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Abstract

This paper derives the distribution of the extremal correlation estimator allowing for GARCH

dependence in the data. In contrast to existing tests for tail dependence that impose the iid

assumption, our test is applicable to financial time series. Our asymptotic theory is based on

extreme value theory methods. So long as stationarity is satisfied, the difference between the

distribution under the iid and non-iid case is a scaling variance. The variance corrections needed

for the extremal correlation estimator under GARCH dependence are derived.
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1 Introduction

Relationships between extreme events are of interest for various measures of financial performance.

The dependence between assets, particularly dependence of extreme movements, is an issue in

risk management. Since the objective is to minimize the simultaneous occurrence of large losses

across assets in a portfolio, particular attention is paid to the correlation between assets during

periods of crisis when constructing value-at-risk (VaR) models. Extremal dependence is also of

interest in the contagion literature. Whether a shock to one economic variable is contagious is

often investigated by testing whether markets move closely together during turbulent periods. See

for example Longin-Solnick (2001) and Forbes-Rigobon (2001) who test for contagion in extremal

events in international equity markets and Patton (1999) in exchange rates.

There are several methods available to measure tail dependence. Tail dependence is defined

as the probability that a variable exceeds a threshold value, given that the realization of another

variable exceeds a threshold value, and the thresholds are defined far out in the tail of its distri-

bution. Parametric estimation requires specification of tail dependence by a copula (dependence

function). Longin and Solnick (2001) uses this approach on equity markets and Patton (1999) does

so for exchange rates. The copula approach is a parametric approach that requires knowledge of

the full distribution, and closed form solutions for the copula do not exist for most joint densities.

Bae, Karolyi and Stulz (2000) avoid the copula approach by estimating the probability using a

multinomial logistic regression on risk factors. However, a key feature of these papers is that their

extreme value methods are restricted to iid data. This may be viewed as a strong weakness of

these studies as the iid assumption is usually violated and a GARCH type process is often used to

successfully model the data.

This paper uses the extremal correlation estimator as a measure of tail dependence and derives

its statistical properties under the GARCH framework. Our estimator differs from those in the

literature in that we work with expectations (rather than probabilities) of tail events. The advantage

is that our tail dependence measure can be written explicitly in terms of the tail index which

determines the shape of the tail. The statistical properties of the tail index have been studied

extensively, and the extension of the asymptotics to the GARCH framework is contained in Quintos-

Fan-Phillips (2001) and Starica (2000). Because these asymptotics have been developed, it is

feasible for us to derive the statistical properties of the extremal correlation estimator. In particular,

we show that it is consistent and, when appropriately normalized, has an asymptotic Normal
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distribution. This greatly simplifies the construction of any test statistic based on our estimator

(say, a test of constant extremal correlation over time).

Our estimator is derived using an approach that assumes an asymptotic form for the tails and

then nonparametrically computes the corresponding probability of interest. The tail specification in

this case requires knowledge of the asymptotic form of the tails rather than the full data generating

distribution. Typically, a Pareto tail is assumed since it allows for tail fatness which is a condition

known to occur in financial data. Poon-Rockinger-Twan (2001), Starica (1999), Hartmann, et.al.

(2001) are studies that have used this approach. In all these papers, tail dependence is measured

from the conditional probability of extremes with varying suggestions of how to appropriately

calculate the tail probability. Only Starica (1999) takes into account GARCH dependence in the

data.

The remainder of the paper is organized as follows. Section 2 discuses the notion of tail depen-

dence and gives background material on the tail index as a measure of tail shape. We use Hill’s

maximum likelihood estimator as the tail index estimator although the asymptotic results (consis-

tency and Normality) using this estimator will hold as well if we use alternative estimators (say

Pickands estimator). Hill’s estimator is the mean estimator for exceedances. This section contains

the extension of Hill’s asymptotics to the kth moment of exceedances estimator. Section 3 derives

the properties of the test statistic for extremal correlation, proving its consistency and asymptotic

Normality. Section 4 provides the size and power simulations for the test of upper tail correlation.

Conclusions are given in Section 5 and Section 6 contains all proofs.

2 Preliminaries

In this section, we provide the intuition behind our measure of tail correlation and analyze its

statistical properties.

2.1 Measures of Tail Dependence

Measures of tail dependence capture the comovement of the extremes of random variables. If two

random variables X1 and X2 have marginal distributions FX1 and FX2 respectively, then upper tail

dependence is usually defined as

λu1,u2 = lim
u1,u2→1

P
³
X1 > F−1X1

(u1) |X2 > F−1X2
(u2)

´
, (1)
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where λu1,u2 ∈ [0, 1]. The variables are asymptotically extremal dependent if λu1,u2 ∈ (0, 1] and

extremal independent if λu1,u2 = 0. A measure of the degree that extremal independence is violated

is the ratio

χ = lim
u1,u2→1

P
³
X1 > F−1X1

(u1) |X2 > F−1X2
(u2)

´
P
³
X1 > F−1X1

(u1)
´ − 1. (2)

When χ = 0, the variables are independent in the tails and when χ < 0 (χ > 0), the variables

are negatively (positively) extremal dependent. Coles, et al. (1999), for example, modify (2) and

define their measure of extremal dependence as

χ̈ = lim
υ1,u2→1

2 logP
³
X1 > F−1X1

(u1)
´

logP
³
X1 > F−1X1

(u1) |X2 > F−1X2
(u2)

´ − 1.
Hwang and Salmon (2002) apply χ̈ to the analysis of the properties of traditional portfolio perfor-

mance measures.

