since

expected time to trade would be shorter.  Hence a financial market that is open to the world

markets and hence with higher liquidity might be more prone to inefficient collapse. This

possibility is often suggested in the discussion of hot money and exchange rate/debt crises and

the model presented here may be adaptable to give some meat to that discussion.

6.3. Speculative Attacks

The model may help to gain further understanding of the importance of the reputation of a

government pursuing a fixed exchange rate regime. Suppose that an agent invests in foreign

currency, the agent will have a low expected payoff if in reality the fundamentals of the economy

are bad. The agent will have a high expected payoff if in reality the fundamentals of the economy

are good. Each agent is aware of the potential speculative gains and has a one unit of domestic

currency for possible investment in the foreign exchange market. Agents can observe the amount
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of speculative purchases from the monetary authority each period.  The model would suggest that

it is possible that a speculative attack is staged even when economic fundamentals are good. The

possibility of such an inefficient cascade would decline however with the good reputation of the

government.    

6.4. Advertising, Warrantees and Buy-Back Options

This paper suggests that firms producing an identical high quality product will face different

chances of falling into a negative cascade depending on their reputation q*. While the firm with

a good reputation might have its product be purchased by masses, the firm with a lesser reputation

has a higher chance of not being able to take off.   This presents two questions to be further

investigated: In a market with social learning would firms be tempted to overinvest in reputation

possibly in advertising in order to avoid falling into a negative cascade? 

Another key variable in the analysis is the expected value of the project. Warranty and buy

back options are  important elements of marketing new products as better warranty and buy back

options signal higher product quality. Hence these options increase the  expected value from

investing in the product both directly and indirectly through signaling. This model suggests that

in markets where there is social learning these marketing tools will have even a bigger

significance. By offering warranty and buy back options, firms can increase the chances of

positive cascades where purchases of the product booms. All else equal, firms that do not offer

these options will have a relatively high probability of facing a collapse of purchases. 
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Appendix

Appendix A: 

Claim A1 :  

Proof: Define f(R)=R-1-lnR. Note that f(1)=0. Since

Y f(R)>0 for 0<R<1.  So, ~



-22-

Claim A2: 

 Proof: 

Define f(R)=(1-R)(lnR-2)-2lnR. Note that f(1)=0. Since

Y f(R)>0 for 0<R<1 ~

Claim A3:   

Proof: Define f(R)=R-1-RlnR . Note that f(1)=0. Since f N(R)= 1-lnR-1=-lnR>0

Y f(R) <0 for 0<R<1. So ~

Claim A4:  

Proof: , so 

Define f(R)=2R-2-RlnR-lnR. Note that f(1)=0. Since

by A1. Hence f(R)>0. So . ~

Appendix B: 

Claim B1:  or depending on parameter values.

Proof: In equation (31), the first term on the right hand side is positive. ($+lnR)<0, for qT=1>0.

n is given by (xx).  by Appendix A1. Examining (xx), for 0<"<1, 0>($+lnR)>ln(1-*)>-

4. This condition is equivalent to q_<q0<q
_

 of the original problem. Taking the limit when

($+lnR)Y0,

 . 

Taking the limit when ln(1-*)Y- 4 first term of (???) goes to zero using the L’Hopital’s Rule,  

   For  
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This is also equivalent to, 

. ~

Claim B2:   or  depending on parameter values.

Proof: Examining (32), for 0<$<1, 0>(T+lnR)>ln(1-*)>-4. This condition is equivalent to q_ <

q0 < q
_
 of the original problem. Taking the limit when (T+lnR)Y0,

since .

THE OTHER SIDE MISSING

Appendix C:

Lemma C1: Let be a Wiener process with absorbing boundaries as defined in (*), (**),

(15), (16)  and with starting point . Let  be another process with the same form

and parameters as wt up to some possibly stochastic time at which time the parameter

is replaced by  which may also be stochastic. Both and yield the same probabilities

of hitting the boundaries which are given by * and **.

Proof: Define  as the joint p.d.f. of and conditional on not hitting either

boundary in Define as the probability starting from that process hits the

boundry before Since is a standard Wiener process is given by 

(33)zp
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and  These depend on 8 only through the ratio  From (12) this

ratio is given by:

 (34)zq

Hence the probabilities of hitting the boundaries do not depend on 8.  Although the date

as no special relevance to this process we can still decomposed this probability into the

probability that it transitions before or at and the probability it transitions after   

 (35)zm

While we know the left-hand side of this, the formulas for the conditional probabilities and p.d.f.s

on the right-hand side are unknown. However, since starts off as the same process we can

similarly decompose its probability as:

(36)zn

Here both the left and right-hand side probabilities are unknown. Nevertheless, since it is the

same process up to these conditional probabilities and p.d.f.s are the same as in (35) with the

exception of the continuation probabilities in the integrals. Note however these are simply the

probabilities for the Wiener process starting from with parameter and hence for each

potential realization of  and the probability can be found from (33) by substituting  for

As before cancels out from these probabilities. Therefore each in equation (36)

is equal to the corresponding  in (35) and hence The same argument

shows that which completes the proof of the lemma.

~



-25-

Proposition C1: The equilibrium of the game with any finite set ' of possible contingency trigger

points with cardinality greater than one and which contains both and  will yield the same

transition probabilities as the baseline model. 

Proof: From the baseline model where  add one contingency trigger point  If

 then the state would never be reached in the baseline equilibrium and hence we

can construct a parallel equilibrium where no agent chooses to have a contingency triggered at

Hence the edition of will not change the transition probabilities. 

If then some agents may choose to set contingencies there. Let

henceforth B, be the probability that an individual agent chooses to set a contingency

trigger at This may be either to buy or to cancel an impending order. Note that may depend

on t since for a given number of impending orders the time remaining in the period will determine

the rate of information flow which in tern influences the expected value of waiting. By the same

argument used for it is straightforward to show that B<1.  If is a buy trigger and B=1 then

each individual would prefer to wait since If it is a wait trigger and B=1 then each

individual would prefer to buy since

So either the addition of has no effect on the outcome in the period (B=0) or in

equilibrium each individual will be indifferent between using it as a trigger or not. 