Tail dependence can be estimated either parametrically or nonparametrically. The parametric

route requires the specification of a copula or a dependence function and is a straightforward

approach if the function has a closed form. Typically, a Gumbel copula is used which, for iid data,

takes the form

Cδ (x1, x2) = exp

∙
−
n
(− log x1)1/δ + (− log x2)1/δ

oδ¸
,

where 0 < δ ≤ 1 controls the amount of dependence between X1 and X2. The special cases δ = 1

and δ → 0 correspond respectively to independence and perfect dependence. The relation of δ to

the correlation coefficient is ρ = 1− δ2. Kendall’s tau is another commonly used extremal measure

that can be calculated directly from the copula.

A nonparametric approach estimates the probabilites of exceedance with weaker assumptions

on the generating distributions than the copula specification. In particular, our approach assumes

only an asymptotic form for the tail. When X is known to have fat tails as in most financial time

series then its tails behave asymptotically like a power function in x,

F̄ (x) = P (X > x) = x−α
³
1 + dx−β + o

³
x−β

´´
, x > 0, (3)

where β > 0 and d ∈ < control the approximation of the tail function. The term α is the tail index

or tail slope which controls the rate of tail decay. The smaller the α, the slower the rate of decay,

and the thicker the tails.

Under the heavy tail assumption (3),
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E (X > x) =
R∞
0 P (X > x) dx

=
R∞
1 P (logX > log x) dxx

∼ 1/α,

(4)

which states that α is the mean of log exceedances, log (X/x). A measure of tail dependence can

then be written in terms of α,

ψ = lim
x1,x2→∞

E (X1 > x1,X2 > x2)

E (X1 > x1)E (X2 > x2)
− 1 = α−112

α−11 α−12
− 1 (5)

using (4).

More generally, ψ can be interpreted as the extremal correlation measure. For a series X define

its exceedances relative to the threshold b as ξ = X
b . Define the notation for any variable zt,

zt+ = zt1(A) where 1(A) is an indicator function which takes the value 1 when A is satisfied. Also

let z∗t = log zt. Note that if we let ξ
∗
+ = log (X/b) 1(ξ>1) then the kth moment is

E
¡
ξ∗+
¢k ∼ k!

αk
, (6)

from (see Hsing, 1991, equation 1.5). The extremal variance for any univariate series Xi can be

computed as

σ2ξ∗i+ = E
¡
log (Xi/bi) 1(ξi>1)

¢2 − £E ¡log (Xi/bi) 1(ξi>1)
¢¤2 ∼ 2!

α2i
− 1

α2i
= α−2i > 0 (7)

using (6) on the first term with k = 2. Then in terms of our notation the upper tail correlation is

ψ = limb1,b2→∞
Cov(X1>b1,X2>b2)r

σ2
ξ∗1+

r
σ2
ξ∗2+

= limb1,b2→∞
E(log(X1/b1) log(X2/b2)1(ξ1t>1,ξ2t>1))−E(ξ

∗
1+)E(ξ∗2+)r

σ2
ξ∗1+

r
σ2
ξ∗2+

=
α−112 −α

−1
1 α−12√

α−21
√
α−22

=
α−112

α−11 α−12
− 1

(8)

as in (5).

Our concern is in deriving the distribution of the correlation of upper tail exceedances for both

iid and non-iid data, unlike the copula based measures that are defined only for the iid case. The

upper tail correlation ψ is of interest in many financial applications where the concern is whether or

not portfolios be uncorrelated during extreme market movements. There has been little statistical

theory, particularly in the non-iid case, for inference using this statistic. Results on the lower tail

correlation are obviously obtained by changing the sign of the series.

5



2.2 EVT Asymptotics

Extreme value theory (EVT) is used to find the distribution of ψ̂. Since ψ̂ depends on σ̂2ξ∗+
, the

distribution theory of ψ̂ is driven by the asymptotics of the tail index estimator α̂−k.

We define α̂−k using Hill’s nonparametric method (Hill, 1975). It is based on EVT in that it

makes use of only the m largest exceedances. For a time series {Xt}Tt=1 ordered as X(1) ≤ ... ≤

X(m)... ≤ X(T ), Hill’s estimator takes the mean over the threshold log X(T−m) (note that log is a

monotonic transformation so order is preserved),

α̂−1 =
1

m

mX
t=1

log

µ
X(T−t+1)
X(T−m)

¶
=
1

m

TX
t=1

∙
log

µ
Xt

X(T−m)

¶¸
1(ξ>1) =

1

m

TX
t=1

ξ∗t+. (9)

The number of the largest order statistics m =
PT

t=1 1(ξt>1) can be chosen using the Hill plot of m

on α̂−1 = α̂−1 (m), and to select m in the region where the estimator is stable (see, for example,

Resnick (1998) for the use of the Hill plot).

The asymptotics of α̂−1 have been derived for the iid case by Hall (1982) and for GARCH data

by Quintos-Fan-Phillips (2001). The major result is that, for iid data,

m1/2α−1 (α̂− α)
d→ N (0, 1) , (10)

i.e., Hill’s estimator is asymptotically Normally distributed provided m = o (T ), and for GARCH

data a scaling parameter is required,

m1/2ζ−1/2α−1 (α̂− α)
d→ N (0, 1) , (11)

where the scaling parameter ζ depends on the parameters of the GARCH process.

To develop the asymptotics of ψ̂, we extend (10) and (11) in our-set up here. Consider the k-th

moment of the exceedances estimator as an extension of (9),

α̂−k (p) =
1

k!m

mX
t=1

∙
log

µ
X(T−t+1)
X(T−m)

¶p¸k
=

1

k!m

TX
t=1

∙
log

µ
Xt

X(T−m)

¶p

1(ξ>1)

¸k
=

1

k!m

TX
t=1

ξk∗t+ (p) .

For example if k = 1 and p = 2,

α̂−1 (2) =
1

m

mX
t=1

log

Ã
X2
(T−t+1)
X2
(T−m)

!

is just Hill’s (mean) estimator for the upper tail exceedances of the squared sequence
©
X2
t

ª
. Simi-

larly, if k = 2 and p = 1 then

α̂−2 (1) =
1

2m

mX
t=1

∙
log

µ
X(T−t+1)
X(T−m)

¶¸2
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is interpreted as the second moment of the upper tail exceedances of the sequence {Xt}. The

generalization of Hill’s asymptotics for the iid case is given in the following Lemma.

Lemma 1. Define the k-th moment of exceedances for the sequence {Xp
t } as

α̂−k (p) =
1

k!m

mX
t=1

³
logXp

(T−t+1) − logX
p
(T−m)

´k
. (12)

Then with m = o (T ) ,

α̂−k (p)
p→ pk/αk, (13)

and

m1/2α̂k (p)
³
α̂−k (p)− pkα−k

´
d→ N (0, 1) . (14)

Equation (13) states that powers of X enter only as scale coefficients and in fact cancel out in

the asymptotics of ψ̂, while equation (14) provides the asymptotic distribution of α̂−k.

An example where tail estimation is applied to the power of the series is GARCH data. Assume

the standard GARCH(1, 1) process for the data,

X2
t = σ2tZ

2
t , Zt ∼ iid N (0, 1) ,

σ2t = β0 + β1σ
2
t−1 + λX2

t−1.
(15)

The distribution Z is assumed Normal however the results can accomodate the case that Z also

has fat tails. The important condition is that stationarity holds, i.e. 0 < β1 + λ < 1.

We can write (15) as

σ2t =
¡
β1 + λZ2t−1

¢
σ2t−1 + β0 = Atσ

2
t−1 +Bt. (16)

Set Yt = σ̂t and assume that the process starts at Z0 (i.e. (Z−1, ..., Z−∞) = 0). Note that Yt can

be written in finite moving average form (with random coefficients),

Y 2t =
tY

i=1

AiY
2
0 +

tX
j=1

⎛⎝ tY
i=j+1

Ai

⎞⎠Bj = Gt
1Y

2
0 + Y 2t (A,B) , (17)

where we have set
Qt

i=j+1Ai = 1 for j ≥ t. Stationarity in this case requires E
¡
Gt
1

¢
< 1. So long

as the condition of stationarity is satisfied the tails of σ2t (and hence X
2
t ) behaves like (3). Then α

can be estimated from

α̂−1 (2) =
1

m

mX
t=1

³
log σ̂2(T−t+1) − log σ̂2(T−m)

´
. (18)
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The tails of X behaves like the tails of σ, i.e. P
¡
X2
t > b

¢
∼ E

¡
Z2t
¢α

P
¡
σ2t > b

¢
. Extending Lemma

1 to the non-iid case requires a scale parameter in the asymptotics as in (11).

Lemma 2. If {Xt} follows a stationary GARCH process, we calculate the tail slope as

α̂−k (p) =
1

k!m

TX
t=1

∙
log

µ
Yt

Y(T−m)

¶p

1(ξ>1)

¸k
=

1

k!m

TX
t=1

ξk∗t+ (p) . (19)

Then with m = o (T ) ,

α̂−k (p)
p→ pk/αk (20)

and

m1/2ζ̂−1/2
³
α̂−k (p)− pkα−k

´
d→ N (0, 1) . (21)

The scale parameter is calculated by defining

Ct =
ξk∗t+ (p)

k!
and Dt = 1

¡
logYt > log Y(T−m)

¢
,

then ζ̂ = 1
(k!)2

α̂−2k (p)
h
(2k)! + χ̂+ 1 + ω̂ − 2k!− 2φ̂

i
so that from (19),

α̂−2k (p) =
1

(2k)!m

TX
t=1

∙
log

µ
Yt

Y(T−m)

¶p

1(ξ>1)

¸2k
and

χ̂ = 2α̂2k (p) 1m
PT−1

j=1

PT
i=j+1CjCi → χ,

φ̂ = α̂k (p) 1m
PT−1

j=1

PT
i=j+1

¡
CjDi + CjDi

¢
→ φ,

ω̂ = 2 1m
PT−1

j=1

PT
i=j+1DjDi → ω

for χ, φ, ω <∞ and ζ = 1
(k!)2

¡ p
α

¢2k
[(2k)! + χ+ 1 + ω − 2k!− 2φ] .

If p = 2 and k = 1, then the results of Lemma 2 coincide with those in Quintos, et al. (2001,

Theorem 8), i.e., the tail index of a GARCH process is distributed as

m1/2ζ̂−1/2
¡
α̂−1 (2)− 2/α

¢ d→ N (0, 1) ,

where ζ̂ = α̂−2 (2)
h
1 + χ̂+ ω̂ − 2φ̂

i
. The only difference between the iid and non-iid case is the

scale parameter ζ. So long as the process is stationary, Hill’s estimator is still consistent and

Normally distributed. This standard asymptotic result simplifies inference.
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3 Inference

Consider the null hypothesis of no correlation in the upper tail,

H0 : ψ = 0. (22)

The estimator for ψ is the correlation of upper exceedances which we can write in tail index notation

ψ̂ =
α̂−112 − α̂−11 α̂−12

σ̂∗ξ1+σ̂
∗
ξ2+

, (23)

where, recalling that ξ∗it+ = log

µ
Xit

Xi(T−mi)

¶
1(ξit>1),

α̂−112 = 1
L

PT
t=1 ξ

∗
1t+ξ

∗
2t+,

α̂−1i = 1
L

PT
t=1 ξ

∗
it+,

σ̂∗2ξi+ = 1
L

PT
t=1 ξ

∗2
it+ −

h
1
L

PT
t=1 ξ

∗
it+

i2
for i = 1, 2 and L =

PT
t=1 1(ξ1t>1,ξ2t>1) is the number of joint exceedance. We note that since

σ̂∗2ξi+ → α−2i

from (7) we can construct the estimator from

ψ̂0 =
α̂−112

α̂−11 α̂−12
− 1.

The estimators ψ̂ and ψ̂0 will behave differently in finite sample but will not change our asymptotic

results.

Theorem 3. To derive the distribution of ψ̂ note that α̂−112 converges to

α̂−112
p→ α−11 α−12 E

¡
X1 −X1(T−m1)

¢ ¡
X2 −X2(T−m2)

¢
. (24)

If X1 and X2 are tail independent (or tail dependent) we have consistency

α̂−112
p→ α−11 α−12

³
or α̂−112

p→ 2α−11 α−12

´
σ̂∗ξi+

p→ α−1i

(25)

and (25) implies that

ψ̂
p→ α−11 α−12 − α−11 α−12

α−11 α−12
= 0

³
or ψ̂

p→ 1
´
. (26)
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Asymptotic Normality also holds,

L1/2
³
ψ̂ − ψ

´
d→ N (0, 1) (27)

so long as L = o (T ).

Remarks. The results of Theorem 3 are valid when the generating distribution has fat tails, say a

t-distribution. It is not valid however when the generating distribution is Normal.

To extend Theorem 3 to ψ̂ (2), we need the asymptotics for the comovement of extremes α̂−112 (2)

in the GARCH(1,1) case. Once again the only difference is that the scaling variance needs to be

defined and its asymptotics derived.

For the GARCH case, we let

ξ∗it+ (2) = log

Ã
Y 2it

Y 2i(T−mi)

!
1(ξit>1), (28)

where ξit =
Yit

Yi(T−mi)
and Yit = σ̂it. Moreover, define

α̂−112 (2) = 1
L

PT
t=1 ξ

∗
1t+ (2) ξ

∗
2t+ (2) ,

α̂−1i (2) = 1
L

PT
t=1 ξ

∗
it+ (2) ,

σ̂2∗ξi+ (2) = 1
L

PT
t=1 ξ

2∗
it+ (2)−

h
1
L

PT
t=1 ξ

∗
it+ (2)

i2
for i = 1, 2 and L =

PT
t=1 1(ξ1t>1,ξ2t>1) is the number of joint exceedance. Then the test statistic

for the GARCH process case can be written as

ψ̂ (2) =
α̂−112 (2)− α̂−11 (2) α̂−12 (2)

σ̂∗ξ1+ (2) σ̂
∗
ξ2+
(2)

. (29)

Theorem 4. Denote Yit = σ̂it and let Hill’s estimator be calculated as

α̂−112 (2) =
1

L

TX
t=1

ξ∗1t+ (2) ξ
∗
2t+ (2)

and define

Ct = ξ∗1t+ (2) ξ
∗
2t+ (2) and Dt = 1

¡
log Y1t > log Y1(T−m1), log Y2t > log Y2(T−m2)

¢
.

Then if {Xit} follows a GARCH(1,1) process (a)-(c) hold,

(a) 2α̂212
1
L

PT−1
j=1

PT
i=j+1CjCi → χ0,

(b) α̂12
1
L

PT−1
j=1

PT
i=j+1

¡
CjDi + CjDi

¢
→ φ0,

(c) 2 1L
PT−1

j=1

PT
i=j+1DjDi → ω0.
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where χ0, φ0, ω0 <∞. Set

ζ̂0 =
³
1 + χ̂0 + ω̂0 − 2ψ̂0

´
then Hill’s estimator is distributed as

L1/2ζ̂
−1/2
0 α̂12 (2)

¡
α̂−112 (2)− α−112 (2)

¢ d→ N (0, 1) . (30)

Tests based on ψ̂ (2) are constructed from

L1/2ζ̂
−1/2
0

³
ψ̂ (2)− ψ (2)

´
d→ N (0, 1) . (31)

Theorem 4 gives the variance calculation for the test of extremal correlation under the GARCH

assumption.

Remarks. Other tests can be constructed based on the asymptotics of Theorems 3 and 4. For exam-

ple, tests for contagion can be constructed as a structural change test on ψ. The null hypothesis for

contagion is whether there is a significant break in correlation, H0 : ψt = ψ ∀ t ∈ (0, T ). Following

Quintos-Fan-Phillips (2001), we can use the rolling test for structural change (the recursive and

sequential tests have consistency problems, see Theorem 4). We let wt denote the size of our rolled

sample, mwt = [κwt] for 0 < κ < 1 denotes the number of order statistics used to calculate Hill’s

estimator, and ψ̂t is the extremal correlation estimate until time t. The rolling estimator fixes the

subsample size wt and estimates α using wt rolled through time. Let γ0 ∈ (0, 1) denote the fraction

of the fixed sample length and restrict r ∈ (γ0, 1). The calculation of the rolling correlation starts

from t0 = [T (r − γ0)] + 1 so each subsample is of length w∗t = t − t0 + 1 = [Tγ0]. The extremal

correlation estimator using sample w∗t is denoted as ψ̂
∗
t . The test statistic is

VT (t) = max
t

µ
w∗tmw∗t

T

¶Ã
ψ̂∗t
ψ̂T
− 1
!

d→ (W (r, γ0)− (r − s)W (1, 1))2

and the critical values are tabulated in Quintos, et al. (2001). The notationW (r) denotes a Wiener

process with t = [Tr] and W (r, γ0) =W (r)−W (s) where wt/T → r − s = γ0.

4 Simulations

This section explores the finite sample properties of the extremal correlation test using 5000 Monte

Carlo simulations. Section 4.1 considers only the iid case to highlight the main properties of the

test. Section 4.2 extends the simulation to the ARCH case. All simulations use a sample size of

1000.
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4.1 Size and Power Properties

We generate Pareto tails from the t-distribution with v degrees of freedom. The tail index α in this

case corresponds to v. The variance is infinite when v = 2 and thinner tails occur as v →∞. The

choice of m in the calculation of α is based on the Hill plot generated by the EVIM software.

Table 1 gives the size and power of the test under the null of no extremal correlation. The

size and power are analyzed by generating correlated t distributions with correlation ρ. We give

performance statistics for three size levels: 1%, 5% and 10% levels. With no correlation of ρ = 0,

the test has correct size when the generating process is thick tailed (i.e. v = 2). In this best case

scenario, the test rejects 5.4% for a correct size of 5%. For whatever correlation level the power

falls as v increases since the Pareto assumption is less relevant. Also, given the degrees of freedom,

the power increases as dependence increases since the distance from the null is increased. Indeed

with v = 6 and a correlation of ρ = .38, the test correctly rejects the null only 34% of the time at

the 5% level as compared to 88% rejection with ρ = .7.

4.2 Effects of Serial Dependence

Serial dependence in the data creates size distortion unless the test statistic is properly adjusted

for it. Table 2 shows the size distortion in the test when serial dependence is introduced using the

ARCH process. The data generating process is

X2
t = σ2tZ

2
t ,

σ2t = β0 + λX2
t−1,

and Zt are iid Normals. The parameter β0 is set to .1 and the parameter that carries the clustering

information λ is varied.

We work with the ARCH process since the direct correspondence between the tail slope of Xt

and λ has been tabulated in Embrechts et al. (1997) and is repeated here,

λ .3125 .4 .5 .5773 .6 .7 .8 .9 1 1.57

α 8.00 6.09 4.74 4.00 3.82 3.17 2.68 2.30 2.00 1.00
.

Note that we apply our test to X2
t so the true tail index is 2/α. It is evident that as persistency

increases in the data (i.e. as λ increases), the size distortion of the test without the size correction

increases while the test with the correction remains close to the true size of the test.
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5 Conclusion

Correlation during periods of extreme market movements is of interest in portfolio selection and

risk management. This paper provides the distribution of the extremal correlation estimator that

is applicable to GARCH data. The asymptotics used to derive the distribution is based on extreme

value theory. The tests based on our correlation estimator are widely applicable since the theory

requires little knowledge of the full data generating distribution. It only assumes that the limiting

tail distribution is heavy tailed which is a condition satisfied by most financial time series.

6 Proofs

Proof of Lemma 1:

To prove (13), from Hall-Welsh (1985, equations 3.9 and 3.10) we make use of the following

representation,

logX(.) = −α−1Y(.) − α−1d exp
¡
−ρY(.)

¢
+ op (1) ,

where ρ = β/α, Y(n) =
PT−n+1

j=1 Zj/T − j+1 and Z are independent exponential random variables

with mean 1. Assuming m = o (T ) the second term in the right hand side is op (1) (see Quintos-

Fan-Phillips, 2001, proof of Lemma 10, equation 32) so

logX(m+1) − logX(t) ∼ −α−1Y(m+1) + α−1Y(t)

= α−1
PT−t+1

j=T−m+1 Zj/T − j + 1.
(32)

Using the transformation x→ x−1, we have

F (x) = cαx
α
³
1 + dxβ + o

³
xβ
´´

as x ↓ 0,

and so (12) becomes

α̂−k (p) =
1

k!m

mX
t=1

³
log
³
Xp
(m+1)/X

p
(t)

´´k
.

From (32),

X(m+1)/X(t) = exp

⎛⎝α−1
T−t+1X

j=T−m+1
Zj/T − j + 1

⎞⎠ , (33)

and hence we can write

α̂−k (p) = 1
k!m

Pm
t=1

³
log
³
Xp
(m+1)/X

p
(t)

´´k
= 1

k!m

Pm
t=1

³
pα−1

PT−t+1
j=T−m+1 Zj/T − j + 1

´k
+ op (1) using (33)

= pkα−k
∙
1

k!m

Pm
t=1

³PT−t+1
j=T−m+1 Zj/T − j + 1

´k ¸
+ op (1) .

(34)

13



Now for each t = 1, ...,m the term
³PT−t+1

j=T−m+1 Zj/T − j + 1
´k
is

t = 1 :
P

k1,...,km
k!

k1!...km!

³
ZT−m+1

m

´k1
...
³
ZT
1

´km
,

t = 2 :
P

k1,...,km−1
k!

k1!...km−1!

³
ZT−m+1

m

´k1
...
³
ZT−1
2

´km−1
,

...
...

t = m :
³
ZT−m+1

m

´k
,

so there are m terms for the case ki = k, i = 1, . . . ,m. Therefore, we have

mX
t=1

⎛⎝ T−t+1X
j=T−m+1

Zj/T − j + 1

⎞⎠k

=
mX
t=1

⎛⎝ T−t+1X
j=T−m+1

Zk
j

(T − j + 1)k

⎞⎠ + op
¡
m−1

¢
,

and from (34),

α̂−k (p) = pk

k!αk
1
m

Pm
t=1

µPT−t+1
j=T−m+1

Zkj

(T−j+1)k

¶
+ op (1)

= pk

k!αk
1
m

PT
j=T−m+1

Zkj

(T−j+1)(k−1)
+ op (1) , k > 1

p→ pkk!
k!αk

= pkα−k,

(35)

where the last line follows from Hall (1978, equation 14) and by noting that E
¡
Zk
¢
= k!.

To prove (14), we write from (35),

m1/2
¡
α̂−k (p)− pkα−k

¢ = pk

k!αk
1√
m

PT
j=T−m+1

Zkj

(T−j+1)(k−1)
−m1/2pkα−k + op (1)

from line 2 of (35)

∼ pkα−km−1/2
PT

j=T−m+1
Zkj −k!

k!(T−j+1)(k−1)
+ op (1)

d→ pkα−kN (0, 1)

as required since m−1/2
PT

j=T−m+1
Zkj −k!

k!(T−j+1)(k−1)
d→ N (0, 1) from Hall (1978, equation 14). 2

Proof of Lemma 2:

Consistency and asymptotic Normality holds so long as the process is stationary. We need only

to derive the variance components. In particular, we work with extending equation (3.2) of Hsing

(1991) to the case of k, p > 1,

√
m

∙³
α̂−k (p)− α−k (p)

´
+

pk

k!αk
(ST −E (ST ))

¸
, (36)

where ST =
1
m

PT
t=1 1

¡
log Yt > log Y(T−m)

¢
. The variance components are then (see page 1558 of
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Hsing, 1991),

1
mV ar

³PT
j=1Cj

´
= 1

(k!)2m

Ã
V ar (C1) + 2

P
1≤i≤j≤T

P
Cov (Ci, Cj)

!

→ 1
(k!)2

Ã¡ p
α

¢2k
(2k)! + 2

P
1≤i≤j≤T

P
Cov (Ci, Cj)

!
= 1

(k!)2

¡ p
α

¢2k
((2k)! + χ) ,

(37)

where χ = 2
³
α
p

´2k P
1≤i≤j≤T

P
Cov (Ci, Cj) <∞. Also for the second term,

³
pk

k!αk

´2
1
mV ar

³PT
t=1 1

¡
logYt > log Y(T−m)

¢´
=
³

pk

k!αk

´2 "
V ar (D1) + 2

P
1≤i≤j≤T

P
Cov (Di,Dj)

#
→
³

pk

k!αk

´2
(1 + ω) <∞,

(38)

and the covariance term,¡ p
α

¢k 2
(k!)2m

Cov
³PT

i=1Ci,
PT

j=1Dj
´

=
¡ p
α

¢k 2
(k!)2m

"
Cov (C1D1) +

P
1≤i≤j≤T

P
Cov (CiDj) + Cov (DiCj)

#

→
¡ p
α

¢k 2
(k!)2

"
k!pk

αk
+

P
1≤i≤j≤T

P
Cov (CiDj) + Cov (DiCj)

#
=
¡ p
α

¢2k 2
(k!)2

[k! + φ] ,

(39)

where φ =
³
α
p

´k P
1≤i≤j≤T

P
Cov (CiDj) +Cov (DiCj) <∞.

The result follows since the variance of (36) is a combination of (37), (38), and (39),

1
(k!)2

¡ p
α

¢2k
((2k)! + χ) +

³
pk

k!αk

´2
(1 + ω)−

¡ p
α

¢2k 2
(k!)2

(k! + φ)

= 1
(k!)2

¡ p
α

¢2k
[(2k)! + χ+ 1 + ω − 2k!− 2φ] .

Finiteness of χ, ω and φ follows the arguments contained in Quintos, et al. (2001, Theorem 8). 2

Proof of Theorem 3:

Let t1, t2 and l denote the position of X1,X2 and Y in (0,m1), (0,m2), (0, L) respectively so

that t1 = [κ1m1] , t2 = [κ2m2] and l = [κL]. The notation [x] denotes the integer part of x. Since

L = min (m1,m2), we let L = [λ1m1] or L = [λ2m2] with λ1, λ2 ≤ 1. The relation of t1 and t2 to l

is then t1 =
h
κ1
κλ1

l
i
, t2 =

h
κ2
κλ2

l
i
.
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We write the summation indexed by l,

α̂−112 = 1
L

PL
l=1 Y(l)

= 1
L

PL
l=1

¡
logX1(t1) − logX1(T−m1+1)

¢
+

¡
logX2(t2) − logX2(T−m2+1)

¢
+
.

(40)

Now make the transformation x→ x−1and (40) becomes

α̂−112 =
1

L

LX
l=1

¡
logX1(m1+1) − logX1(t1)

¢
+

¡
logX2(m2+1) − logX2(t2)

¢
+
. (41)

To prove (24) we write α̂−112 in terms of standard exponential variables Z,

α̂−112 =
³

1
α1α2

´
1
L

PL−1
l=0

h³PT−t1
j=1

Z1j
T−j+1 −

PT−m1
j=1

Z1j
T−j+1

´³PT−t2
j=1

Z2j
T−j+1 −

PT−m2
j=1

Z2j
T−j+1

´i
=
³

1
α1α2

´
1
L

PL−1
l=0 [(A1 −A2) (B1 −B2)] .

(42)

Consider first expanding
PL−1

l=0 (A1 −A2) assuming for now B1 = B2 = 0 and m1 ≤ m2. In

expanding the summation over l, notice that for each l, the term A1 is

l = 0 : Z11
T + Z12

T−1 + ...+
Z1T−m1
m1+1

+ ...+

Z
1T−

∙
κ1
κλ1

¸
h
κ1
κλ1

i
+1

+ ...+ Z1T
1 ,

l = 1 : Z11
T + Z12

T−1 + ...+
Z1T−m1
m1+1

+ ...+

Z
1T−

∙
κ1
κλ1

¸
h
κ1
κλ1

i
+1

,

...
...

l = L− 1 : Z11
T + Z12

T−1 + ...+
Z1T−m1
m1+1

.

Thus we can write
L−1X
l=0

A1 = L

⎛⎝T−m1X
j=1

Z1j
T − j + 1

⎞⎠+ TX
j=T−m1+1

Z1j ,

and so since L = m1

1
L

PL−1
l=0 A1 −A2

PT−m1
j=1

Z1j
T−j+1 −A2 +

1
L

PT
j=T−L+1 Z1j

= op (1) +
1
L

PT
j=T−L+1 Z1j

p→ E (Z1) .

Returning to (42), we are concerned with the nonzero terms of A1 and B1,

α̂−112 = 1
α1α2

1
L

PL−1
l=0 [(A1 −A2) (B1 −B2)]

= 1
α1α2

1
L

PT
j=T−L+1 Z1jZ2j + op (1)

p→ α−11 α−12 E (Z1Z2)

(43)

as required.

To prove (25), we have the following three steps:
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1. We show that α̂−112
p→ α−11 α−12 under H0. Under H0, E (Z1Z2) = E (Z1)E (Z2) = 1 given

our assumption on Zi as standard expoonential variables with mean 1. To show α̂−112
p→

2α−11 α−12 we can use Lemma 1 or (43). Perfect correlation is given by
¡
X2 −X2(T−m2)

¢
=

a
¡
X1 −X1(T−m1)

¢
, say. Then E (Z1Z2) = aE

¡
Z21
¢
= a2! for any a 6= 0 using (43). Since

the coefficient a cancels out in the construction of the correlation coefficient we take a = 1

without loss of generality. The same result can be derived using Lemma 1 by setting p = 2

since
¡
X2 −X2(T−m2)

¢
=
¡
X1 −X1(T−m1)

¢
under perfect correlation.

2. The result for σ̂∗ξi+
p→ α−1i follows from Lemma 1,

σ̂2∗ξi+ =
1

L

TX
t=1

ξ2∗it+ −
"
1

L

TX
t=1

ξ∗it+

#2
p→
µ
1

αi

¶2
2!−

Ãµ
1

αi

¶1
1!

!2
= α−2i , (44)

with p = 1, k = 2 for the first term, and k = 1 for the second term.

3. To prove L1/2
³
ψ̂ − ψ

´
d→ N (0, 1), first note that the numerator of ψ̂,

ψ̂num = α̂−112 − α̂−11 α̂−12
p→ α−11 α−12 (E (Z1Z2)− 1) = 0

under H0. Also,

ψ̂num = α−11 α−12
1
L

PT
j=T−L+1 Z1jZ2j −

³
1

α1L

PT
j=T−L+1 Z1j

´³
1

α2L

PT
j=T−L+1 Z2j

´
+ op (1)

= α−11 α−12
1
L

hPT
j=T−L+1

³
Z21j − Z̄21

´i
+ op (1) .

(45)

By the CLT,

L1/2α1α2

³
ψ̂num

´
d→ N (0, 1) . (46)

The result follows by noting that σ̂∗ξi+
p→ α−1i so

L1/2
³
ψ̂
´

d
= L1/2σ̂∗−1ξ1+

σ̂∗−1ξ2+

³
ψ̂num

´
d→ N (0, 1)

from (44) and (46). 2

Proof of Theorem 4:

To prove (30) we follow the proof of Lemma 2. As in (36) we are concerned with the variance

of

√
L

∙¡
α̂−112 (2)− α−112 (2)

¢
+

1

α1α2

¡
S0T −E

¡
S0T
¢¢¸

, (47)
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where S0T =
1
L

PT
t=1 1

¡
log Y1t > log Y1(T−m1), logY2t > logY2(T−m2)

¢
. The variance terms are cal-

culated from

Ct = log

µ
Y 2
1t

Y 2
1(T−mi)

¶
1(ξ1t>1) log

µ
Y 22t

Y 2
2(T−mi)

¶
1(ξ2t>1),

Dt = 1
¡
log Y1t > log Y1(T−m1), log Y2t > log Y2(T−m2)

¢
,

where the first term is

1
LV ar

³PT
j=1Cj

´
= 1

L

Ã
V ar (C1) + 2

P
1≤i≤j≤T

P
Cov (Ci, Cj)

!

→
Ã
2E(Z1Z2)

2

(α1α2)
2 + 2

P
1≤i≤j≤T

P
Cov (Ci, Cj)

!

= 1
(α1α2)

2

Ã
2 + 2 (α1α2)

2 P
1≤i≤j≤T

P
Cov (Ci, Cj)

!
= 1

(α1α2)
2 (2 + χ0)

(48)

under H0. The second term is

1
(α1α2)

2
1
LV ar

³PT
t=1Dt

´
= 1

(α1α2)
2

"
V ar (D1) + 2

P
1≤i≤j≤T

P
Cov (Di,Dj)

#
→ 1

(α1α2)
2 (1 + ω0) ,

(49)

and the final term can be written as

2
(α1α2)

2
1
LCov

³PT
i=1Ci,

PT
j=1Dj

´
= 2

(α1α2)
2
1
L

"
Cov (C1D1) +

P
1≤i≤j≤T

P
Cov (CiDj) + Cov (DiCj)

#

→ 2
(α1α2)

2

"
1 + (α1α2)

2 P
1≤i≤j≤T

P
Cov (CiDj) + Cov (DiCj)

#
= 2

(α1α2)
2 [1 + φ0] .

(50)

The result for ζ0 follows by combining (48), (49) and (50). 2
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Table 1 
Size and Power of Tail Dependence Test 

 
The data generating process used for the table below are correlated t distributions each 
with υ  degrees of freedom. Size and Power are given for three size levels – 1%, 5% and 
10% levels. The variable ρ  denotes the correlation of the t random variables. 
 
           0=ρ           38.=ρ          7.=ρ  
 ψ̂  ψ̂  ψ̂  

2=υ     
.01 .006 .2258 .8742 
.05 .054 .3642 .8904 
.10 .106 .5783 .9331 

4=υ     
.01 .008 .1961 .8691 
.05 .063 .3544 .9003 
.10 .112 .5390 .9291 

6=υ     
.01 .014 .1914 .8548 
.05 .071 .3432 .8804 
.10 .118 .5368 .9152 

 
 

Table 2 
Effects of Serial Dependence on Size of the Test 

 
The data generating process used for the table below are uncorrelated  ARCH 
processes. The ARCH process is generated as 

 

.2
10

2

222

−+=

=

tt

ttt

X

ZX

λβσ

σ
 

The parameter 0β is set to .1 and λ is varied.  The results for ψ̂  with and 
without the serial dependence correction are given. 

 
 

 Without correction With correction 
4.=λ    

.01 .0187 .0064 

.05 .0856 .067 

.10 .1252 .1087 
6.=λ    

.01 .0231 .0065 

.05 .0889 .0621 

.10 .1268 .1050 
8.=λ    

.01 .0296 .0057 

.05 .0974 .0583 

.10 .1337 .0965 


